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Abstract. A new hybrid Eulerian–Lagrangian numerical
scheme (HEL) for solving prognostic equations in fluid dy-
namics is proposed. The basic idea is to use an Eulerian as
well as a fully Lagrangian representation of all prognostic
variables.

The time step in Lagrangian space is obtained as a transla-
tion of irregularly spaced Lagrangian parcels along down-
stream trajectories. Tendencies due to other physical pro-
cesses than advection are calculated in Eulerian space, in-
terpolated, and added to the Lagrangian parcel values. A di-
rectionally biased mixing amongst neighboring Lagrangian
parcels is introduced. The rate of mixing is proportional to
the local deformation rate of the flow.

The time stepping in Eulerian representation is achieved
in two steps: first a mass-conserving Eulerian or semi-
Lagrangian scheme is used to obtain a provisional forecast.
This forecast is then nudged towards target values defined
from the irregularly spaced Lagrangian parcel values. The
nudging procedure is defined in such a way that mass conser-
vation and shape preservation is ensured in Eulerian space.

The HEL scheme has been designed to be accurate, multi-
tracer efficient, mass conserving, and shape preserving. In
Lagrangian space only physically based mixing takes place;
i.e., the problem of artificial numerical mixing is avoided.
This property is desirable in atmospheric chemical transport
models since spurious numerical mixing can impact chemi-
cal concentrations severely.

The properties of HEL are here verified in two-
dimensional tests. These include deformational passive trans-
port on the sphere, and simulations with a semi-implicit shal-
low water model including topography.

1 Introduction

Numerical chemical weather forecast systems and Earth sys-
tem models include components describing the chemistry, in-
cluding aerosols, and the interaction of these with cloud and
radiation processes (e.g.,Grell et al., 2005; Pozzoli et al.,
2008). The introduction of many more prognostic variables,
sometimes several hundred, representing the concentrations
of the individual chemical species, poses some severe chal-
lenges regarding computational methodologies.

1.1 Desirable properties

A number of desirable properties for numerical schemes
solving the continuity and other prognostic equations have
been identified (e.g.,Rasch and Williamson, 1990; Schär
and Smolarkiewicz, 1996; Lin and Rood, 1996; Jöckel et al.,
2001; Lauritzen et al., 2011). These deal with

1. Accuracy

2. Stability

3. Computational efficiency (i.e., accuracy for a given
computational resource)

4. Transportivity and locality (the solution should follow
characteristics)

5. Shape preservation (positive definite and non-
oscillatory)

6. Conservation of invariant quantities such as mass
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7. Consistency between wind and mass fields (minimize
the so-called mass–wind inconsistency problem)

8. Compatibility (mixing ratios should be bound by their
upstream values)

9. Preservation of constant mixing ratios in deforma-
tional flows

10. Preservation of linear correlations between con-
stituents

For a brief discussion of these seeMachenhauer et al.(2008).
While several of the above-listed desired properties are of

particular relevance in atmospheric chemical transport mod-
els, most are also highly desirable/necessary when it comes
to simulation of geophysical dynamics, not least those com-
ponents involving water vapor, liquid water droplets and ice
crystals in the atmosphere, or e.g. salinity in the ocean.

There is, however, one additional property, not listed above
and less discussed in the literature, which is particularly im-
portant for chemistry and chemistry–climate applications:

11. Avoidance of spurious numerical mixing/unmixing
(Lauritzen and Thuburn, 2012).

1.2 Mixing and unmixing in Eulerian-based models

The 11th property above refers to the ability of a scheme
to preserve pre-existing functional relations between tracers.
Mixing or unmixing can be divided into three categories (see
Fig. 1), real mixing, range-preserving unmixing, andover-
shooting.

In their native forms, most transport schemes operating on
a fixed Eulerian grid (including semi-Lagrangian schemes)
will lead to numerical mixing between tracers which, de-
pending on the scheme, can fall into any of the three cate-
gories. We will term this implicit mixing.

Obviously, range-preserving unmixing and overshooting
are unphysical processes, but even real mixing can be so.
At a macro spatial scale corresponding to the grid distance
in a fluid dynamical model, mixing in nature can be molecu-
lar, or a result of turbulence, i.e., deformations of the flow. In
geophysical fluid dynamics (GFD) and for typical grid reso-
lutions the former is several orders of magnitude smaller than
the latter, and, thus, molecular mixing/diffusion is neglected
in the governing model equations. To the extent diffusion is
parameterized explicitly in GFD models it is therefore sup-
posed to represent the mixing associated with unresolved de-
formations in the flow. Innon-deformationalflow no mixing
should take place and any functional relation between tracers
should therefore remain unchanged for inert tracers; i.e., all
points in a diagram like that in Fig.1 will keep their initial
positions. Unfortunately, this is not the case for most tradi-
tional transport schemes, and therefore they are subject to
spurious mixing, even if it belongs to the “real” category. In
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Fig. 1. Illustration of numerical mixing categories. The thick curve
is the pre-existing functional relation between tracer ξ and tracer χ.
Any new relative concentrations (ξk,χk), generated by the transport
scheme, can be represented as a point. If the point falls within the
shaded convex hull, it is classified as real mixing. If within the
dashed rectangle but outside the shaded area it is classified as range
preserving unmixing, and, finally, if outside the dashed rectangle it
is classified as overshooting (adopted from Lauritzen and Thuburn,
2012).

with such schemes, and in general deformational flows, the
Lagrangian parcels become irregularly distributed in space
and strongly deformed. The irregular distribution is a funda-
mental problem for the following reasons:

1. Dynamical tendencies due to non-advective processes170

generally need to be estimated on a regular grid to en-
sure consistency with and between the governing prog-
nostic equations.

2. In practice, it is problematic to calculate parameterized
physical processes on an irregular grid.175

3. There may be sub-domains with no or very few parcels.

The result of an interpolation from mass centers of La-
grangian parcels to a regular Eulerian grid will typically, af-
ter some time, show a completely unrealistic “spotty” dis-
tribution because neighboring parcels originate from quite180

different positions at the initial time of the integration (see
e.g. lower right panel of Fig. 11). In nature finite size La-
grangian parcels typically deform into very long, very thin
filaments. A Lagrangian transport scheme aiming at resolv-
ing the developing shape of individual parcels without any185

explicit mixing between neighboring parcels would repre-
sent the discrete Lagrangian analogy to the pseudo-spectral
method. The aliasing of such a Lagrangian scheme is re-
alised when one interpolates from Lagrangian to physical
space, i.e., to a fixed Eulerian grid. To avoid such aliasing190

one can introduce mixing between parcels. One may think
of the difference between a mixed and unmixed Lagrangian
scheme as an analogy to the difference between spectral and
pseudo-spectral schemes.

In the native form of HEL without parcel mixing the den-195

sity and, optionally, other prognostic variables, are known at
all times via a fully Lagrangian as well as a traditional Eu-
lerian representation. At each time step a nudging technique
is applied where the density information in the downstream
translated Lagrangian parcels is used to modify or “repair”200

an Eulerian based advection. In this way the non-dispersive,
non-diffusive, and shape preserving advantages of the La-
grangian method can be adopted in an otherwise diffusive
and/or strongly dispersive Eulerian based transport scheme.
Physical tendency contributions not related to pure advec-205

tion are most obviously and accurately calculated in Eule-
rian space and subsequently interpolated and added to the
Lagrangian parcel values. In this way the bulk of the model
history is kept in the Lagrangian representation.

With this generic design one is, however, still left with210

the problem of aliasing in Lagrangian space. To reduce or
eliminate aliasing a “real” mixing, described in detail be-
low, is introduced in Lagrangian space between neighboring
parcels. To mimic the physical nature of the cascade into
smaller scales, we let the degree of mixing depend on the lo-215

cal flow deformation rate. Not surprisingly, the introduction
of such mixing turns out to be instrumental for a proper de-
scription of the spectral distribution of prognostic variables
although this issue is not covered in the present paper.

Although we are not dealing with chemistry here it is220

noted that calculations of chemical reactions are naturally
performed in the Lagrangian parcels where it is known that
only real mixing takes place.

1.4 Other relevant Lagrangian type numerical schemes

HEL has some similarities to particle in cell (PIC) methods,225

which have been used extensively in e.g. plasma physics
(Tskhakaya et al., 2007). However, one, among several
fundamental differences, is that in PIC methods the num-
ber of Lagrangian parcels far exceeds that of Eulerian grid
points/cells, while in HEL these numbers are equal or at230

least close to the same order of magnitude. The choise
of relatively few Lagrangian parcels in HEL was motivated
by efficiency considerations since computationally expensive
chemical reactions (not dealt here) involving up to several
hundred chemical tracers should be performed in Lagrangian235

space.
As indicated above the transport and mixing in the HEL

scheme is similar to other Lagrangian parcel methods like
ATTILA, CLaMS and FPIC (Kaas et al., 1997). In Rei-
thmeier and Sausen (2002), and later improved in Stenke240

et al. (2008) ATTILA was implemented in a general circu-
lation model to simulate transport of water vapor and cloud
water. This was extended in Stenke et al. (2009) to an in-
teractively coupled chemistry-climate model version of AT-
TILA, i.e., water vapor, cloud water, and mixing ratios of245

all chemical tracers are known for each Lagrangian parcel.
ATTILA is able to maintain steep gradients, is mass conserv-

Fig. 1. Illustration of numerical mixing categories. The thick curve
is the pre-existing functional relation between tracerξ and tracer
χ . Any new relative concentrations(ξk,χk), generated by the trans-
port scheme, can be represented as a point. If the point falls within
the shaded convex hull, it is classified as real mixing; if within the
dashed rectangle but outside the shaded area it is classified as range-
preserving unmixing; and, finally, if outside the dashed rectangle it
is classified as overshooting (adopted fromLauritzen and Thuburn,
2012).

the case where the tracers are chemically active, this can po-
tentially be a serious problem as spurious chemical reactions
are then initiated, or chemical equilibria are displaced.

Note that apart from the initial truncation numerical meth-
ods based on orthogonal series expansion functions are the
only Eulerian type numerical schemes which do not intro-
duce numerical mixing in the case of non-deformational
flow. However, generally filters must be introduced in such
schemes to prevent e.g. development of negative values,
and this introduces numerical mixing also in regions of
(quasi-)linear flow.

In the more realistic case ofspatially varyingflow La-
grangian parcels will deform into thinner and thinner fila-
ments, which in nature are finally mixed via molecular mix-
ing. An important question is to what extent explicit nu-
merical diffusion/mixing is required as a supplement to that
implied by the native version of some numerical scheme
in order to mimic the cascade into small scales correctly.
For typical grid point/cell-based methods, including semi-
Lagrangian schemes, some inherent numerical mixing is al-
most unavoidable, and this may be sufficient to control the
cascade in a statistical sense. In Galerkin methods – e.g. the
classical spectral method (Machenhauer, 1979) – the grad-
ual development of non-resolved filaments and structures
is controlled by demanding the residual to be orthogonal
to the resolved expansion functions (see e.g.Machenhauer,
1979, or Durran, 2010). This gives rise to an implied mix-
ing, which, depending on the chosen expansion functions,
is generally non-local in physical space. Explicit horizontal
diffusion is required for most Galerkin schemes in order to
prevent so-called “spectral blocking” (Machenhauer, 1979),
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i.e., spurious accumulation of energy on the shortest resolved
scales. The situation is different in pseudo-spectral models
where considerably stronger scale selective damping is nec-
essary to avoid aliasing.

In conclusion explicit mixing, in terms of filters, diffusion,
spectral damping, etc., is needed in both grid point/cell meth-
ods and methods based on series expansion in order to ensure
shape preservation, and in particular positive definiteness,
and to control the cascade into smaller scales in a realistic
way. In general the combined implicit and explicit mixing
will not represent true physical mixing although it may be
real in the sense described in Fig.1.

1.3 The HEL approach

Here we present a numerical methodology, termed the hy-
brid Eulerian–Lagrangian (HEL) numerical scheme, which
has been designed to fulfill as many as possible of the desired
properties mentioned in Sect.1.1. The aim is to combine the
Eulerian and the Lagrangian approaches in such a way that
the main problems related to either of these are eliminated or
at least reduced. The ideas behind HEL have been inspired by
other Lagrangian approaches, in particular that of ATTILA
(Atmospheric Tracer Transport In a Lagrangian Atmospheric
model) (Reithmeier and Sausen, 2002; Stenke et al., 2008,
2009), which uses a fully Lagrangian scheme for all tracers,
including water substances.

Contrary to the problems mentioned in the previous
subsection for Eulerian-based schemes,fully Lagrangian
schemes are formally exact for the pure advection problem
assuming trajectories have been calculated exactly. However,
with such schemes, and in general deformational flows, the
Lagrangian parcels become irregularly distributed in space
and strongly deformed. The irregular distribution is a funda-
mental problem for the following reasons:

1. Dynamical tendencies due to non-advective processes
generally need to be estimated on a regular grid to en-
sure consistency with and between the governing prog-
nostic equations.

2. In practice, it is problematic to calculate parameterized
physical processes on an irregular grid.

3. There may be sub-domains with no or very few
parcels.

The result of an interpolation from mass centers of La-
grangian parcels to a regular Eulerian grid will typically, af-
ter some time, show a completely unrealistic “spotty” dis-
tribution because neighboring parcels originate from quite
different positions at the initial time of the integration (see
e.g. lower right panel of Fig.11). In nature, finite size La-
grangian parcels typically deform into very long, very thin
filaments. A Lagrangian transport scheme aiming at resolv-
ing the developing shape of individual parcels without any

explicit mixing between neighboring parcels would repre-
sent the discrete Lagrangian analogy to the pseudo-spectral
method. The aliasing of such a Lagrangian scheme is realized
when one interpolates from Lagrangian to physical space,
i.e., to a fixed Eulerian grid. To avoid such aliasing one can
introduce mixing between parcels. One may think of the dif-
ference between a mixed and unmixed Lagrangian scheme
as an analogy to the difference between spectral and pseudo-
spectral schemes.

In the native form of HEL without parcel mixing the den-
sity and, optionally, other prognostic variables are known at
all times via a fully Lagrangian as well as a traditional Eu-
lerian representation. At each time step a nudging technique
is applied where the density information in the downstream
translated Lagrangian parcels is used to modify or “repair”
an Eulerian-based advection. In this way the non-dispersive,
non-diffusive, and shape-preserving advantages of the La-
grangian method can be adopted in an otherwise diffusive
and/or strongly dispersive Eulerian-based transport scheme.
Physical tendency contributions not related to pure advec-
tion are most obviously and accurately calculated in Eule-
rian space and subsequently interpolated and added to the
Lagrangian parcel values. In this way the bulk of the model
history is kept in the Lagrangian representation.

With this generic design one is, however, still left with the
problem of aliasing in Lagrangian space. To reduce or elimi-
nate aliasing a real mixing, described in detail below, is intro-
duced in Lagrangian space between neighboring parcels. To
mimic the physical nature of the cascade into smaller scales,
we let the degree of mixing depend on the local flow defor-
mation rate. Not surprisingly, the introduction of such mix-
ing turns out to be instrumental for a proper description of the
spectral distribution of prognostic variables; however, this is-
sue is not covered in the present paper.

Although we are not dealing with chemistry here, it is
noted that calculations of chemical reactions are naturally
performed in the Lagrangian parcels where it is known that
only real mixing takes place.

1.4 Other relevant Lagrangian type numerical schemes

HEL has some similarities to particle in cell (PIC) meth-
ods, which have been used extensively in e.g. plasma physics
(Tskhakaya et al., 2007). However, one among several fun-
damental differences is that in PIC methods the number
of Lagrangian parcels far exceeds that of Eulerian grid
points/cells, while in HEL these numbers are equal or at least
close to the same order of magnitude. The choice of relatively
few Lagrangian parcels in HEL was motivated by efficiency
considerations since computationally expensive chemical re-
actions (not dealt with here) involving up to several hundred
chemical tracers should be performed in Lagrangian space.

As indicated above the transport and mixing in the HEL
scheme is similar to other Lagrangian parcel methods. In
Reithmeier and Sausen(2002), and later improved inStenke
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et al. (2008), ATTILA was implemented in a general circu-
lation model to simulate transport of water vapor and cloud
water. This was extended inStenke et al.(2009) to an interac-
tively coupled chemistry–climate model version of ATTILA;
i.e., water vapor, cloud water, and mixing ratios of all chemi-
cal tracers are known for each Lagrangian parcel. ATTILA is
able to maintain steep gradients, is mass conserving, numer-
ically non-diffusive, and has been used e.g. for studying the
climate radiative forcing related to aircraft contrails (Fröm-
ming et al., 2011). ATTILA does not handle the “dry dynam-
ics” as opposed to HEL; however, besides this the HEL and
ATTILA approaches are quite similar when applied for non-
dry-dynamical prognostic variables. One difference, though,
is that ATTILA on average holds more Lagrangian parcels
per Eulerian grid cell than the version of HEL presented
here, which on average only has one. More importantly, there
are some differences in the way horizontal mixing between
neighboring parcels is performed in ATTILA and HEL. For
both schemes the degree of mixing depends on the horizon-
tal shear deformation rate of the flow; however, in ATTILA
this is a simple analytical expression based onSmagorinsky
(1963), whereas in HEL the deformation of each parcel is
kept as an additional prognostic variable, which is increased
each time step in proportion to the shear deformation rate,
and attempted to be reduced via realized mixing with neigh-
boring parcels.

The approaches in the CLaMS model (McKenna et al.,
2002) are less similar than ATTILA to those applied in HEL.
The mixing in CLaMS is based on a dynamically adap-
tive grid and it becomes active in terms of mass exchange
between neighboring parcels when the flow deformation is
high. A local, in time and space, Lyapunov exponent is used
to determine the degree of mixing that takes place, which
in practice takes place via generation of new Lagrangian
parcels in strongly deformed flow, or merging of clustered
Lagrangian parcels. This is one main difference compared
to HEL and ATTILA, where Lagrangian parcels survive
throughout the integration. In the ATLAS model (Wohlt-
mann and Rex, 2009) the flow-dependent mixing method-
ology of CLaMS has been modified with emphasis on better
performance in lower-resolution model configurations. Also
in FPIC (Kaas et al., 1997) an implied mixing takes place via
simple birth and merging of particles.

The so-called “trajectory-tracking scheme” introduced in
Dong and Wang(2011) and updated inDong and Wang
(2012) has some similarities to HEL. In two-dimensional
problems this scheme treats Lagrangian parcels as polygons
with a finite number of edges, and with all Lagrangian par-
cel polygons spanning exactly the complete integration do-
main. The Eulerian space representation is obtained via a
first-order conservative remapping so that total mass is con-
served in the Lagrangian as well as the Eulerian represen-
tation. A “curvature-guard” algorithm is applied in order to
maintain an accurate polygon representation in deformation
flows. However, this algorithm does not lead to any mixing,

as in HEL, between neighboring Lagrangian parcels. There-
fore, in long-term simulations, one should expect problems
equivalent to aliasing.

1.5 Overview

The paper is organized as follows: Sect.2 provides a generic
description of the HEL approach, i.e., HEL without any type
of mixing between parcels, while Sect.3 describes how mix-
ing between adjacent parcels is achieved. Section4 presents
passive inert transport tests on the sphere. Various traditional
and more recently proposed error measures and evaluation
statistics are used to demonstrate the performance of HEL
in both solid body rotation flow (Sect.4.1) and in strongly
deformational flow (Sects.4.2and4.3). Section5 deals with
some initial attempts to implement HEL as the basis for a dy-
namical core in a geophysical fluid dynamics model. In this
case the test bed is a shallow water model in plane geome-
try. Finally Sects.6 and7 discuss the results, including some
outlooks for future work, and summarize the basic findings.

2 HEL – passive transport

To introduce the procedure followed in HEL in more detail
we first consider the continuity equations for a set ofM trac-
ers with densitiesρm:

∂ρm

∂t
= −∇ · (ρmV ), m= 1, . . . ,M, (1)

or alternatively in Lagrangian form,

d lnρm
dt

= −∇ ·V , m= 1, . . . ,M, (2)

whereV is the flow velocity vector. For simplicity we have
ignored any sources and sinks, and any diffusion in Eqs. (1)
or (2).

In geophysical fluid dynamics Eqs. (1) or (2) is normally
solved via finite volume (FV) methods operating on a fixed
Eulerian grid. Two different families of FV methods have
been applied: flux based and cell integrated. In flux-based
methods the fluxes of mass swept through each face of pre-
defined Eulerian grid cells within a time step are calculated
first, and the change in density is then determined from the
net inflow of mass into each grid cell. In cell-integrated meth-
ods a semi-Lagrangian upstream departure cell is first identi-
fied. The estimated total mass in this upstream cell then deter-
mines the corresponding arrival (Eulerian) grid cell density.
For a more detailed description of the difference between the
two families, seeMachenhauer et al.(2008), where it is also
demonstrated that they are in fact numerically equivalent. For
a general review of FV methods, we refer toLeVeque(2002)
andEymard et al.(2000).
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It should be noted that other non-FV, yet still mass-
conservative, schemes have also been used. For the present
work it is of particular relevance to mention the so-called
locally mass-conserving semi-Lagrangian method (LMCSL)
(Kaas, 2008), which is based on a simple partition of unity
principle.

Depending on the chosen order of accuracy any numeri-
cal method – Eulerian or semi-Lagrangian type – applied for
solving Eqs. (1) or (2) on an Eulerian grid will suffer from
some degree of dissipation (or possibly anti-dissipation),
some numerical dispersion, and generally, for higher-order
schemes, the solution will not be shape preserving.

As mentioned above the main motivation behind the
present work is to use a fully Lagrangian forecast, run in
parallel, to modify the Eulerian grid forecast in such a way
that the above-mentioned disadvantages are reduced or elim-
inated. A purely Lagrangian forecast describes the tempo-
ral evolution of the densities of individual Lagrangian fluid
parcels as they move around. Formally it is straightforward
to integrate Eq. (2) for a Lagrangian parcel from timet to
some future timet +1t :

lnρ (r(t +1t), t +1t))− lnρ (r(t), t))

= −

t+1t∫
t

∇ · V
(
r(t ′), t ′

)
dt ′

=1tD, (3)

wherer(t) is the position vector of the parcel at timet , andD
represents the average divergence along the trajectory from
r(t) to r(t +1t). From Eq. (3) one immediately gets

ρ (r(t +1t), t +1t))= ρ (r(t), t))exp
(
1tD

)
; (4)

i.e., the effect of divergence over the period fromt to t +1t
is an expansion/contraction factor:

σ = exp
(
1tD

)
(5)

multiplied by the original parcel density at timet .
We will now consider the actual numerical discretiza-

tion of the prognostic equations in Eulerian and Lagrangian
space. The Lagrangian parcels are introduced at the initial
time, and in the present formulation of HEL they survive
throughout the model integration. Also, in the version of
HEL presented here, the total number of parcelsP and the
number of Eulerian grid cellsK are equal. At the initial time
step,n= 0, Lagrangian parcel densities,Lρ, are initialized
by the corresponding values in Eulerian grid cell centroids;
i.e.,

Lρ0
p =

Eρ0
k

Lρ0
m,p =

Eρ0
m,k, m= 1, . . . ,M, (6)

wherep, k = 1, . . . ,P (=K), andm counts the individual
tracers as in Eqs. (1) and (2). In the following we generally

use upper-left superscriptsL andE to indicate Lagrangian
and Eulerian space representation, respectively. An upper-
right index denotes the time step. A list of all prognostic
variables in HEL to be described below can be found in Ap-
pendixA.

Assume some numerical scheme has been used to solve
Eqs. (1) or (2) in the Eulerian grid cell representation, and let

E ρ̃n+1
k

E ρ̃n+1
m,k , m= 1, . . . ,M (7)

denote the forecast in Eulerian grid cellsk = 1, . . . ,K at time
stepn+ 1. In general we use the notation( ·̃) to represent
some provisional approximate value. This is also the case
here whereρ̃ indicates that the forecast at time stepn+ 1
is only a provisional Eulerian space forecast to be modified
by densities in the Lagrangian representation.

Letting parcels follow downstream trajectories from time
stepn ton+1 estimated from the actual velocity components
in the Eulerian grid, one obtains an approximate Lagrangian
solution to the pure advection problem. However, in a gen-
eral divergent flow the parcel volume density will of course
undergo changes. According to Eqs. (4) and (5) the effect of
divergence for parcelp from time stepn to n+ 1 can simply
be modeled as

Lρn+1
p =

Lσ
n+1/2
p

Lρnp, (8)

where superscriptn+ 1/2 indicates that the expan-
sion/contraction factor represents the effect of divergence
from time stepn to n+1. In practiceσ n+1/2 is determined in
Eulerian space from the provisional Eulerian space forecast
of the “dry air” density,E ρ̃n+1, i.e., including the effect of
divergence, and from a corresponding purely advective fore-
cast, i.e., not including the effect of divergence, which we
termE,advρn+1:

Eσ n+1/2
=

E ρ̃n+1
k

E,advρn+1
, k = 1, . . . ,K. (9)

For cell-integrated FV and the LMCSL schemes applied in
the present paper the calculation ofEσ n+1/2 is straightfor-
ward since estimation ofE,advρn+1 is an inherent part of
these schemes.

Once new downstream parcel positionsLrn+1 have been
found, Lσ n+1/2 can be obtained via interpolation from
Eσ n+1/2. The parcel forecast for parcelp, including diver-
gence, then simply becomes

Lρn+1
p =

Lσ
n+1/2
p

Lρnp

Lρn+1
m,p =

Lσ
n+1/2
p

Lρnm,p, m= 1, . . . ,M. (10)

It is important to note that in a dynamical model, in or-
der to prevent numerical instabilities related to fast modes,
e.g. gravity waves,Eσ n+1/2

p must be based on divergence ob-
tained with a numerically stable scheme.
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The modification of the Eulerian densities using the parcel
densities is done by first interpolating the irregularly spaced
parcel densities to the Eulerian grid obtaining certain Eule-
rian space target values,ET and ETm, m= 1, . . . ,M, and
then nudging the original Eulerian-based forecast towards
these values under the constraints of mass conservation and
shape preservation (see details in Sect.2.6).

A generic recipe in an atmospheric multi-tracer applica-
tion of HEL, not yet considering the mixing, can be summa-
rized as follows at a given time stepn (here omitting indices
for Eulerian grid cells,k, and Lagrangian parcels,p):

1. Perform a conventional, preferably inherently mass-
conserving, Eulerian or semi-Lagrangian time step of
total dry density,E ρ̃n+1, valid on an Eulerian grid.
This is termed theprovisional forecast.

2. Perform a corresponding purely advective time step
in Eulerian spaceE,advρn+1 of the dry density, and
use this to calculate the divergent multiplication fac-
tor, Eσ n+1/2 = E ρ̃n+1/E,advρn+1.

3. For all tracers,m= 1, . . . ,M, perform a provisional
Eulerian space forecast,E ρ̃n+1

m .

4. Perform a pure downstream displacement of the irreg-
ularly spaced Lagrangian parcels; i.e., calculate down-
stream trajectories and reposition each parcel fromLrn

to Lrn+1.

5. InterpolateEσ n+1/2 from the Eulerian grid cells to the
positionsLrn+1 resulting in valuesLσ n+1/2. Then cal-
culate the new parcel densities for both the dry air
and all the tracers, including the effect of divergence:
Lρn+1 = Lσ n+1/2

·
Lρn, andLρn+1

m = Lσ n+1/2
·
Lρnm,

m= 1, . . . ,M.

6. InterpolateLρn+1 from the Lagrangian grid to obtain
the target values,ET , in the Eulerian grid. In Eulerian
grid cells with no nearby Lagrangian parcelsET n+1 is
set equal toE ρ̃n+1 from step 1; see details in Sect.2.5.

7. As step 6 but for all tracersm= 1, . . . ,M.

8. Nudge E ρ̃n+1 towardsET n+1 under constraints of
mass conservation and shape preservation for the den-
sity; see details in Sect.2.6. The result is the final HEL
forecast,Eρn+1, for the dry air in Eulerian space.

9. As step 8 but for all tracersm= 1, . . . ,M. However,
now the constraints are mass conservation and shape
preservation for tracermixingratios.

2.1 The underlying numerical scheme

As outlined above, some numerically stable scheme must be
chosen in order to obtain the provisional forecast in Eule-
rian grid space. For applications in HEL it would be rea-
sonable to use a semi-Lagrangian type scheme since trajec-
tory calculations can be partly re-used for estimation of the

downstream parcel trajectories; also, it would then be possi-
ble to take long steps not subject to classical CFL conditions
for advective processes. Therefore relevant schemes include,
e.g., flux-based multidimensional schemes such asLin and
Rood(1996) andLeonard et al.(1996), the Departure area
Cell-Integrated Semi-Lagrangian (DCISL) scheme (Machen-
hauer and Olk, 1997), the Conservative Semi-LAgrangian
Multi-tracer transport scheme (CSLAM) (Lauritzen et al.,
2010), the Semi-Lagrangian Inherently Conserving and Ef-
ficient scheme (SLICE) (Zerroukat et al., 2002), or the Lo-
cally Mass-Conserving Semi-Lagrangian scheme (LMCSL)
(Kaas, 2008).

Note, however, that any mass-conserving scheme for solv-
ing continuity equations can in principle be used as the un-
derlying scheme for HEL. In fact, relaxing the mass con-
servation property, any consistent numerical scheme can be
used.

In the present paper we have tested the use of first- and
third-order versions of the CSLAM and LMCSL schemes to
obtain the first guess forecast in Eulerian space.

2.2 Estimation of trajectories

The downstream displacement of parcel locations obviously
is an essential component in HEL. In simple numerical tests
such trajectories can be calculated analytically, or, as in dy-
namical models, they can be calculated via an iterative pro-
cedure, which is equivalent to that used in traditional semi-
Lagrangian models for estimating the upstream departure
points/cells. In the present applications we have generally
used analytical or approximate analytical trajectories for ide-
alized numerical tests, and iteratively estimated trajectories
in dynamical model implementations. This is described fur-
ther in Sects.4.1, 4.2, and5.1.1.

2.3 Update of the parcel volumes

Each Lagrangian parcel represents a certain volumeLV of
the fluid which, at the initial time step, is simply initialized
as the volume represented by the volume of the relevant Eu-
lerian grid cell.

OnceLρn+1 has been calculated one can update the vol-
ume of each parcel. Omitting the upper index “L” the parcel
volumeV n+1

p at time stepn+1 is determined diagnostically
by the constraint that, in the absence of mixing, the total mass
of each Lagrangian parcel is conserved, i.e.,

V n+1
p ρn+1

p = V np ρ
n
p (11)

whereby

V n+1
p = V np

ρnp

ρn+1
p

=
V np

σ
n+1/2
p

(12)
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using Eq. (10).
The volume of the parcels is a necessary ingredient for

mixing between neighboring parcels (Sect.3).

2.4 Interpolations from Eulerian to Lagrangian
representation

Interpolations between the Eulerian and Lagrangian repre-
sentations are required as part of the HEL scheme. For ex-
ample, as explained above, it is necessary to interpolateσ to
the Lagrangian representation. Similarly, when HEL is used
in a dynamical model, tendencies related to other physical
processes must be interpolated.

In the present formulation of HEL all interpolations from
the Eulerian grid cells to the Lagrangian parcel locations are
fourth-order Lagrange polynomial interpolations.

2.5 Target values

Provisional target values,E T̃ n+1, for the Eulerian space dry
air density can be obtained whenE ρ̃n+1 and Lρn+1 have
been calculated. The provisional target value in Eulerian grid
cell k is composed as a weighted sum of the provisional
Eulerian-based forecast,E ρ̃n+1

k , and a parcel-based estimate
Rk:

E T̃ n+1
k =

w1
E ρ̃n+1

k +w2Rk
w1 +w2

, (13)

whereRk is defined as

Rk =
1

Wk

P∑
p=1

wp,k
E ρ̂n+1

p,k with Wk =

P∑
p=1

wp,k, (14)

wherewp,k is a simple bi-linear interpolation weight given to
an estimate of the densityE ρ̂n+1

p,k in Eulerian grid cellk which
is based on the density at the location of parcel numberp:

E ρ̂n+1
p,k =

Lρn+1
p + (Lrn+1

p − rk) · gp,k. (15)

gp,k is a second-order numerical approximation to the gradi-

ent∇
(
E ρ̃
)n+1

at the location 0.5(Lrn+1
p + rk), andrk is the

position vector of thekth Eulerian grid cell.
The weightsw1 andw2 in Eq. (13) are determined as fol-

lows:

w1 = max[w0, (1−Hk)Wk]

w2 =HkWk, (16)

wherew0 is a small positive number, andHk is a measure
of the homogeneity of the distribution of Lagrangian parcels
around the Eulerian cellk. Here we have used the following
estimate ofHk:

Hk =
2× min[Wl]

max[Wl] + min[Wl]
l ∈ Lk, (17)
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in a dynamical model, tendencies related to other physical
processes must be interpolated.

In the present formulation of HEL all interpolations from
the Eulerian grid cells to the Lagrangian parcel locations are
fourth order Lagrange polynomial interpolations.465
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cell k is composed as a weighted sum of the provisional Eule-
rian based forecast, Eρ̃n+1

k , and a parcel based estimateRk:

ET̃ n+1
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w1
Eρ̃n+1

k +w2Rk
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(13)

whereRk is defined as

Rk =
1

Wk

P∑
p=1

wp,k
Eρ̂n+1

p,k with Wk =

P∑
p=1

wp,k (14)

where wp,k is a simple bi-linear interpolation weight given
to an estimate of the density Eρ̂n+1

p,k in Eulerian grid cell k
which is based on the density at the location of parcel number
p:

Eρ̂n+1
p,k = Lρn+1

p +(Lrn+1
p −rk) ·gp,k. (15)

gp,k is a second order numerical approximation to the gradi-
ent∇

(
Eρ̃
)n+1

at the location 0.5(Lrn+1
p +rk) and rk is the

position vector of the kth Eulerian grid cell.
The weights w1 and w2 in Eq. (13) are determined as fol-

lows:

w1 = max[w0,(1−Hk)Wk]

w2 =HkWk (16)

where w0 is a small positive number, and Hk is a measure
of the homogeneity of the distribution of Lagrangian parcels
around the Eulerian cell k. Here we have used the following
estimate of Hk

Hk =
2×min[Wl]

max[Wl]+min[Wl]
l∈Lk (17)

where Lk is a subset of Eulerian cells including k and its470

nearest eight surrounding neighbors (for a regular grid as
used here). In Eq. (16) the maximization of w1 is introduced
to ensure that the target values are always well-defined. The
value of w0 has, somewhat arbitrarily, been set to 10−5, i.e.,
in the target values estimated from Eq. (13) there will always475

be some weight on the Eulerian based forecast. In general
this weight is small but in the special case whereWk = 0, i.e.
there are no neighboring parcels at all, the target value will
simply be equal to the provisional Eulerian forecast.

k4

k2k1

k3

n+1n

Fig. 2. Traditional upstream semi-Lagrangian departure point.

In practice the calculations of Rk and Wk are not per-480

formed as sums over all parcels as indicated in Eq. (14)
since this would be very inefficient numerically because it is
known that only four of the parcel weights, wp,k, for a given
parcel p are different from zero. InsteadRk and Wk are cal-
culated in a single loop over all parcels where information is485

distributed (summed) to the neighboring four Eulerian cells,
followed by a second loop where the result is divided by the
sum of weights for each cell.

Provisional target values for the tracers ET̃ n+1
m , m =

1,...,M are obtained via the same technique as outlined for490

the “dry air”, i.e., ET̃ n+1 above. I.e. all weights are the
same.

To obtain an Eulerian space forecast, which is shape pre-
serving and compatible we must identify minimum and max-
imum permitted mixing ratios, q− and q+, respectively, for495

each tracer m in each Eulerian grid cell. The mixing ratio
for a tracerm is defined as qm = ρm/ρ, implying that we can
always deduce mixing ratios in both the Eulerian and La-
grangian representation when ρm and ρ are known, and we
can always convert a mixing ratio qm back to volume den-500

sity when ρ is known. The upstream Eulerian mixing ratios
at time level n are used by selecting the minimum and maxi-
mum mixing ratios in the four grid cells k1,...,k4 surround-
ing the location of the upstream departure point for the trajec-
tory, which at time level n+1 is located at the cell centroid of505

cell k, i.e., the departure point in a classical semi-Lagrangian
context (see Fig. 2).

Thereby the provisional minimum and maximum mixing
ratios for tracer m become:

Eq̃−m,k = min[Eqnm,ki
]

Eq̃+
m,k = max[Eqnm,ki

]
,i= 1,...,4 (18)

The final limits are obtained by using additional information
from mixing ratios in the Q parcels pi,i= 1,...,Q that have
Euclidian distance to the Eulerian cell k at time level n+1,

Fig. 2.Traditional upstream semi-Lagrangian departure point.

whereLk is a subset of Eulerian cells includingk and its
nearest eight surrounding neighbors (for a regular grid as
used here). In Eq. (16) the maximization ofw1 is introduced
to ensure that the target values are always well defined. The
value ofw0 has, somewhat arbitrarily, been set to 10−5; i.e.,
in the target values estimated from Eq. (13) there will always
be some weight on the Eulerian-based forecast. In general
this weight is small but in the special case whereWk = 0,
i.e., where there are no neighboring parcels at all, the target
value will simply be equal to the provisional Eulerian fore-
cast.

In practice the calculations ofRk andWk are not per-
formed as sums over all parcels as indicated in Eq. (14)
since this would be very inefficient numerically because it is
known that only four of the parcel weights,wp,k, for a given
parcelp are different from zero. InsteadRk andWk are cal-
culated in a single loop over all parcels where information is
distributed (summed) to the neighboring four Eulerian cells,
followed by a second loop where the result is divided by the
sum of weights for each cell.

Provisional target values for the tracersE T̃ n+1
m , m=

1, . . . ,M are obtained via the same technique as outlined for
the dry air, i.e.,E T̃ n+1 above. I.e., all weights are the same.

To obtain an Eulerian space forecast, which is shape pre-
serving and compatible we must identify minimum and max-
imum permitted mixing ratios,q− andq+, respectively, for
each tracerm in each Eulerian grid cell. The mixing ratio for
a tracerm is defined asqm = ρm/ρ, implying that we can
always deduce mixing ratios in both the Eulerian and La-
grangian representation whenρm andρ are known, and we
can always convert a mixing ratioqm back to volume den-
sity whenρ is known. The upstream Eulerian mixing ratios
at time leveln are used by selecting the minimum and maxi-
mum mixing ratios in the four grid cellsk1, . . . ,k4 surround-
ing the location of the upstream departure point for the trajec-
tory, which at time leveln+1 is located at the cell centroid of
cell k, i.e., the departure point in a classical semi-Lagrangian
context (see Fig.2).
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Thus the provisional minimum and maximum mixing ra-
tios for tracerm become

E q̃−

m,k = min[
Eqnm,ki

]

E q̃+

m,k = max[Eqnm,ki ]
, i = 1, . . . ,4. (18)

The final limits are obtained by using additional information
from mixing ratios in theQ parcelspi, i = 1, . . . ,Q that have
Euclidian distance to the Eulerian cellk at time leveln+ 1,
which is less than 1.5 grid distances:

Eq−

m,k = min[
E q̃m,k,

Lq
n+1
m,pi

]

Eq+

m,k = max[E q̃m,k,
Lq

n+1
m,pi

]
, i = 1, . . . ,Q. (19)

Once the Eulerian space forecast for dry air densityEρ has
been obtained, the minimum and maximum permitted val-
ues of volume density for tracerm= 1, . . . ,M can easily be
obtained:

Eρ−

m,k =
Eq−

m,k ·
Eρk, (20)

Eρ+

m,k =
Eq+

m,k ·
Eρk. (21)

2.6 Nudging of first guess towards target values

After the (shape-preserving) target values have been calcu-
lated, the provisional, “first guess”, Eulerian forecast can be
corrected. The correction, or nudging, is done in two steps.
First we calculate the total mass,M =

∑K
k=1

Eρk ·
EVk, and

the total mass of the target values,MT =
∑K
k=1

ETk ·
EVk, as

well as the discrepancy,1M =MT −M, between the two.
This will lead to three different possibilities:

1M < 0: Mass of target field is too small.

1M = 0: Mass of target field is correct.

1M > 0: Mass of target field is too large.

In the (extremely unlikely) event that the mass of the tar-
get field is exact (1M = 0), the Eulerian field is simply re-
placed by the target field. In the two remaining possibilities
the target field has to be modified to ensure mass conserva-
tion. If the mass of the target field is less that the actual mass
(1M < 0), we calculate the maximum possible mass of the
field, i.e.,M+

=
∑K
k=1ρ

+

k ·
EVk, where shape preservation

is still fulfilled. The target field and the maximum field can
then be combined to produce a final corrected Eulerian field,
which is both mass conserving and shape preserving.

w+
=

1M

M+ −MT
(22)

Eρk = (1−w+) · ET k +w+
·
Eρ

+

k . (23)

This is always possible asM+
≥M. The procedure is

the same if the mass of the target field is too large; then

the target field is weighed with the minimum mass field,
M−

=
∑K
k=1ρ

−

k ·
EVk, to acquire mass conservation.

w−
=

1M

MT −M−
(24)

Eρk = (1−w−) · ET k +w−
·
Eρ

−

k . (25)

The procedure is then repeated for all tracersm= 1, . . . ,M.
The nudging employed in the current version is global, but

since all chemistry is calculated in the Lagrangian parcels, it
will not introduce errors due to the inevitable numerical mix-
ing in the Eulerian domain. A local nudging method has also
been tested, but it leads to somewhat poorer – and in prac-
tice less localized – results, as the nudging method’s ability
to correct the Eulerian values will be lessened by hard local-
ity constraints. The traditional concerns when using global
methods, i.e., mass redistribution and unphysical mixing, is
fully controlled by the correct values being preserved in the
Lagrangian parcels, meaning that HEL is very “local”.

3 Mixing between parcels

As discussed in Sect.1 densities/mixing ratios or other in-
variants will generally develop into thin filaments as part of
the cascade into smaller and smaller scales in geophysical
deformational flows. At some point a model at given res-
olution cannot represent the spatial scale of the filaments,
and explicit horizontal diffusion may therefore be required to
prevent spectral blocking. Considered in discrete Lagrangian
space, i.e., a model, the analogue to spectral blocking is re-
alized as a gradual development into unrealistically large
differences between densities/mixing ratios in neighboring
parcels.

An example of this is presented below in Sect.5. There-
fore, due to their non-dissipative nature, explicit mixing must
be introduced in Lagrangian models. We introduce a direc-
tionally biased mixing as an a posteriori operation applied
each time step after the generic HEL forecast, described
above, has been obtained.

In the present paper we only consider two-dimensional
flow. In this case the degree of mixing between neighbor-
ing parcels is based on a modified instantaneous and local
two-dimensional rate of deformation:

Dn = max

[
0,

√(
∂vn

∂x
+
∂un

∂y

)2

+

(
∂un

∂x
−
∂vn

∂y

)2

−

∣∣∣∣∂un∂x +
∂vn

∂y

∣∣∣∣], (26)

whereun andvn, respectively, are the velocity components
in the two directions spanned by coordinatesx andy at time
stepn. It can be seen that the effect of divergence (last term)
is subtracted from the traditional expression for deformation
rate. This is done because the mixing we want to introduce
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Fig. 3. Downstream advection of two different Lagrangian parcels and their auxiliary parcels in a pure shear flow. For each parcel P and
Pa denotes, respectively, its position and the position of the auxiliary parcel. The associated auxiliary vectors are marked black and gray,
respectively, to distinguish between the two parcels. In this example the (true) asymptotic / Lagrangian dilatation axis, indicated with dashed
lines, is the same all over the small domain shown, although its direction rotates clockwise from time step n to time step n+1. Note that
it is the relative movements between parcels and auxiliary parcels that are relevant. After several timesteps the auxiliary vectors will align
approximately with the true asymptotic dilatation axis.
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Fig. 4. This figure describes why we use a factor of 0.25 between the deformation within one time step ∆t ·D and the fraction of the parcel
area ∆2 that should be mixed. The underlying assumption is that the deformation is mainly due to shear, and the figure shows how cells are
then deformed within one time step from regular squares into irregular parallelograms with the same area (assuming zero divergence). In
order to re-shape a cell into squares the mass in the two shaded triangles must be given off via interpolations to the neighboring cells. The
factor comes because the sum of the triangular areas is 0.25∆t ·D∆2.

where it is again noted that for regular grids the sum
over k only includes four grid cells surrounding parcel
p. The parcel deformation is finally reduced according
to the degree of mixing that has actually taken place:

Lδn+1
p = Lδ̃n+1

p (1−4Mp) (33)

where the factor of “4” is a constant determining how625

much Lδp is reduced per unit change in relative area.
This factor is obtained from the same geometrical con-
siderations mentioned above (see Fig. 4) of the relation-
ship between deformation rate and the fraction of the
parcel volume which is actually mixed with neighboring630

parcels. Note that the factor of 0.25 in Eq. (29) ensures
that Lδn+1

p cannot be less than zero.

Most computational operations in the above list are common
for all tracers and therefore, in multi-tracer applications, the
total number of operations is limited.635

The HEL-mixing is quite different from the uncon-
trollable, and in many cases unrealistic, numerical mix-
ing/unmixing (see Fig. 1), which is introduced in most tradi-
tional models based on an Eulerian grid/cell representation,

i.e., Eulerian and semi-Lagrangian type methods. This is be-640

cause in such models the degree of mixing is different from
tracer to tracer, because it depends on the spatial roughness
of their density fields. The degree of mixing applied in HEL
between Lagrangian parcels is the same for all tracers. Thus,
in the Lagrangian space representation, i.e., for the parcels,645

the problem of numerical mixing and unmixing is eliminated.
It is noted that the introduction of a flow-dependent mixing
based on the degree of deformation is not new. Sadourny
and Maynard (1997) introduced a horizontal diffusion which
was dependent on the magnitude of the deformation rate of650

the flow, and later Váňa et al. (2008) used a similar ap-
proach to obtain a flow dependent degree of mixing in a semi-
Lagrangian model. Also ATTILA (Stenke et al., 2009) and
CLaMS (Chemical Lagrangian Model of the Stratosphere)
(McKenna et al., 2002) employ mixing depending on hori-655

zontal flow deformation rate.

Fig. 3. Downstream advection of two different Lagrangian parcels and their auxiliary parcels in a pure shear flow. For each parcelP and
Pa denote, respectively, its position and the position of the auxiliary parcel. The associated auxiliary vectors are marked black and gray,
respectively, to distinguish between the two parcels. In this example the (true) asymptotic/Lagrangian dilatation axis, indicated with dashed
lines, is the same all over the small domain shown, although its direction rotates clockwise from time stepn to time stepn+ 1. Note that
it is the relative movements between parcels and auxiliary parcels that are relevant. After several time steps the auxiliary vectors will align
approximately with the true asymptotic dilatation axis.

should not lead to excessive damping when the scheme is ap-
plied to the full mass field in a dynamical model. Not intro-
ducing such a modification would tend to damp dynamically
important gravity waves.

The calculation ofD is estimated in Eulerian space via
centered, i.e., second-order accurate, differences. The ex-
pression in Eq. (26) is only valid in Cartesian geometry.
Therefore, in the applications on the sphere presented below,
metric factors have been applied.

In addition to the prognostic variables discussed above a
set of three prognostic variables are introduced in Lagrangian
space (only) in order to perform the mixing. For each La-
grangian parcelp these include the actual parcel deforma-
tion, Lδp, and the two coordinates of a position vector,Lrpa,
of a passive auxiliary Lagrangian parcel,Lpa, that is used
to identify the asymptotic dilatation axis for shear, i.e., the
direction of “long-term” parcel stretching due to shear con-
sidered in a Lagrangian sense; see e.g.Cohen and Schultz
(2005).

For each parcelp its deformation is initialized to zero at
the first time step:Lδ0

p = 0, and it is updated as part of the
mixing procedure described below. The location of the aux-
iliary parcelpa for main parcelp is initialized one grid dis-
tance,1, away fromp in an arbitrary direction on the inte-
gration plane. At each time step the auxiliary parcel is trans-
lated downstream using the same trajectory algorithm as for
the main parcels.

The mixing operates as follows:

1. Once the modified deformation rate,Dn, has been de-
termined in Eulerian space at a given time step, it can
be interpolated to the parcel positions enabling calcu-
lation of new provisional parcel deformations:

Lδ̃n+1
p =

Lδnp +1tLDnp. (27)

2. Omitting for simplicity the Lagrangian and parcel in-
dicesL andp, and the time indexn+ 1, let r̃a denote
the pure downstream position vector of the auxiliary
parcel for a main parcel, which has downstream posi-
tion vectorr. The final downstream position vectorra
of the auxiliary parcel is then defined as

ra = r +1
r̃a− r

||r̃a− r| |
; (28)

i.e., the distance between a parcel and its auxiliary par-
cel is simply normalized to one grid distance. Two ex-
amples of the identification of thea vector are shown
in Fig. 3. No formal proof is given here that the vec-
tors ra will actually converge toward the Lagrangian
shear dilatation axes. Since the additional parcelsa are
initialized randomly, a certain time will elapse from
the model initial state until realistic dilatation axes are
identified for each parcel. However this time is propor-
tional to the deformation rate of the flow, and there-
fore, when the deformation rate is large, the dilatation
axes is also quickly approached. Obviously if the flow
is linear, i.e., no mixing is needed, then the dilatation
axes of the model parcels maintain their initial random
orientations.

3. For each parcel,p, letµp,k represent a fraction of the
parcel volume,LVp, which is assigned to a neighbor-
ing Eulerian grid cell centroidk. µp,k is defined as

µp,k = 0.25min
[
1,Lδ̃n+1

p

]
exp(−κd2

p,k), (29)

wheredp,k is the distance in units of grid distances
from the grid cell centroid to the line parallel toLan+1

p ,
which passes through parcelp. The valueκ determines
the degree of directional bias for the mixing. In the
present workκ has been set to 10. As an example, if
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then deformed within one time step from regular squares into irregular parallelograms with the same area (assuming zero divergence). In
order to re-shape a cell into squares the mass in the two shaded triangles must be given off via interpolations to the neighboring cells. The
factor comes because the sum of the triangular areas is 0.25∆t ·D∆2.

where it is again noted that for regular grids the sum
over k only includes four grid cells surrounding parcel
p. The parcel deformation is finally reduced according
to the degree of mixing that has actually taken place:

Lδn+1
p = Lδ̃n+1

p (1−4Mp) (33)

where the factor of “4” is a constant determining how625

much Lδp is reduced per unit change in relative area.
This factor is obtained from the same geometrical con-
siderations mentioned above (see Fig. 4) of the relation-
ship between deformation rate and the fraction of the
parcel volume which is actually mixed with neighboring630

parcels. Note that the factor of 0.25 in Eq. (29) ensures
that Lδn+1

p cannot be less than zero.

Most computational operations in the above list are common
for all tracers and therefore, in multi-tracer applications, the
total number of operations is limited.635

The HEL-mixing is quite different from the uncon-
trollable, and in many cases unrealistic, numerical mix-
ing/unmixing (see Fig. 1), which is introduced in most tradi-
tional models based on an Eulerian grid/cell representation,

i.e., Eulerian and semi-Lagrangian type methods. This is be-640

cause in such models the degree of mixing is different from
tracer to tracer, because it depends on the spatial roughness
of their density fields. The degree of mixing applied in HEL
between Lagrangian parcels is the same for all tracers. Thus,
in the Lagrangian space representation, i.e., for the parcels,645

the problem of numerical mixing and unmixing is eliminated.
It is noted that the introduction of a flow-dependent mixing
based on the degree of deformation is not new. Sadourny
and Maynard (1997) introduced a horizontal diffusion which
was dependent on the magnitude of the deformation rate of650

the flow, and later Váňa et al. (2008) used a similar ap-
proach to obtain a flow dependent degree of mixing in a semi-
Lagrangian model. Also ATTILA (Stenke et al., 2009) and
CLaMS (Chemical Lagrangian Model of the Stratosphere)
(McKenna et al., 2002) employ mixing depending on hori-655

zontal flow deformation rate.

Fig. 4. This figure describes why we use a factor of 0.25 between the deformation within one time step1t ·D and the fraction of the parcel
area12 that should be mixed. The underlying assumption is that the deformation is mainly due to shear, and the figure shows how cells are
then deformed within one time step from regular squares into irregular parallelograms with the same area (assuming zero divergence). In
order to re-shape a cell into squares the mass in the two shaded triangles must be given off via interpolations to the neighboring cells. The
factor comes because the sum of the triangular areas is 0.251t ·D12.

dp,k = 0.5, then the exponential factor in Eq. (29) be-
comes about 0.1; i.e., only grid cells close to theps’
dilation axis are assigned an appreciable fraction of
volume. For all Eulerian pointsk with distances top
larger than1, µp,k is set to zero. I.e., in a regular grid
µp,k is only different from zero for a maximum of four
individual values ofk. It is ensured that the sum of
these four weights does not exceed unity. The factor
“0.25” is obtained from geometrical considerations of
the relationship between deformation rate and the frac-
tion of the parcel volume which should be mixed with
neighboring parcels – see Fig.4.

4. Onceµp,k is calculated, a total mass contribution,
µp,k

Lρm,pVp, for each tracerm is transferred from the
Lagrangian parcelp to Eulerian grid cellk. In other
words the average density of mass contributions from
all parcels “neighboring”k is

ρm,k =

∑
pµp,k

Lρm,pVp∑
pµp,kVp

, (30)

where it is noted thatµp,k represents elements in a
sparse matrix with non-zero contributions from no or
only a few parcels.

5. Now the mixing can be realized by transferring the
mixed densities in the Eulerian cells back to the La-
grangian parcels. For parcelp the final mixed density
Lρm,p becomes

Lρm,p = (1−µp,k)
u,Lρm,p +µp,kρm,k, (31)

where we have formally used the notationu,Lρm,p to
indicate the unmixed forecasted density in parcelp re-
sulting from the generic HEL recipe.

Note that not only tracers are mixed using Eq. (31). To
ensure full consistence between prognostic variables
also the dry air is mixed.

It can easily be shown that the total parcel mass
for each tracer and for the complete “dry parcel

mass of the atmosphere” are conserved when applying
Eq. (31).

6. Based on the amount of actual mixing,Mp, that has
taken place for parcelp via the above operations the
final parcel deformation is calculated. The actual mix-
ing, not including trivial mixing of parcels with them-
selves, is

Mp =

∑
k

µp,k

∑
p′wp′,kVp′ −µp,kVp∑

p′wp′,kVp′

, (32)

where it is again noted that for regular grids the sum
overk only includes four grid cells surrounding parcel
p. The parcel deformation is finally reduced according
to the degree of mixing that has actually taken place:

Lδn+1
p =

Lδ̃n+1
p (1− 4Mp), (33)

where the factor of “4” is a constant determining how
muchLδp is reduced per unit change in relative area.
This factor is obtained from the same geometrical con-
siderations mentioned above (see Fig.4) of the rela-
tionship between deformation rate and the fraction of
the parcel volume which is actually mixed with neigh-
boring parcels. Note that the factor of 0.25 in Eq. (29)
ensures thatLδn+1

p cannot be less than zero.

Most computational operations in the above list are common
for all tracers, and therefore, in multi-tracer applications, the
total number of operations is limited.

The HEL mixing is quite different from the uncontrollable,
and in many cases unrealistic, numerical mixing/unmixing
(see Fig.1), which is introduced in most traditional mod-
els based on an Eulerian grid/cell representation, i.e., Eule-
rian and semi-Lagrangian type methods. This is because in
such models the degree of mixing is different from tracer to
tracer, because it depends on the spatial roughness of their
density fields. The degree of mixing applied in HEL be-
tween Lagrangian parcels is the same for all tracers. Thus,
in the Lagrangian space representation, i.e., for the parcels,
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the problem of numerical mixing and unmixing is eliminated.
It is noted that the introduction of a flow-dependent mixing
based on the degree of deformation is not new.Sadourny and
Maynard(1997) introduced a horizontal diffusion which was
dependent on the magnitude of the deformation rate of the
flow, and laterVáňa et al.(2008) used a similar approach
to obtain a flow dependent degree of mixing in a semi-
Lagrangian model. Also ATTILA (Stenke et al., 2009) and
CLaMS (Chemical Lagrangian Model of the Stratosphere)
(McKenna et al., 2002) employ mixing depending on hori-
zontal flow deformation rate.

4 Passive tracer numerical simulations on
a cubed sphere

To validate HEL we perform inert passive tracer transport on
the sphere driven by both solid body rotation and two types
of deformational flow.

For the passive transport tests presented here the underly-
ing Eulerian-based scheme required in HEL is a first-order
(i.e., shape preserving by definition) version of CSLAM
(Lauritzen et al., 2010). Where necessary this is referred to
as CSLAM-1st. The performance of HEL is compared to that
of a third-order accurate version of CSLAM in combination
with a simple shape-preserving filter (Lauritzen et al., 2010),
referred to as CSLAM-M.

In the tests shown here both HEL and CSLAM have been
implemented on a so-called cubed sphere grid – seeLau-
ritzen et al.(2010) for details.

4.1 Solid body rotation

In standard solid body rotation tests on the sphere a certain
spatial distribution returns to its original position after one or
more rotations. In this case HEL should perform with high
accuracy since the parcels end up in exactly the same grid
cell centroids they were initialized in, and no mixing takes
place because the deformation rate of this flow is zero. Thus
the target values will be almost exactly equal to their initial
value, except for the small weight factorw0 (see Eq.16). This
again implies that the final HEL forecast should be almost
exactly equal to the corresponding analytic solution since
global nudging is used.

The test example we present here is the solid body advec-
tion of a cosine bell with radiusRc = R/3, whereR is the ra-
dius of the Earth. The angle of rotation isπ/4 relative to the
Earth rotation axis; i.e., the bell passes over the edges of the
cubed sphere. One full revolution is completed in 576 time
steps of 1800 s each. These settings are identical to those in
Putman and Lin(2007).

To validate the results obtained with this simple setup we
use the traditionall2 and l∞ error norms. Results in terms
of l2 and l∞ after one revolution are plotted in Fig.5. As
expected the HEL is very accurate due to the low value of

thew0 weight. Thel2 andl∞ convergence rates for CSLAM-
M are 2.82 and 2.04, respectively, while they are 2.24 and
2.16 for HEL. It is noted that the convergence rate for HEL
increases significantly if a fixed Courant number is used in
such tests (not shown) because this implies that, as the time
step decreases, the weight per time unit on the parcels in-
creases relative to that on the underlying Eulerian-based fore-
cast. While the accuracy increases the shorter the time step in
HEL, the opposite is generally the case in semi-Lagrangian
models such as CSLAM because the number of remappings
increases when the time step is reduced.

The temporal growth of error in HEL and in CSLAM-M
are quite different: running over several revolutions the er-
ror norms continue to grow in CSLAM-M, although slowly,
while in HEL the error norms do not grow with time, as one
should also expect from the way HEL is designed.

4.2 Deformational flow tests

For the deformation flow tests we have used the two types
of analytic flow fields, the density shapes, and the validation
diagnostics suggested inLauritzen et al.(2012), and used in
a model intercomparison (Lauritzen et al., 2013). For the di-
agnostics this means that, in addition to thel2 and l∞ error
norms and related convergence rates used for the simple solid
body rotation tests above, we have calculated an additional
set of diagnostics, briefly described below.

The two analytical flow fields used have originally been
proposed byNair and Lauritzen(2010), and they include a
non-divergent as well as a divergent flow. In both cases the
Lagrangian parcels follow relatively complex trajectories,
and the flow is composed of a deformational deformation
component, which is different in the two cases, and an over-
laid translational flow. The translational part is designed to
perform exactly one rotation around the sphere (along equa-
tor) during the entire simulation. After a half complete pe-
riod of simulation the deformational flow component goes to
zero, and this part of the flow is then reversed so that the final
exact solution equals the initial condition. Half way through
the simulation, at the time when the deformational flow com-
ponent goes to zero and starts to reverse, the initial distribu-
tions are deformed into thin filaments, particularly for the
non-divergent flow.

Three initial, i.e.,t = 0, distributions consisting of two iso-
lated Gaussian hills, two slotted cylinders, and two cosine
hills are shown in Fig.6. Details for these distributions are
described inLauritzen et al.(2012).

As an example Fig.7 shows the result of simulations att =
T/2, i.e., the most deformed time, and att = T , i.e., the final
time, using the slotted cylinder initial condition and the non-
divergent deformation flow. The maximum Courant number
is 5.5, and the equatorial resolution 1.5◦ in these simulations.
At this resolution the final distribution at timet = T obtained
with HEL with mixing is considerably closer to the analytic
solution than CSLAM-M.
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Fig. 5. Test of convergence for linear advection on cubed sphere using error norms l2 (left) and l∞ (right). ncube refers to the number of
grid cells in each direction on each of the 6 faces of the cubed sphere, i.e., ncube = 24 corresponds to an equatorial angular grid distance of
2π/(4×24) = 0.065 radians.

Fig. 6. Initial (and final analytic) distributions for deformational test cases: Gaussian hills (upper left panel), slotted cylinders (upper right
panel), and cosine hills (lower panel).

Using the non-divergent flow, basic error norms l2 and
l∞ for CSLAM-M and HEL, and two maximum Courant
numbers (1.0 and 5.5), are listed in Tables 1, 2, and 3 for
each of the three initial distributions. In general one can
conclude that HEL is very accurate at low resolution for765

the more smooth distributions, i.e., the Gaussian and co-
sine hills, whereas CSLAM-M and HEL are comparable at
the high Courant number and at the two finest resolutions.
Another feature is that, as compared to CSLAM-M, HEL is
less sensitive to the maximum Courant number. This is be-770

cause HEL is influenced much less by the number of semi-
Lagrangian re-mappings needed to finalize each simulation
than CSLAM-M.

The convergence rates for each of the three initial distri-
butions and for the two Courant numbers are listed in Ta-775

ble 4. In general CSLAM-M converges faster than HEL at

high Courant number for the smooth distributions while the
difference is small for the rough slotted cylinder distribution
where the convergence rates in any case are low. The conver-
gence rates are comparable in the low Courant number cases.780

4.2.1 “Minimal” resolution

Numerical schemes may be constructed to converge fast –
at least for smooth distributions. However, as pointed out
by Lauritzen et al. (2012) increases in resolution are often
computationally expensive and therefore it is of interest to785

identify some kind of measure of absolute accuracy for a nu-
merical scheme. A diagnostic designed for this is the “mini-
mal” resolution needed to obtain a certain accuracy for a spe-
cific problem. Following the specifications in Lauritzen et al.
(2012) we have calculated the “minimal” resolution as the790

resolution required to obtain an l2 error norm for the cosine

Fig. 5. Test of convergence for linear advection on cubed sphere using error normsl2 (left) and l∞ (right). ncube refers to the number of
grid cells in each direction on each of the 6 faces of the cubed sphere; i.e., ncube= 24 corresponds to an equatorial angular grid distance of
2π/(4× 24)= 0.065 radians.

For illustrative purposes Fig.7 also includes the result of a
simulation without any parcel mixing, and where the param-
eterHk deliberately has been set to unity. In this case, as can
be seen, the distribution at timet = T/2 becomes unrealis-
tic since the initial distribution has been cut into small parts
(represented by the individual parcels). However, as expected
since time is reversed, the final distribution in this aliased
model setup is very close to the analytic solution. It is only
small errors in the parcel trajectories, and the fact thatw0 is
different from zero, that prevents the final field from being
equal to the analytical solution.

Using the non-divergent flow, basic error normsl2 and
l∞ for CSLAM-M and HEL, and two maximum Courant
numbers (1.0 and 5.5), are listed in Tables1, 2, and3 for
each of the three initial distributions. In general one can con-
clude that HEL is very accurate at low resolution for the
smoother distributions, i.e., the Gaussian and cosine hills,
whereas CSLAM-M and HEL are comparable at the high
Courant number and at the two finest resolutions. Another
feature is that, as compared to CSLAM-M, HEL is less sen-
sitive to the maximum Courant number. This is because HEL
is influenced much less by the number of semi-Lagrangian
remappings needed to finalize each simulation than CSLAM-
M.

The convergence rates for each of the three initial distri-
butions and for the two Courant numbers are listed in Ta-
ble 4. In general CSLAM-M converges faster than HEL at
high Courant number for the smooth distributions, while the
difference is small for the rough slotted cylinder distribution
where the convergence rates in any case are low. The conver-
gence rates are comparable in the low Courant number cases.

4.2.1 “Minimal” resolution

Numerical schemes may be constructed to converge fast –
at least for smooth distributions. However, as pointed out
by Lauritzen et al.(2012) increases in resolution are often

computationally expensive, and therefore it is of interest to
identify some kind of measure of absolute accuracy for a nu-
merical scheme. A diagnostic designed for this is the “min-
imal” resolution needed to obtain a certain accuracy for a
specific problem. Following the specifications inLauritzen
et al. (2012) we have calculated the minimal resolution as
the resolution required to obtain anl2 error norm for the co-
sine bell distribution that is less than 0.033. In the specifica-
tions (Lauritzen et al., 2012) the result should be obtained for
an unlimited scheme, i.e., no shape-preserving limiter should
be applied, e.g. on CSLAM, in this case. Minimal resolutions
for CSLAM and HEL are listed in Table5.

The minimal resolution for HEL is coarser than that for
CSLAM, particularly for a maximum Courant number of 1.
We therefore conclude that the effective resolution for HEL
is higher than for CSLAM.

The minimal resolution for HEL is controlled by the
strength of the mixing between parcels. If HEL is run without
any parcel mixing the minimal resolution goes to infinity in
the sense that the numerical solution becomes almost exactly
equal to the analytic solution at any resolution, of course de-
pending on the weightw0.

4.2.2 Filament diagnostics

The filament preservation diagnostic,lf , describes the trans-
port scheme’s ability to preserve thin filaments or gradients
in the concentrations.lf is defined as

lf =

{
100.0 ·

A(τ,t)
A(τ,t=0) , if A(τ, t = 0) 6= 0

0.0 ,else
, (34)

whereA(τ, t), the control volume, is a spherical area where
the concentration is equal to or larger than a given thresh-
old valueτ . The control volumes should, without overlap-
ping, span the entire domain. The test setup is the cosine
bells initial condition in non-divergent flow wherelf is cal-
culated att = T/2 for 19 values ofτ in the intervalτ =
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Fig. 5. Test of convergence for linear advection on cubed sphere using error norms l2 (left) and l∞ (right). ncube refers to the number of
grid cells in each direction on each of the 6 faces of the cubed sphere, i.e., ncube = 24 corresponds to an equatorial angular grid distance of
2π/(4×24) = 0.065 radians.

Fig. 6. Initial (and final analytic) distributions for deformational test cases: Gaussian hills (upper left panel), slotted cylinders (upper right
panel), and cosine hills (lower panel).

Using the non-divergent flow, basic error norms l2 and
l∞ for CSLAM-M and HEL, and two maximum Courant
numbers (1.0 and 5.5), are listed in Tables 1, 2, and 3 for
each of the three initial distributions. In general one can
conclude that HEL is very accurate at low resolution for765

the more smooth distributions, i.e., the Gaussian and co-
sine hills, whereas CSLAM-M and HEL are comparable at
the high Courant number and at the two finest resolutions.
Another feature is that, as compared to CSLAM-M, HEL is
less sensitive to the maximum Courant number. This is be-770

cause HEL is influenced much less by the number of semi-
Lagrangian re-mappings needed to finalize each simulation
than CSLAM-M.

The convergence rates for each of the three initial distri-
butions and for the two Courant numbers are listed in Ta-775

ble 4. In general CSLAM-M converges faster than HEL at

high Courant number for the smooth distributions while the
difference is small for the rough slotted cylinder distribution
where the convergence rates in any case are low. The conver-
gence rates are comparable in the low Courant number cases.780

4.2.1 “Minimal” resolution

Numerical schemes may be constructed to converge fast –
at least for smooth distributions. However, as pointed out
by Lauritzen et al. (2012) increases in resolution are often
computationally expensive and therefore it is of interest to785

identify some kind of measure of absolute accuracy for a nu-
merical scheme. A diagnostic designed for this is the “mini-
mal” resolution needed to obtain a certain accuracy for a spe-
cific problem. Following the specifications in Lauritzen et al.
(2012) we have calculated the “minimal” resolution as the790

resolution required to obtain an l2 error norm for the cosine

Fig. 6. Initial (and final analytic) distributions for deformational test cases: Gaussian hills (upper-left panel), slotted cylinders (upper-right
panel), and cosine hills (lower panel).Eigil Kaas: A hybrid Eulerian Lagrangian numerical scheme. 13

Fig. 7. Simulated distributions at times t= T/2 (left panels) and t= T (right panels), based on the slotted cylinder initial distribution.
From top to bottom the plots show results obtained with CSLAM-M, HEL and HEL without any parcel mixing, respectively, all run with
a maximum Courant number of 5.5 and an equatorial resolution of 1.5◦.

Table 1. Statistics for the Gaussian hill problem. The columns show maximum Courant number (C), Equatorial resolution in degrees (∆λ),
and the error norms l2 and l∞, respectively, for both CSLAM-M and HEL.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

1.0

3.000 2.422×10−1 3.434×10−1 4.593×10−2 6.934×10−2

1.500 7.606×10−2 1.576×10−1 1.397×10−2 3.284×10−2

0.750 1.376×10−2 5.475×10−2 4.499×10−3 1.431×10−2

0.375 2.592×10−3 1.850×10−2 1.661×10−3 6.989×10−3

5.5

3.000 9.953×10−2 1.415×10−1 6.837×10−2 1.021×10−1

1.500 1.990×10−2 5.084×10−2 1.889×10−2 2.814×10−2

0.750 3.112×10−3 1.767×10−2 5.474×10−3 1.570×10−2

0.375 5.371×10−4 5.978×10−3 1.825×10−3 6.990×10−3

bell distribution that is less than 0.033. In the specifications
(Lauritzen et al., 2012) the result should be obtained for an
unlimited scheme, i.e., no shape preserving limiter should be
applied, e.g. on CSLAM, in this case. “Minimal” resolutions795

for CSLAM and HEL are listed in Table 5.

The “minimal” resolution for HEL is coarser than that for
CSLAM, particularly for a maximum Courant number of 1.
We therefore conclude that the effective resolution for HEL
is higher than for CSLAM.800

The “minimal” resolution for HEL is controlled by the

strength of the mixing between parcels. If HEL is run with-
out any parcel mixing the “minimal” resolution goes to infin-
ity in the sense that the numerical solution becomes almost
exactly equal to the analytic solution at any resolution, of805

course depending on the weight w0.

4.2.2 Filament diagnostics

The filament preservation diagnostic, lf , describes the trans-
port scheme’s ability to preserve thin filaments or gradients

Fig. 7. Simulated distributions at timest = T/2 (left panels) andt = T (right panels), based on the slotted cylinder initial distribution.
From top to bottom the plots show results obtained with CSLAM-M, HEL and HEL without any parcel mixing, respectively, all run with a
maximum Courant number of 5.5 and an equatorial resolution of 1.5◦.
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Table 1.Statistics for the Gaussian hill problem. The columns show maximum Courant number (C), equatorial resolution in degrees (1λ),
and the error normsl2 andl∞, respectively, for both CSLAM-M and HEL.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

1.0

3.000 2.422× 10−1 3.434× 10−1 4.593× 10−2 6.934× 10−2

1.500 7.606× 10−2 1.576× 10−1 1.397× 10−2 3.284× 10−2

0.750 1.376× 10−2 5.475× 10−2 4.499× 10−3 1.431× 10−2

0.375 2.592× 10−3 1.850× 10−2 1.661× 10−3 6.989× 10−3

5.5

3.000 9.953× 10−2 1.415× 10−1 6.837× 10−2 1.021× 10−1

1.500 1.990× 10−2 5.084× 10−2 1.889× 10−2 2.814× 10−2

0.750 3.112× 10−3 1.767× 10−2 5.474× 10−3 1.570× 10−2

0.375 5.371× 10−4 5.978× 10−3 1.825× 10−3 6.990× 10−3

Table 2.As Table1 but for the slotted cylinder problem.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

1.0

3.000 4.678× 10−1 7.973× 10−1 2.561× 10−1 6.151× 10−1

1.500 3.400× 10−1 8.462× 10−1 1.739× 10−1 6.313× 10−1

0.750 2.438× 10−1 8.170× 10−1 1.215× 10−1 6.127× 10−1

0.375 1.786× 10−1 8.327× 10−1 8.658× 10−2 6.308× 10−1

5.5

3.000 3.775× 10−1 8.019× 10−1 2.698× 10−1 6.957× 10−1

1.500 2.580× 10−1 8.036× 10−1 1.729× 10−1 6.693× 10−1

0.750 1.884× 10−1 7.956× 10−1 1.198× 10−1 6.477× 10−1

0.375 1.422× 10−1 8.144× 10−1 8.504× 10−2 6.487× 10−1

(0.10, . . . ,0.95). The values oflf are expected to increase for
low values ofτ and decrease for high values ofτ due to nu-
merical diffusion. Atτ = 0.1 the value oflf should be 100,
since the area with the background concentration should not
be increased during the simulation.

The lf values for CSLAM-M and HEL are presented in
Fig. 8 for simulations with maximum Courant numbers 1
and 5.5. As expected CSLAM-M is more diffusive; i.e., it
maintains filaments less well, at maximum Courant num-
ber 1 as opposed to 5.5. This is because more remappings
are required at the lower Courant number. The HEL val-
ues are calculated for both Eulerian and parcel, i.e., La-
grangian, representations. It can be concluded from Fig.8
that at timet = T/2 of the simulation the Eulerian represen-
tation of HEL is generally more diffusive than CSLAM-M
for the high maximum Courant number although the high-
est functional values are maintained to a higher degree than
for CSLAM-M. This is because a relatively large weight,
w1, in Eq. (13) is given to the provisional first-order Eu-
lerian forecast,E ρ̃n+1, due to the highly inhomogeneously
spaced parcels at this time. The Eulerian HEL representation
does not change significantly with Courant number and is
generally better at preserving the maximum values than the
CSLAM-M. Therefore the low Courant number CSLAM-M

is more diffusive than the corresponding Eulerian HEL repre-
sentation. The Lagrangianlf values are generally much closer
to 100 than the corresponding CSLAM-M and Eulerian HEL
representations, and there is almost no dependency on the
Courant number. The last observation is completely as ex-
pected since the parcel mixing takes place at the same time
interval in the two cases. It is noted (not shown) that thelf
values are quite insensitive to the mixing frequency between
Lagrangian parcels. In a more general application, using non-
analytic trajectories, there could in theory be some spatial
overlapping between parcels. However, such overlaps cannot
be quantified due to deformation of the Lagrangian parcels
into filaments, and HEL does not include information about
their exact shape. The total area, however, is conserved.

It is important to note that without parcel mixing the La-
grangianlf values would all be exactly 100. As argued above,
introduction of mixing is fundamental in all Lagrangian
models in order to avoid long-term unphysical accumula-
tion of energy at the smallest resolved scales. The same ap-
plies to such Eulerian-based models (in principle, includ-
ing semi-Lagrangian models) where the inherent numeri-
cal mixing is “too weak” to properly represent non-linear
scale interactions and prevent spectral blocking for a given
model resolution. This is typically the case in e.g. spectral or
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Table 3. As Table1 but for the cosine hill problem.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

1.0

3.000 3.898× 10−1 5.268× 10−1 7.246× 10−2 9.585× 10−2

1.500 1.625× 10−1 2.903× 10−1 2.169× 10−2 3.025× 10−2

0.750 2.844× 10−2 9.827× 10−2 6.244× 10−3 1.119× 10−2

0.375 6.397× 10−3 3.319× 10−2 1.998× 10−3 5.437× 10−3

5.5

3.000 2.036× 10−1 2.684× 10−1 9.807× 10−2 1.502× 10−1

1.500 4.330× 10−2 8.907× 10−2 2.829× 10−2 4.533× 10−2

0.750 6.674× 10−3 3.063× 10−2 7.673× 10−3 1.336× 10−2

0.375 1.357× 10−3 1.047× 10−2 2.241× 10−3 5.579× 10−3

Table 4. l2 andl∞ convergence rates calculated from the error norms listed in Tables1, 2, and3. The second column gives the initial spatial
distribution with “GH” indicating Gaussian hill, “SL” slotted cylinder, and “CH” cosine hill, while the convergence rates are listed in columns
three through six.

Scheme Initial distr. l2, C = 1.0 l∞, C = 1.0 l2, C = 5.5 l∞, C = 5.5

CSLAM-M GH 2.21 1.42 2.53 1.52
HEL GH 1.60 1.11 1.75 1.24

CSLAM-M SL 0.46 0.01 0.47 0.01
HEL SL 0.52 0.01 0.55 0.04

CSLAM-M CH 1.68 1.14 2.44 1.56
HEL CH 1.77 1.55 1.82 1.60

Table 5. “Minimal” resolution required to obtain anl2 error norm
less than 0.033 for the cosine hill problem in the non-divergent de-
formation flow. The columns include scheme and Courant number.

Scheme C = 1.0 C = 5.5

CSLAM 0.8◦ 1.5◦

HEL 1.9◦ 1.6◦

pseudo-spectral models. So, although we know that explicit
mixing must be introduced in some undiffusive models for
purely physical reasons, we do not know exactly how much
mixing is required. I.e., the optimallf values are, unfortu-
nately, also unknown. The fundamental idea behind the par-
cel mixing applied here has been to base it on simple geomet-
ric considerations and thereby obtain a simple first principle
guess on the required amount of actual physical mixing.

4.2.3 Pre-existing functional relations and mixing

To evaluate the mixing properties discussed in Sect.1.2 the
statistics proposed inLauritzen and Thuburn(2012) andLau-
ritzen et al.(2012) have been calculated for initial conditions
consisting of two tracers: cosine bells – corresponding toχ in
Fig. 1 – and corresponding non-linearly related bells – corre-
sponding toξ . The flow is the same non-divergent deforma-
tion flow as above.

These mixing statistics includereal mixing, lr, range-
preserving unmixing, lu, andovershooting, lo. The more pre-
cise definitions oflr, lu, andlo are provided in AppendixB.

The error norm,lo, should always be zero, indicating that
the scheme in question is shape preserving. However, the
second norm,lu, which ideally should be zero as well, will
generally not be zero, unless the scheme is semi-linear and
monotone (Thuburn and McIntyre, 1997). This was one of
the motivational factors for the development of HEL. The
first norm,lr, should be a non-zero value, since real mixing
is always present; it should, however, as described in Sect.3,
not be artificial numerical mixing but physically based mix-
ing.

The mixing diagnostics for CSLAM-M and HEL are listed
in Table6. Mixing diagnostics are important indicators for
the influence of transport schemes on chemical reaction rates
and equilibria. Since chemistry calculations (not dealt with
here) are performed in Lagrangian space only the parcel val-
ues oflr, lu, andlo are listed for HEL. It can be seen from
Table6 that HEL behaves according to its construction: only
real mixing and no range-preserving unmixing or overshoot-
ing takes place. In CSLAM-M a weak range-preserving un-
mixing can be seen, and the general level of real mixing is
larger than for HEL, particularly at low resolution and low
Courant number.
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Fig. 8. Diagnostics for filament preservation, lf , for the two resolutions 1.5◦ (left) and 0.75◦ (right). The curves show the shape preserving
CSLAM-M (crosses), HEL in Eulerian grid (squares), and the HEL in Lagrangian space (circles). Each scheme is shown with a maximum
Courant number of 1.0 (dotted line) and 5.5 (solid line), respectively.

4.3 Deformational passive advection with divergence

Traditional l2 and l∞ error norms for the strongly divergent905

flow are presented in Table 7 for the cosine hill initial condi-
tion. In this case the two maximum Courant numbers tested
are 0.6 and 3.2, respectively, and it can be seen that HEL is
now considerably more accurate than CSLAM-M, particu-
larly for the small Courant number tested. As for the non-910

divergent case HEL is relatively insensitive to the Courant
number.

5 Implementation and tests in a shallow water dynami-
cal model

In this section we demonstrate a dynamical application of915

HEL namely as transport scheme also for the dynamical core
of an existing geophysical type model, namely a simple shal-
low water model in Cartesian geometry (Kaas, 2008). De-
spite the simple geometry applied in this model it does in-
clude the fundamental processes and thereby potential prob-920

lems in the shallow water framework.

5.1 Model setup

The governing differential equations are

du

dt
= fv−g ∂(h+hs)

∂x
(35)

dv

dt
=−fu−g ∂(h+hs)

∂y
(36)

dh

dt
=−h∇·V +Dh+Fh (37)

dhm
dt

=−hm∇·V +Cm+Sm+Dm, m= 1,...,M

(38)

where u, v are the flow speed components in the x–y plane, f
is the Coriolis parameter, g the gravitational acceleration, h

is the geopotential thickness of the flow, and hs the stationary
surface geopotential height (“topography”). hm is a quantity
we can think of as the contribution to geopotential height
from the m’th tracer. The mixing ratio for the m’th tracer
can be evaluated from

qm =hm/h, (39)

i.e., formally the volume density for this tracer is ρm =
ρhm/h, where ρ is the density of the “dry” fluid in the shal-
low water model. It has been assumed that

∑
hm�h since,925

otherwise, the expression in Eq. (39), which formally rep-
resents specific density would not approximate mixing ra-
tio. The term Fh represents a weak globally mass conserv-
ing Newtonian relaxation towards the initial “zonal” average
profile of h. Fh mimics the effect of diabatic processes. Fi-930

nally the C, D, and S terms represents possible chemistry,
diffusion/mixing, and possible source and sink terms (i.e.,
emissions, depositions, sedimentations), respectively.

Although u, v, and h do not depend on the hm values of
the tracers the model is formally set up as “online coupled”935

(see, e.g., Grell and Baklanov, 2011), i.e., all equations are
solved each time step.

The integration domain covers a domain defined by x ∈
[xmin,xmax] and y ∈ [ymin,ymax], with xmin = 0 km, xmax =
20000 km, ymin =−10000 km, and ymax = 10000 km. The
boundary conditions are periodic in both directions and with
enforced symmetry around the line y = 0 (“Equator”) for
the variables u, h, hs, Fh, and hm,m= 1,...,M , and anti-
symmetry around the same line for v. Also, the Coriolis pa-
rameter

f = 2Ωsin

(
π

y

ymax−ymin

)
is anti-symmetric around y= 0 (Ω is the angular velocity of
the Earth rotation).

As for the inert tracer applications tested above the strat-940

egy followed for applying HEL in the shallow water model is

Fig. 8. Diagnostics for filament preservation,lf , for the two resolutions 1.5◦ (left) and 0.75◦ (right). The curves show the shape-preserving
CSLAM-M (crosses), HEL in Eulerian grid (squares), and the HEL in Lagrangian space (circles). Each scheme is shown with a maximum
Courant number of 1.0 (dotted line) and 5.5 (solid line), respectively.

Table 6.Mixing diagnosticslr, lu, andlo for CSLAM-M and HEL
for two equatorial resolutions (1.5◦ and 0.75◦) and two maximum
Courant numbers (1 and 5.5). The columns show scheme, maximum
Courant number (C), equatorial resolution in degrees (1λ), and the
three error norms, respectively.

Scheme C 1λ lr lu lo

CSLAM-M 1.0 1.50 2.18× 10−3 2.73× 10−5 0.0
CSLAM-M 5.5 1.50 6.28× 10−4 6.73× 10−5 0.0
CSLAM-M 1.0 0.75 3.49× 10−4 1.25× 10−4 0.0
CSLAM-M 5.5 0.75 1.05× 10−4 2.57× 10−5 0.0

HEL 1.0 1.50 2.63× 10−4 0.0 0.0
HEL 5.5 1.50 2.63× 10−4 0.0 0.0
HEL 1.0 0.75 6.75× 10−5 0.0 0.0
HEL 5.5 0.75 6.75× 10−5 0.0 0.0

4.3 Deformational passive advection with divergence

Traditionall2 andl∞ error norms for the strongly divergent
flow are presented in Table7 for the cosine hill initial condi-
tion. In this case the two maximum Courant numbers tested
are 0.6 and 3.2, respectively, and it can be seen that HEL is
now considerably more accurate than CSLAM-M, particu-
larly for the small Courant number tested. As for the non-
divergent case HEL is relatively insensitive to the Courant
number.

5 Implementation and tests in a shallow water
dynamical model

In this section we demonstrate a dynamical application of
HEL namely as a transport scheme also for the dynamical
core of an existing geophysical type model, namely a sim-
ple shallow water model in Cartesian geometry (Kaas, 2008).

Despite the simple geometry applied in this model it does in-
clude the fundamental processes and thereby potential prob-
lems in the shallow water framework.

5.1 Model setup

The governing differential equations are

du

dt
= f v− g

∂(h+hs)

∂x
(35)

dv

dt
= −f u− g

∂(h+hs)

∂y
(36)

dh

dt
= −h∇ ·V +Dh+Fh (37)

dhm
dt

= −hm∇ ·V +Cm+ Sm+Dm, m= 1, . . . ,M, (38)

whereu, v are the flow speed components in thex–y plane,f
is the Coriolis parameter,g the gravitational acceleration,h
is the geopotential thickness of the flow, andhs the stationary
surface geopotential height (“topography”).hm is a quantity
we can think of as the contribution to geopotential height
from them’th tracer. The mixing ratio for them’th tracer can
be evaluated from

qm = hm/h, (39)

i.e., formally the volume density for this tracer isρm =

ρhm/h, whereρ is the density of the dry fluid in the shal-
low water model. It has been assumed that

∑
hm � h since,

otherwise, the expression in Eq. (39), which formally rep-
resents specific density, would not approximate mixing ra-
tio. The termFh represents a weak globally mass-conserving
Newtonian relaxation towards the initial “zonal” average pro-
file of h. Fh mimics the effect of diabatic processes. Finally
theC, D, andS terms represent possible chemistry, diffu-
sion/mixing, and possible source and sink terms (i.e., emis-
sions, depositions, sedimentations), respectively.
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Table 7. As Table1 but for the cosine hill problem in strongly divergent flow. Note that the maximum Courant numbersC in this case are
different from those of Table1.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

0.6
3.00 3.184× 10−1 4.400× 10−1 5.253× 10−2 7.607× 10−2

1.50 9.755× 10−2 2.048× 10−1 1.580× 10−2 2.638× 10−2

0.75 2.346× 10−2 7.629× 10−2 4.711× 10−3 1.034× 10−2

3.2
3.00 1.942× 10−1 3.034× 10−1 5.621× 10−2 8.342× 10−2

1.50 4.220× 10−2 1.132× 10−1 1.661× 10−2 2.578× 10−2

0.75 8.351× 10−3 3.965× 10−2 4.848× 10−3 1.293× 10−2

Althoughu, v, andh do not depend on thehm values of
the tracers, the model is formally set up as “online coupled”
(see, e.g.,Grell and Baklanov, 2011); i.e., all equations are
solved each time step.

The integration domain covers a domain defined byx ∈

[xmin,xmax] andy ∈ [ymin,ymax], with xmin = 0 km, xmax =

20000 km,ymin = −10000 km, andymax = 10000 km. The
boundary conditions are periodic in both directions and with
enforced symmetry around the liney = 0 (“Equator”) for
the variablesu, h, hs, Fh, andhm,m= 1, . . . ,M, and anti-
symmetry around the same line forv. Also, the Coriolis pa-
rameter

f = 2�sin

(
π

y

ymax− ymin

)
is anti-symmetric aroundy = 0 (� is the angular velocity of
the Earth rotation).

As for the inert tracer applications tested above the strat-
egy followed for applying HEL in the shallow water model
is to use parcel densities/geopotential thicknesses to mod-
ify an existing solution in Eulerian space. As the underly-
ing solution we have used a locally mass-conserving, semi-
Lagrangian transport scheme LMCSL (i.e., not the CSLAM
as above) with a semi-implicit treatment of the gravity–
inertial wave terms, in combination with an Arakawa C-grid
staggering; seeKaas(2008) for details.

In the present implementation we have only applied the
HEL technique on the mass fields (h and thehm’s) of the
model. The wind field forecast is based on the same third-
order semi-Lagrangian scheme as inKaas(2008).

As for the case of passive/inert advection the divergent
expansion/contraction factors,σ n+1/2, that are needed to in-
clude the effects of divergence in Lagrangian space are first
calculated in Eulerian space:

Eσ n+1/2
=

E h̃n+1

E,advhn+1
, (40)

whereE h̃ is the complete provisional Eulerian space forecast
including semi-implicit adjustments, andE,advh is the cor-
responding purely advective semi-Lagrangian forecast, i.e.,

also an Eulerian space forecast. The Eulerian space values
Eσ n+1/2 are now interpolated to each parcel location (see
Sect.2.4) at time leveln+ 1 and subsequently multiplied on
the parcel values ofLh andLhm, m= 1, . . . ,M. Mixing de-
pending on the flow deformation rate is then performed in
Lagrangian space as described in Sect.3

The final Eulerian space forecasts ofEh andEhm, m=

1, . . . ,M are obtained via exactly the same nudging proce-
dure as described above in Sect.2.6

For the inert and passive advection tests with prescribed
analytical velocities in Sect.4 the underlying Eulerian space
forecasts were all based on a first-order numerical scheme
providing good numerical efficiency. Here in our dynamical
model implementation we have found that it is necessary to
keep third-order accurate remappings in the semi-Lagrangian
scheme in order to obtain sufficiently accurate estimates of
pressure gradient terms and to ensure sufficiently accurate
coupling between the momentum equations (Eqs.35and36),
and the continuity equation (Eq.37).

Although we have used third-order remappings it could of
course still be possible to run with first-order remappings for
all the tracers,m= 1, . . . ,M, i.e., when solving Eq. (38). In
this way one can retain the same high multi-tracer efficiency
as in the transport tests in Sect.4. One may argue, though,
that this violates the mass–wind consistency property, i.e.,
the 7th of the desired properties listed in Sect.1. It is noted,
however, that since the bulk of the model memory in HEL is
kept in Lagrangian space, this is now only a theoretical prob-
lem: if an inert and passive tracerm is initialized ashm = h,
the Lagrangian space density of this variable will continue
to be exactly equal to that ofh; i.e., at any time stepn we
haveLhnm =

Lhn, independent of the order of accuracy of the
underlying Eulerian-space-based forecast ofEhm.

5.1.1 Estimation of trajectories

For the passive advection tests in Sect.4 all trajectories were
calculated from analytically defined velocity fields. In the
shallow water model, as well as in any update to a three-
dimensional model, it is necessary to estimate trajectories.
If the provisional forecast in the Eulerian representation is
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Fig. 9. Initial height field h (upper left) and surface topography (upper right) for the shallow water model. The lower panel shows an example
of an initial field of a single inert tracer. Only the “Northern Hemisphere” part of the fields are plotted.

Fig. 10. Results after 48 h of simulation based on the initial conditions and bottom topography in Fig. 9. Panels to the left show the surface
height field, while those to the right show the mixing ratio. The upper panels show the result obtained with the LMCSL scheme, while HEL
is shown below.

6 Discussion1120

A number of issues related to the introduction of the new
HEL scheme deserve some discussion provided in the fol-
lowing subsections.

6.1 Number of parcels

In the present applications of HEL the total number of parcels1125

is equal to the number of Eulerian grid cells. In principle one
could, however, easily increase the number of parcels, al-
though this has a computational cost, particularly due to in-
creased costs of mixing. A test (not shown) where the num-

ber of parcels in the shallow water model is four times that1130

of the number of Eulerian grid cells has been carried out,
and the results were very similar to those in the lower pan-
els of Fig. 10 and the middle panels of Fig. 11, although the
tracer mixing ratio fields in these additional simulations, as
expected, are slightly smoother.1135

6.2 Mixing

As noted previously, the mixing between Lagrangian parcels
introduced here is based on simple geometrical principles
minimizing the need for empirically based tuning. However,
it is of course possible to formulate such physically based1140

Fig. 9. Initial height fieldh (upper left) and surface topography (upper right) for the shallow water model. The lower panel shows an example
of an initial field of a single inert tracer. Only the “Northern Hemisphere” part of the fields are plotted.

obtained with a semi-Lagrangian model, as here, upstream
trajectories are needed; i.e., one has to identify all departure
points at timen1t for trajectories which at time(n+ 1)1t
end up in each Eulerian grid cell centroid. In HEL it is fur-
thermore required to calculate downstream arrival points at
time (n+ 1)1t for trajectories beginning at the irregularly
spaced locations for each Lagrangian parcel at timen1t .

For the upstream trajectories we use the approach de-
scribed inKaas(2008). This is a conventional iterative proce-
dure using two iterations. However, here we use third-order
accurate bi-cubic Lagrange interpolations of the upstream
velocities at time leveln as opposed to the first-order inter-
polations inKaas(2008). As explained inKaas(2008), in
order to ensure satisfactory behavior of the LMCSL scheme,
it necessary to include the effect of accelerations in the es-
timate of the trajectories. For the estimation of downstream
parcel trajectories an equivalent procedure has been followed
(see AppendixC for details).

5.1.2 Shallow water model results

The initial state of the shallow water model is chosen rather
arbitrarily as wavy structure in the geopotential surface
height field,h, shown in Fig.9, with the velocity field (not
shown) simply initialized to be in geostrophic balance with
this mass field. Figure9 also shows the bottom topography,
hs, consisting of a “sharp” isolated “mountain”, and an initial
field of mixing ratio for a single tracer field, which here sim-
ply is a step function in a background of zero mixing ratio.

The results obtained with HEL are compared to those ob-
tained with the third-order semi-implicit LMCSL scheme
(Kaas, 2008) without introduction of any shape-preserving

filters. It is noted (not shown) that one could just as well
have verified HEL against a traditional semi-implicit semi-
Lagrangian (SISL) time stepping scheme, since SI-LMCSL
and SISL turn out to produce almost identical forecasts. All
simulations presented below have been performed with a
horizontal resolution of 128× 128 points cells−1. The time
step was one hour, which gives a maximum Courant num-
ber slightly below one. The reader is informed that LMCSL
and HEL (both with and without parcel mixing) can be run
stably with maximum Courant numbers up to about 3, and
thereafter numerical mountain wave resonance (Rivest et al.,
1994; Lindberg and Alexeev, 2000) becomes visibly destabi-
lizing. No off-centering or other techniques to control moun-
tain wave resonance were introduced.

Figure10 shows the surface height field and the mixing
ratio field after 48 h of simulation for the initial conditions
plotted in Fig.9. It can be seen that the geopotential height
fields for each of the two forecasts are almost indistinguish-
able, although the HEL result is based on densities at the
locations of the irregularly spaced Lagrangian parcels. The
mixing ratio fields are also similar and it can be seen that
HEL via its design is shape preserving.

Corresponding height and mixing ratios after 20 days of
simulations are shown in Fig.11. It can be seen that HEL
and LMCSL continue to produce very similar results for the
height field despite the underlying non-linear model equa-
tions (non-linear chaotic error growth does not become vis-
ible until around day 30–40). The tracer mixing ratios are
also similar although the LMCSL field is smoother than that
obtained with HEL.

Geosci. Model Dev., 6, 2023–2047, 2013 www.geosci-model-dev.net/6/2023/2013/



E. Kaas et al.: A hybrid Eulerian–Lagrangian numerical scheme 2041

Fig. 10.Results after 48 h of simulation based on the initial conditions and bottom topography in Fig.9. Panels to the left show the surface
height field, while those to the right show the mixing ratio. The upper panels show the result obtained with the LMCSL scheme, while HEL
is shown below.

In the lower panel of Fig.11 we have also – for illus-
trative purposes – plotted the height and mixing ratio field
obtained in an additional HEL simulation where the parcel
mixing was switched off. The mixing ratio for the passive
inert tracer is now highly unrealistic, demonstrating the im-
portance of the mixing we have introduced. In this unmixed
version the initial step function type mixing ratio has been
“cut into bits and pieces” determined by the location of the
individual Lagrangian parcels. It is noted (not shown) that
the density of parcels is quite homogenous in the sense that
there are no larger regions without any parcels. Surprisingly,
the height field continues to be smooth and very similar to
that of LMCSL and of the parcel mixed version of HEL,
and the unmixed HEL continues to be numerically stable. We
suspect that dynamical adjustments between the velocity and
mass fields in the model tend to prevent development of local
small-scale “lows” and “highs”, which one could envisage
due to errors in parcel trajectory calculations. As an exam-
ple, the flow around a parcel with anomalously low density,
i.e., height, as compared to its nearest neighbors, tends to be
unbalanced in a way leading to development of local conver-
gence, which eventually increases the parcel density via the
σ factor (see Eq.40).

Admittedly, the shallow model we have used here is based
on a simplified cartesian geometry. It is planned to imple-
ment HEL in a shallow model in spherical geometry, and to
apply it for standard validation tests of shallow water model
dynamics. However, since we have here obtained almost in-
distinguishable results in the HEL version and the underlying
purely Eulerian-based model (left panels of Figs.10and 11),

it is likely that the result obtained in spherical geometry will
also be very similar to the underlying Eulerian-based scheme
– whatever that might be.

By introducing a passive tracer with initial density equal to
that ofh, i.e., the mixing ratio is equal to one, we have tested
to what extent the HEL is “wind–mass” consistent, and it has
been found that this is indeed the case since the density field
(not shown) continued to be almost completely identical to
that of h even in long simulations. It is noted that for this
test it was necessary to switch off the Newtonian coolingFh
since otherwise one field would have been forced while the
other was not.

5.2 Pre-existing functional relations in the
shallow water model

It was shown in Sect.4.2.3 that the mixing diagnosticslr,
lu, andl0 obtained with HEL in strongly deformational flow
were quite acceptable. We have performed a corresponding
calculation for transport in the shallow water flow using ex-
actly the same initial functional shapes as in Sect.4.2.3,
and in Fig.12 these are shown as time series for the non-
shape-preserving LMCSL scheme and for HEL. As expected
LMCSL produce non-zero values of both range-preserving
unmixing, lu, and of overshooting,l0. For the Lagrangian
representation in HELlu and l0 are both zero via construc-
tion, while the same is the case forl0 in the Eulerian HEL
representation. The level oflu in the latter is very small as
compared to that in LMCSL. The degree of real mixing,lr,
in LMCSL and in the Eulerian representation of HEL are
quite similar, whilelr in the Lagrangian HEL representation
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Fig. 11.As Fig.10but after 480 h of simulation. The lower panels show results in a HEL configuration without any parcel mixing.

is about half of that. The fact that the overall levels of real
mixing in HEL and LMCSL have the same order of magni-
tude indicates that the ways we have obtained the mixing and
Eulerian space smoothing in HEL are not completely unreal-
istic.

6 Discussion

A number of issues related to the introduction of the new
HEL scheme deserve some discussion provided in the fol-
lowing subsections.

6.1 Number of parcels

In the present applications of HEL the total number of parcels
is equal to the number of Eulerian grid cells. In principle
one could, however, easily increase the number of parcels,
although this has a computational cost, particularly due to in-
creased costs of mixing. A test (not shown) where the number
of parcels in the shallow water model is four times that of the
number of Eulerian grid cells has been carried out, and the re-
sults were very similar to those in the lower panels of Fig. 10

20 Eigil Kaas: A hybrid Eulerian Lagrangian numerical scheme.

Fig. 11. As Fig. 10 but after 480 h of simulation. The lower panels show results in a HEL-configuration without any parcel mixing.
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Fig. 12. Time series of mixing diagnostics lr, lu, and l0 obtained in
48 h simulations with the shallow water model using the LMCSL
and HEL schemes. For HEL both the Eulerian and the Lagrangian
representations are plotted. It is noted that in the Eulerian represen-
tation of HEL l0 = 0 (not shown), while in the Lagrangian repre-
sentation both lu = 0 and l0 = 0 (not shown).

mixing in other ways, which in practice can lead to a stronger
or weaker mixing between parcels.

One potentially controversial issue is the degree of direc-
tional bias of the mixing. As described in Sect. 3 our mixing
is biased so that it is dominated by mixing with neighbors1145

that are aligned along the asymptotic dilatation axis. This
approach is based on the geometrical principle illustrated in
Fig. 4: remapping of the parcels into regular squared shapes

filling the integration domain only requires mixing along the
asymptotic dilation axis. This remapping is needed to obtain1150

an un-aliased representation of the Lagrangian parcel densi-
ties – a problem that is quite different from that of molecu-
lar mixing, which is generally isotropic in nature. We have
tested the effect of performing the mixing with a fake di-
rectional bias, which is not along the assymptotic dilation1155

axis but instead along an axis perpendicular to it. The result
(not shown) is an excessive damping and considerably larger
error norms for all the inert passive transport tests reported
above. Our actual choice of κ= 10 was based on a compro-
mise: a much smaller value would be too isotropic and too1160

damping, and a a much larger value would result in too little
realised mixing, i.e. the parcel deformations Lδ would grow
to unrealistic values in strongly deformational flows.

The present paper do not investigate the influence of par-
cel mixing on the distribution of energy on different wave1165

numbers. This is the subject of ongoing research.

6.3 Local versus global nudging towards the target val-
ues

The fourth desirable property listed in Sect. 1.1 states that
a transport scheme should be transportive and local. While1170

this is fully achieved in the parcel (Lagrangian) representa-
tion of HEL the locality property is formally not fulfilled
in the Eulerian representation since the nudging we per-

Fig. 12.Time series of mixing diagnosticslr, lu, andl0 obtained in
48 h simulations with the shallow water model using the LMCSL
and HEL schemes. For HEL both the Eulerian and the Lagrangian
representations are plotted. It is noted that in the Eulerian represen-
tation of HEL l0 = 0 (not shown), while in the Lagrangian repre-
sentation bothlu = 0 andl0 = 0 (not shown).

and the middle panels of Fig. 11, although the tracer mixing
ratio fields in these additional simulations, as expected, are
slightly smoother.
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6.2 Mixing

As noted previously, the mixing between Lagrangian parcels
introduced here is based on simple geometrical principles
minimizing the need for empirically based tuning. However,
it is of course possible to formulate such physically based
mixing in other ways, which in practice can lead to a stronger
or weaker mixing between parcels.

One potentially controversial issue is the degree of direc-
tional bias of the mixing. As described in Sect.3 our mixing
is biased so that it is dominated by mixing with neighbors
that are aligned along the asymptotic dilatation axis. This
approach is based on the geometrical principle illustrated in
Fig. 4: remapping of the parcels into regular squared shapes
filling the integration domain only requires mixing along the
asymptotic dilation axis. This remapping is needed to obtain
an unaliased representation of the Lagrangian parcel densi-
ties – a problem that is quite different from that of molecu-
lar mixing, which is generally isotropic in nature. We have
tested the effect of performing the mixing with a fake direc-
tional bias, which is not along the asymptotic dilation axis
but instead along an axis perpendicular to it. The result (not
shown) is an excessive damping and considerably larger error
norms for all the inert passive transport tests reported above.
Our actual choice ofκ = 10 was based on a compromise: a
much smaller value would be too isotropic and too damping,
and a much larger value would result in too little realized
mixing; i.e., the parcel deformationsLδ would grow to unre-
alistic values in strongly deformational flows.

The present paper does not investigate the influence of par-
cel mixing on the distribution of energy on different wave
numbers. This is the subject of ongoing research.

6.3 Local versus global nudging towards the
target values

The fourth desirable property listed in Sect.1.1 states that
a transport scheme should be transportive and local. While
this is fully achieved in the parcel (Lagrangian) representa-
tion of HEL, the locality property is formally not fulfilled
in the Eulerian representation since the nudging we per-
form on the Eulerian-based forecast towards the target val-
ues is performed globally (see Sect.2.6). We have formu-
lated and tested a local nudging which only involves mass re-
organizations between neighboring cells. This locally mass-
conserving version of HEL performs satisfactorily with re-
sults (not shown) that are almost comparable or somewhat
degraded as compared to the standard HEL version. How-
ever, the local nudging is quite expensive from a numerical
point of view, and therefore this version has not been inves-
tigated further. In practice since the bulk memory in HEL is
in Lagrangian space, the standard version of HEL is highly
local, as can also be seen directly from all the plots pre-
sented above. In fact, since the limits within which local Eu-
lerian values can change due to the nudging are defined from
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form on the Eulerian based forecast towards the target val-
ues is performed globally (see Sect. 2.6). We have formu-1175

lated and tested a local nudging which only involves mass re-
organizations between neighboring cells. This locally mass
conserving version of HEL performs satisfactorily with re-
sults (not shown) that are almost comparable or somewhat
degraded as compared to the standard HEL version. How-1180

ever, the local nudging is quite expensive from a numerical
point of view, and therefore this version has not been inves-
tigated further. In practice since the bulk memory in HEL is
in Lagrangian space the standard version of HEL is highly
local as can also be seen directly from all the plots presented1185

above. In fact, since the limits within which local Eulerian
values can change due to the nudging are defined from lo-
cally defined values, the global nudging can be considered
a localized process.

6.4 Computational efficiency1190

The purpose of the present paper has been to describe HEL,
and to demonstrate its accuracy. A careful investigation of
the computational cost of HEL would require multiple tests
on a massively parallel computer system. Here we have
only performed single processor CPU tests using an Intel1195

Core2 Duo, E6550 @ 2.9 GHz processor, and the Intel For-
tran 13.0.0 compiler with flags: -ipo, -O3, -no-prec-div, -
static, and -xHost. The tests reveal that HEL is considerably
faster than CSLAM-M for the passive tracer test presented in
Sect. 4, particularly when many tracers ara considered. As an1200

example Fig. 13 shows the CPU timing required to perform
the non-divergent deformation test in Sect. 4.2 with an equa-
torial spatial resolution of 0.75◦, and a maximum Courant
number of 5.5. The number of passive inert tracers was var-
ied from 2 to 20 and it is seen that the multi-tracer efficiency1205

of of HEL is better than that of CSLAM-M.
A main reason for the faster performance of HEL is that

only first order accurate re-mappings are needed in the un-
derlying Eulerian forecast for passive transport, while in
CSLAM-M third order re-mapping have been used.1210

Although we have not performed parallel efficiency tests

the code has been prepared somewhat for parallelization. The
most important issue relates to the way individual parcels are
transferred from the memory of one CPU/node to another.
As usual in geophysical fluid dynamics each CPU is reserved1215

for a certain number of horizontal Eulerian grid cells includ-
ing a halo zone. Corresponding to this, the actual physical
location of each Lagrangian parcel determines in which part
of the memory it is stored. Since the number of parcels in
a given domain can vary significantly due to the divergence1220

of the flow, the actual memory allocation for Lagrangian par-
cel information required for each CPU must be somewhat
higher than that corresponding to the average parcel density.

Although our first tests suggest that HEL is computation-
ally efficient, particularly for multiple tracers, there is an1225

important memory penalty. Considering, e.g., two dimen-
sional passive transport using a traditional Eulerian based
scheme withK Eulerian grid cells/points, and withM differ-
ent tracers the total number of prognostic variables isK×M .
For HEL, however, the corresponding number is typically1230

K×(M+M+6) where “6” reflects the additional variables
of parcel deformation (Lδ), parcel volume (LV ), components
of the parcel position vector (Lx and Ly) and the position
components of the auxiliary parcel (Lxa and Lya), respec-
tively.1235

6.5 Application in a three dimensional model

Arguably the most important issue is how the HEL scheme is
extended for use in three-dimensional applications. At least
two fundamentally different options may be investigated:

– using a Lagrangian or quasi-Lagrangian vertical coordi-1240

nate as in Sørensen et al. (2013) each Lagrangian parcel
could stay within the same layer and have an instanta-
neous vertical extension equal to that of the layer. The
vertical extension of Lagrangian parcels may in fact be
used as an additional prognostic variable and used to de-1245

termine the layer thickness just as it was demonstrated
with the shallow water model in Sect. 5 (a one layer
model).

– letting parcels float freely between the Eulerian vertical
levels as in e.g. ATTILA (Stenke et al., 2008, 2009).1250

For a fully dynamic model implementation instaneous
parcel densities and temperatures may be used to mod-
ify or nudge the parcel vertical positions so that they
are more consistent with the vertical structure of the lo-
cal atmosphere as represented in the Eulerian grid. It1255

is speculated that such nudging may be used as tool to
stabilize the model with regard to fast gravity and sound
waves.

In a three dimensional application the mixing between
parcels must be re-considered, and presumably it is necessary1260

to separate horizontal and vertical mixing since they repre-
sent quite different processes in stratified fluids.

Fig. 13.CPU timing on a single processor.

locally defined values, the global nudging can be considered
a localized process.

6.4 Computational efficiency

The purpose of the present paper has been to describe HEL,
and to demonstrate its accuracy. A careful investigation of
the computational cost of HEL would require multiple tests
on a massively parallel computer system. Here we have
only performed single processor CPU tests using an Intel
Core2 Duo, E6550 @ 2.9 GHz processor, and the Intel For-
tran 13.0.0 compiler with flags -ipo, -O3, -no-prec-div, -
static, and -xHost. The tests reveal that HEL is considerably
faster than CSLAM-M for the passive tracer test presented in
Sect.4, particularly when many tracers ara considered. As an
example, Fig.13 shows the CPU timing required to perform
the non-divergent deformation test in Sect.4.2with an equa-
torial spatial resolution of 0.75◦, and a maximum Courant
number of 5.5. The number of passive inert tracers was var-
ied from 2 to 20, and it is seen that the multi-tracer efficiency
of HEL is better than that of CSLAM-M.

A main reason for the faster performance of HEL is that
only first-order accurate remappings are needed in the un-
derlying Eulerian forecast for passive transport, while in
CSLAM-M third-order remapping have been used.

Although we have not performed parallel efficiency tests,
the code has been prepared somewhat for parallelization. The
most important issue relates to the way individual parcels are
transferred from the memory of one CPU/node to another. As
usual in geophysical fluid dynamics each CPU is reserved for
a certain number of horizontal Eulerian grid cells including
a halo zone. Corresponding to this, the actual physical lo-
cation of each Lagrangian parcel determines in which part
of the memory it is stored. Since the number of parcels in a
given domain can vary significantly due to the divergence of
the flow, the actual memory allocation for Lagrangian parcel
information required for each CPU must be somewhat higher
than that corresponding to the average parcel density.

Although our first tests suggest that HEL is computation-
ally efficient, particularly for multiple tracers, there is an im-
portant memory penalty. Considering, e.g., two-dimensional
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passive transport using a traditional Eulerian-based scheme
with K Eulerian grid cells/points, and withM different
tracers, the total number of prognostic variables isK ×M.
For HEL, however, the corresponding number is typically
K×(M+M+6), where “6” reflects the additional variables
of parcel deformation (Lδ), parcel volume (LV ), components
of the parcel position vector (Lx andLy) and the position
components of the auxiliary parcel (Lxa andLya).

6.5 Application in a three-dimensional model

Arguably the most important issue is how the HEL scheme is
extended for use in three-dimensional applications. At least
two fundamentally different options may be investigated:

– using a Lagrangian or quasi-Lagrangian vertical coor-
dinate as inSørensen et al.(2013) each Lagrangian
parcel could stay within the same layer and have an in-
stantaneous vertical extension equal to that of the layer.
The vertical extension of Lagrangian parcels may in
fact be used as an additional prognostic variable and
used to determine the layer thickness just as it was
demonstrated with the shallow water model in Sect.5
(a one layer model).

– letting parcels float freely between the Eulerian ver-
tical levels as in e.g. ATTILA (Stenke et al., 2008,
2009). For a fully dynamic model implementation in-
stantaneous parcel densities and temperatures may be
used to modify or nudge the parcel vertical positions so
that they are more consistent with the vertical structure
of the local atmosphere as represented in the Eulerian
grid. It is speculated that such nudging may be used as
tool to stabilize the model with regard to fast gravity
and sound waves.

In a three-dimensional application the mixing between
parcels must be reconsidered, and presumably it is necessary
to separate horizontal and vertical mixing since they repre-
sent quite different processes in stratified fluids.

6.6 Prognostic variables in a dynamic model

In the dynamic tests in Sect.5 the HEL scheme was only
used for transport of the mass field. In a future application
in a baroclinic model in spherical geometry one may obvi-
ously use HEL as a transport scheme for other quantities and
invariants such as momentum, total energy, and potential vor-
ticity.

6.7 Using HEL in an atmospheric chemical transport
model

HEL should be suited quite well as a numerical fundament
for an atmospheric chemical transport model, and has in fact
been designed with this goal in mind. Since the mixing we
have introduced between neighboring parcels is purely real,

it is logical to perform chemical calculations in the parcel
space. In an accompanying paper (Hansen et al., 2012) it
is described and demonstrated how HEL performs when it
is used as the underlying numerical scheme in a simple so-
called online atmospheric chemistry transport model.

7 Conclusions

The original motivation for developing HEL was to set up a
numerical method for use in fluid dynamics that fulfills all
the 11 desirable properties listed in Sect.1.1.

The passive transport tests described in Sect.4, the test-
ing in the dynamical model (Sect.5), and the efficiency in-
vestigations in Sect.6.4 clearly show that HEL fulfils all 11
properties, and that it is very multi-tracer efficient. At high
Courant numbers, the convergence rates of HEL are lower
than those of CSLAM-M, with which it has been compared.
However, the absolute level of accuracy in HEL is very high.

A fundamental component of HEL is a directionally biased
mixing between neighboring cells, which is proportional to
the deformation rate of the flow. This mixing has been formu-
lated in such a way that the 11th property (avoidance of spu-
rious numerical mixing/unmixing) continues to be fulfilled
in the Lagrangian representation of HEL. Thus HEL should
be ideal as the underlying scheme for chemical transport in
the atmosphere particularly if chemistry calculations are per-
formed in Lagrangian space.

Appendix A

List of prognostic variables

The set of prognostic variables for solving the two-
dimensional transport/continuity problem (passive transport)
in HEL includes

Eρ Density of dry air in Eulerian space
Eρm, m= 1, . . . ,M Density of tracers in Eulerian space
Lρ Density of dry air in Lagrangian parcels
Lρm, m= 1, . . . ,M Density of tracers in Lagrangian parcels
Lx x coordinate of parcel position vectors
Ly y coordinate of parcel position vectors
Lxa x coordinate of auxiliary parcels
Lya y coordinate of auxiliary parcels
LV Area/volume of the Lagrangian parcels
Lδ Deformation of Lagrangian parcels (A1)

Each variable is represented byK Eulerian cells orP La-
grangian parcels. Note that for passive transport it has here
been assumed that velocity components are known (non-
prognostic) variables.
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Fig. B1. Illustration of the distance measure dk (arrows). The
filled circles are relative concentrations, (ξk,χk), generated by
the transport scheme and the unfilled circles are the closest
point, (χroot

k ,ψ(χroot
k )), on the pre-existing functional relation curve

(adopted from Lauritzen and Thuburn, 2012).

C1 and C2, so that the new parcel position vector, rn+1
p ,

becomes

rn+1
p = rnp +C1 +C2. (C1)

The C1 segment is based on velocities at time level n, and it
approximates the forward trajectory from the departure point
rnp to the trajectory midpoint r

n+1/2
p :

C1≈
(

∆t

2

)
V n
p +

1

2

(
∆t

2

)2

Anp (C2)

where V n
p is the velocity interpolated to the parcel location

rnp at time level n, and the last term on the right hand side
represents the trajectory contribution due to the acceleration
An
p also at the time space location rnp , assuming a stationary

velocity field in the time period from n∆t to (n+ 1/2)∆t.
I.e.,

Anp = (V ·∇V )
n
p , (C3)

which is estimated via centered differences and subsequent1315

interpolation to rnp .
The second trajectory segment, C2, is based on provi-

sional velocities extrapolated linearly in time from time level
n−1 and n to time level n+1:

Ṽ
n+1

= 2V n−V n−1, (C4)

where ( ˜ )n+1 indicates a quantity that has been obtained via
temporal extrapolation. C2 approximates the forward trajec-
tory from the midpoint r

n+1/2
p to the arrival parcel location

rn+1
p , however, obtained as minus the backward trajectory

from the arrival location:

C2≈−
((
−∆t

2

)
Ṽ
n+1

p +
1

2

(
−∆t

2

)2

Ã
n+1

p

)
, (C5)

where the notation ( )n+1
p indicate terms that have been in-

terpolated to the, initially unknown, location rn+1
p .

An iterative procedure, including two iterations, is used to
obtain the final estimate of rn+1

p . However, since rn+1
p is un-1320

known initially a pre-iteration is performed to obtain a first
guess of rn+1

p . In the pre-iteration C2 is zero and C1 is ob-
tained as in Eq. (C2) but with ∆t/2 replaced by ∆t.

All spatial interpolations involved in the estimation of the
trajectories are third order Lagrange polynomial interpola-1325

tions.
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Appendix B

Mixing diagnostics

Real mixing

lr =
1

A

K∑
k=1

{
dk1Ak , if (χk,ξk) ∈A
0 ,else

(B1)

Range-preserving unmixing

lu =
1

A

K∑
k=1

{
dk1Ak , if (χk,ξk) ∈ B
0 ,else

(B2)

Overshooting

lo =
1

A

K∑
k=1

{
dk1Ak , if (χk,ξk) /∈ (A∪B)
0 ,else

, (B3)

whereA=
∑K
k=11Ak is the total area anddk is the shortest

distance between the point(χk,ξk) and the functional rela-
tions curve(χ,ψ(χ)) (see Fig.B1).A is the area that is de-
fined by the convex hull;B is the area outsideA, but within
the range of the initial data (see Fig.1).

Appendix C

Parcel trajectories

For the estimation of downstream parcel trajectories a pro-
cedure equivalent to that inKaas(2008) has been followed.

This means that each parcel trajectory is split into two seg-
ments,C1 and C2, so that the new parcel position vector,
rn+1
p , becomes

rn+1
p = rnp + C1 + C2. (C1)

The C1 segment is based on velocities at time leveln,
and it approximates the forward trajectory from the depar-
ture pointrnp to the trajectory midpointrn+1/2

p :

C1 ≈

(
1t

2

)
V n
p +

1

2

(
1t

2

)2

Anp, (C2)

whereV n
p is the velocity interpolated to the parcel location

rnp at time leveln, and the last term on the right-hand side
represents the trajectory contribution due to the acceleration
Anp also at the time–space locationrnp, assuming a stationary
velocity field in the time period fromn1t to (n+ 1/2)1t .
I.e.,

Anp = (V · ∇V )np , (C3)

which is estimated via centered differences and subsequent
interpolation tornp.

The second trajectory segment,C2, is based on provisional
velocities extrapolated linearly in time from time leveln− 1
andn to time leveln+ 1:

Ṽ n+1
= 2V n

− V n−1, (C4)

where( ˜ )n+1 indicates a quantity that has been obtained via
temporal extrapolation.C2 approximates the forward trajec-
tory from the midpointrn+1/2

p to the arrival parcel location
rn+1
p ; however, it is obtained as minus thebackwardtrajec-

tory from the arrival location:

C2 ≈ −

((
−
1t

2

)
Ṽ
n+1
p +

1

2

(
−
1t

2

)2

Ã
n+1
p

)
, (C5)

where the notation( )n+1
p indicate terms that have been in-

terpolated to the, initially unknown, locationrn+1
p .

An iterative procedure, including two iterations, is used to
obtain the final estimate ofrn+1

p . However, sincern+1
p is un-

known initially a pre-iteration is performed to obtain a first
guess ofrn+1

p . In the pre-iterationC2 is zero andC1 is ob-
tained as in Eq. (C2) but with1t/2 replaced by1t .

All spatial interpolations involved in the estimation of the
trajectories are third-order Lagrange polynomial interpola-
tions.
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