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Abstract. In ice sheet modelling, the shallow-ice approxi- 1 Introduction
mation (SIA) and second-order shallow-ice approximation
(SOSIA) schemes are approaches to approximate the solu-

tion of the full Stokes equations governing ice sheet dynam-The cryosphere is an important part of the climate sys-
ics. This is done by writing the solution to the full Stokes €M, and includes, among other features, the Greenland Ice

i.e. the quotient between a characteristic height and a chas3 x 10’ km?®, these two ice sheets represent the largest com-
acteristic length of the ice sheet. SIA retains the zeroth-ordePonent of the cryosphere, and store about 77 % of the global
terms and SOSIA the zeroth-, first-, and second-order term&eshwater. Cryospheric research, and specifically, ice sheet
in the expansion. Here, we evaluate the order of accuracy ofmodelling, is a vibrant discipline which receives much scien-
SIA and SOSIA by numerically solving a two-dimensional tific, political and societal attention because of its relevance
model problem for different values ef and comparing the for predictions of the future sea level rise in a warming world
solutions with a finite element solution to the full Stokes (Solomon et a].2007.

equations obtained from Elmer/Ice. The SIA and SOSIA so- Increasingly complex numerical ice sheet models are used
lutions are also derived analytically for the model problem. tO simulate the response of the Earth’s ice sheets to different
For decreasing, the computed errors in SIA and SOSIA de- climate forcings, and internationally coordinated efforts are
crease, but not always in the expected way. Moreover, thepevoted to ensure inter-comparability of such modelling ex-
depend critically on a parameter introduced to avoid singu-€rcises by means of benchmarkimaftyn et al.2008 2012
larities in Glen's flow law in the ice model. This is because Calov et al, 2010. Participating models range from zeroth-
the assumptions behind the SIA and SOSIA neglect a thickorder shallow-ice approximation (SIA) models, to higher-
high-viscosity boundary layer near the ice surface. The senorder models and full Stokes models; the common under-
sitivity to the parameter is explained by the analytical solu-Standing being that higher-order models are more accurate
tions. As a verification of the comparison technique, the S|Athan zeroth-order models, while full Stokes models are the
and SOSIA solutions for a fluid with Newtonian rheology are Most accurate (but also the most costly) ones. However, as

compared to the solutions by Elmer/ice, with results agreeingncreasingly accurate numerical ice sheet models and corre-
very well with theory. spondingly powerful hardware become more readily avail-

able, overall less research is focused on e.g. analyses devoted
to basic foundations of ice sheet modelling, such as the valid-
ity and limitations of approximation schemes and associated
scaling procedures. These schemes and scaling procedures
were especially important when virtually all ice sheet mod-
elling relied on SIA schemes because computing power was
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2136 J. Ahlkrona et al.: The second-order shallow-ice approximation

more restricted than it is today. Yet, because of challengingapproximations. Recent works Bhlkrona et al(2013 and
applications such as palaeoglacial simulations or uncertaintKirchner et al.(2011) allow us to keep this presentation to
quantifications, they have not lost their relevance, and a larga minimum. Sect3 describes the model problem which we
portion of ice sheet simulations is still performed with SIA focus on throughout the paper: a two-dimensional flow over
codes or higher-order approximations today. a bumpy bed. In Sec# an analytical SOSIA solution for

In this paper we investigate the order of accuracy and vathis model problem is presented and discussed, extending
lidity of a higher-order extension to the SIA; the second- previous work byBaral (1999 andBaral et al.(2001). The
order shallow-ice approximation (SOSIA). In the process wesolution is compared to the SIA and SOSIA solutions of a
also study the accuracy of the classical SIA. The SIA wasNewtonian fluid. In Sect5 we implement the SOSIA nu-
constructed in the 1970s and 1980s Fywler and Larson  merically and compute the accuracy of both the SIA and the
(1978, Hutter (1983 andMorland (1984). The derivationis  SOSIA by comparing their solutions with the solution ob-
based on scaling and asymptotic series expansion in terms ¢&ined with Elmer/ICE Gagliardini et al. 2013, for vary-
the aspect ratia;, which expresses the shallowness of an iceing €. The same computations are repeated for a Newtonian
sheet. In the SIA, only the zeroth-order terms are kept. In theluid to verify that the comparison technigue is reliable. In
end of the 1990s, the second-order shallow-ice approximaboth Sects. 4 and 5 we compare our results with the theory in
tion (SOSIA) was derived bfaral (1999 andBaral et al.  Schoof and Hindmarst2010 and investigate the effect of an
(2001, pushing the series expansion to second order in extra parametes;es, Which is necessary due to the neglect of
with the objective of including dynamics not captured by the the boundary layer at the surface. The paper concludes with
SIA. Computing a solution with SOSIA can be viewed as two a discussion in Sect. 6.
steps in an iteration. First the SIA solution is determined, and
then the SOSIA solution. A fully iterative algorithm is devel-
oped inSowtek and Martine¢2008, based on an asymptotic
expansion ire.

The SOSIA is thus a higher-order model based on the SAMS 1 The exact equations
theory as the SIA, and is almost as computationally cheap as’ q

the SIA. The scaling assumptions underlying the SOSIA (andce sheet flow is commonly described using concepts from

the SIA as derived ifBaral 1999 Baral et al, 2003 Greve  qntinuum mechanics, materials science, and thermodynam-
1997) do, however, neglect a high-viscosity boundary layerics \which allow for the formulation of the spatio—temporal

near the ice surface. This boundary layer is thigklkrona o\ 51ytion of ice masses as an initial boundary value problem,
etal, 2013, and other scaling assumptions bghnson and ith free boundaries. Ice flow is momentum, mass, and in-
McMeeking (1984 and Schoof and Hindmars(2010 are o3| energy conserving. As we will only study isothermal
more appropriate than the classical SIA scalingslkrona g4y the equations regarding energy are not described here.

et al, 2013. This calls for a proper analysis of the accuracy 1o equations for balance of mass and momentum are
of the SOSIA equations, and also an investigation of the true

order of accuracy of the SIA. The boundary layer is associ-0 = divv, (1)
ated with the non-linear rheology of ice. There is no bound-
ary layer in a Newtonian fluid at the upper surface and the”

scaling assumptions made to derive the SIA and SOSIA ar‘?Nherep is the densityp the velocity field, 7 P the deviatoric

valid for the whole fluid. stress tensor angl gravitational acceleration. The deviatoric

| . Astress tensoff ©, and the Cauchy stress tensBrare related
(and SIA) as well as numerical solutions of SIA, SOSIA and by T = —pI+TP, wherep is the pressure. The acceleration

the full Stokes equations when there is no sliding at the ic&g ;, _ \hich is the material time derivative of the veloc-
base. Ultimately, it is of interest to assess under which cir--,[y in’ Eq. (2) — is very small and is therefore neglected in

cumstances the SOSIA model can be regarded as a S"gmtjlaciological applications. The resulting equations are called

icant improvement on the SIA at low computational COSS. {o Stokes equations, or in glaciology rather fii Stokes

The SOSIA, as described Baral et al.(200)), has to our o ations. Velocity and stress are related by the constitutive
knowledge never been implemented before this study, mos&quation

likely because the second-order expressions are long and te-

dious to code. The SOSIA was applied bMangeney and  p = A(7") f (o) TP, (3)

Califano(1998 for Newtonian, anisotropic ice, and recently

was applied byegholm et al.(2011) — not, however, in its  in glaciology called Glen’s flow law. The strain rate tengbr

pure form, but in a depth-averaged, iterative scheme. is defined agV v+ (V v)*) /2, where* denotes transpose and
The outline of this paper is as follows: Se@.is de- A(T’) accounts for coupling the viscosity, to the pressure

voted to a summary of the general equations pertaining tanelting point corrected temperatufé. For isothermal con-

ice dynamics, and to their zeroth-, first-, and second-ordeditions.4 is merely a constant. The so-called creep response

2 Derivation of the zeroth- and second-order shallow-
ice approximation

v=—Vp+divTP +pg, 2)

Geosci. Model Dev., 6, 2133152 2013 www.geosci-model-dev.net/6/2135/2013/



J. Ahlkrona et al.: The second-order shallow-ice approximation 2137

function, £, is defined byf (o) = 0", where we let: be
equal to the standard value 3. Its argumentthe effective

stress, is the square root of the second invariarft of and (x,y) =[LI(x,y),
is defined by z=[H]z,
1 t = ([L1/[VLD1,
0? = St(TPP = (27 + (2)°+ (12 (4) p=pglHIp.
1 D .,D _\_ D ;D -~
+5 (€22 + R+ a2?). (tzstyzs0) = €8I H 1z, 1z, 9,

2 P P P

U0t b 1) = €2pgLH (oo Ty 1),

xx0 fyy fxyo

Here, tl.'/? (i,j =x,y,z) are the components df P in (e, vy) = VL]0, 0))

a Cartesian coordinate system wheregh&is is pointing in

the opposite direction of gravity. We refer 4§, :2 and:2 vz = [VH]vz,
asnormal deviatoric stresseso 12 (=) andr)) (=1,2) e =[H]/IL]1=[VHl/[VL],
asvertical shear stressemsnd torXD‘, (= txy) as thehorizon- F= [VL]Z/g[L], (8)

tal plane shear stressAs the creep response function de-
pends on the effective stress, ice is a non-Newtonian fluidvhere the aspect ratie, has been introduced. The dimen-
with viscosity, n, given by ¥n=2A(T’)f(c). This non-  sionless quantities are denoted by tilde and are assumed to be
linearity makes the ice flow simulations a computationally of the order of magnitudé&(1). They are multiplied by typ-
heavy task. The computations are simpler in a Newtoniarical values of height, /], length,[L], vertical velocity[ V4]
fluid with n = 1. Thenf = 1 and the relation betwedd and ~ and horizontal velocity{V} ], where[H] « [L] so that the
TP in Eq. @) is linear for a constarit’. aspect ratiog, is small. The scaling reflects that the vertical

To complete the system, boundary conditions are impose&hear stresses are assumed to dominate over the normal devi-
at the ice base and ice surface. At the impermeable ice basétoric and normal shear stresses, and that this dominance is
the velocity satisfies no slip conditions on a rigid bedrock, stronger the more shallow the ice sheet is. Also, the horizon-

giving the condition tal velocity is assumed to dominate over the vertical velocity,
[VHI < [VL].

v=0. (5) The scalings Eq.§) are inserted into the equations and
a perturbation expansion is performed, i.e. the dimensionless

The ice surface is assumed to be Stress-fl’ee, Variab'esé, are expanded ina power series as

T-n=0. ©)  G=do+ein+eio+. .. )

Heren is the _outward-pointing normal vector of the.ice Collecting terms of equal order in gives rise to a hier-
surface. In the time-dependent case, a transport equation fofychy of models, called the SIA for zeroth orderdnthe
the ice surface elevation is solved, where the velocity fieldeqg)a (first-order shallow-ice approximation) for first order

enters as coefficients and the accumulat'ion or ablation €M ¢, and SOSIA for second order. The momentum balance
ters as a forcing. The equation for the height of the free ICeq. (2) (in component form), for the SIA model is
surfaceh(x, y, 1) is '

97D

dh ah dh __9p© xz(0) 1
5"‘1&54‘71;;5—01:(13, (7) 0= ox + ~8Z ? ( Oa)
op ot

wherev,, v, andv, are the velocity components aaglisthe ~ 0= —% + g—zfo), (10b)
accumulation/ablation function. 5 ~y <

_ o 1=-20 (10¢)
2.2 Shallow-ice approximations 9z
Here we briefly describe how the SIA and the SOSIA areFor the FOSIA, itis
derived from the exact, full Stokes equations by scaling and . 97D
perturbation expansions. We exemplify the procedure by thgy _ _ 2 4 2@ ’ (11a)
momentum balance ER) We follow the scalings presented ax 9z
in Baral (1999, Baral et al.(200), andGreve (1999, as 35 31 1) 11b
these are the ones most commonly used today for denvmé)— "oy + Tor (11b)
the SIA, and also those used to go further and arrive at the 95
SOSIA equations. These scalings are 0= —% (11c)

Z
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For the SOSIA, itis SOSIA than by the SIA. The SOSIA is computationally in-
expensive compared to many other higher-order models, be-

~ b P “D : . : ;
e " 3&2(2) n 3’3(0) " 50 cause the equations can be solved without a coupling of vari-

0= = = = —, (12a) : ) .
9% 97 ox 9y ables in a system of linear equations.
9P 020 000 0
0= 2P 2@ 4 “x0@ 4 Tw@ (12b) 2.3 Boundary layer treatment
ay 9z ax ay
95 57D 57D 57D The SIA and the SOSIA are both based on the same scaling
0=_2P@  "xx0 4 "0 , 7220 (12c)  arguments in Eq.8), where it is assumed, in addition to the

0z 9% 3y 0z ice body being shallow, that the dominating stress compo-

Note that there are no other stress components besides tfent is vertical shear stress and that the velocity components
vertical shear stress in the zeroth-order equations. This is thi the horizontal plane dominate over the vertical velocity.

main reason why higher-order models are becoming increas! Nese assumptions are not valid in a number of well-known

ingly popular:txDx(O), 539' tZB(O) andtny(O) are important in situations, including fast sliding at the ice-bedrock interface

the coupling to ice shelves and in ice streams and ice strearfS in for example ice streams), or at the ice divide where

shear margins. the ice flows mainly downwards. Where fast sliding occurs
The boundary conditions are also expanded. The stresdl IS common to use other scaling arguments, such as e.g.
free condition thaf - n = 0 corresponds to the shelfy stream approximation MacAyeal (19929. Dif-
ferent traction numbers representing different sliding speeds
po) =0, (13) combined with other scalings are introducedSichoof and

Hindmarsh(2010.
Another region where the SIA scalings break down is in

a boundary layer near the entire ice surface, which develops
when there is a bumpy bed due to the non-linear rheology of
P = —fg(oy (15) ice (Ahlkron_a et al, 2013. John_son and M_cMeekin@.9849

9k made the first attempt to derive a solution for the bound-
tfz(z) = —(tZDZ(O) — t§(0>>3—, (16) ary layer by matched asymptotics, rescaling the pressure and

* stress components in the boundary layer. This allows for all

in second order. The no-slip condition will for the problem stress components to influence the dynamics near the ice sur-
studied in this paper reduce @ = v, = v, = 0 for both ze- face. By theoretical analysis they found the boundary layer

tXDZ(O) =0, (14)

in zeroth order, and

roth and second order. The stress compont;‘alg , ty[;(o), thickness to beO(e%). Schoof and Hindmarsf2010 ex-
t2 o andtP o do not require explicit boundary conditions tended the boundary layer theory by including the degree

but will be determined at the boundaries implicitly through ©of slip at the bed in the expansion, and pushing it to sec-

the stress—strain relation. ond order. In the case of slow sliding, the rescaling of the
Integrating Eq.100) in the vertical direction and using the Pressure and stress components in the boundary layer in

boundary condition that the pressure is zero at the ice surtwo dimensions is as idohnson and McMeekin¢l984);

face gives an explicit expression for the pressure. Inserting\hlkrona et al(2013 and inSchoof and Hindmars{2010.

the pressure in Eqs109 and (LOb), integrating and using  Using their traction number = ¢/3 for the conditions at the

the stress-free condition again yields simple expressions fopedrock:

the vertical shear stresses. The shear stresses are sufficient to — 13,0[H]j

obtain the zeroth-order (SIA) velocities by integration of the P PELEIP:

stress—strain rate relation EQ)}(see Sect for the outcome 1Py, = e¥3pg[HI" .., (17)

of this standard procedure. Once the zeroth-order solutioQtD D) =e4/3pg[H](fD t~D)

is available, it can be used to solve the FOSIA, and subse- **’ % e

quently the SOSIA equations by the same method. By numerically solving the full Stokes equations,
Just like the SIA, the FOSIA only contains the vertical Ahlkrona et al(2013 essentially confirmed the appropriate-

shear stresses, but no normal deviatoric stress or horizomess of these rescalings for the problem described in Sect.

tal plane shear stress. However, the FOSIA does account fdn fluid dynamics, boundary layers are usually assumed to

first-order boundary effects and forcings that cannot be reprebe thin, but as found ihlkrona et al.(2013, they may be

sented in SIA Baral 1999. For the model problem that we thick and indistinct at the ice surface (dependingsprand

study, the FOSIA solution is trivially zero, and the FOSIA this needs to be considered in model development.

will hence not be further discussed. It is in the SOSIA that Matched asymptotics, as usedlohnson and McMeeking

the normal deviatoric stresses and the horizontal plane shegt984 and Schoof and Hindmarsf2010. is unfortunately

stresses are present for the first time, suggesting that momather involved and has, to our knowledge, never been imple-

complex ice dynamical behaviour can be captured by themented into a numerical code for practical uBaral (1999

Geosci. Model Dev., 6, 2133152 2013 www.geosci-model-dev.net/6/2135/2013/
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andBaral et al.(200]) indeed dismiss it as too complicated L
and use the scalings in Egg)(for the entire ice sheet in
the derivation of the SIA and SOSIA. This, in combination
with the fact that the rheology of ice is singular and non- a
linear, does introduce complications that need to be reme- [H]

died. The singularity arises from the fact that the creep re-

sponse function is zero for zero effective stress fi(@®) = 0.

This means that the viscosity is infinite where the effective

stress is zero. By the shallow-ice s%ali%gsgi], ihe normal

and horizontal plane shear stre,ggs fyy 121 1y INEQ. @) are

neglected such that(o(g)) = 0(20) = 151(0) + ’vzz(oy Thus the z
(zeroth-order) effective stress and the creep response func-
tion are zero wherever the zeroth-order vertical shear stresses

are zero, which is at the entire ice surfadafal 1999
Baral et al, 2001, Greve 1997. In reality, normal deviatoric

stresses (and depending on the situation, horizontal pIamEig. 1. Model set-up showing the basal topography and the ice sur-

shear stresses) develop, implying non-zero effective stress &ce The ice flows downslope in the positivelirection.
the ice surface except for a few points.

As SIA is the zeroth-order expansion, it can be derived us-

ing several different scaling arguments. Therefore, it is not )

very sensitive to the neglect of normal and horizontal plane3 Model problem —ice flow over a bumpy bed

shear stress in the boundary layer. Indeed, the computation

of the SIA solution does not include the reciprocal of the Throughout this paper we will consider the model problem

creep response function (except for in the normal deviatoricdescribed in this section. It is a slight modification of the

stress), and the fact that the zeroth-order effective stress igroblem studied in the ISMIP-HOM benchmark experiment

zero at the entire surface does not imply singularities in theB (Pattyn et al. 2008. As in Pattyn et al.(2008, we in-

velocity field, pressure, or shear stress. The SOSIA is howVestigate a diagnostic, isothermal 2-D problem for ice flow

ever bound to be more sensitive. When pushing the asympRVer an inclined, bumpy bed. The ice surface is fixed, pe-

totic expansions to second order, the creep response functidiPdic boundary conditions are applied and no-slip condi-

of the zeroth-order effective stress does occur in the denomtions are imposed at the base (see Fig. 1). The rate factor

inator. To remedy this, an extra parametsgs is used in A IS 10-28Pa3al, ice density is the standard value of

Baral (1999 andBaral et al.(200J), to regularise the prob- 910kgnT3, and accumulation and ablation are neglected.

lem, following earlier suggestions Hyliboutry (1969 and The mean ice thicknesgH], is 1000 m and the ice surface,

Colbeck and Evangl973. This parameter, which we will /. and ice base, are given by

call the finite viscosity parameteses, is added tof as:

flo) =02 +ar%5 (see e.gColbeck and Evand 973. Non- h(x) = —xtan(a),

singular creep functions of non-additive structure have been < )
—X

X

proposed by e.d.liboutry (1969. The question of the appro- b(x) =h — [H]+ u[H]sin
priateness of modifying the material law instead of rescaling

the variables in the boundary layer immediately arises. As al-

ready mentioned, the singularities do not affect SIA. Hence, The ice base is smooth, thus avoiding additional difficul-
in practiceoyes is not needed in the SIA, but the solution ties with SIA and SOSIA in modelling a bedrock with less
will not be accurate to the order predicted by the theory inregularity. The amplitude of the bumpsii$H | and the incli-
Baral (1999 and Baral et al.(2001). It is unclear whether nation angle of the surface slopesisThe typical horizontal
the SOSIA will be an improvement on SIA, because of the €xtent of the problem equals the wavelength of the sinusoidal
neglect of the special boundary layer dynamics. Moreoverpumps, i.eL = [H]/e m. The wavelengtii of the bumps is
there is no obvious way to choose the value of the finite-varied while[H] is kept constant, which corresponds to vary-
viscosity parameter. IiBaral et al.(2001), ores= v10° is  INg €. _

used for the Greenland Ice Sheet, but with no explanation of AS shown inAhlkrona et al.(2013, and as can be seen,
this choice. In Sect, we will investigate how to choosges, for instance, by non-dimensionalising the ice surface and ice

how accurate the SIA is, and whether the SOSIA really is anP€d, the surface slope anglshould be proportional toe.g.
improvement on the SIA. arctare instead ofe = 0.5” which was used in the ISMIP-

HOM benchmark. The bump amplitugeshould be indepen-
dent ofe. In our numerical experiments we will ugpe= 0.5
andu =0.1.

(18)
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2
4 Analytical solutions for the SIA and the SOSIA dh(o
d +pg (ho —2) (%) +120): (22)
For a deeper understanding, we now compute analytical so- 2
i ; ; 2,D I (1 39%h©
lutions for the second-order field variablgs), px2) and €17 = e é(z —h) 912 h )
vx(2), and also give the zeroth-order expressions for com- * * )
leteness. Note that for the 2-D casg=t2 =P = 0. The 9 (1 2 (dho
P AN — P85 < (z—h©) (—( )>

second-order. velocity is excluded for the sake of brevity, 2 9x
since it follows from the mass balance in the same way for

h h
all orders. 5 5 9 F 5
/ /
) — a / tzz(o)dz + a / txx(o)dZ 5 (23)
4.1 General solution p ]

Z Z

The following expressions (Eq4.9-24) hold not only for 5 0 D 22D ,

our model problem, but also for all isothermal, 2-D problems € " = 5 / UZ(O)dZ+6A/([XZ<0>) e

with no-slip conditions at the base and without higher-order b b(o)

boundary terms. Generalising to three-dimensionality, in- z z

cluding higher-order boundary terms and sliding, is straight- ZA/ txDz(O) (fx?c(O))de’ + ZarzesA / fztxDz(z)dZ/- (24)

forward. The well-known zeroth-order expressions, denoted A A

by subscripi0), for shear stress (cf. E40) and velocity are © ©
ah Equations 22)—(24) yield explicit expressions for second-

0 X
txDz(O) = —pg a)(C ) (h) —2). (19) order variables.

4.2 Solution for the model problem

Z
dh (o) / N
v = —2p8——— [ Af(ow©)(ho —2)dz, (20) . .
@ dx OO For the geometry in Sec8, we have computed the integrals
bo and derivatives in these expressions and thus obtained an-
. _ D alytical solutions to the SOSIA. To avoid infinite viscosity,
with vx(0) =0 atb(g), cf. EQ. ©). In order to compute,, ) we have followed the suggested regularisatioBamal et al.

frtom Eq. (12)dV\(/je nee((j'j_ the zetrrc])th-(_)trdetr noanaI_ de\tllallto?c 200)), i.e. adding a constant to the creep response function,
stresses (an epending on he situation, horizontal pian (0) = 02 +02s The solutions are expressed in terms of the
shear stress), which are not computed when applying onl

o nclination angle of the ice surfaee relative amplitudeu,
the zeroth-order approximation, as they are not needed f.ofinite—viscosity parametes;es and wavelengt. In the Ap-

he zeroth-order velocities. The normal deviatoric str in . : .
the zeroth-order velocities. The normal deviatoric stress pendix A the same solutions are expressed in a more general

the x direction is given directly by the stress—strain relation f
. .ByEq. @9), th th- h t for th I
in Baral et al(2001) andGreve(1997): porgrglerz iSq (L9), the zeroth-order shear stress for the mode

1 vy (0)

D ___ - 120 = —pgtana) (xtan) +2). (25)
Ixx(0) Af (o) ox (21) (0)

The zeroth-order velocity in Eq20) is given by

Note thattD = —¢D in the 2-D case. The shear stress, 2¢ar?
; : (pg)“tart(a)
pressure and the horizontal velocity are obtained from they, ) = 2pg Atan(a) | ————
horizontal momentum balance, vertical momentum balance 4
and_ str_ess—strain relation, respectively, where they occur in([H]4(1_ psinrx/L))* — (xtan(e) +z)4)
derivatives.

It is customary to vertically integrate the SIA equations in
order to avoid having to solve for the variables numerically.
This is glso_conven}ent. for thg SOSIA. Baral et al 2001, The maximum magnitude of the velocity in EQ6f does
the vertical integration is carried out for the shear stresses and . :

. . not depend oL, but it does depend on the relative am-
the pressure only, and the resulting expressions are presente iude . Also. there is an extra term stemming from the
in Egs. @2) and @3) (with misprints inBaral et al, 2001, cor- b M- ' 9

rected). Going beyond the resultsB®éral et al.(2001), we f|n!te.—V|s.cosny law W!thares >.0' As mentioned in Sec2.3,
. . . a finite-viscosity law is technically not needed for the zeroth-
derive here also the second-order veloaityy), in Eq. 24),

. X order model, since the creep response function never ap-

computed from the stress—strain relation and boundary con- in the d . in th lculati t th loci

ditions at the base: pears in the denominator in the calculations of the velocity
' field or shear stress (see E@S and 26), which are usu-

2 320 ally the variables of interest. However, for reasons of consis-

1
2 ; .
€P2=r8; (ho)—z2) 9x2 tency, it should also be used in the zeroth-order model when

(26)

02
+ %ﬁ ([H]2 (1- psin(2rx/L))? — (xtan(a) + z)z)) :
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continuing to second order. To calculate second-order shedtq. (26) is quite large, and thus the SOSIA velocity does
stress and velocity, the zeroth-order normal deviatoric stresgot allow too large aes The SOSIA shear stress is not as
in EqQ. 1) is needed. It is given for the model problem by  sensitive to largeyes, Since the zeroth-order shear stress in

Eqg. (25) does not contain any terms from the finite-viscosity

D _
Lev) = —208 tarf (@) (xtana) + 2) law. Both the second-order shear stress correction and veloc-
B 4_n (HT2utan )cos(an/L) (1—psinrx/L)) ity correction are, however, very sensitive to too smailjaa.
L rg plaiie Note that all terms involvingres in Egs. @7), (28), and

2
2 Otes
(xtan(@) +2)*tarf(e) + ( rg ) (A6) in the Appendix A are pre-multiplied witp; thus, the

(27) importance obes decays whem decreases. This is consis-
o) 2 tent with the fact that the boundary layer near the ice surface
(tar?(oz)[H (1—pusin(2rx/L)) +< res) ) disappears when = 0 (Ahlkrona et al, 2013.
124

Having calculatedxx(o), the second-order shear stress is 4-3 Choices obies and impact on scalings
computed from Eq.43) as
> D In order for any scaling relations (E§or 17) to hold, taria)
%132 = 3pgtar(@) (xtan(@) +2) should vary linearly withe, e.g. tario) = €, and . should
be independent of (Ahlkrona et al, 2013. Note, however,
(1— psin(2rx/L))cos(2rx/L) that the scaling relations were derived in a context where the
2 BN creep response function was not modified by an additional
tar?(e) (x tan(e) +2)? + 2)? finite-viscosity parameter. We now discuss hews, intro-

+4pg[H]2 " tar? (o)

02 duced in an a posteriori fashion, can be chosen such that com-
<[H 1Ptarf(a) (1 — psinrx/L))* + 0 )2> patibility with either the classical SIA scalings in E®) or
the ones in Eq.1(7) is achieved.
2r 12 2
_ Apg)lH] (2_”> M( 4.3.1 Choosing ares consistent with the classical
Otes L SIA-scalings

2 , 2
3[H|?(1 - usin(2rx/L))? pcos (2nx/L)tarf (@) If we choose the finite-viscosity parametefes, to vary in

the same way as the effective stress is assumed to (linearly
with €), the SIA and SOSIA solutions fulfil the scaling rela-
tions Eq. B) that they are derived from. Inserting tan = ¢,
ores= Cypg[H]Je and the scaled variables in E®) (into

Egs. £5—(29) yields

+ [H1?(1— psin2rx/L))3sin(2rx /L) tarf ()
2

+—Uresz (M cos (2rx/L) + (1 — psin(2rx/L))
(rg)

sinrx /L))) . arctar(pg tan(e) (xtan(@) + 2)

Ores

) . (28)
D ~ | o~

An explicit dependence oh is introduced in Eqs 27)—(28), Lz = —P8LHIE +2), (29)

and hence on the aspect raticAlso, Egs. £7) and 8) de-

pend ona, u andores In txla—(oy ores appears in the denomi- o — A[H](pg[H])363<1- (1— pusin@ri)n — }(,; +5)4

nator, preventing singularities from occurring at the ice sur- 2 2

face whern is equal toh = —xtan(a); see Eq.27). Inthe (2 ((1_ psin2r))? — (& +§)2) ) (30)

second-order shear stress in E28)( ores is both in the nu-

merator and the denominator. The second-order shear stress , 2

is dominated by the last term, i.e. by the last five lines in e —

Eq. 29). ’ ’ ez = ~p8lHIE +2)2+C2
Having calculated 0 and P L2y the second-order ve- _ 2 coS 2 x) (1 — usin(2rx)) ((1— uwsin2rx)) ~|—C3)),

locity can be derlved from Eq24). The expression for the (31)

second-order solution is very long and is included in the Ap-

pendix A for the interested reader. In fact it behaves similarly

to the second-order shear stress, whegeappears both in 2D pg[H]e3(3()Z +3)

the numerator and the denominator. Remember that to get the *2(2)

full second-order solution, the zeroth- and second-order con-

tributions should be added togethergs= v, () +€2Ux(2) ) _ . ) 2 )

(the first-order solution is zero for our model problem). The (1—psin(2rx)) cos2r X) ((1 — uSin(2rx))” + Co>

extra term arising from the finite-viscosity law ino) in T G122+ C2

G+ (E+20%+cC?
(@+a( )
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- 16n2Ci (3,L (1— usin@r))2co(2r %)

o

+ (1— wsinr%))3sin(27x)

+c2 (M co2(27%) + (1 — psinr %)) sin(2mz)) )

r(i + z))
-arcta N
(o

where C, is a constant andt and Z are the non-
dimensionalised andz coordinates in Eq.8). The expres-
sions in Egs. 29—(32) only depend on geometry, material
constants, and, . In line with Eq. @), txDz(O) is pre-multiplied
by pglHle, 12, o, is pre-multiplied bypg[ Hle? ande®.? ,,

is pre-multiplied bypg[ H1e3. Note that the multiplying fac-
tor in vy is A[H](pg[H])3€® as in Blatter (1999 and
Schoof and Hindmars{2010. In the same manner, the ana-
lytical solution forv,(gy (which is not given here for brevity
of presentation) is multiplied byA[H1(pg[H])3€*.

(32)

4.3.2 Choosing ases consistent with boundary layer
theory

We know that the scaling relations EdL7f from Schoof
and Hindmarsl§2010 (slightly rearranged) are more correct
than the classical scaling relations in E8). (Ahlkrona et al,
2013 Schoof and Hindmarst201Q Johnson and McMeek-
ing, 1984, and thatsesis merely a parameter introduced to
address this problem when using E8). However, we show
now that instead of settingres= C, pg[He, with C, con-
stant, we can choosg, such that the field variables fulfil the
scaling relations in Eq1(7) rather than Eq.§).

Near the ice surfacey is dominated by:2 (Ahlkrona
et al, 2013 Schoof and Hindmarsi2010 and the creep re-
sponse function satisfig&o) = (t2)2 in 2-D. In the SOSIA
model, 1P

TTXX
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assumptions made when obtaining B2)( it cannot be used
directly to determineC,,, but gives an understanding of its
behaviour which we will recognise in our numerical experi-
ments.
The first correction term applied to the SIA solutixjﬁ(o)

in Eq. (29) is 100 in Eq. 32). With C, = C,€e'3, atthe
ice surface and outside the boundary layer

2.D 73 =
€ txz(Z)Ne / , X

2.D ~ 8/3 =
€ txz(z) € , X

(34a)
(34b)

in agreement with the second terms in the expansions in
Egs. (3.108) and (3.73) i&choof and Hindmars2010.
The velocity component, ) in Eq. (4.11) is ofO (€3) for
everywhere in the ice. The first correction teoqy) in the
Appendix A depends in the same way g, on o s out-

side the boundary layer ang;2 close to the ice surface.

In our numerical experiments we will apply bobhes=
CopglHle andores= C, pg[H1e*3, whereC, andC, are
constants.

4.4 A Newtonian fluid

For comparison, we derive the asymptotic expansions for a

Newtonian fluid withn = 1 in Glen’s flow law in Eq. 8) us-

ing the same techniques as for the ice model with 3 and

the same model problem in Se8t.The shear stress is inde-

pendent of the flow law in Eq1Q), and the zeroth-order term

is the same as in EQRY):

to0 = —pgtana) (xtan() +2). (35)
Sincef (o)) =1 in Eq. QO) there is no need to introduce

ores, and the expression for the zeroth-order velocity is sim-

plified compared to Eq2):

is neglected in the creep response, and instead’x(0) = pgAtan(a)
f(0) =o2sat the ice surface. This is a consequence of the

C((HPP (1= psinrx /L)% — (xtan(@) +2)%).  (36)

asymptotic expansion of the solution and of equating terms

of equal order. Hence(, in ores= C,pg[Hle should be
such thatores= tBC in the upper boundary layer. L&, =
C,e” and insert it into Eq.31). Sincex 4z = 0 at the sur-
face, we haveP ~ €2/ ~ ores~ €17 and consequently
thaty = 1/3. Then:2 ~ 2 in the boundary layer as de-
rived in Eqg. (3.108) inSchoof and Hindmars{2010. Out-
side the boundary layer in Eq3Y), whenx +2z = 0(D),

tD~ €2 as expected from the SOSIA equations. By replac- ~ 7

ing C, by C, €” in the expression far. in Eq. (31), insert-
iNg ores= tgc andx 4z = 0, solving forC,, and finally ignor-
ing terms depending oa, we find thatC,, is approximated
by

C3 = 4m pucog 2w ) (1— psin2r )2, (33)

ThusC, decreases with decreasing bump amplitude only

depend on the geometry and is @f(1). Due to the

Geosci. Model Dev., 6, 21353152 2013

This expression is equal to the contribution by the constant
part of the creep function in Eg26). Also the lowest order
term in the normal deviatoric stress in E@1) is simplified
whenn = 1:

’;B;(O) =—2pg tan(e)? (x tan(er) + z) (37)

AT o[ H 2 utan(e) cos2rx /L) (1— pusin(2rx /L))

This formula is similar to the formula forga(o) whenn =
3in Eq. 7). The second-order shear stress is obtained by

Eq. 23):

€21 5 = 3pgtari(a) (xtan) + 2)

2
— 4pgu[H)*tan(a) (%”) sin(2rx/L)
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-(L—usin2rx/L)) (xtan(a) + z) (38) COde for POLythermallce Sheets (SICOPOLIS)Greve
27\ 2 1995. Finite differences are used on a staggered grid in or-
— 4pgu?[H)*tan(a) <—) coS(2rx/L)(xtan(a) + z) der to avoid having oscillatory solutions with the same wave-
L length as small multiples of the grid size. The velocities,
i 4ng[H]2tan2(a)2_” cos2rx/L) (1 — psin(rx/L)). _horizontal \_/olu_me fluxes, vertical shear stresses and the_ hor-
L izontal derivatives of the bedrock topography and the ice-

The first term is the same as in E®8[ in the non-  surface topography are defined in between the grid points.
Newtonian case, while the rest of the expression is simpleAll other quantities are defined at grid points. When a quan-
and does not include any terms withys or arctan. Neither tlty is needed at a point where it is not defined, linear inter-

Eq (37) nor (38) is Singu|ar for anyx andz, aSt)Bc(O) and polation is used. To ensure that the grld points coincide with
txDz , are withores= 0 in Eq. €7) and @8). physical boundaries, @ transformation is used3reve and

Blatter, 2009 Greve 1995. Central differences are applied

when possible; otherwise one-sided differences are used. In-
tegrals are computed by the trapezoidal method if the inte-
grand and the integral are defined at the same points. Other-

Since xtan(a) +z ~ [H] and with tarie) ~ ¢ we have
through Eqs. ) and @6) that 12 o ~ ¢[H] and vy ) ~
€[H]%. Hence, for the zeroth-order velocity in thedirec-

tion, wise, the midpoint rule is used.
z 3 The full Stokes solution that we use for comparison is ob-
Vy0) = — / IVx© 4.7 S[HT, (39)  tained using the finite-element code Elmer/IGagliardini
dx et al, 2013. The same mesh with the nodes on vertical lines

b )
© was used for SIA, SOSIA and in Elmer/Ice. We use a mesh

and for the second-order velocity indirection, fine enough to keep the relative numerical error below*10
for both the velocity and shear stress. This error can be seen

> D il , 5 ;oo in some of the figures below, but as the mesh is refined it
€@ =Ty / vz dz +/6 @0z ~ €T[H]% (40)  gecreases even more. Even though the singular behaviour of
b b the viscosity does not introduce singularities in the field vari-

o . b 5 . ables in the full Stokes setting, an extra parameter, the critical

The scaling in Eq.37) is such that o, ~€“[H], and in  ghear rate,, is introduced in Elmer/ice in order to treat nu-
Eq. 38), such thatfztg(z) ~ €3[H]. These scalings are all merical instabilities at low stresRéback et 82013, occur-
in agreement with the assumptions made in B).if the  ring e.g. near the ice surface in the shear stress. The critical
derivations of the shallow-ice approximations. shear rate is a lower bound for the shear gatavhich is re-
lated to the effective stress by= /2tr(D?) = 2d = 2 Ao 3.
We have used, = 1019 throughout the simulations. For
large aspect ratios there is ng which suppresses the nu-
merical instabilities in the shear stress without altering the

In this section, we compute the SIA and SOSIA solutions for VelOCity. _ _ _

the problem described in Se@t.and compute the solutions’ The accuracy is measured in terms of the relative error de-
accuracy by comparing them with a full Stokes solution. All fined by

our results presented in this section regard the accuracy f0|’
thex velocity,v,, and shear stresr;g. The normal deviatoric
stresses?. andt2 are not calculated to second order, since
this is not necessary in order to obtain the velocity field. Theynereg is v, or t2 and|| - ||2 denotes the., norm defined
vertical velocity is also excluded, as it follows directly from py

the mass balance, which is the same for all orders.

1
5.1 Method lgll2 = —/qde, (42)
Va
Q

5 Numerical computation of the accuracy of SIA and
SOSIA

|G full Stokes— qx,SIA/SOSIAl|2
[1gx,full Stoked |2

: (41)

We are interested in the order of accuracy, i.e. how the error

in SIA and SOSIA varies with. For this purpose we perform whereVg is the area of2. The integral in Eq.42) is com-

repeated simulations usirg= 10, 20, 40, 80, 160, 320, 640, puted on a discrete grid using the trapezoidal rule.

1280, 2560, 5120, and 10240 km while keepHigonstant; Since the assumptions behind the SOSIA are valid only

this is equivalent to varying the aspect ratio betwegit & below the boundary layer, we measure the accuracy in hori-

105 and 01. We do this in order to investigate the accuracy zontal layers, viz. at 01[H], 0.5[H], 0.75[H], 0.9[H] and

of shallow-ice approximations in the limit— 0. 0.95[H] mean height above the ice base, to see if the er-
The SOSIA Eqgs.19)—(24) are implemented in MATLAB  rors due to the boundary layer assumptions in SOSIA spread

and our implementation follows the standardSmmulation down into the basal ice.
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5.2 Results would like to know if the SOSIA solution is more accu-
rate further down in the ice. To investigate this, we com-
We know from our analytical solutions in Sedt3that the  pute the accuracy of SIA and SOSIA at horizontal layers at
SOSIA solution is very sensitive to the paramesgs. There-  0.01[H], 0.5[H], 0.75[H], 0.9[ H] and Q95[ H] mean height
fore, we experiment with different values of and ways of set-above the ice base; the result is included in Fig. 2a and b (the
ting oyes thin red and blue lines). The accuracy of the SOSIA velocity
Our analytical solutions suggest that if the scaling rela-is slightly higher-deeper in the ice for smallbut even there
tions used to derive the SOSIA were corregisshould vary  the SOSIA is less accurate than SIA. The shear stress is more
with € asC, pg[H]le, C, being a constant. This relationship accurate deeper in the ice for both SIA and SOSIA.
is used in Fig. 2a and b, showing the accuracy of the SIA
and SOSIA solution for a bumpy bed with relative bump am-5.2.3  Accuracy of the SOSIAsres as a lower threshold
plitude u = 0.5. The SIA solution for the horizontal velocity o i .
component isu, g, in Eq. 26) with C, =0, since a finite- The SOSIA solution is very sensitive tges, and the differ-

viscosity law is unnecessary in this case. The SOSIA solutiorfNt choices ofC; yield very different results. To limit the

is computed foiC, equal to 085. sensitivity ofores, We can choose to use it only where the ef-
fective stress is too small. We therefore experiment with
5.2.1 Accuracy of the SIA as a lower bound on the effective stress, viz.:
o = max(o(0), Ores)- (43)

We start by analysing the error in SIA. According to classi-
cal SIA theory inBaral(1999, Baral et al(2001), andGreve Figure 2c and d show the error using this approach when
(1997), the SIA relative error should be @(e?). However, ¢, =0.11, Q35 and 112. The SOSIA velocity error de-

we know fromAhlkrona et al.(2013 that the scalings used creases considerably, and there are now aspect ratios for
in Schoof and Hindmarsf2010 are more correct than the which SOSIA is more accurate than SIA whép = 0.35.
classical SIA scalings. The asymptotic expansiorS8dhoof  The streSStxDZ is not largely affected. We have also com-
and Hindmarst{2010 yield the same zeroth-order solution puted the accuracy of SOSIA in layers throughout the ice,
as the SIA, but the correction terms are different. The rela-in the same way as in Fig. 2a and b. For the velocity there
tive error in the velocity is estimated by the first neglectedis a significant change for small aspect ratios. A10H |

term in the expansions af; in Egs. (3.73) and (3.108) in  mean height over the ice surface the SOSIA velocity solu-
Schoof and Hindmarsk2010 and is of ordere*/3 in the tion is more accurate than the SIA solution for all aspect ra-
boundary layer and®? outside the layer. The estimated tios smaller than 1%. For the deviatoric shear stress, the
slope, logerron/log(e), of the relative SIA error using a#l  |ayer-wise error is very similar to what is shown in Fig. 2b.
values in Fig. 2a (thick red line with nodes) is8, which The error of the velocity for small aspect ratios is mainly

is between the theoretical rates $thoof and Hindmarsh  due to the term on the third line of EQ®). It is an extra term
(2010. Similarly, the relative error in the SIA solution of in the zeroth-order velocity in SOSIA introduced by the use
12 0, Should, according to Egs. (3.108) and (3.73phoof  of a finite-viscosity law. This error is reduced by usings

and Hindmarsl{2010 and Egs.29) and B4), bec*3inthe  as a lower threshold and it is the most influential near the
boundary layer ane®3 outside it. This is in good agreement ice surface where the scaling relations do not hold and where

with the slope of the relative error in Fig. 2b, which iS8. the zeroth-order shear stress and therefore the zeroth-order
effective stress is zero. This explains why the error decreases
5.2.2 Accuracy of the SOSIAores = Cypg[Hle further down in the ice. Since there is no such zeroth-order

term in the vertical shear stress, it is not affected by this type
We now move to analysing the SOSIA error in Fig. 2a and bof error. In fact, for small aspect ratios, even an extremely
(thick blue line with nodes). If the classical SIA theory were large ores does not cause a large error in the second-order
correct, SOSIA would in principle be much more accurate shear stress. The stress is thus less sensitive to the handling of
than SIA for sufficiently smalé. Clearly this is not the case a5, Which can be seen in Figs. 2a—d. The zeroth-order term
in Fig. 2a and b. In addition to computing the SOSIA solu- involving oyesis dominant ifC,, is too large and results in the
tion with C,, = 0.35, we also tried”, = 0.11 andC, = 1.12, velocity being too high overall (see Fig. 3a) whéig=1.12
with no improvement in accuracy. ande = 1/160.

The SOSIA is thus not a correction to the SIA with  Forlarger aspect ratios, the error is of a different character.
ore=C,pg[HJe andC, constant. This is because the scal- It arises from an excessive second-order correction, result-
ing relations in Eqg. § are not correct for the thick ingin a dip in the velocity and shear stresscat 3L/4; see
boundary layer near the ice surface (which will domi- Fig. 3b for the velocity. This type of error is dominant when
nate in the global error). Since the scaling relations doe is large andyesis too small (see Fig. 3a far, = 0.11 and
hold below this layer Ahlkrona et al, 2013 Schoof and  Fig. 3b), and it is difficult to avoid for the largest The char-
Hindmarsh 2010 Johnson and McMeekingl984), one  acter of the dip can be understood by studying the dominant
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Fig. 2. Relative error of horizontal velocity, and vertical shear stresg with ores= Cy pg[H e for both SIA (red) and SOSIA (blue).

Thick lines show the error measured over the whole domain and the thin lines in the upper two panels show the errors measured over

horizontal layers.

term in the second-order shear stress, i.e. the last five lines iB.2.4 Accuracy of the SOSIA:6res = Cypg[H]e“/?’ and
Eq. @8), or the last four lines in Eq.3Q). As this term de- further adjustments
pends on(1— psin(2rx /L)), it is largest atc = 3L /4, and
as it is pre-multiplied by./Co, it will in general decrease g, 2¢ and d indicate that the optimal choice @f
with increasingC, and decrease with decreasing bump am-iant not be independent of the aspect ratio. Indeed, we
plitude. The error is attributed to the improper handling of ¢\ in Sect.4 that if we choosesies as C, pg[H1e4/3
the singularity in Glen'’s flow law. At the point= 3L /4 the (whereC, = Cyel/S) the SOSIA correction terms are reme-
effective stress is zero in both the SOSIA as well as in theyioq 5o that they are consistent with the scalingddhnson
full Stokes setting. 281 i and McMeeking1984), Schoof and Hindmars{2010, and

The relative error inu, decays ate”®" in Fig. 2¢ for  apirona et al(2013; see Eq. 84). We can even go further
€ > 1/320. This is the order of the next term in tR&X- i jimiting the influence ofres by only using it as a lower
pansion. The reduction of the error ends when the term prog, eshoid in the computations where the creep response func-
p°”'°”"?" to the constantes With C, = 9'35_”' Eq. QB)_ be- tion is in the denominator (that is in the computation of the
comes important. The same observation is also valid for theﬁormal deviatoric, and normal shear stresses, see3Easid
SOSIA error in the vertical shear stress in Fig. 2d. The de—32)_ The combined results of these two measures are shown

cay of the relative error for > 1/320 is here*>t before the Fig. 4a and b. The SOSIA velocity and shear stress are now
reduction is damped by the constamés With the classical 1,16 accurate than in SIA for all aspect ratios smaller than

theory inBaral (1999 andBaral et al.(200]), the relative  15-2\yith ¢ chosen to be 3. The slope of the errors in Fig. 4
SOSIA error should b@ (¢%). In practice, the larger aspect is almost eaual in both SIA and SOSIA, indicating that the
ratios are of interest. Numerical errors are commonly of the . yer ine in the remaining error is the same for both approx-
order 102, which is higher than the model error in the SIA imations. Using a different parameter, ecy. = 4, results in

solution for aspect ratios smaller thaxx30~3. For ice sheet SOSIA being more accurate than SIA for even larger aspect

flow, aspect ratios smaller than1are seldom applicable. ratios, but on the other hand the improvement is no longer
as significant. The parameté€r, depends on the geometry
(see Eg33) and is thus problem-dependent and difficult to
determine beforehand. Interesting to note is that there is no
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Fig. 3. Surfacex velocity for the full Stokes solution, the SIA and the SOSIA. For SOSIRAs= Cs pg[H e is used as a lower threshold
for the effective stress.

difference in the accuracy of the velocity for the different aspect ratios of almostD, there is a notable improvement in
layers through the ice. The accuracy of the deviatoric sheaboth SIA and SOSIA, but at these large aspect ratios the er-
stress through the layers is distributed similarly to how it is rors are still very large and neither SIA nor SOSIA is a good
shown in Fig. 2b. model. An explanation of the lack of significant improvement
for lower amplitudes is that even if the classical scalings in
Eqg. @) do hold for a flat bed, the thick boundary layer where
variables rescale develops very rapidly as a small bump is
Here we investigate how the accuracy changes as the bumptroduced Ahlkrona et al, 2013. Note that for very small
amplitude is decreased. There is a common perception thaispect ratios, numerical errors are present, so that the error
shallow-ice approximations are more accurate for lowerfor SIA and SOSIA is not smaller than 1. This causes
bump amplitudes. Also, we found in Sedtthat the terms  a bend in the curves in the lower left parts of Fig. 4c and d,
involving oresin the stresses and Eq8Xand32) and the ve-  put also in Figs. 2a—b and 4a—b.

locity in Eq. (A8) were pre-multiplied with the relative bump

amplitudeu, suggesting that the influence @fs decreases 5.3 Newtonian fluid

with decreasing bump amplitude. We have applied the SIA

and SOSIA foru = 0.1 (a bump amplitude of 10 % of mean As seen in Sect4.4, the classical SIA scalings hold for a
ice thickness), and the resultis illustrated in Fig. 4c and d. WeNewtonian rheology{ = 1). For a Newtonian fluid we there-
setoresin the same way as in Fig. 4a and b but with = 1.5 fore expect the error in the SIA and SOSIA to behave as
instead ofC,, = 3. Indeed, Eq.33) shows thaCC, decreases predicted in Baral et al., i.e. we expect the SIA error to be
with 1. There is a small improvement of the accuracy of SIA 0 (e?) and the SOSIA error to bé (¢%). Verifying this con-

and SOSIA compared to the case whegr= 0.5. For large  firms that the methodology of all our numerical experiments

5.2.5 Low bump amplitude
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Fig. 5. Relative error of zeroth- and second-order horizontal velagitgnd vertical shear stretg,?z for Newtonian fluid ¢ = 1).

in this paper is accurate. We measure the error for linear rheThe polynomial fit was computed witly@40< ¢ < 1/10 for

ology in the same way as for the non-Newtonian case. TheSIA and 1/160< ¢ < 1/10 for SOSIA in order to avoid the

results are shown in Fig. 5. influence of the numerical errors at smallOur numerical
The relative error decreases much faster with Fig. 5 results are in good agreement with theory, supporting our

than in the non-Newtonian case. The error does not decreasmispicion that the reduction in accuracy for non-Newtonian

below about 104, but, as in the non-Newtonian case, the ice is due to the boundary layer near the surface. We also note

reason is the numerical errors in the Elmer/ice and the SlAthat for a Newtonian fluidgresis no longer needed (it is set

and SOSIA solutions which decrease with mesh size. Theséo zero), and the SOSIA error is significantly smaller than the

errors are of the same order as in S&2 A polynomial fit ~ SIA error, even for quite large.

reveals that the error in the SIA velocityd@e1°1) and in the

SIA shear stress it i€ (¢1-93). The error in the SOSIA veloc-

ity is 0(e31% and in the SOSIA shear stress itdge323).
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6 Discussion and conclusions Depending on how we choose the valueogfs, the an-
alytical expressions for the field variables conform with ei-
We have solved the SIA and the SOSIA equations both anther the classical shallow-ice scalings that were used in
alytically and numerically, and determined and analysed thehe derivation, or with the scaling relations $thoof and
accuracy of the velocityy,, and the shear stress}, com-  Hindmarsh(2010Q which we know are accurateilkrona
pared to the full Stokes equations. This was done for a modegt al, 2013. For agreement with the classical SIA scalings
problem representing ice flow on a bumpy, sloping bed withwe conclude thatyes should beC,pg[Hle where C, is
no-slip conditions at the base, slightly modified from the 3 constant. In order for the solution to scale with the aspect
ISMIP-HOM B benchmark set-ugP@attyn et al.2008. The  ratio as inSchoof and Hindmarst2010 (both inside and
purpose was to determine whether the SOSIA is an improvepytside the boundary layeres should becypg[H]e‘l/S'
ment on the SIA which could be used in practice. We alsowherec, is a constant. In our numerical experiments we find
wanted to show that a thick, high-viscosity boundary layer atthat ges = Cypg[H]EA'/g yields more accurate results than
the ice surface cannot be overlooked in higher-order asympg, . = C, pg[H]e, in the sense that the former choice, com-
totic expansions, and that it results in the SIA not beingbined with usingsesas a lower threshold where singularities

second-order accurate. occur, makes SOSIA more accurate than SIA even for aspect
We know from Ahlkrona et al. (2013, Johnson and ratios almost as large as 0.1.
McMeeking (1984, andSchoof and Hindmarsf2010 that Our analytical solutions suggest that the sensitivityt@

the scaling arguments behind the SIA and SOSIA as statedecreases when the amplitude of the bumps at the ice base
in Baral et al(200]) are not valid in the boundary layer near decreases. In our numerical experiments, lowering the bump
the surface. Consequently, the numerically computed accuamplitude from half of the mean ice thickness to 10% of
racy of the SIA isO(e'43) for the velocity andO(¢™®)  the mean thickness results in a slight improvement of the ac-
for the shear stress instead Of(e?), as expected from the  curacy of both SIA and SOSIA for small aspect ratios. For
classical SIA theory. Our results rather agree with the analy1arge aspect ratios of aroundlthe improvement is signifi-
sis in Schoof and Hindmars(2010, which predicts the ac-  cant, but for these aspect ratios the relative error is too large,
curacy of the SIA velocity and shear stress to ®&*/3) about 0.1, for the models to be applicable.
in the boundary layer an@ (¢*3) outside it. Our accuracy  Contrary to the case in whish= 3 in Glen’s flow law, the
was measured over the whole domain inCIuding the boundar)gca”ng assumptions in the SIA and SOSIA are valid every-
layer. where in a Newtonian fluid with = 1. The analytical solu-
The neglect of the special boundary-layer dynamics in thetions all scale ire as expected. The differences between the
classical SIA scalings results in singularities in the SOSIAS|A and SOSIA solutions and the computed solutions with
field variables. To remedy this, the finite-viscosity parame-Elmer/Ice also show the expected order of decay with dimin-
ter, ores, is added to the effective stress in the creep responsgshinge for a Newtonian fluid.
function when computing the SOSIA. Both our analytical so-  Since the SIA is accurate for very small aspect ratios, and
lutions and numerical experiments show that the SOSIA so3s the aspect ratio of a real ice sheet would not be less than
lution is very sensitive to this parameter. It can neither be10-3, the potential applicability of SOSIA is for aspect ratios
chosen too large nor to small, since it appears in both the nugrger than that. SOSIA is an improvement on SIA for as-
merator and the denominator of the expressions. Too larggect ratios as large as510~2 depending on how the finite-
aores yields too high a velocity, especially for small aspect viscosity parametetyes is set and on the amplitude of the
ratios. This is due to an extra zeroth-order term in the zerothhedrock bumps. A relative error at 1% is quite good and
order velocity. This error is more important near the surfaceSOSIA achieves that for largerthan SIA does. A crucial
than further down in the ice. lres is simply added to the  issue to overcome is how to determiags or C, and C,.
creep response function g%0) = 02 + a5 the erroris so  These parameters are problem-dependent and the accuracy
large that the SOSIA velocity is less accurate than that of thesf the results is sensitive to their values. It is unclear how to
SIA for all aspect ratios. Ibres is instead used as a lower choose them in practice for more complicated geometry and
threshold for the effective stress, as in E4@)( the erroris  forcings than those treated in this paper.
decreased so that there is a range of (quite small) aspect ratios As SOSIA is almost as computationally cheap as the SIA,
for which SOSIA is an improvement on SIA. Further reduc- it could be a convenient tool and replace SIA where it is
ing the effect ofores — so that it is only used in the calcula- applicable in e.g. palaeoglacial simulations or to provide an
tions where singularities would arise otherwise — improvesinitial guess in an iterative solution for a more advanced ice
the accuracy even more. The shear stress is not as sensitiygodel. However, considering the increased complexity of the
to too large ares as the velocity is. Too small @esyields  model, the sensitivity to theres parameter, and the often
errors in both the velocity and shear stress for large aspedharginal improvement in accuracy it may not be worth the
ratios, due to excessive second-order corrections caused ffort to implement the SOSIA model.
the singularity in Glen’s flow law.
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Appendix A

Analytical solutions to the SIA and SOSIA

This Appendix contains analytical solutions ferqg), v;(o).

10,0y h2)» P@ anduy ) for an isothermal, diagnostic, 2-D

2149

([H]2 (1— psin2rx/L)) szn CoS2rx/L) (2 + xtan()
+[H](1— psinrx/L)))).

A3 Zeroth-order normal deviatoric stress, txx(o)

problem with no-slip conditions at the impermeable ice base|nserting Eq. A1) into Eq. 1) gives
an inclined plane as ice surface, and a zeroth-order ice base,

A finite-viscosity law of the formf (o) = 02 + 024 is used,
as discussed in Se@.3. For the model problem in Se@,
we also express the solutions in termd.oty, i, andoyes

Al Zeroth-order x velocity, vy (o)

Computing the integral in the second equation in Ed) (
gives

—ZpgAah;O) (pg ax) (H4—(h(0)—z)4)

Ux(0) = 4

2
+72(H? - (ho) — z)z)) . (A1)

Inserting the expressions farb (see Eql8) andH (= h—b)
yields Eq. £6).

A2 Zeroth-order z velocity, v, (o)

Thez velocity, v, (o), is given by

Z
dVy (0
UZ(O)Z/a;x()dZ/

b

oh o dho d0Hq
-2 (o0 (52) (18 b

10h 4 4
R R CRER)

(z—bw)

dH o
+ pgarzes<H<0> a( )

19h( 2 2
+§a— ((h(O) - Z) — H(0)> .

Inserting the expressions far b and H (see Eq18) yields
= 2A(pg)*tar’ (@)

(A2)

Vz(0)
([H]4 (1- Msin(ch/L))3M% cog2rx/L) (z + xtan@)
+[H](1— pusin(2zx/L)))
n %tan(a)(x tan() + z)*

_[H]*(1— ,usin(2nx/L))4) (A3)

+2Apgoldtania)
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too = (A4)
—2p2 E)Z;o) ((fig;o))z (H3?3§17;‘0» _ )h‘ox (ho) — 4):3 ( )2(1_16)31;01 _ )h\O ) (o) *Z)))
(((hm) ?) ah‘f’)z*' (;7)2> |

Inserting the expressions far, b and H (Eq. 18) yields
Eq. 27).

A4 Second-order vertical shear stressLxDz(z)

Inserting Eq. A4) into Eg. @3) knowing thatrD = —¢D
gives

dho
z(2)—3pg( o ) (h@© —2) (A5)

2 2
F{ 31‘[(0} ah() 0h (o) 0,
© 75 ( dx ) (( dx ) (0) (prge;2>

(ah(o)) (h(O) _ Z)2 res

(08)*
400 (52 (Ho \* (910
Ores 0x 0x

2 2
+H332H dh (o) n o2s ((9Ho
(pg)? dx

x2 0x
o
Z
-arcta pgw )
Ores

Inserting the expressions far, b and H (Eq. 18) yields
Eqg. 29).

—4pg

A5 Second-order pressurep o)

The calculation of the second-order pressure from B8 (
is straightforward, knowing that? = -+ and using

Egs. A4) and @7).
A6 Second-orderx velocity, vy (2

Inserting the expressions fa /.0 o, and 12, into
Eq. 24) gives

ezvx(z) .

A
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2
2 o\ 2 (9H(q)
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Inserting the expressions farb andH (i.e. EQ.18) yields
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