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Abstract. A new hybrid Eulerian—Lagrangian numerical 1 Introduction
scheme (HEL) for solving prognostic equations in fluid dy-
namics is proposed. The basic idea is to use an Eulerian djumerical chemical weather forecast systems and Earth sys-
well as a fully Lagrangian representation of all prognostic tem models include components describing the chemistry, in-
variables. cluding aerosols, and the interaction of these with cloud and
The time step in Lagrangian space is obtained as a transldadiation processes (e.darell et al, 2005 Pozzoli et al.
tion of irregularly spaced Lagrangian parcels along down-2008. The introduction of many more prognostic variables,
stream trajectories. Tendencies due to other physical prosometimes several hundred, representing the concentrations
cesses than advection are calculated in Eulerian space, if®f the individual chemical species, poses some severe chal-
terpolated, and added to the Lagrangian parcel values. A dilenges regarding computational methodologies.
rectionally biased mixing amongst neighboring Lagrangian . .
parcels is introduced. The rate of mixing is proportional to 1-1 ~ Desirable properties
the local deformation rate of the flow.
The time stepping in Eulerian representation is achieve

. o . . .'solving the continuity and other prognostic equations have
in two steps: first a mass-conserving Eulerian or semi-

Lagrangian scheme is used to obtain a provisional forecastbeen identified (e.g.Rasch and Williamsqn199Q Schar
This forecast is then nudged towards target values define nd Smolarkiewicz1996 Lin and Rood 1996 Jockel et al.

X ; 0032, Lauritzen et al.2011). These deal with

from the irregularly spaced Lagrangian parcel values. The
nudging procedure is defined in such a way that mass conser- 1. Accuracy
vation and shape preservation is ensured in Eulerian space.

The HEL scheme has been designed to be accurate, multi- 2. Stability
tracer efficient, mass conserving, and shape preserving. In
Lagrangian space only physically based mixing takes place;
i.e., the problem of artificial numerical mixing is avoided.
This property is desirable in atmospheric chemical transport 4. Transportivity and locality (the solution should follow
models since spurious numerical mixing can impact chemi- characteristics)
cal concentrations severely.

The properties of HEL are here verified in two- 5. Shape preservation (positive definite and non-
dimensional tests. These include deformational passive trans-  0scillatory)
port on the sphere, and simulations with a semi-implicit shal-
low water model including topography.

dA number of desirable properties for numerical schemes

3. Computational efficiency (i.e., accuracy for a given
computational resource)

6. Conservation of invariant quantities such as mass
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7. Consistency between wind and mass fields (minimize

R . 'shooti
the so-called mass—wind inconsistency problem) P e . .
max h \
L .. . . ! range preserving unmixing .
8. Compatibility (mixing ratios should be bound by their ' '

upstream values) : Lo

X [

: s

9. Preservation of constant mixing ratios in deforma- § 5 '3

tional flows ' : U%q'
10. Preservation of linear correlations between con- | _ . . '
st|tuents ! range preserving unmixing :
£7n,1',n r e :

For a brief discussion of these ddachenhauer et al2008. — L
While several of the above-listed desired properties are of Xmin X Xmaz

particular relevance in atmospheric chemical transport mOd'Fig. 1. lllustration of numerical mixing categories. The thick curve

els,.most are also hlghly' deswable/pecessary when it comeg e pre-existing functional relation between tragesind tracer

to simulation of geophysical dynamics, not least those com-,  any new relative concentrationi&;, x), generated by the trans-

ponents involving water vapor, liquid water droplets and ice port scheme, can be represented as a point. If the point falls within

crystals in the atmosphere, or e.g. salinity in the ocean. the shaded convex hull, it is classified as real mixing; if within the
There is, however, one additional property, not listed abovedashed rectangle but outside the shaded area it is classified as range-

and less discussed in the literature, which is particularly im-preserving unmixing; and, finally, if outside the dashed rectangle it

portant for chemistry and chemistry—climate applications: IS classified as overshooting (adopted frbauritzen and Thubutn
2012,

11. Avoidance of spurious numerical mixing/unmixing

(Lauritzen and Thuburr2012). ) ] )
the case where the tracers are chemically active, this can po-

1.2 Mixing and unmixing in Eulerian-based models tentially be a serious problem as spurious chemical reactions
are then initiated, or chemical equilibria are displaced.
The 11th property above refers to the ability of a scheme Note that apart from the initial truncation numerical meth-
to preserve pre-existing functional relations between tracersods based on orthogonal series expansion functions are the
Mixing or unmixing can be divided into three categories (seeonly Eulerian type numerical schemes which do not intro-
Fig. 1), real mixing range-preserving unmixingandover-  duce numerical mixing in the case of non-deformational
shooting flow. However, generally filters must be introduced in such
In their native forms, most transport schemes operating orechemes to prevent e.g. development of negative values,
a fixed Eulerian grid (including semi-Lagrangian schemes)and this introduces numerical mixing also in regions of
will lead to numerical mixing between tracers which, de- (quasi-)linear flow.
pending on the scheme, can fall into any of the three cate- In the more realistic case dapatially varyingflow La-
gories. We will term this implicit mixing. grangian parcels will deform into thinner and thinner fila-
Obviously, range-preserving unmixing and overshootingments, which in nature are finally mixed via molecular mix-
are unphysical processes, but even real mixing can be sang. An important question is to what extent explicit nu-
At a macro spatial scale corresponding to the grid distancamerical diffusion/mixing is required as a supplement to that
in a fluid dynamical model, mixing in nature can be molecu- implied by the native version of some numerical scheme
lar, or a result of turbulence, i.e., deformations of the flow. Inin order to mimic the cascade into small scales correctly.
geophysical fluid dynamics (GFD) and for typical grid reso- For typical grid point/cell-based methods, including semi-
lutions the former is several orders of magnitude smaller tharLagrangian schemes, some inherent numerical mixing is al-
the latter, and, thus, molecular mixing/diffusion is neglectedmost unavoidable, and this may be sufficient to control the
in the governing model equations. To the extent diffusion iscascade in a statistical sense. In Galerkin methods — e.g. the
parameterized explicitly in GFD models it is therefore sup- classical spectral methodlachenhauerl979 — the grad-
posed to represent the mixing associated with unresolved dasal development of non-resolved filaments and structures
formations in the flow. Imon-deformationaflow no mixing is controlled by demanding the residual to be orthogonal
should take place and any functional relation between tracerto the resolved expansion functions (see &lgchenhauer
should therefore remain unchanged for inert tracers; i.e., alll979 or Durran 2010. This gives rise to an implied mix-
points in a diagram like that in Fid. will keep their initial ing, which, depending on the chosen expansion functions,
positions. Unfortunately, this is not the case for most tradi-is generally non-local in physical space. Explicit horizontal
tional transport schemes, and therefore they are subject tdiffusion is required for most Galerkin schemes in order to
spurious mixing, even if it belongs to the “real” category. In prevent so-called “spectral blockingk@achenhauegrl979,
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i.e., spurious accumulation of energy on the shortest resolvedxplicit mixing between neighboring parcels would repre-
scales. The situation is different in pseudo-spectral modelsent the discrete Lagrangian analogy to the pseudo-spectral
where considerably stronger scale selective damping is neanethod. The aliasing of such a Lagrangian scheme is realized
essary to avoid aliasing. when one interpolates from Lagrangian to physical space,
In conclusion explicit mixing, in terms of filters, diffusion, i.e., to a fixed Eulerian grid. To avoid such aliasing one can
spectral damping, etc., is needed in both grid point/cell meth-introduce mixing between parcels. One may think of the dif-
ods and methods based on series expansion in order to ensuerence between a mixed and unmixed Lagrangian scheme
shape preservation, and in particular positive definitenessas an analogy to the difference between spectral and pseudo-
and to control the cascade into smaller scales in a realistispectral schemes.
way. In general the combined implicit and explicit mixing  In the native form of HEL without parcel mixing the den-
will not represent true physical mixing although it may be sity and, optionally, other prognostic variables are known at

real in the sense described in Fig. all times via a fully Lagrangian as well as a traditional Eu-
lerian representation. At each time step a nudging technique
1.3 The HEL approach is applied where the density information in the downstream

) translated Lagrangian parcels is used to modify or “repair”
Here we present a numerical methodology, termed the hyzn Eylerian-based advection. In this way the non-dispersive,
brid Eulerian-Lagrangian (HEL) numerical scheme, which non-giffusive, and shape-preserving advantages of the La-
has been designed to fulfill as many as possible of the deSiregrangian method can be adopted in an otherwise diffusive
properties mentioned in Sedt.1 The aim is to combine the  and/or strongly dispersive Eulerian-based transport scheme.
Eulerian and the Lagrangian approaches in such a way thabpysical tendency contributions not related to pure advec-
the main problems related to either of these are eliminated ofign are most obviously and accurately calculated in Eule-
atleast reduced. The ideas behind HEL have been inspired bygp, space and subsequently interpolated and added to the
other Lagrangian approaches, in particular that of ATTILA | 3grangian parcel values. In this way the bulk of the model
(Atmospheric Tracer Transport In a Lagrangian Atmospherichistory is kept in the Lagrangian representation.

model) Reithmeier and SauseB002 Stenke et a).2008 With this generic design one is, however, still left with the
2009, which uses a fully Lagrangian scheme for all tracers, problem of aliasing in Lagrangian space. To reduce or elimi-
including water substances. nate aliasing a real mixing, described in detail below, is intro-

Contrary to the problems mentioned in the previous gyced in Lagrangian space between neighboring parcels. To
subsection for Eulerian-based schemisdly Lagrangian  mimic the physical nature of the cascade into smaller scales,
schemes are formally exact for the pure advection problemye |et the degree of mixing depend on the local flow defor-
assuming trajectories have been calculated exactly. Howevemation rate. Not surprisingly, the introduction of such mix-
with such schemes, and in general deformational flows, thgng turns out to be instrumental for a proper description of the
Lagrangian parcels become irregularly distributed in spaceypectral distribution of prognostic variables; however, this is-
and strongly deformed. The irregular distribution is a funda-ge is not covered in the present paper.
mental problem for the following reasons: Although we are not dealing with chemistry here, it is
noted that calculations of chemical reactions are naturally

1. Dynamical tendencies due to non-advective processes . . o
. : performed in the Lagrangian parcels where it is known that

generally need to be estimated on a regular grid to en- .
. . . only real mixing takes place.

sure consistency with and between the governing prog-

nostic equations. 1.4 Other relevant Lagrangian type numerical schemes

2. In practice, itis problematic to calculate parameterized

physical processes on an irregular grid. HEL has some similarities to particle in cell (PIC) meth-

ods, which have been used extensively in e.g. plasma physics
3. There may be sub-domains with no or very few (Tskhakaya et al2007). However, one among several fun-
parcels. damental differences is that in PIC methods the number
of Lagrangian parcels far exceeds that of Eulerian grid
The result of an interpolation from mass centers of La-points/cells, while in HEL these numbers are equal or at least
grangian parcels to a regular Eulerian grid will typically, af- close to the same order of magnitude. The choice of relatively
ter some time, show a completely unrealistic “spotty” dis- few Lagrangian parcels in HEL was motivated by efficiency
tribution because neighboring parcels originate from quiteconsiderations since computationally expensive chemical re-
different positions at the initial time of the integration (see actions (not dealt with here) involving up to several hundred
e.g. lower right panel of Figll). In nature, finite size La- chemical tracers should be performed in Lagrangian space.
grangian parcels typically deform into very long, very thin  As indicated above the transport and mixing in the HEL
filaments. A Lagrangian transport scheme aiming at resolvsscheme is similar to other Lagrangian parcel methods. In
ing the developing shape of individual parcels without any Reithmeier and Saus€B002, and later improved ilstenke
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et al. (2008, ATTILA was implemented in a general circu- as in HEL, between neighboring Lagrangian parcels. There-
lation model to simulate transport of water vapor and cloudfore, in long-term simulations, one should expect problems
water. This was extended 8tenke et al(2009 to an interac-  equivalent to aliasing.

tively coupled chemistry—climate model version of ATTILA,

i.e., water vapor, cloud water, and mixing ratios of all chemi- 1.5 Overview

cal tracers are known for each Lagrangian parcel. ATTILA is . ) _ . )
able to maintain steep gradients, is mass conserving, numer-N€ Paper is organized as follows: Sezprovides a generic

ically non-diffusive, and has been used e.g. for studying thedescription of the HEL approach, i.e., HEL without any type
climate radiative forcing related to aircraft contraifrgm-  ©f mixing between parcels, while Segtdescribes how mix-
ming et al, 2017). ATTILA does not handle the “dry dynam- N9 between adjacent parcels is achieved. Sectipresents

ics” as opposed to HEL; however, besides this the HEL and?@SSive inert transport tests on the sphere. Various tradltlonal
ATTILA approaches are quite similar when applied for non- and_ more recently proposed error measures and evaluation
dry-dynamical prognostic variables. One difference, though Statistics are used to demonstrate the performance of HEL
is that ATTILA on average holds more Lagrangian parcelsn POth solid body rotation flow (Secd.1) and in strongly

per Eulerian grid cell than the version of HEL presented deformational flow (Sectsl.2and4.3). Section5 deals with
here, which on average only has one. More importantly, there®®Me initial attempts to implement HEL as the basis for a dy-
are some differences in the way horizontal mixing betweenn@mical core in a geophysical fluid dynamics model. In this
neighboring parcels is performed in ATTILA and HEL. For ¢@se€ the test bed is a shallow water model in plane geome-
both schemes the degree of mixing depends on the horizorl?y- Finally Sects6 and7 discuss the results, including some
tal shear deformation rate of the flow: however, in ATTILA outlooks for future work, and summarize the basic findings.
this is a simple analytical expression basedsomagorinsky
(1963, whereas in HEL the deformation of each parcel is ,
kept as an additional prognostic variable, which is increased

each time step in proportion to the shear deformation ratefo introduce the procedure followed in HEL in more detail
and attempted to be reduced via realized mixing with neigh-we first consider the continuity equations for a sedbfrac-

boring parcels. ers with densitiew,,,:
The approaches in the CLaMS mod&lgKenna et al.
2002 are less similar than ATTILA to those applied in HEL. %
The mixing in CLaMS is based on a dynamically adap- 9t
tive grid and it becomes active in terms of mass exchange . . .
between neighboring parcels when the flow deformation is™" alternatively in Lagrangian form,
high. A local, in time and space, Lyapunov exponent is usedd n p,,,
to determine the degree of mixing that takes place, which™ g, = -V.V, m=1..M, @)
in practice takes place via generation of new Lagrangian
parcels in strongly deformed flow, or merging of clustered WhereV is the flow velocity vector. For simplicity we have
Lagrangian parcels. This is one main difference comparedgnored any sources and sinks, and any diffusion in Egs. (
to HEL and ATTILA, where Lagrangian parcels survive Of ).
throughout the integration. In the ATLAS moddléhit- In geophysical fluid dynamics Eqsl)(or (2) is normally
mann and Rex2009 the flow-dependent mixing method- solved via finite volume (FV) methods operating on a fixed
oiogy of CLaMS has been modified with emphasis on betterEulerian grld Two different families of FV methods have
performance in lower-resolution model configurations. Also been applied: flux based and cell integrated. In flux-based
in FPIC (Kaas et al.1997 an implied mixing takes place via Methods the fluxes of mass swept through each face of pre-
simple birth and merging of particles. defined Eulerian grid cells within a time step are calculated
The so-called “traiectory_tracking scheme” introduced in first, and the Change in denSity is then determined from the
Dong and Wang(2011) and updated irDong and Wang net inflow of mass into each grid cell. In cell-integrated meth-
(2012 has some similarities to HEL. In two-dimensional 0ds a semi-Lagrangian upstream departure cell is first identi-
probiems this scheme treats Lagrangian parceis as poiygor‘f@d The estimated total mass in this Upstream cell then deter-
with a finite number of edges, and with all Lagrangian par- mines the corresponding arrival (Eulerian) grid cell density.
cel poiygons Spanning exactiy the Compiete integration doFOf a more detailed description of the difference between the
main. The Eulerian space representation is obtained via &vo families, seéMachenhauer et a{2008, where it is also
first-order conservative remapping so that total mass is Condemonstrated that they are in fact numerica"y equivalent. For
served in the Lagrangian as well as the Eulerian represer@ general review of FV methods, we refeteVeque(2002
tation. A “curvature-guard” algorithm is applied in order to @ndEymard et al(2000.
maintain an accurate polygon representation in deformation
flows. However, this algorithm does not lead to any mixing,

HEL — passive transport

:_V.(plnv)a mzla"'vMa (1)
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It should be noted that other non-FV, yet still mass- use upper-left superscripfs and E to indicate Lagrangian
conservative, schemes have also been used. For the presemd Eulerian space representation, respectively. An upper-
work it is of particular relevance to mention the so-called right index denotes the time step. A list of all prognostic
locally mass-conserving semi-Lagrangian method (LMCSL)variables in HEL to be described below can be found in Ap-
(Kaas 2008, which is based on a simple partition of unity pendixA.
principle. Assume some numerical scheme has been used to solve

Depending on the chosen order of accuracy any numeri£qgs. (L) or (2) in the Eulerian grid cell representation, and let
cal method — Eulerian or semi-Lagrangian type — applied forE ntl
solving Egs. {) or (2) on an Eulerian grid will suffer from Pk

some degree of dissipation (or possibly anti-dissipation),Eﬁfankl, m=1..M )
some numerical dispersion, and generally, for higher-order . . . _
schemes, the solution will not be shape preserving. denote the forecastin Eulerian grid cdlls- 1, ..., K attime

As mentioned above the main motivation behind thestepn + 1. In general we use the notati¢f) to represent
present work is to use a fu||y Lagrangian forecast, run insome provisional approximate value. This is also the case
parallel, to modify the Eulerian grid forecast in such a way here whereo indicates that the forecast at time step- 1
that the above-mentioned disadvantages are reduced or elinf only a provisional Eulerian space forecast to be modified
inated. A purely Lagrangian forecast describes the tempoby densities in the Lagrangian representation.
ral evolution of the densities of individual Lagrangian fluid  Letting parcels follow downstream trajectories from time
parcels as they move around. Formally it is straightforwardstepn ton+1 estimated from the actual velocity components
to integrate Eq.Z) for a Lagrangian parcel from timeto in the Eulerian grid, one obtains an approximate Lagrangian

some future time 4+ A¢: solution to the pure advection problem. However, in a gen-
eral divergent flow the parcel volume density will of course
Inp(r(t+At),t+ A1) —Inp(r),1)) undergo changes. According to Egé) 4nd 6) the effect of
1+Ar divergence for parcegb from time step: ton + 1 can simply
= V-V(r(t),t)d’ be modeled as
T Lplr;—i-l _ LG;)H-J-/Z LpZ’ 8)
= AtD, 3)

where superscriptn +1/2 indicates that the expan-
wherer (1) is the position vector of the parcel at timendD sion/contraction factor represents the effect of divergence
represents the average divergence along the trajectory frorffom time step: ton+ 1. In practices”+1/2 is determined in

r(t) tor(t + At). From Eq. 8) one immediately gets Eulerian space from the provisional Eulerian space forecast
_ of the “dry air” density,Z 5"*1, i.e., including the effect of
p(r@t+At), 1+ Ar)) = p(r(1),1)) exp(AtD); (4)  divergence, and from a corresponding purely advective fore-

cast, i.e., not including the effect of divergence, which we

i.e., the effect of divergence over the period fromo r + At termE , adyp+1:

is an expansion/contraction factor:
E ~n+1

_ E_n+1/2 _ Pk _
o =exp(AtD) (5) o" = o k=1,....K. 9)

multiplied by the original parcel density at time _ L
We will now consider the actual numerical discretiza- " cell-iniegrated FV and the.LMCSnIJ_rS(Z:hemes.applled n

tion of the prognostic equations in Eulerian and Lagrangianthe prgsent paper t.he calculanr(l)leo_f 1S straightfor-

space. The Lagrangian parcels are introduced at the initia‘f"ard since estimation of , advp is an inherent part of

time, and in the present formulation of HEL they survive theose schem%s. | itidng+1 h b
throughout the model integration. Also, in the version of nce new downstream parcel positi ave been

L n+1/2 i P i
HEL presented here, the total number of pardeland the Eouffl’ 12 G':h canl fbe obtalfned via mte:pg_latlodn_ from
number of Eulerian grid cellK are equal. At the initial time o - The parcel forecast for parcel including diver-

step,n = 0, Lagrangian parcel densiti€sp, are initialized gence, then simply becomes
by the corresponding values in Eulerian grid cell centroids;Lanrl _ Lntl/2 Ly

i.e., P p p
+1/2
Lo E.O L,o;‘;“pl:Lo;,’ / Lp,’;,p, m=1... M. (10)
pp = pk
LpO _ EpO m=1 M ©) It is important to note that in a dynamical model, in or-
".p m.k B der to prevent numerical instabilities related to fast modes,
n+1/2

wherep, k=1,..., P(= K), andm counts the individual e.g. gravity waves‘?ap must be based on divergence ob-
tracers as in Eqsl) and @). In the following we generally tained with a numerically stable scheme.
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The modification of the Eulerian densities using the parceldownstream parcel trajectories; also, it would then be possi-
densities is done by first interpolating the irregularly spacedble to take long steps not subject to classical CFL conditions
parcel densities to the Eulerian grid obtaining certain Eule-for advective processes. Therefore relevant schemes include,
rian space target value§7 and£7,,, m=1,...,M, and  e.g., flux-based multidimensional schemes suchiasand
then nudging the original Eulerian-based forecast towarddRood (1996 andLeonard et al(1996, the Departure area
these values under the constraints of mass conservation ar@ell-Integrated Semi-Lagrangian (DCISL) scheiathen-
shape preservation (see details in S2). hauer and OIk1997, the Conservative Semi-LAgrangian

A generic recipe in an atmospheric multi-tracer applica- Multi-tracer transport scheme (CSLAM) 4uritzen et al.
tion of HEL, not yet considering the mixing, can be summa- 2010, the Semi-Lagrangian Inherently Conserving and Ef-
rized as follows at a given time step(here omitting indices  ficient scheme (SLICE)Zerroukat et al.2002, or the Lo-
for Eulerian grid cellsk, and Lagrangian parcelg): cally Mass-Conserving Semi-Lagrangian scheme (LMCSL)

1. Perform a conventional, preferably inherently mass- (Kaas 2008. )
conserving, Eulerian or semi-Lagrangian time step of Note, however, that any mass-conserving scheme for solv-

total dry density,E 5"+, valid on an Eulerian grid. ing cpntinuity equations can in principle'be used as the un-
This is termed therovisional forecast derlying scheme for HEL. In fact, relaxing the mass con-
servation property, any consistent numerical scheme can be
2. Perform a corresponding purely advective time stepysed.

in Eulerian spacé, ade”J“.l of the dry density, and In the present paper we have tested the use of first- and
use this to calculate the divergent multiplication fac- third-order versions of the CSLAM and LMCSL schemes to
tor, Egn /2 = Egntl/E adypntl, obtain the first guess forecast in Eulerian space.

3. For all tracersyn =1, ..., M, perform a provisional
Eulerian space forecadtj!+1.

4. Perform a pure downstream disp|acement of the irreg.The downstream displacement of parcel locations ObViOUSly
ularly spaced Lagrangian parcels; i.e., calculate downs an essential component in HEL. In simple numerical tests

stream trajectories and reposition each parcel frefh ~ Such trajectories can be calculated analytically, or, as in dy-
to Lpn+l. namical models, they can be calculated via an iterative pro-

) ] cedure, which is equivalent to that used in traditional semi-
5. Interpolate® o /2 from the Eulerian grid cells tothe | agrangian models for estimating the upstream departure
positions”r"** resulting in Va.“_JeéUnH/z- Thencal-  points/cells. In the present applications we have generally
culate the new parcel densities for both the dry air seq analytical or approximate analytical trajectories for ide-
?nd ﬁ" tqe trflcgrsi mcludng ”]rel effzect EI glleargence: alized numerical tests, and iteratively estimated trajectories
prit=ton 2 Lot andbptt = Lot 2 Lol g, dynamical model implementations. This is described fur-
m=1...,M. ther in Sects4.1, 4.2, and5.1.1

6. Interpolate’ p"*1 from the Lagrangian grid to obtain
the target value<; 7, in the Eulerian grid. In Eulerian
grid cells with no nearby Lagrangian parcég”*1 s
set equal td 5"+ from step 1; see details in Se2t5.

2.2 Estimation of trajectories

2.3 Update of the parcel volumes

Each Lagrangian parcel represents a certain vol&ifrieof
the fluid which, at the initial time step, is simply initialized
7. As step 6 but for all tracera =1, ..., M. as the volume represented by the volume of the relevant Eu-

: lerian grid cell.
E ~n+1 En+l
8. Nudge towards *7 under constraints of Oncel p"t1 has been calculated one can update the vol-

mass conservation and shape preservation for the der]j o : ,
. o : . me of each parcel. Omitting the upper indéX the parcel
sity; Seegetﬂs in Se.6 The resultis the final HEL volumeV+1 at time step: + 1 is determined diagnostically
n o i fs
forecast.® o™, for the dry air in Eulerian space. by the constraint that, in the absence of mixing, the total mass
9. As step 8 but for all tracers: =1,..., M. However, of each Lagrangian parcel is conserved, i.e.,
now the constraints are mass conservation and shape

: g . +1 n+1 _
preservation for tracemixingratios. Ve =V, (11)
2.1 The underlying numerical scheme whereby
As outlined above, some numerically stable scheme must bg,n+1 _ /» Pp
chosen in order to obtain the provisional forecast in Eule- ” Ppntt
rian grid space. For applications in HEL it would be rea- yr
sonable to use a semi-Lagrangian type scheme since trajec- = L (12)

) . ) n+1/2
tory calculations can be partly re-used for estimation of the Op
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using Eq. 10). n nt1
The volume of the parcels is a necessary ingredient for
mixing between neighboring parcels (Se)t.
2.4 Interpolations from Eulerian to Lagrangian ks ky ;@
representation il

Interpolations between the Eulerian and Lagrangian repre-
sentations are required as part of the HEL scheme. For ex-
ample, as explained above, it is necessary to interpelate ky k,
the Lagrangian representation. Similarly, when HEL is used
in a dynamical model, tendencies related to other physical
processes must be interpolated.

In the present formulation of HEL all interpolations from Fig. 2. Traditional upstream semi-Lagrangian departure point.
the Eulerian grid cells to the Lagrangian parcel locations are
fourth-order Lagrange polynomial interpolations.

where L is a subset of Eulerian cells includirigand its
2.5 Target values nearest eight surrounding neighbors (for a regular grid as
used here). In Eql16) the maximization ofv, is introduced
Provisional target value§,7"*1, for the Eulerian space dry to ensure that the target values are always well defined. The
air density can be obtained whérp"+1 and L p"+! have  value ofwg has, somewhat arbitrarily, been set to t0i.e.,
been calculated. The provisional target value in Eulerian gridin the target values estimated from Eg3)there will always
cell k is composed as a weighted sum of the provisionalbe some weight on the Eulerian-based forecast. In general
Eulerian-based forecaé?tﬁ,?”, and a parcel-based estimate this weight is small but in the special case whérg= D0,

Ri: i.e., where there are no neighboring parcels at all, the target
—_— value will simply be equal to the provisional Eulerian fore-
Egntl _ W1 P w2 Ry (13) cast.
k w1+ w2 ’ In practice the calculations dR; and W, are not per-

formed as sums over all parcels as indicated in BHd) (
since this would be very inefficient numerically because it is
p p known that only four of the parcel weights,, x, for a given
Ry = 1 Z w,,,kEﬁZ’;l with Wy = ZwP~k’ (14) parcelp are different from zero. Insteal; and W, are cal-
Wi p=1 ’ p=1 culated in a single loop over all parcels where information is
distributed (summed) to the neighboring four Eulerian cells,
wherew,, « is a simple bi-linear interpolation weight given to  followed by a second loop where the result is divided by the

whereR is defined as

an estimate of the densifys” ;* in Eulerian grid celk which  sum of weights for each cell.

is based on the density at the location of parcel nunpber Provisional target values for the traceFSf',,’ﬁl, m=

Eantl L mtl | oLontl 1,....M are obtained via the same technique as outlined for
Ppi = Pp + Ty —1k)-gpk- (15)  the dry air, i.e.Z7"*1 above. |.e., all weights are the same.

To obtain an Eulerian space forecast, which is shape pre-

gp.x is @ second-order numerical approximation to the graOII'serving and compatible we must identify minimum and max-

entv (E,5)nJr1 at the location B(“r"™™ +r;), andr isthe  jmum permitted mixing ratios;— andg™, respectively, for

position vector of théth Eulerian grid cell. each tracem in each Eulerian grid cell. The mixing ratio for
The weightsw; andwz in Eq. (13) are determined as fol- 3 tracerm is defined as;,, = p./p, implying that we can

lows: always deduce mixing ratios in both the Eulerian and La-

grangian representation whep, andp are known, and we
w1 = maxwo, (1 — Hy) Wil can always convert a mixing ratig, back to volume den-
w2 = Hi Wi, (16)  sity whenp is known. The upstream Eulerian mixing ratios

at time leveln are used by selecting the minimum and maxi-
wherewyg is a sm_all positivg ”l_me_ef: ank; is a measuré  mum mixing ratios in the four grid cellg, ..., k4 surround-
of the homogeneity of the distribution of Lagrangian parcelsjng the location of the upstream departure point for the trajec-
around the Eulerian cell. Here we have used the following - {ory, which at time leveh +1 is located at the cell centroid of
estimate off;: cellk, i.e., the departure point in a classical semi-Lagrangian

2 x min[W;] context (see FigR).
= - l €Ly, a7
max{ W;]+ min[W;]

H,
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Thus the provisional minimum and maximum mixing ra- the target field is weighed with the minimum mass field,

tios for tracenm become M~ = Zf:l P - Ev,, to acquire mass conservation.
G~ . =minEg" AM
ka [Eqn ] ,i:l,...,4. (18) W = (24)
qu_ma){ qm ] MT—M_
Eor=0—w) - ET+w™ - Ep,. (25)

The final limits are obtained by using additional information
from mixing ratios in thep parcelsp;,i = 1,..., 0 thathave  1pg hrocedure is then repeated for all tracers 1, ..., M.
Euclidian distance to the Eulerian cellat time leveln + 1, The nudging employed in the current version is global, but

which is less than 1.5 grid distances: since all chemistry is calculated in the Lagrangian parcels, it
b e a4l will not introduce errors due to the inevitable numerical mix-
G =MINEG 0 1, "G pi] i=1...0. (19) ing in the Eulerian domain. A local nudging method has also

Eqb v =ma(fa, . an 1 T been tested, but it leads to somewhat poorer — and in prac-

tice less localized — results, as the nudging method’s ability
Once the Eulerian space forecast for dry air den$jtyhas  to correct the Eulerian values will be lessened by hard local-
been obtained, the minimum and maximum permitted val-ity constraints. The traditional concerns when using global

ues of volume density for tracer = 1,..., M can easily be methods, i.e., mass redistribution and unphysical mixing, is
obtained: fully controlled by the correct values being preserved in the

Lagrangian parcels, meaning that HEL is very “local”.

E:O,;k = Et],;k : E/Ok, (20)
'Om k= ‘Im v ke (21) 3 Mixing between parcels
2.6 Nudging of first guess towards target values As discussed in Secl densities/mixing ratios or other in-

variants will generally develop into thin filaments as part of
After the (shape-preserving) target values have been calcuhe cascade into smaller and smaller scales in geophysical
lated, the provisional, “first guess”, Eulerian forecast can begeformational flows. At some point a model at given res-
corrected. The correction, or nudglng, is done n two stepSolution cannot represent the spatial scale of the filaments,
First we calculate the total mast, = Y f_, FVi,and  and explicit horizontal diffusion may therefore be required to
the total mass of the target valudg; = Z el E?} -EVi,as  prevent spectral blocking. Considered in discrete Lagrangian
well as the discrepanch M = M7 — M, between the two.  space, i.e., a model, the analogue to spectral blocking is re-

This will lead to three different possibilities: alized as a gradual development into unrealistically large
o differences between densities/mixing ratios in neighboring
AM < 0: Mass of target field is too small. parcels.

An example of this is presented below in SettThere-
fore, due to their non-dissipative nature, explicit mixing must
be introduced in Lagrangian models. We introduce a direc-
tionally biased mixing as an a posteriori operation applied
In the (extremely unlikely) event that the mass of the tar-each time step after the generic HEL forecast, described
get field is exact 4 M = 0), the Eulerian field is simply re- above, has been obtained.
placed by the target field. In the two remaining possibilities In the present paper we only consider two-dimensional
the target field has to be modified to ensure mass conservdlow. In this case the degree of mixing between neighbor-
tion. If the mass of the target field is less that the actual mas#1g parcels is based on a modified instantaneous and local
(AM < 0), we calculate the maximum possible mass of thetwo-dimensional rate of deformation:
field, i.e., M+ =& 1 o - £ Vi, where shape preservation - >
is still fulfilled. The target field and the maximum field can D max[o \/(81}" au") (Em" 8v">

then be combined to produce a final corrected Eulerian field, dx + dy ax Ay

AM = 0: Mass of target field is correct.

AM > 0: Mass of target field is too large.

which is both mass conserving and shape preserving. Su" 9yt
AM dx  dy }
= (22)
MT— Mgt whereu” andv”, respectively, are the velocity components
Ev=AQ—wh) - FT+wt. Ep,j. (23)  inthe two directions spanned by coordinatesndy at time

stepn. It can be seen that the effect of divergence (last term)
This is always possible as&/+ > M. The procedure is is subtracted from the traditional expression for deformation
the same if the mass of the target field is too large; thenrate. This is done because the mixing we want to introduce
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Time step n

Time step n+1

2031

Normalize at time step n+1

Fig. 3. Downstream advection of two different Lagrangian parcels and their auxiliary parcels in a pure shear flow. For eadh gadcel

P4 denote, respectively, its position and the position of the auxiliary parcel. The associated auxiliary vectors are marked black and gray,
respectively, to distinguish between the two parcels. In this example the (true) asymptotic/Lagrangian dilatation axis, indicated with dashed

lines, is the same all over the small domain shown, although its direction rotates clockwise from timeastape step: + 1. Note that

it is the relative movements between parcels and auxiliary parcels that are relevant. After several time steps the auxiliary vectors will align

approximately with the true asymptotic dilatation axis.

should not lead to excessive damping when the scheme is ap-
plied to the full mass field in a dynamical model. Not intro-
ducing such a modification would tend to damp dynamically
important gravity waves.

The calculation ofD is estimated in Eulerian space via
centered, i.e., second-order accurate, differences. The ex-
pression in Eq.46) is only valid in Cartesian geometry.
Therefore, in the applications on the sphere presented below,
metric factors have been applied.

In addition to the prognostic variables discussed above a
set of three prognostic variables are introduced in Lagrangian
space (only) in order to perform the mixing. For each La-
grangian parcep these include the actual parcel deforma-
tion, £5,,, and the two coordinates of a position vectar,,,
of a passive auxiliary Lagrangian parcélp,, that is used
to identify the asymptotic dilatation axis for shear, i.e., the
direction of “long-term” parcel stretching due to shear con-
sidered in a Lagrangian sense; see €ghen and Schultz
(2005.

For each parcep its deformation is initialized to zero at
the first time step.Lch =0, and it is updated as part of the
mixing procedure described below. The location of the aux-
iliary parcel p5 for main parcelp is initialized one grid dis-
tance,A, away fromp in an arbitrary direction on the inte-
gration plane. At each time step the auxiliary parcel is trans-
lated downstream using the same trajectory algorithm as for
the main parcels.

The mixing operates as follows:

1. Once the modified deformation rat®}, has been de-
termined in Eulerian space at a given time step, it can
be interpolated to the parcel positions enabling calcu-
lation of new provisional parcel deformations:

Lgn+l __ Lgen Lyn
S+t = Lsn 4 ArEDY. 27)

www.geosci-model-dev.net/6/2023/2013/

2. Omitting for simplicity the Lagrangian and parcel in-

dicesL and p, and the time index + 1, let75 denote
the pure downstream position vector of the auxiliary
parcel for a main parcel, which has downstream posi-
tion vectorr. The final downstream position vectog
of the auxiliary parcel is then defined as
ra=r+a—2"" 28)
lIFa—rl|
i.e., the distance between a parcel and its auxiliary par-
cel is simply normalized to one grid distance. Two ex-
amples of the identification of the vector are shown
in Fig. 3. No formal proof is given here that the vec-
tors r, will actually converge toward the Lagrangian
shear dilatation axes. Since the additional pareelse
initialized randomly, a certain time will elapse from
the model initial state until realistic dilatation axes are
identified for each parcel. However this time is propor-
tional to the deformation rate of the flow, and there-
fore, when the deformation rate is large, the dilatation
axes is also quickly approached. Obviously if the flow
is linear, i.e., no mixing is needed, then the dilatation
axes of the model parcels maintain their initial random
orientations.

. For each parcelp, let i), x represent a fraction of the

parcel volumel Vv, which is assigned to a neighbor-
ing Eulerian grid cell centroid. 11, « is defined as

i =025 min[ 1, L5114  exp(—icd? ), (29)

whered,, ; is the distance in units of grid distances
from the grid cell centroid to the line parallel%@’;,*l,
which passes through pargelThe valuec determines
the degree of directional bias for the mixing. In the
present worke has been set to 10. As an example, if

Geosci. Model Dev., 6, 2@2zH, 2013
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Fig. 4. This figure describes why we use a factor of 0.25 between the deformation within one tinzer s®@mnd the fraction of the parcel

areaA? that should be mixed. The underlying assumption is that the deformation is mainly due to shear, and the figure shows how cells are
then deformed within one time step from regular squares into irregular parallelograms with the same area (assuming zero divergence). In
order to re-shape a cell into squares the mass in the two shaded triangles must be given off via interpolations to the neighboring cells. The
factor comes because the sum of the triangular area25&\0- DAZ.

dp = 0.5, then the exponential factor in EQ9Y be-
comes about 0.1; i.e., only grid cells close to ph&
dilation axis are assigned an appreciable fraction of
volume. For all Eulerian points with distances tg
larger thamA, ., « is set to zero. l.e., in a regular grid
Wy, is only different from zero for a maximum of four
individual values ofk. It is ensured that the sum of
these four weights does not exceed unity. The factor
“0.25" is obtained from geometrical considerations of
the relationship between deformation rate and the frac-
tion of the parcel volume which should be mixed with
neighboring parcels — see Fig.

. Once u,  is calculated, a total mass contribution,

pikEpm, pVp, for each tracem is transferred from the
Lagrangian parcep to Eulerian grid celk. In other
words the average density of mass contributions from
all parcels “neighboringk is

Zp /'Lp,kme,pr
Zp MI’skVP
where it is noted thaf:, ; represents elements in a

sparse matrix with non-zero contributions from no or
only a few parcels.

Pmk =

: (30)

. Now the mixing can be realized by transferring the

mixed densities in the Eulerian cells back to the La-
grangian parcels. For parcglthe final mixed density
L pm, , becomes

Lpomp =@ = 11p) L o p + 1 kP i (31)

where we have formally used the notati6hp,, , to
indicate the unmixed forecasted density in paycet-
sulting from the generic HEL recipe.

Note that not only tracers are mixed using E2{l)( To

mass of the atmosphere” are conserved when applying
Eq. 31).

. Based on the amount of actual mixing{,, that has

taken place for parcep via the above operations the
final parcel deformation is calculated. The actual mix-
ing, not including trivial mixing of parcels with them-
selves, is

2 Wk Vi = ipikVp
Mp=> ppi—t—— —, (32)
14 Xk: p Zp/ wp’,k Vpr

where it is again noted that for regular grids the sum
overk only includes four grid cells surrounding parcel
p. The parcel deformation is finally reduced according
to the degree of mixing that has actually taken place:
Lontl = L5t —am,), (33)
where the factor of “4” is a constant determining how
mucthp is reduced per unit change in relative area.
This factor is obtained from the same geometrical con-
siderations mentioned above (see Hyof the rela-
tionship between deformation rate and the fraction of
the parcel volume which is actually mixed with neigh-
boring parcels. Note that the factor a8 in Eq. @9)
ensures tha“tafrl cannot be less than zero.

Most computational operations in the above list are common
for all tracers, and therefore, in multi-tracer applications, the
total number of operations is limited.

The HEL mixing is quite different from the uncontrollable,
and in many cases unrealistic, numerical mixing/unmixing
(see Fig.1), which is introduced in most traditional mod-
els based on an Eulerian grid/cell representation, i.e., Eule-
rian and semi-Lagrangian type methods. This is because in
such models the degree of mixing is different from tracer to

ensure full consistence between prognostic variableg acer, because it depends on the spatial roughness of their

also the dry air is mixed.

density fields. The degree of mixing applied in HEL be-

It can easily be shown that the total parcel masstween Lagrangian parcels is the same for all tracers. Thus,
for each tracer and for the complete “dry parcel in the Lagrangian space representation, i.e., for the parcels,

Geosci. Model Dev., 6, 20232047 2013
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the problem of numerical mixing and unmixing is eliminated. thewg weight. The/> and/,, convergence rates for CSLAM-
It is noted that the introduction of a flow-dependent mixing M are 2.82 and 2.04, respectively, while they are 2.24 and
based on the degree of deformation is not iéadourny and  2.16 for HEL. It is noted that the convergence rate for HEL
Maynard(1997 introduced a horizontal diffusion which was increases significantly if a fixed Courant number is used in
dependent on the magnitude of the deformation rate of thesuch tests (not shown) because this implies that, as the time
flow, and laterVana et al.(2008 used a similar approach step decreases, the weight per time unit on the parcels in-
to obtain a flow dependent degree of mixing in a semi-creases relative to that on the underlying Eulerian-based fore-
Lagrangian model. Also ATTILA $tenke et a).2009 and  cast. While the accuracy increases the shorter the time step in
CLaMS (Chemical Lagrangian Model of the Stratosphere)HEL, the opposite is generally the case in semi-Lagrangian
(McKenna et al.2002 employ mixing depending on hori- models such as CSLAM because the number of remappings
zontal flow deformation rate. increases when the time step is reduced.
The temporal growth of error in HEL and in CSLAM-M
are quite different: running over several revolutions the er-
4 Passive tracer numerical simulations on ror norms continue to grow in CSLAM-M, although slowly,
a cubed sphere while in HEL the error norms do not grow with time, as one
should also expect from the way HEL is designed.
To validate HEL we perform inert passive tracer transport on
the sphere driven by both solid body rotation and two types4.2 Deformational flow tests
of deformational flow.

For the passive transport tests presented here the underlj-or the deformation flow tests we have used the two types
ing Eulerian-based scheme required in HEL is a first-orderof analytic flow fields, the density shapes, and the validation
(i.e., shape preserving by definition) version of CSLAM diagnostics suggested rauritzen et al(2012, and used in
(Lauritzen et al.2010. Where necessary this is referred to @ model intercomparisor.@uritzen et al.2013. For the di-
as CSLAM-1st. The performance of HEL is compared to thatagnostics this means that, in addition to thend/., error
of a third-order accurate version of CSLAM in combination norms and related convergence rates used for the simple solid
with a simple shape-preserving filtarguritzen et al.2010, body rotation tests above, we have calculated an additional
referred to as CSLAM-M. set of diagnostics, briefly described below.

In the tests shown here both HEL and CSLAM have been The two analytical flow fields used have originally been
implemented on a so-called cubed sphere grid —Lsee  proposed byNair and Lauritzer(2010, and they include a

ritzen et al. (2010 for details. non-divergent as well as a divergent flow. In both cases the
Lagrangian parcels follow relatively complex trajectories,
4.1 Solid body rotation and the flow is composed of a deformational deformation

component, which is different in the two cases, and an over-

In standard solid body rotation tests on the sphere a certaitaid translational flow. The translational part is designed to
spatial distribution returns to its original position after one or perform exactly one rotation around the sphere (along equa-
more rotations. In this case HEL should perform with high tor) during the entire simulation. After a half complete pe-
accuracy since the parcels end up in exactly the same gridod of simulation the deformational flow component goes to
cell centroids they were initialized in, and no mixing takes zero, and this part of the flow is then reversed so that the final
place because the deformation rate of this flow is zero. Thugxact solution equals the initial condition. Half way through
the target values will be almost exactly equal to their initial the simulation, at the time when the deformational flow com-
value, except for the small weight factop (see Eql6). This ponent goes to zero and starts to reverse, the initial distribu-
again implies that the final HEL forecast should be almosttions are deformed into thin filaments, particularly for the
exactly equal to the corresponding analytic solution sincenon-divergent flow.
global nudging is used. Three initial, i.e.y = 0, distributions consisting of two iso-

The test example we present here is the solid body advedated Gaussian hills, two slotted cylinders, and two cosine
tion of a cosine bell with radiuR. = R/3, whereR isthera-  hills are shown in Fig6. Details for these distributions are
dius of the Earth. The angle of rotationzig4 relative to the  described irLauritzen et al(2012).
Earth rotation axis; i.e., the bell passes over the edges of the As an example FigZ shows the result of simulationszat
cubed sphere. One full revolution is completed in 576 timeT/2, i.e., the most deformed time, andrat T, i.e., the final
steps of 1800 s each. These settings are identical to those time, using the slotted cylinder initial condition and the non-
Putman and Lif{2007). divergent deformation flow. The maximum Courant number

To validate the results obtained with this simple setup weis 5.5, and the equatorial resolution 1ib these simulations.
use the traditional, and/,, error norms. Results in terms At this resolution the final distribution at time= T obtained
of I andl., after one revolution are plotted in Fi§. As with HEL with mixing is considerably closer to the analytic
expected the HEL is very accurate due to the low value ofsolution than CSLAM-M.
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Solid body rotation of cosine hill on cubed sphere Solid body rotation of cosine hill on cubed sphere
1 1
2nd/3rd Order - 2nd/3rd Order -
\ HEL (CSLAM-1st) -+ HEL (CSLAM-1st) 4
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Fig. 5. Test of convergence for linear advection on cubed sphere using error fo(helt) andl, (right). ncube refers to the number of
grid cells in each direction on each of the 6 faces of the cubed sphere; i.e.,-a@4beorresponds to an equatorial angular grid distance of
27 /(4 x 24) = 0.065 radians.

For illustrative purposes Fig.also includes the result of a computationally expensive, and therefore it is of interest to
simulation without any parcel mixing, and where the param-identify some kind of measure of absolute accuracy for a nu-
eter H, deliberately has been set to unity. In this case, as camerical scheme. A diagnostic designed for this is the “min-
be seen, the distribution at time= 7/2 becomes unrealis- imal” resolution needed to obtain a certain accuracy for a
tic since the initial distribution has been cut into small parts specific problem. Following the specifications Liauritzen
(represented by the individual parcels). However, as expectedt al. (2012 we have calculated the minimal resolution as
since time is reversed, the final distribution in this aliasedthe resolution required to obtain &nerror norm for the co-
model setup is very close to the analytic solution. It is only sine bell distribution that is less than 0.033. In the specifica-
small errors in the parcel trajectories, and the fact thats tions (Lauritzen et al.2012) the result should be obtained for
different from zero, that prevents the final field from being an unlimited scheme, i.e., no shape-preserving limiter should
equal to the analytical solution. be applied, e.g. on CSLAM, in this case. Minimal resolutions

Using the non-divergent flow, basic error norasand  for CSLAM and HEL are listed in TablB.
lo for CSLAM-M and HEL, and two maximum Courant The minimal resolution for HEL is coarser than that for
numbers (1.0 and 5.5), are listed in Table<2, and3 for CSLAM, particularly for a maximum Courant number of 1.
each of the three initial distributions. In general one can con-We therefore conclude that the effective resolution for HEL
clude that HEL is very accurate at low resolution for the is higher than for CSLAM.
smoother distributions, i.e., the Gaussian and cosine hills, The minimal resolution for HEL is controlled by the
whereas CSLAM-M and HEL are comparable at the high strength of the mixing between parcels. If HEL is run without
Courant number and at the two finest resolutions. Anotherany parcel mixing the minimal resolution goes to infinity in
feature is that, as compared to CSLAM-M, HEL is less sen-the sense that the numerical solution becomes almost exactly
sitive to the maximum Courant number. This is because HELequal to the analytic solution at any resolution, of course de-
is influenced much less by the number of semi-Lagrangiarpending on the weightg.
remappings needed to finalize each simulation than CSLAM-

M. 4.2.2 Filament diagnostics

The convergence rates for each of the three initial distri- , . . .
butions and for the two Courant numbers are listed in Ta-' "€ fllament’pres.e_rvatlon dlagnosﬂf;,dgscrlbes the trans-
ble 4. In general CSLAM-M converges faster than HEL at port scheme’s ability to preserve thin filaments or gradients

high Courant number for the smooth distributions, while the ™" the concentrationg; is defined as
difference is small for the rough slotted cylinder distribution { 1000 -2%0_ if A(r,t=0)#£0

- — A(r,i=0) >
where the convergence rates in any case are low. The convef- (34)

0.0 ,else
gence rates are comparable in the low Courant number cases. ] )
whereA(z, t), the control volume, is a spherical area where

4.2.1 “Minimal” resolution the concentration is equal to or larger than a given thresh-
old valuet. The control volumes should, without overlap-

Numerical schemes may be constructed to converge fast ping, span the entire domain. The test setup is the cosine

at least for smooth distributions. However, as pointed outbells initial condition in non-divergent flow wherlgis cal-

by Lauritzen et al.(2012 increases in resolution are often culated atr = 7/2 for 19 values ofr in the intervalt =
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90°N T T T 90°N

Fig. 6. Initial (and final analytic) distributions for deformational test cases: Gaussian hills (upper-left panel), slotted cylinders (upper-right
panel), and cosine hills (lower panel).

anes

gnest

90°N T T T 90°N

Fig. 7. Simulated distributions at times= 7/2 (left panels) and = T (right panels), based on the slotted cylinder initial distribution.
From top to bottom the plots show results obtained with CSLAM-M, HEL and HEL without any parcel mixing, respectively, all run with a
maximum Courant number of 5.5 and an equatorial resolution 6f 1.5
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Table 1. Statistics for the Gaussian hill problem. The columns show maximum Courant nu@hegatorial resolution in degreeas¥),
and the error norm& andl,, respectively, for both CSLAM-M and HEL.

CSLAM-M HEL

C A ) loo Iy loo
3.000 2422x10°1 3434x10°! 4593x1072 6.934x 1072
10 1500 7606x 1002 1576x 1071 1.397x 1072 3.284x 102
" 0.750 1376x 1072 5475x 1072 4.499x 1073 1.431x 1072
0.375 2592x 1073 1.850x 102 1.661x 1073 6.989x 10~3
3.000 9953x 1072 1415x 10! 6.837x1072 1.021x 107!
55 1500 1990x 1072 5084x 1072 1.889x 1072 2.814x 102
"~ 0750 3112x10°3 1.767x 1072 5474x10°3 1.570x 1072
0.375 5371x 1074 5978x 103 1.825x10™3 6.990x 10~3

Table 2. As Tablel but for the slotted cylinder problem.
CSLAM-M HEL

C A ) loo lo lo
3.000 4678x10°1 7973x10°! 2561x10! 6.151x10°1
10 1500 3400x 1001 8462x10°1 1.739x1071 6.313x10°!
0750 2438x 10! 8170x10°! 1215x10°1 6.127x10°1
0.375 1786x 1071 8327x10°! 8.658x1072 6.308x 101
3.000 3775x10°! 8019x10°! 2698x10! 6.957x 1071
55 1500 2580x 1001 8036x10°1 1.729x10"1 6.693x 107!
"~ 0750 1884x 101 7956x10°! 1198x10°1 6.477x10°1
0.375 1422x 1071 8144x 101 8504x1072 6.487x 1071

(0.10,...,0.95). The values of; are expected to increase for is more diffusive than the corresponding Eulerian HEL repre-
low values ofr and decrease for high valueswofilue to nu-  sentation. The Lagrangidfvalues are generally much closer
merical diffusion. Atr = 0.1 the value of; should be 100, to 100 than the corresponding CSLAM-M and Eulerian HEL
since the area with the background concentration should notepresentations, and there is almost no dependency on the
be increased during the simulation. Courant number. The last observation is completely as ex-
The s values for CSLAM-M and HEL are presented in pected since the parcel mixing takes place at the same time
Fig. 8 for simulations with maximum Courant numbers 1 interval in the two cases. It is noted (not shown) thatthe
and 5.5. As expected CSLAM-M is more diffusive; i.e., it values are quite insensitive to the mixing frequency between
maintains filaments less well, at maximum Courant num-Lagrangian parcels. In a more general application, using non-
ber 1 as opposed to 5.5. This is because more remappingmalytic trajectories, there could in theory be some spatial
are required at the lower Courant number. The HEL val-overlapping between parcels. However, such overlaps cannot
ues are calculated for both Eulerian and parcel, i.e., Labe quantified due to deformation of the Lagrangian parcels
grangian, representations. It can be concluded from &ig. into filaments, and HEL does not include information about
that at timer = T'/2 of the simulation the Eulerian represen- their exact shape. The total area, however, is conserved.
tation of HEL is generally more diffusive than CSLAM-M It is important to note that without parcel mixing the La-
for the high maximum Courant number although the high- grangians values would all be exactly 100. As argued above,
est functional values are maintained to a higher degree thamtroduction of mixing is fundamental in all Lagrangian
for CSLAM-M. This is because a relatively large weight, models in order to avoid long-term unphysical accumula-
w1, in EQ. @3) is given to the provisional first-order Eu- tion of energy at the smallest resolved scales. The same ap-
lerian forecast® 5"*1, due to the highly inhomogeneously plies to such Eulerian-based models (in principle, includ-
spaced parcels at this time. The Eulerian HEL representatioing semi-Lagrangian models) where the inherent numeri-
does not change significantly with Courant number and iscal mixing is “too weak” to properly represent non-linear
generally better at preserving the maximum values than thecale interactions and prevent spectral blocking for a given
CSLAM-M. Therefore the low Courant number CSLAM-M model resolution. This is typically the case in e.g. spectral or
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Table 3. As Tablel but for the cosine hill problem.

CSLAM-M HEL
C A Iy loo Iy loo

3.000 3898x 1071 5268x10°1 7.246x 1072 9.585x 102
1500 1625x 1001 2.903x 1071 2169x 1072 3.025x 102
0.750 2844x 1072 9.827x 1072 6.244x10™3 1.119x 102
0.375 6397x 1073 3.319x 1072 1.998x 1073 5.437x 1073

1.0

3.000 2036x 1071 2684x10°1 9.807x1072 1.502x 1071
1500 4330x 1072 8.907x 1072 2.829x 1072 4.533x 102
0.750 6674x 1073 3.063x 1072 7.673x1073 1.336x 102
0.375 1357x 1073 1.047x10°2 2241x10™3 5579x 103

55

Table 4.1, andi~, convergence rates calculated from the error norms listed in TapZsnd3. The second column gives the initial spatial
distribution with “GH” indicating Gaussian hill, “SL" slotted cylinder, and “CH” cosine hill, while the convergence rates are listed in columns
three through six.

Scheme Initial distr. Io,C =10 Ix,C=10 1I[5,C=55 Iy, C=55
CSLAM-M GH 2.21 1.42 2.53 1.52
HEL GH 1.60 1.11 1.75 1.24
CSLAM-M SL 0.46 0.01 0.47 0.01
HEL SL 0.52 0.01 0.55 0.04
CSLAM-M CH 1.68 1.14 2.44 1.56
HEL CH 1.77 1.55 1.82 1.60
Table 5. “Minimal” resolution required to obtain al» error norm These mixing statistics includesal mixing [, range-

less than 0.033 for the cosine hill problem in the non-divergent de-preserving unmixing, andovershootingl,. The more pre-
formation flow. The columns include scheme and Courant number.cise definitions ofy, Iy, andl, are provided in AppendiB.

The error norm/,, should always be zero, indicating that
the scheme in question is shape preserving. However, the
CSLAM 0.8 1.5 second normjy, which ideally should be zero as well, will
HEL 1.9 1.6° generally not be zero, unless the scheme is semi-linear and
monotone Thuburn and Mclintyre1997. This was one of

pseudo-spectral models. So, although we know that explicifn® motivational factors for the development of HEL. The
mixing must be introduced in some undiffusive models for first norm,/r, should be a non-zero value, since real mixing
purely physical reasons, we do not know exactly how muchiS always present; it should, however, as described in Sgct.
mixing is required. l.e., the optimd values are, unfortu- _not be artificial numerical mixing but physically based mix-
nately, also unknown. The fundamental idea behind the parl9- R . _
cel mixing applied here has been to base it on simple geomet- The mixing diagnostics for CSLAM-M and HEL are listed
ric considerations and thereby obtain a simple first principleln Table 6. Mixing diagnostics are important indicators for
guess on the required amount of actual physical mixing. the influence of transport schemes on chemical reaction rates
and equilibria. Since chemistry calculations (not dealt with
4.2.3 Pre-existing functional relations and mixing here) are performed in Lagrangian space only the parcel val-
ues ofly, Iy, andly are listed for HEL. It can be seen from
To evaluate the mixing properties discussed in Se&the Table6 that HEL behaves according to its construction: only
statistics proposed inauritzen and Thubur(2012 andLau-  real mixing and no range-preserving unmixing or overshoot-
ritzen et al (2012 have been calculated for initial conditions ing takes place. In CSLAM-M a weak range-preserving un-
consisting of two tracers: cosine bells —correspondingito  mixing can be seen, and the general level of real mixing is
Fig. 1 —and corresponding non-linearly related bells — corredarger than for HEL, particularly at low resolution and low
sponding tcs. The flow is the same non-divergent deforma- Courant number.
tion flow as above.

Scheme C=10 C=55
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Fig. 8. Diagnostics for filament preservatia, for the two resolutions.5° (left) and Q75° (right). The curves show the shape-preserving

CSLAM-M (crosses), HEL in Eulerian grid (squares), and the HEL in Lagrangian space (circles). Each scheme is shown with a maximum

Courant number of 1.0 (dotted line) and 5.5 (solid line), respectively.

Table 6. Mixing diagnosticdy, Iy, andlp for CSLAM-M and HEL
for two equatorial resolutions @° and Q75°) and two maximum
Courant numbers (1 and 5.5). The columns show scheme, maximurfems in the shallow water framework.
Courant number@), equatorial resolution in degrees ), and the
three error norms, respectively.

Scheme C AX Iy ly lo

CSLAM-M 1.0 150 218x10°3 273x10°° 0.0
CSLAM-M 55 150 628x10°% 6.73x10°° 0.0
CSLAM-M 1.0 0.75 349x107% 125x107% 0.0
CSLAM-M 55 0.75 105x104 257x10™° 0.0
HEL 1.0 150 263x107% 0.0 0.0
HEL 55 150 263x10°4 0.0 0.0
HEL 1.0 0.75 675x107° 0.0 0.0
HEL 55 0.75 675x10°° 0.0 0.0

4.3 Deformational passive advection with divergence

Traditionall, and/, error norms for the strongly divergent

flow are presented in Tablfor the cosine hill initial condi-
tion. In this case the two maximum Courant numbers tested,q eyaluated from
are 0.6 and 3.2, respectively, and it can be seen that HEL is

now considerably more accurate than CSLAM-M, particu- gm = hm/ h,
larly for the small Courant number tested. As for the non-.
divergent case HEL is relatively insensitive to the Courant

number.

5 Implementation and tests in a shallow water
dynamical model

Despite the simple geometry applied in this model it does in-
clude the fundamental processes and thereby potential prob-

5.1 Model setup

The governing differential equations are

= fy—o— ¥ 35
e Y (35)
dU 3(h+hs)

= fy—og— > 36
i L 3 (36)
dh

dhy,

F:—hmV'v—ch—‘r‘Smﬁ—Dm, m:1,...,M, (38)

whereu, v are the flow speed components in #ze plane, f

is the Coriolis parametep, the gravitational acceleratioh,

is the geopotential thickness of the flow, d@ndhe stationary
surface geopotential height (“topographyt), is a quantity
we can think of as the contribution to geopotential height
from them'th tracer. The mixing ratio for the:'th tracer can

(39)

i.e., formally the volume density for this tracer s, =
ohy/h, wherep is the density of the dry fluid in the shal-
low water model. It has been assumed thak,, < & since,
otherwise, the expression in EQ9Yj, which formally rep-
resents specific density, would not approximate mixing ra-
tio. The termF}, represents a weak globally mass-conserving
Newtonian relaxation towards the initial “zonal” average pro-

In this section we demonstrate a dynamical application offile of 4. F;, mimics the effect of diabatic processes. Finally
HEL namely as a transport scheme also for the dynamicathe C, D, and S terms represent possible chemistry, diffu-
core of an existing geophysical type model, namely a sim-sion/mixing, and possible source and sink terms (i.e., emis-

ple shallow water model in Cartesian geomekgds 2008.

Geosci. Model Dev., 6, 20232047 2013

sions, depositions, sedimentations), respectively.
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Table 7. As Tablel but for the cosine hill problem in strongly divergent flow. Note that the maximum Courant nuibierthis case are
different from those of Tablé.

CSLAM-M HEL
C A o loo Ir loo

3.00 3184x 101 4400x10°! 5253x1072 7.607x 102
0.6 150 9755x 1072 2.048x10°1 1580x1072 2.638x 102
0.75 2346x 1072 7.629x10°2 4711x103 1.034x 102

3.00 1942x 1071 3034x10°1 5621x1072 8.342x 1072
3.2 150 4220x102 1.132x10°! 1661x10°2 2578x10°2
0.75 8351x 1073 3.965x10°2 4.848x 1073 1.293x 102

Althoughu, v, andk do not depend on thi,, values of  also an Eulerian space forecast. The Eulerian space values
the tracers, the model is formally set up as “online coupled”£¢"*+1/2 are now interpolated to each parcel location (see
(see, e.g.Grell and Baklanoy201Y); i.e., all equations are Sect.2.4) at time leveln + 1 and subsequently multiplied on

solved each time step. the parcel values dfh andZh,,, m = 1,..., M. Mixing de-
The integration domain covers a domain definedxby pending on the flow deformation rate is then performed in
[Xmin, Xmax] and y € [ymin, Ymaxl, With xmin = 0km, xmax= Lagrangian space as described in S8&ct.

20000 km, ymin = —10000 km, andymax= 10000 km. The The final Eulerian space forecasts of and £h,,, m =
boundary conditions are periodic in both directions and with1, ..., M are obtained via exactly the same nudging proce-
enforced symmetry around the line=0 (“Equator”) for  dure as described above in Se&t6

the variables, h, hs, Fy, andh,,,m =1,..., M, and anti- For the inert and passive advection tests with prescribed
symmetry around the same line forAlso, the Coriolis pa-  analytical velocities in Sectl the underlying Eulerian space
rameter forecasts were all based on a first-order numerical scheme
providing good numerical efficiency. Here in our dynamical
f=2Q sin<n+> model implementation we have found that it is necessary to
Ymax = Ymin keep third-order accurate remappings in the semi-Lagrangian

is anti-symmetric aroung = 0 (2 is the angular velocity of scheme in order to obtain sufficiently accurate estimates of

the Earth rotation) pressure gradient terms and to ensure sufficiently accurate
As for the inert tracer applications tested above the s:trat-cmcjiplr;ng bet\(\/egn the mqmergum equations (Bgand3e),

egy followed for applying HEL in the shallow water model and the continuity equation (Eg2).

is to use parcel densities/geopotential thicknesses to mod- Although we have used third-order remappings it could of

ify an existing solution in Eulerian space. As the underly- course still be possible to run with first-order remappings for

ing solution we have used a locally mass-conserving, semif’III the tracersm =1,..., M, i.e., when solving Eq.38). In

Lagrangian transport scheme LMCSL (i.e., not the CSLAM thi; way one can retain the same high multi-tracer efficiency
as above) with a semi-implicit treatment of the gravity— as in the transport tests in Sedt.One may argue, though,

inertial wave terms, in combination with an Arakawa C-grid tﬂat;ws fviﬁla':jes _thed mass—vyindl_cor;s_istgréz)g properté/, e,
staggering; seKaas(2008 for details. the 7th of the desired properties listed in t is noted,

In the present implementation we have only applied theEowgveLr, that si.nce the buII:].of.the modell merr]nory i.n F:EL i;
HEL technique on the mass fields &nd theh,,’s) of the eptin Lagrangian space, this is now only a theoretical prob-

model. The wind field forecast is based on the same third-lﬁm: ifan ingrt and paszive traoafrish!nitiali;el)(? aSh,ﬁl = h',
order semi-Lagrangian scheme ai@as(2008. the Lagrangian space density of this variable will continue

As for the case of passive/inert advection the divergento beLZfaE“Zth.uzl to thst of, If.er;' at gny tflme step WEf} h
expansion/contraction factors?+1/2, that are needed to in- a\ée | m _E | » Incepen egto L?or e;; accuracy ofthe
clude the effects of divergence in Lagrangian space are firsynderlying Eulerian-space-based forecast by,

calculated in Eulerian space: o . )
5.1.1 Estimation of trajectories

Eﬁn+l

E0n+1/2 _

T E advintl’ (40)

For the passive advection tests in Sddll trajectories were
calculated from analytically defined velocity fields. In the
wheref /1 is the complete provisional Eulerian space forecastshallow water model, as well as in any update to a three-
including semi-implicit adjustments, arfd adv is the cor-  dimensional model, it is necessary to estimate trajectories.
responding purely advective semi-Lagrangian forecast, i.e.lf the provisional forecast in the Eulerian representation is
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Fig. 9.Initial height fieldh (upper left) and surface topography (upper right) for the shallow water model. The lower panel shows an example
of an initial field of a single inert tracer. Only the “Northern Hemisphere” part of the fields are plotted.

obtained with a semi-Lagrangian model, as here, upstrearfilters. It is noted (not shown) that one could just as well
trajectories are needed; i.e., one has to identify all departurdave verified HEL against a traditional semi-implicit semi-
points at timen At for trajectories which at timén + 1) At Lagrangian (SISL) time stepping scheme, since SI-LMCSL
end up in each Eulerian grid cell centroid. In HEL it is fur- and SISL turn out to produce almost identical forecasts. All
thermore required to calculate downstream arrival points asimulations presented below have been performed with a
time (n + 1) Ar for trajectories beginning at the irregularly horizontal resolution of 12& 128 points cells®. The time
spaced locations for each Lagrangian parcel at tithe. step was one hour, which gives a maximum Courant num-

For the upstream trajectories we use the approach deber slightly below one. The reader is informed that LMCSL
scribed inKaas(2008. This is a conventional iterative proce- and HEL (both with and without parcel mixing) can be run
dure using two iterations. However, here we use third-orderstably with maximum Courant numbers up to about 3, and
accurate bi-cubic Lagrange interpolations of the upstreanthereafter numerical mountain wave resonamiggst et al,
velocities at time leveh as opposed to the first-order inter- 1994 Lindberg and Alexeev2000 becomes visibly destabi-
polations inKaas(2008. As explained inKaas (2008, in lizing. No off-centering or other techniques to control moun-
order to ensure satisfactory behavior of the LMCSL schemetain wave resonance were introduced.
it necessary to include the effect of accelerations in the es- Figure 10 shows the surface height field and the mixing
timate of the trajectories. For the estimation of downstreamratio field after 48 h of simulation for the initial conditions
parcel trajectories an equivalent procedure has been followeglotted in Fig.9. It can be seen that the geopotential height
(see AppendixC for details). fields for each of the two forecasts are almost indistinguish-
able, although the HEL result is based on densities at the
locations of the irregularly spaced Lagrangian parcels. The
mixing ratio fields are also similar and it can be seen that
HEL via its design is shape preserving.

Corresponding height and mixing ratios after 20 days of
simulations are shown in Fig.1. It can be seen that HEL
and LMCSL continue to produce very similar results for the
height field despite the underlying non-linear model equa-
tions (non-linear chaotic error growth does not become vis-
ible until around day 30—40). The tracer mixing ratios are

field of mixi io f ingl field, which h im- L i
F;(Ii/(?soar;]tlg::)nfguL?;%noi;aastl)gilfgtrrgll(jﬁg ;ef S,e\rlc\; rlr?ixinzrregilgn also similar although the LMCSL field is smoother than that
__obtained with HEL.

The results obtained with HEL are compared to those ob-
tained with the third-order semi-implicit LMCSL scheme
(Kaas 2008 without introduction of any shape-preserving

5.1.2 Shallow water model results

The initial state of the shallow water model is chosen rather
arbitrarily as wavy structure in the geopotential surface
height field,., shown in Fig.9, with the velocity field (not
shown) simply initialized to be in geostrophic balance with
this mass field. Figur® also shows the bottom topography,
hs, consisting of a “sharp” isolated “mountain”, and an initial
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Fig. 10.Results after 48 h of simulation based on the initial conditions and bottom topography B Panels to the left show the surface
height field, while those to the right show the mixing ratio. The upper panels show the result obtained with the LMCSL scheme, while HEL
is shown below.

In the lower panel of Figll we have also — for illus- itis likely that the result obtained in spherical geometry will
trative purposes — plotted the height and mixing ratio field also be very similar to the underlying Eulerian-based scheme
obtained in an additional HEL simulation where the parcel— whatever that might be.
mixing was switched off. The mixing ratio for the passive By introducing a passive tracer with initial density equal to
inert tracer is now highly unrealistic, demonstrating the im- that of#, i.e., the mixing ratio is equal to one, we have tested
portance of the mixing we have introduced. In this unmixedto what extent the HEL is “wind—mass” consistent, and it has
version the initial step function type mixing ratio has been been found that this is indeed the case since the density field
“cut into bits and pieces” determined by the location of the (not shown) continued to be almost completely identical to
individual Lagrangian parcels. It is noted (not shown) thatthat of 2 even in long simulations. It is noted that for this
the density of parcels is quite homogenous in the sense thadest it was necessary to switch off the Newtonian coolifig
there are no larger regions without any parcels. Surprisinglysince otherwise one field would have been forced while the
the height field continues to be smooth and very similar toother was not.
that of LMCSL and of the parcel mixed version of HEL,
and the unmixed HEL continues to be numerically stable. We5.2 ~ Pre-existing functional relations in the
suspect that dynamical adjustments between the velocity and  shallow water model
mass fields in the model tend to prevent development of local
small-scale “lows” and “highs”, which one could envisage It was shown in Sect4.2.3that the mixing diagnostics,
due to errors in parcel trajectory calculations. As an examZu, andlo obtained with HEL in strongly deformational flow
ple, the flow around a parcel with anomalously low density, Were quite acceptable. We have performed a corresponding
i.e., height, as compared to its nearest neighbors, tends to gealculation for transport in the shallow water flow using ex-
unbalanced in a way leading to development of local converactly the same initial functional shapes as in Sdc2.3
gence, which eventually increases the parcel density via th@nd in Fig.12 these are shown as time series for the non-
o factor (see Eq40). shape-preserving LMCSL scheme and for HEL. As expected

Admittedly, the shallow model we have used here is based-MCSL produce non-zero values of both range-preserving
on a simplified cartesian geometry. It is planned to imple-unmixing, ly, and of overshootingjo. For the Lagrangian
ment HEL in a shallow model in spherical geometry, and to representation in HEL, andly are both zero via construc-
apply it for standard validation tests of shallow water modeltion, while the same is the case fiyrin the Eulerian HEL
dynamics. However, since we have here obtained almost intePresentation. The level f in the latter is very small as
distinguishable results in the HEL version and the underlyingcompared to that in LMCSL. The degree of real mixing,

quite similar, whilel, in the Lagrangian HEL representation

www.geosci-model-dev.net/6/2023/2013/ Geosci. Model Dev., 6, 228+, 2013
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Fig. 11.As Fig. 10 but after 480 h of simulation. The lower panels show results in a HEL configuration without any parcel mixing.

is about half of that. The fact that the overall levels of real
mixing in HEL and LMCSL have the same order of magni- "

Mixing diagnostics - shallow water

o—e [, - LMCSL
tude indicates that the ways we have obtained the mixing and ® o I,- LMCSL
. . . 0.0020 Q.
Eulerian space smoothing in HEL are not completely unreal- X Lo INOSL
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6 Discussion R

0.0005

A number of issues related to the introduction of the new
HEL scheme deserve some discussion provided in the fol- " e
lowing subsections.

Fig. 12. Time series of mixing diagnostiég, Iy, andig obtained in
6.1 Number of parcels 48h simulations with the shallow water model using the LMCSL
and HEL schemes. For HEL both the Eulerian and the Lagrangian
In the present applications of HEL the total number of parcelsrepresentations are plotted. It is noted that in the Eulerian represen-
is equal to the number of Eulerian grid cells. In principle tation of HEL [o = 0 (not shown), while in the Lagrangian repre-
one could, however, easily increase the number of parcelssentation bottl, = 0 andig = 0 (not shown).
although this has a computational cost, particularly due to in-
creased costs of mixing. A test (not shown) where the number i ] o
of parcels in the shallow water model is four times that of theanfj the mIO_ldle panels O_f Fig. 11, althquqh the tracer mixing
number of Eulerian grid cells has been carried out, and the re[a_tlo fields in these additional simulations, as expected, are
sults were very similar to those in the lower panels of Fig. 10S/ightly smoother.
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6.2 Mixing ‘ ‘ __ Multi-tracer efficiency

As noted previously, the mixing between Lagrangian parcels ..}

introduced here is based on simple geometrical principles

minimizing the need for empirically based tuning. However,

it is of course possible to formulate such physically based

mixing in other ways, which in practice can lead to a stronger ™[

or weaker mixing between parcels. 0 S S R el B
One potentially controversial issue is the degree of direc- e

tional bias of the mixing. As described in Se8bur mixing o ;

is biased so that it is dominated by mixing with neighbors Tracers

that are aligned along the asymptotic dilatation axis. This_ - .

approach is based on the geometrical principle illustrated it 19 13.CPU timing on a single processor.

Fig. 4: remapping of the parcels into regular squared shapes

filling the integration domain only requires mixing along the locally defined values, the global nudging can be considered
asymptotic dilation axis. This remapping is needed to obtain

) , : a localized process.

an unaliased representation of the Lagrangian parcel densi-

ties — a problem that is quite different from that of molecu- 6 4 Computational efficiency

lar mixing, which is generally isotropic in nature. We have

tested the effect of performing the mixing with a fake direc- The purpose of the present paper has been to describe HEL,

tional bias, which is not along the asymptotic dilation axis and to demonstrate its accuracy. A careful investigation of

but instead along an axis perpendicular to it. The result (nothe computational cost of HEL would require multiple tests

shown) is an excessive damping and considerably larger errasn a massively parallel computer system. Here we have

norms for all the inert passive transport tests reported aboveonly performed single processor CPU tests using an Intel

Our actual choice of = 10 was based on a compromise: a Core2 Duo, E6550 @ 2.9 GHz processor, and the Intel For-

much smaller value would be too isotropic and too damping,tran 13.0.0 compiler with flags -ipo, -O3, -no-prec-div, -

and a much larger value would result in too little realized static, and -xHost. The tests reveal that HEL is considerably

mixing; i.e., the parcel deformatiort$ would grow to unre-  faster than CSLAM-M for the passive tracer test presented in

alistic values in strongly deformational flows. Sect4, particularly when many tracers ara considered. As an
The present paper does not investigate the influence of paexample, Figl3 shows the CPU timing required to perform

cel mixing on the distribution of energy on different wave the non-divergent deformation test in Sek2with an equa-

1000 |-

Z s00f , -

numbers. This is the subject of ongoing research. torial spatial resolution of 0.75 and a maximum Courant
number of 5.5. The number of passive inert tracers was var-
6.3 Local versus global nudging towards the ied from 2 to 20, and it is seen that the multi-tracer efficiency
target values of HEL is better than that of CSLAM-M.

A main reason for the faster performance of HEL is that
The fourth desirable property listed in Settl states that only first-order accurate remappings are needed in the un-
a transport scheme should be transportive and local. Whilalerlying Eulerian forecast for passive transport, while in
this is fully achieved in the parcel (Lagrangian) representa-CSLAM-M third-order remapping have been used.
tion of HEL, the locality property is formally not fulfilled Although we have not performed parallel efficiency tests,
in the Eulerian representation since the nudging we perthe code has been prepared somewhat for parallelization. The
form on the Eulerian-based forecast towards the target valmost important issue relates to the way individual parcels are
ues is performed globally (see Se2t6). We have formu- transferred from the memory of one CPU/node to another. As
lated and tested a local nudging which only involves mass reusual in geophysical fluid dynamics each CPU is reserved for
organizations between neighboring cells. This locally mass-a certain number of horizontal Eulerian grid cells including
conserving version of HEL performs satisfactorily with re- a halo zone. Corresponding to this, the actual physical lo-
sults (not shown) that are almost comparable or somewhatation of each Lagrangian parcel determines in which part
degraded as compared to the standard HEL version. Howef the memory it is stored. Since the number of parcels in a
ever, the local nudging is quite expensive from a numericalgiven domain can vary significantly due to the divergence of
point of view, and therefore this version has not been investhe flow, the actual memory allocation for Lagrangian parcel
tigated further. In practice since the bulk memory in HEL is information required for each CPU must be somewhat higher
in Lagrangian space, the standard version of HEL is highlythan that corresponding to the average parcel density.
local, as can also be seen directly from all the plots pre- Although our first tests suggest that HEL is computation-
sented above. In fact, since the limits within which local Eu- ally efficient, particularly for multiple tracers, there is an im-
lerian values can change due to the nudging are defined frormportant memory penalty. Considering, e.g., two-dimensional
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passive transport using a traditional Eulerian-based schemig is logical to perform chemical calculations in the parcel
with K Eulerian grid cells/points, and witli/ different  space. In an accompanying papéfa@sen et al.2012) it
tracers, the total number of prognostic variableXis M. is described and demonstrated how HEL performs when it
For HEL, however, the corresponding number is typically is used as the underlying numerical scheme in a simple so-
K x (M + M +6), where “6” reflects the additional variables called online atmospheric chemistry transport model.

of parcel deformation’(s), parcel volumeX V), components

of the parcel position vector§ and’y) and the position

components of the auxiliary parcéixz and’ys). 7 Conclusions

The original motivation for developing HEL was to set up a
numerical method for use in fluid dynamics that fulfills all

Arguably the most important issue is how the HEL scheme isthe 11 desirable properties listed in Seici.
extended for use in three-dimensional applications. At least The passive transport tests described in S&dhe test-

two fundamentally different options may be investigated: ~ ing in the dynamical model (Sed), and the efficiency in-
vestigations in Sec6.4 clearly show that HEL fulfils all 11

— using a Lagrangian or quasi-Lagrangian vertical coor-properties, and that it is very multi-tracer efficient. At high
dinate as inSgrensen et a(2013 each Lagrangian  Courant numbers, the convergence rates of HEL are lower
parcel could stay within the same layer and have an inthan those of CSLAM-M, with which it has been compared.
stantaneous vertical extension equal to that of the layerHowever, the absolute level of accuracy in HEL is very high.
The vertical extension of Lagrangian parcels may in A fundamental component of HEL is a directionally biased
fact be used as an additional prognostic variable andnixing between neighboring cells, which is proportional to
used to determine the layer thickness just as it wasthe deformation rate of the flow. This mixing has been formu-
demonstrated with the shallow water model in S&ct. |ated in such a way that the 11th property (avoidance of spu-
(a one layer model). rious numerical mixing/unmixing) continues to be fulfilled

in the Lagrangian representation of HEL. Thus HEL should

be ideal as the underlying scheme for chemical transport in

tical levels as in e.g. ATTILA $tenke et a).2008 ; . . .
) ; .. the atmosphere particularly if chemistry calculations are per-
2009. For a fully dynamic model implementation in- . )
formed in Lagrangian space.

stantaneous parcel densities and temperatures may be
used to modify or nudge the parcel vertical positions so
that they are more consistent with the vertical structureappendix A

of the local atmosphere as represented in the Eulerian

grid. Itis speculated that such nudging may be used as jst of prognostic variables

tool to stabilize the model with regard to fast gravity

and sound waves. The set of prognostic variables for solving the two-

. , o . dimensional transport/continuity problem (passive transport)
In a three-dimensional application the mixing between;, HEL includes

parcels must be reconsidered, and presumably it is necessary
to sepa.rate.horizontal and veftical m'i>.<ing since they repre<£,  Density of dry air in Eulerian space
sent quite different processes in stratified fluids.

6.5 Application in a three-dimensional model

— letting parcels float freely between the Eulerian ver-

Eppem=1,....M Density of tracers in Eulerian space
6.6 Prognostic variables in a dynamic model Yo Density of dry air in Lagrangian parcels
Lomem=1,..., M Density of tracers in Lagrangian parcels

In the dynamic tests in Sech.the HEL scheme was only
used for transport of the mass field. In a future applicatioan _ -
in a baroclinic model in spherical geometry one may obvi- ¥ ¥ coordinate of parcel position vectors
ously use HEL as a transport scheme for other quantities anflx,  x coordinate of auxiliary parcels
invariants such as momentum, total energy, and potential vor, |, coordinate of auxiliary parcels
ticity.

x coordinate of parcel position vectors

Ly Areal/volume of the Lagrangian parcels

6.7 Using HEL in an atmospheric chemical transport “s  Deformation of Lagrangian parcels (A1)

model
Each variable is represented & Eulerian cells orP La-

HEL should be suited quite well as a numerical fundamentgrangian parcels. Note that for passive transport it has here
for an atmospheric chemical transport model, and has in facbeen assumed that velocity components are known (non-
been designed with this goal in mind. Since the mixing we prognostic) variables.

have introduced between neighboring parcels is purely real,
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j — Y(x)
o (v (aG)
o (X &)

> d,

Xmin X Xmaz

Fig. B1. lllustration of the distance measurg (arrows). The
filled circles are relative concentration&;, xx), generated by the

This means that each parcel trajectory is split into two seg-
ments,C1 and C», so that the new parcel position vector,
rit1, becomes

rtl=r" 4 C1+Co. (C1)

The C; segment is based on velocities at time lexel
and it approximates the forward trajectory from the depar-
ture pointr’, to the trajectory midpoim’},H/Z:

At 1/ Ar\?
Ci1~ (7) Vi + > (7> AL, (C2)
whereV” is the velocity interpolated to the parcel location
r’, at time leveln, and the last term on the right-hand side

represents the trajectory contribution due to the acceleration

transport scheme and the unfilled circles are the closest point™) a|§0 at the_ time—s_:pace |0_Cati0@- assuming a stationary
(O w (x[°%), on the pre-existing functional relation curve Velocity field in the time period fromAz to (n +1/2)At.

(adopted fromLauritzen and Thuburr2012).

Appendix B

Mixing diagnostics

Real mixing
l _1i di A o) € A (1)
A |0 ,else

Range-preserving unmixing

1 & (dAAL i (e &) € B
lu:z};{o ,else (B2)

Overshooting

1 &E [ deAAL LI (e AUB
ZO_AZ{Ok k,eléék &) & ( ), (B3)
k=1

whereA = Zf:l A Ay is the total area and is the shortest
distance between the poifig, &) and the functional rela-
tions curve(x, ¥ (x)) (see FigB1). A is the area that is de-
fined by the convex hullB is the area outsidgl, but within
the range of the initial data (see FD.

Appendix C

Parcel trajectories

l.e.,
A; =(V-vV)", (C3)

which is estimated via centered differences and subsequent
interpolation tor’).

The second trajectory segme@b, is based on provisional
velocities extrapolated linearly in time from time level- 1
andn to time leveln + 1:

yrtl =y _yr-1 (C4)

where( ~ )**1indicates a quantity that has been obtained via
temporal extrapolatiorC, approximates the forward trajec-
tory from the midpoin'rr’}fl/2 to the arrival parcel location
r+1. however, it is obtained as minus thackwardtrajec-

tory from the arrival location:

At ~n+1 1 At 2~n+1
Cor—((-=)V (== A", c5

where the notation );’fl indicate terms that have been in-

terpolated to the, initially unknown, locatior} ™.

An iterative procedure, including two iterations, is used to
obtain the final estimate of;**. However, since”’*! is un-
known initially a pre-iteration is performed to obtain a first
guess ofr” 1. In the pre-iteratiorCs is zero andC; is ob-
tained as in Eq.@2) but with Az/2 replaced byAt.

All spatial interpolations involved in the estimation of the
trajectories are third-order Lagrange polynomial interpola-
tions.
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