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Abstract. We present an aerosol data assimilation system
based on a global aerosol climate model (SPRINTARS –
Spectral Radiation-Transport Model for Aerosol Species)
and a four-dimensional variational data assimilation method
(4D-Var). Its main purposes are to optimize emission esti-
mates, improve composites, and obtain the best estimate of
the radiative effects of aerosols in conjunction with observa-
tions. To reduce the huge computational cost caused by the
iterative integrations in the models, we developed an offline
model and a corresponding adjoint model, which are driven
by pre-calculated meteorological, land, and soil data. The of-
fline and adjoint model shortened the computational time of
the inner loop by more than 30 %.

By comparing the results with a 1 yr simulation from the
original online model, the consistency of the offline model
was verified, with correlation coefficientR > 0.97 and abso-
lute value of normalized mean bias NMB< 7 % for the nat-
ural aerosol emissions and aerosol optical thickness (AOT)
of individual aerosol species. Deviations between the offline
and original online models are mainly associated with the
time interpolation of the input meteorological variables in the
offline model; the smaller variability and difference in the
wind velocity near the surface and relative humidity cause
negative and positive biases in the wind-blown aerosol emis-
sions and AOTs of hygroscopic aerosols, respectively.

The feasibility and capability of the developed system for
aerosol inverse modelling was demonstrated in several in-
version experiments based on the observing system simu-
lation experiment framework. In the experiments, we used
the simulated observation data sets of fine- and coarse-mode

AOTs from sun-synchronous polar orbits to investigate the
impact of the observational frequency (number of satellites)
and coverage (land and ocean), and assigned aerosol emis-
sions to control parameters. Observations over land have a
notably positive impact on the performance of inverse mod-
elling as compared with observations over ocean, implying
that reliable observational information over land is impor-
tant for inverse modelling of land-born aerosols. The exper-
imental results also indicate that information that provides
differentiations between aerosol species is crucial to inverse
modelling over regions where various aerosol species coexist
(e.g. industrialized regions and areas downwind of them).

1 Introduction

It is well known that airborne aerosols play an important
role in air quality, acid rain, and human health (Pope et al.,
2002). Furthermore, aerosols crucially impact climate and
weather through complicated processes (i.e. direct, semi-
direct, first indirect, and second indirect effects). Rodwell
and Jung (2008) reported that updated aerosol climatology
leads to improvements in forecast skill and error reduc-
tion in precipitation and wind for the forecast model of
the European Centre for Medium-range Weather Forecasts
(ECMWF). Their results indicate that aerosols and weather
are strongly connected, and that large uncertainties remain in
the description of aerosols.
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Recently, sophisticated chemical transport models (CTM)
have been developed at several research institutes that have
provided insight into various aspects of aerosols (e.g. emis-
sions, transport, deposition, and climate effects). However,
uncertainties remain in the model results. The aerosol model
inter-comparison (AeroCom) found that there is large diver-
sity among the models in emissions, composition, and opti-
cal properties (Textor et al., 2006; Kinne et al., 2006). The
Fourth Assessment Report (AR4) of the IPCC (Forster et al.,
2007) suggests that scientific understanding of aerosol radia-
tive forcing is still at a mid-low to low level, and its uncer-
tainty is greater than that for long-lived greenhouse gasses.

Data assimilation, which optimizes initial conditions and
model parameters with observational constraints and has
contributed substantially to the development of numerical
weather prediction (NWP), has recently also been applied to
CTMs. For gaseous species, Elbern et al. (1997) applied the
four-dimensional variational data assimilation method (4D-
Var) to the European Air Pollution Dispersion (EURAD)
CTM and optimized ozone initial conditions over central Eu-
rope (Elbern and Schmidt, 2001). Chai et al. (2006, 2007)
developed a Sulfur Transport Eulerian Model (STEM) 4D-
Var system and assimilated a data set from an observational
campaign. Assimilation methods have also been extended
to inverse modelling of various gaseous species (e.g. Yumi-
moto and Uno, 2006; Stavrakou and Müller, 2006; Elbern
et al., 2007; Kopacz et al., 2009; Stavrakou et al., 2009).
More recently, an 8 yr reanalysis of atmospheric composition
was produced by the Monitoring Atmospheric Composition
and Climate (MACC) project with the ECMWF’s Integrated
Forecast System (Inness et al., 2013).

For airborne aerosols, Hakami et al. (2005) performed in-
verse modelling of black carbon emissions with the STEM
4D-Var system. Yumimoto et al. (2008, 2012) estimated
dust emission and particle size distributions of extreme dust
storms over East Asia with an in situ lidar network and
the RAMS/CFORS-4DVAR (RC4) data assimilation system.
Dubovik et al. (2008) optimized global aerosol sources from
satellite data using the adjoint of the GOCART model. Wang
et al. (2012) performed a top-down estimate of dust emis-
sion with satellite measurements and the GEOS-Chem ad-
joint model (Henze et al., 2007). As part of the MACC
project, aerosol optical depth (AOT) measured by satellites
was assimilated in the Integrated Forecast System with the
4D-Var method (Benedetti et al., 2009). Zhang et al. (2008)
assimilated AOT in an operational forecast system with the
two-dimensional variational data assimilation method (2D-
Var). Huneeus et al. (2012, 2013) performed top-down es-
timates of aerosol emission inventories with total and fine-
mode AOT measured by satellites. In addition to the vari-
ational method, ensemble-based assimilation methods have
also been applied to CTMs (Constantinescu et al., 2007a, b;
Sekiyama et al., 2010; Schutgens et al., 2010; Yumimoto and
Takemura, 2011; Miyazaki et al., 2012). Yet, compared with

NWP, data assimilation for aerosol species is still in the de-
velopment stage.

Here we present a data assimilation system based on 4D-
Var and the global aerosol climate model Spectral Radiation-
Transport Model for Aerosol Species (SPRINTARS) with
the ultimate aim of optimizing emission estimates, improv-
ing four-dimensional descriptions, and obtaining the best es-
timate of the climate effect of airborne aerosols in conjunc-
tion with various observations. To reduce the huge compu-
tational cost arising from the iterative integration of the for-
ward and adjoint models, we have developed an offline ver-
sion of SPRINTARS. An adjoint version of SPRINTARS was
developed based on the offline model. To assess the capabil-
ity of the system in inverse modelling applications, we per-
formed several inversion experiments based on the observing
system simulation experiment (OSSE) framework. The ex-
periments also examined the impact of the observation fre-
quency (number of satellites) and coverage (land and ocean)
on the inversion results.

The paper is structured as follows. Section 2 presents brief
descriptions of the methodology of 4D-Var for aerosol data
assimilation and inverse modelling. Section 3 describes the
SPRINTARS/4D-Var data assimilation system. The offline
and adjoint models used in the system are also presented.
In Sect. 4, we validate the offline model with respect to the
original online model. Section 5 describes the several inver-
sion tests that we performed. The impact of observational
frequency and coverage on the inversion is analysed. Finally,
Sect. 6 presents our conclusions.

2 The 4D-Var data assimilation method with aerosol
transport model

At a given time stept , the evolution of the aerosol transport
model is described as

Ct+1 = M(Ct ,E), (1)

whereC andE are vectors of the aerosol mass concentration
of dimensionm and emission of dimensionl, respectively. To
simplify the problem setup, here we assume that the emission
is constant over time.M denotes the model operator, which
includes advection, diffusion, chemical reaction, deposition,
emission, and feedback of the aerosols. Using a unified vec-
tor x = [C,E]

T of dimensionn = m + l, Eq. (1) can be re-
defined as

Ct+1 = M(xt ). (2)

In the 4D-Var method (Talagrand and Courtier, 1987), we
define the cost function (J ) as follows:

J = JC + JE + JO , (3)

JC =
1

2
(C0 − Cb)

T B−1
C (C0 − Cb) , (4)
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JE =
1

2
(E − Eb)

T B−1
E (E − Eb) , (5)

JO =
1

2

T∑
t=0

(yt − Ht (x0))
T R−1

t (yt − Ht (x0)). (6)

Here JC and JE are called as background terms, which
guarantee the uniqueness of the optimized solution even in
the underdetermined problem in whichn is larger than the
number of observationsp; BC andBE are the background
error covariance matrices of dimensionsm × m andl × l for
concentration and emission, respectively;C0 is the initial
aerosol concentration att = 0; andCb andEb represent the
background or a priori values of concentration and emission,
respectively. Therefore,JC andJE are measures of the devia-
tion from the background value weighted by the background
error covariance.Jo represents the observational term, which
measures the distance between the observation (y) and mod-
elled values;H is given by

Ht (x0) = Ĥt (Mt (Mt−1 · · ·M1(x0) · · ·)), (7)

whereĤ denotes the observation operator, which maps the
model state into the observation state;x0 = [C0, E]T is the
control parameter of dimensionn; andR represents the ob-
servation error covariance matrix.

To obtain the optimal solution in which the cost function
is minimized, the gradient of the cost function is required.
This gradient of the cost function with respect to the control
parameterx0 is given by

∇x0J = ∇C0JE + ∇EJC + ∇x0JO

= B−1
C0

(C0 − Cb) + B−1
E (E − Eb)

+

T∑
t=0

HT R−1
t (yt − Ht (x0)), (8)

whereH is the tangent linear ofH given by

Ht = ĤtM t−1M t−1 · · ·M1 (9)

in which Ĥ andM represent the tangent linear versions of
the observation operator̂H and the model evolutionM. The
dimension of∇x0J is n.

In 4D-Var, the adjoint model is used to calculate Eq. (8).
The adjoint model of Eq. (1) is derived as follows:

χ t−1 = MT
t λt + φt . (10)

Here χ t = [λt ,ε]T , whereλ and ε are the adjoint vari-
ables forC andE, respectively. In addition,φ, which shows
a residual between the observations and modelled values,
drives the adjoint model given by

φt = HT
t R−1

t (yt − Ht (x0)) . (11)

As the subscripts in Eq. (10) show, the adjoint models are
integrated from the final timet = T to the initial timet = 0,
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Fig. 1. Schematic diagram of the SPRINTARS/4D-Var data assim-
ilation system.(a) a priori run,(b) inner loop, and(c) a posteriori
run.

backward in time. The adjoint variables at time stept repre-
sent the sensitivity of the observational part of the cost func-
tion with respect to the concentration and emission at time
step t . With the adjoint variables, the gradient of the cost
function with respect to the control parameter is obtained as
follows:

∇x0J = χ0 =

[
λ0
ε

]
. (12)

The optimal solution of the initial conditionsC0 and emis-
sionE that minimizes the cost function is obtained in an it-
erative manner. At each iteration step, the cost function and
its gradient are re-calculated with updated initial conditions
and emission.

3 The SPRINTARS/4D-Var data assimilation system

A schematic diagram of the SPRINTARS/4D-Var data as-
similation system is shown in Fig. 1. The SPRINTARS/4D-
Var data assimilation system is composed of three major pro-
cesses: a priori run, inner loop, and a posteriori run. The a
priori run (Fig. 1a) is a standard run by the original online
SPRINTARS (hereafter referred to as ONS) before data as-
similation. The inner loop (Fig. 1b) is the main core of 4D-
Var, and consists of a forward run, backward run, and op-
timization process. In this iterative cycle, observations are
assimilated and initial and boundary conditions, and aerosol
emissions, are optimized to minimize the cost function. For
the optimization, more than 10 iterative integrations of for-
ward and adjoint runs are required. To reduce this compu-
tational time, we developed an offline version of SPRINT-
ARS (hereafter referred to as OFS) and corresponding ad-
joint model (ADJ), which avoid the integrating meteoro-
logical and radiative processes of the coupled general cir-
culation model (GCM). Meteorological, land, and soil data
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pre-calculated by the a priori run are stored and used to drive
OFS and ADJ in the inner loop. Using optimized initial and
boundary conditions and emissions, the a posteriori run is
performed by ONS (Fig. 1c). The a posteriori run provides
assimilated (a posteriori) estimates of 4-dimensional distri-
butions, deposition fluxes, and radiative forcing of aerosols.
To account for the non-linearity and aerosol feedback of the
system into the assimilation, we can update the input meteo-
rological, land, and soil data to those provided by the a pos-
teriori run instead of the a priori run, and then perform the
inner loop again to optimize the control parameters with the
updated input data. This update is called the outer loop (e.g.
Huang et al., 2009). The following subsections give detailed
descriptions of each component.

3.1 SPRINTARS

The Spectral Radiation-Transport Model for Aerosol Species
(Takemura et al., 2000, 2005) is a state-of-the-art global
aerosol climate model, and is coupled online with a GCM,
namely the Model for Interdisciplinary Research on Climate
(MIROC), developed by the Atmosphere and Ocean Re-
search Institute (AORI) at the University of Tokyo/National
Institute for Environment Studies (NIES)/Japan Agency for
Marine-Earth Science and Technology (JAMSTEC) (Watan-
abe et al., 2010). SPRINTARS treats the major tropospheric
aerosol components (carbon (black and organic carbon; BC
and OC), soil dust, sea salt, sulfate, and their precursors (sul-
fur dioxide and dimethyl sulfide; DMS)). SPRINTARS has 6
dust particle bins whose effective radii are 0.13, 0.33, 0.82,
1.27, 3.20 and 8.02 µm, and 4 sea salt particle bins whose
effective radii are 0.18, 0.56, 1.78, and 5.62 µm. The online
coupling allows SPRINTARS to estimate the direct, semi-
direct, and indirect effects of aerosols, and feedback these
effects to the radiation and cloud/precipitation processes in
the GCM (Takemura, 2012). In SPRINTARS, the evolution
of the aerosol mass concentration is described as follows:

Ct+1 = M(xt ) = Madvc(Ct ) + Mdiff (Ct ) + Mchem(Ct )

+ Mdepo(Ct ) + Memiss(E), (13)

where Madvc represents advection,Mdiff diffusion, Mchem
sulfur chemistry,Mdepo wet and dry depositions and gravi-
tational settling, andMemissthe emission process. Details are
described by Takemura et al. (2000, 2005). SPRINTARS is
widely used in studies of aerosol climate effects (Takemura,
2012), aerosol model intercomparison (AeroCom; Schulz et
al., 2006; Huneeus et al., 2011), long-range transport of min-
eral aerosols (Yumimoto et al., 2009; Uno et al., 2009.),
aerosol data assimilation (Yumimoto and Takemura, 2011),
etc.

In this study, we use SPRINTARS version 3.84 with T42
horizontal resolution (approximately 2.8◦

× 2.8◦) and 20 ver-
tical sigma layers. Both anthropogenic and biomass burning
emissions are based on Lamarque et al. (2010). The soil dust
emission is represented as a function of the cube of the wind

velocity at 10 m height depending on land use, soil texture,
vegetation, leaf area index (LAI), soil moisture, and snow
cover. The sea salt spray emission is proportional to the 3.2
power of the wind velocity at 10 m height over the ocean
without sea ice. Sulfur dioxide (SO2) emissions from vol-
canic eruptions are based on the Global Emissions Inven-
tory Activity (GEIA) database (Andres and Kasgnoc, 1998).
The reader can refer to Takemura (2012) for details of the
aerosol emissions in SPRINTARS. Reanalysis products pro-
vided by the National Centers for Environmental Prediction
(NCEP)/National Center for Atmospheric Research (NCAR)
are used for nudging of the horizontal wind and temperature
in the MIROC.

3.2 Offline SPRINTARS

To reduce the computational time of the inner loop, we devel-
oped an offline version of SPRINTARS (OFS). OFS is driven
by meteorological data pre-calculated by ONS, and only ad-
vection, diffusion, chemistry, dry and wet depositions, grav-
itational settling, and emissions of aerosols are calculated,
skipping the integrations of the dynamic core and physical
package of the MIROC. The input meteorological data in-
clude principal meteorological variables (e.g. wind velocity,
temperature, pressure, humidity, temperature at 2 m height,
and wind velocity at 10 m height), soil and land information
(soil moisture, snow amount, LAI, and sea ice), cloud and
precipitation information (precipitation flux, cloud cover, cu-
mulus fraction, cloud water, and water/ice partition), and ra-
diative variables (long- and short-wave heating rate), which
are linearly interpolated to the model time step. Compared to
the ONS, the OFS is faster by a factor of 1.5 with T42 reso-
lution. With finer resolution, the computational efficiency of
OFS should be even more pronounced. We validate OFS in
Section 4.

3.3 The adjoint of offline SPRINTARS

The adjoint version of SPRINTARS (ADJ) is derived directly
from the discrete equation of OFS. The adjoint model of
Eq. (13) becomes

χ t−1 = MT
t λt = (14)(

MT
advc,t + MT

diff ,t + MT
chem,t + MT

depo,t + MT
emiss,t

)
λt + φt ,

whereMadvc, Mdiff , Mchem, Mdepo, andMemissrepresent the
tangent linear (or Jacobian) ofMadvc, Mdiff , Mchem, Mdepo,
and Memiss, respectively, andφ measures the residual be-
tween the model and observations (Eq.11) and drives the
adjoint model. Integration of the adjoint model from the fi-
nal time stept = T to the initial time stept = 0 propagates
observational information measured in the assimilation win-
dow backward in time as the adjoint variables, and calculates
the gradient ofJ with respect to the initial conditions and
emission (see Eqs.8 and12). In the same way as for OFS,
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Table 1.Statistical results of the offline model (OFS) versus the online model (ONS) for aerosol optical thickness (AOT) and emissions. All
statistics were calculated between 70◦ S and 70◦ N.

Average

ONS OFS RMSE1 Correlation slope intercept NMB2 [%] NME3 [%] # of data

AOT

total 0.127 0.125 0.087 0.994 1.00 0.0021 −4.37 13.27 1.87×107

sulfate 0.030 0.032 0.017 0.995 0.98−0.0015 6.35 14.99 1.87×107

carbon 0.015 0.016 0.009 0.978 0.91 0.00079 −21.67 31.00 1.87×107

sea salt 0.046 0.043 0.012 0.991 1.05 0.00059 −18.17 23.65 1.87×107

dust 0.037 0.034 0.014 0.998 1.03 0.0013 −22.02 26.12 1.87×107

SSA 0.97 0.98 0.005 0.986 0.95 0.047 0.12 0.31 1.87×107

Alpha 0.67 0.71 0.087 0.992 0.92 0.023 2.51 6.99 1.87×107

emission
[g km−2 s−1]

sea salt 0.312 0.310 0.111 0.981 0.97 0.011 −0.60 8.02 1.28×107

dust 65.83 62.54 30.60 0.974 0.99 4.10 −32.00 66.13 6.95×104

1 Root mean square error;2 normalized mean bias;3 normalized mean error.

meteorological, land, and soil data pre-calculated by ONS
are used to drive ADJ.

3.4 The optimization process

The optimization (or descent) process numerically searches
for the minimum of the cost function using its gradient, and
is performed after each iteration. The quasi-Newton limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS: Liu
and Nocedal, 1989.) algorithm and conjugate gradient
method are available in SPRINTARS/4D-Var. We adopted
the L-BFGS algorithm in this study.

4 Validation of the offline model

In this section, the fidelity of OFS is examined by com-
parison with ONS. In the examination, we focus on the
aerosol optical variables (i.e. extinction coefficient, aerosol
optical thickness (AOT), and Ångström exponent), which
are measured globally by satellites (e.g. MODIS/Terra
and Aqua, Remer et al., 2005; and CALIOP/CALIPSO,
Winker et al., 2010) and in situ observation networks (e.g.
AERONET, http://aeronet.gsfc.nasa.gov; NIES Lidar Net-
work, http://www-lidar.nies.go.jp; and EARLONET,http://
www.earlinet.org), and are used in various aerosol data as-
similation studies (e.g. Yumimoto and Takemura, 2011; Liu
et al., 2011; Zhang et al., 2008; Sekiyama et al., 2010; Schut-
gens et al., 2010; Yumimoto et al., 2008). We performed a
1 yr integration of ONS for 2007 with a 1 yr spin-up run,
and then drove OFS by the meteorological data calculated by
ONS with the same initial conditions and anthropogenic and
biomass burning emissions. Emissions of natural aerosols
(i.e. dust, sea salt, and DMS) were calculated in each model
and compared between OFS and ONS. The comparison used
1 yr model outputs between 70◦ E and 70◦ N at 3 h intervals.

Table 1 summarizes the statistical results for the aerosol
optical variables, including the root mean square error

(RMSE), correlation coefficient (R), linear least squares
best-fit slope and intercept, normalized mean bias (NMB),
normalized mean error (NME), and data number used for
calculating the statistics. Formulations of the statistical mea-
sures are given in Appendix A. Scatter plots of ONS ver-
sus OFS results are shown in Fig. 2. Colours denote the
frequency of occurrence on a log scale; light blue and
turquoise represent occurrence frequency ranges of 100–
1000 (0.00054 %–0.0054 %) and 1000–10 000 (0.0054 %–
0.054 %), respectively. The AOTs and emissions simulated
by OFS successfully reproduce those by ONS withR > 0.97
and slopes between 0.91 and 1.05. The NMB, in which fac-
tors of 2 under- and over-predictions are−50 % and 100 %,
and NME also show good agreement. Slight overestimates
are found in AOT for sulfate and carbon aerosols; the NMBs
are 6.9 % and 4.0 %, respectively. In addition to the error in
transport due to the use of a time-interpolated wind velocity,
the main reason for the aerosol overestimation is their hy-
groscopicity. It is well known that hygroscopic aerosols can
absorb water and change their particle sizes and optical prop-
erties depending on their chemical characteristics (e.g. Tang,
1996). In the model, the growth rates and extinction cross
sections of sulfate, carbon, and sea-salt aerosols depend on
the relative humidity (RH), and increase significantly along
with the RH under very humid situations (RH> 80 %) (Take-
mura et al., 2000). The difference between the simulated RH
in ONS and time-interpolated RH in OFS can produce these
overestimates. Sea-salt aerosol is also hygroscopic, and its
particle size growth rate and optical properties also depend
on the RH. Underestimation of its emission, as explained in
the following paragraph, however, overcomes the overesti-
mation.

Values of AOT for aeolian aerosols (sea salt and dust) by
OFS show small underestimations of−6.0 % and−6.1 % in
the NMB. These can mostly be attributed to underestimations
in their emissions (Tables 1–3). As mentioned in Sect. 3, the
emission fluxes of sea-salt and dust aerosols are proportional
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Fig. 2. Scatter plots of ONS versus OFS results for aerosol optical thicknesses of(a) total, (b) sulfate,(c) carbonaceous,(d) sea-salt, and
(e)dust aerosols;(f) Ångstöm components; and natural aerosol emissions for(g) sea-salt and(h) dust aerosols. Colours denote frequency of
occurrence on a log scale. The white broken line is the 1: 1 line and the black broken lines denote the 1.5: 1 and 1: 1.5 lines.

to the 3.2 power and the cube of the wind velocity near the
surface, respectively. Moreover, the threshold wind velocity
partly contributes to underestimation of the dust emission;
only when the wind velocity exceeds the threshold velocity
dust is emitted. The time-interpolated wind velocity cannot
reproduce the fine-scale variation of the simulated one, which
results in the underestimation of emissions and AOT. How-
ever, the emission of aeolian aerosols by OFS shows good
agreement with those by the ONS. The relatively large values
of RMSE and NME for dust emission are attributed to a large
underestimation (∼800 g km2 s−1) of a strong dust storm in
the Taklimakan desert on 9 May 2007; the lower wind veloc-
ity at 10 m of OFS (13.1 m s−1 in OFS versus 14.0 m s−1 in
ONS) is primarily responsible for that.

The Ångström exponent of OFS agrees well with that of
ONS, but its scatter plot (Fig. 2f) exhibits a large spread
in the distribution compared with AOTs and emissions. The
Ångström exponent, defined as the slope of the AOT between
the wavelengths of 440 and 870 nm, is commonly used as an
indicator of the aerosol size distribution. Errors from finer
(i.e. sulfate and carbonaceous) and coarser (i.e. sea-salt and
dust) aerosols accumulate and lead to the broad scatter plot.

Figure 3 shows spatial distributions of the total AOT of
ONS and bias (OFS minus ONS) for each individual aerosol
component. The OFS successfully reproduces the spatial dis-
tribution of AOT, and the bias is limited to between−0.04
and 0.05 except in southwestern China. On the one hand,
the positive bias in industrialized regions (i.e. Europe, East
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Table 2.Annual sea-salt emission amounts (Tg yr−1) of the OFS versus ONS for the entire world, the Indian Ocean (19.7◦ E–115.3◦ E), the
Pacific Ocean (115.3◦ E–70.3◦ W), and the Atlantic Ocean (70.3◦ W–19.7◦ E).

all regions Indian Ocean Pacific Ocean Atlantic Ocean

ONS 2933.6 664.4 1497.5 771.6
OFS 2917.3 660.3 1487.4 767.3
Difference [%] 0.6 0.6 0.7 0.6

90ºN

60ºN

30ºN

0º

30ºS

60ºS

90ºS
180º0º 60ºE 120ºE 0º60ºW120ºW

a) Total aerosol optical thickness by ONS

Aerosol optical thickness
0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.00.010.0

90ºN

60ºN

30ºN

0º

30ºS

60ºS

90ºS
180º0º 60ºE 120ºE 0º60ºW120ºW

0 0.01 0.02 0.03 0.04 0.05-0.01-0.02-0.03-0.04-0.05
Difference of AOT (OFS-minus-ONS)

b) Difference of total AOT

0 0.01 0.02 0.03 0.04 0.05-0.01-0.02-0.03-0.04-0.05
Difference of AOT (OFS-minus-ONS)

90ºN

60ºN

30ºN

0º

30ºS

60ºS

90ºS
180º0º 60ºE 120ºE 0º60ºW120ºW

c) Difference of sulfate AOT

0 0.01 0.02 0.03 0.04 0.05-0.01-0.02-0.03-0.04-0.05
Difference of AOT (OFS-minus-ONS)

90ºN

60ºN

30ºN

0º

30ºS

60ºS

90ºS
180º0º 60ºE 120ºE 0º60ºW120ºW

d) Difference of carbon AOT

0 0.01 0.02 0.03 0.04 0.05-0.01-0.02-0.03-0.04-0.05
Difference of AOT (OFS-minus-ONS)

90ºN

60ºN

30ºN

0º

30ºS

60ºS

90ºS
180º0º 60ºE 120ºE 0º60ºW120ºW

e) Difference of sea salt AOT

0 0.01 0.02 0.03 0.04 0.05-0.01-0.02-0.03-0.04-0.05
Difference of AOT (OFS-minus-ONS)

90ºN

60ºN

30ºN

0º

30ºS

60ºS

90ºS
180º0º 60ºE 120ºE 0º60ºW120ºW

f) Difference of dust AOT

Fig. 3. Spatial distributions of annual averaged AOT and deviations (OFS minus ONS).(a) total AOT by ONS and deviations for(b) total,
(c) sulfate,(d) carbon,(e)sea-salt, and(f) dust AOTs.

Asia, and the eastern coast of North America) is dominated
by sulfate aerosol. On the other hand, carbonaceous aerosol
contributes to overestimations over biomass burning sources
(i.e. Central Africa, Southeast Asia, and Central and South
America). The relatively large positive bias (∼0.09 of the
total AOT) around southwestern China and Southeast Asia

is attributed to dense concentrations of sulfate and carbona-
ceous aerosols and the very humid circumstances. The nega-
tive bias is attributed to sea-salt and dust aerosols (Fig. 3a, b).
Tables 2 and 3 summarize the emission amounts of sea-salt
and dust aerosols. Underestimates of sea-salt (∼0.6 %) and
dust (∼5 %) emissions are found for major emission sources
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Table 3. Annual dust emission amounts (Tg yr−1) of the OFS ver-
sus the ONS for the entire world, Australia (106.9◦ E–157.5◦ E,
46.0◦ S–9.8◦ S), Asia (36.6◦ E–129.4◦ E, 15.3◦ N–54.5◦ N), and
Africa (19.3◦ W–36.6◦ E, 1.4◦ N–40.5◦ N).

all regions Australia Asia Africa

ONS 3908.6 76.3 1901.3 1796.2
OFS 3710.0 71.9 1810.7 1700.8
Difference [%] 5.1 5.7 4.8 5.3

and lead to a negative bias in AOT. A larger negative bias in
dust AOT is found around desert regions (i.e. the Taklimakan
and Gobi deserts in northwestern China and the Sahara desert
in Central Africa). An underestimation of the sea-salt AOT
forms a zonal bond over the zone of westerlies (30◦ S–60◦ S,
50◦ N–80◦ N). Underestimates of natural aerosols seem to
be systematic, and there is no regional dependency among
sources.

Vertical distributions of the annual and zonal means of
the total aerosol extinction coefficient and bias (OFS minus
ONS) for each individual aerosol component are exhibited in
Fig. 4. Vertical distributions by OFS agree well with those by
ONS. On the one hand, large biases are found in the lower
layer (sigma level< 0.85) for each individual aerosol com-
ponent. On the other hand, in the upper region, the differ-
ence between ONS and OFS is quite small (<0.001 km−1)

except above the Equator. The bias in the lower layer (sigma
level> 0.85), where most aerosols exist (total aerosol extinc-
tion coefficient> 0.06 km−1) ranges from−8.0 % to 8.4 %.
Sulfate and carbonaceous aerosols show overestimates in the
Northern Hemisphere. However, the negative biases of sea-
salt and dust aerosols overcome it for the total extinction co-
efficient. Sea-salt aerosol by OFS exhibits a symmetric dis-
tribution of negative bias (see Fig. 3e). Underestimations of
the dust aerosol converge in the 0◦–50◦ N range where dust
sources are situated. Positive biases are found around the
Equator for every aerosol (especially for dust). A possible
explanation for this is underestimation of wet removal due to
the interpolated precipitation and cloud variables in OFS.

5 Inversion experiments based on the OSSE framework

We performed several inversion tests based on the OSSE
framework to assess the capabilities of SPRINTARS/4D-Var
in inverse modelling application. The OSSE framework is a
powerful tool used to evaluate the potential impact of a future
or planned observing system on a data assimilation applica-
tion and is also useful for assessing the performance of the
data assimilation system (Masutani et al., 2010). With CTMs,
Edwards et al. (2009), Zoogman et al. (2011), Sekiyama et
al. (2012), and Yumimoto (2013) have carried out OSSEs for
future geostationary satellites and space-borne lidars.

In the OSSE framework, the nature run (NR), the simu-
lated observation, and the control run (CR) are defined. The
NR is a proxy of the “true” state, and is usually derived from
a standard model simulation. The simulated observation, a
representation of the observation data measured by the ob-
serving system we want to examine, is retrieved from the
NR. The CR is used as an “alternative” state and is gener-
ated by a model simulation with different parameter settings,
other meteorological data, and perturbed emissions. With the
CR, the simulated observation is assimilated to generate the
analysis run (AR). By comparing the AR with the NR (esti-
mating how close the AR is to the NR), we can evaluate the
impact of the simulated observation in the assimilation and
the capabilities of the assimilation system.

5.1 Experimental setting

Figure 5 shows a schematic diagram of our inversion exper-
iments. The NR is derived from a model simulation driven
by a standard set of emissions. The aerosol fields produced
by the NR are used to generate the simulated observations.
For the simulated observations, we consider fine- and coarse-
mode AOTs provided by the Level 2 Moderate Resolu-
tion Imaging Spectrometer (MODIS) product (Remer et al.,
2005, 2008). The simulated fine-mode AOT is generated with
AOTs of sulfate, carbonaceous, sea-salt (two finer bins), and
dust (three finer bins) aerosol fields calculated by the NR.
The simulated coarse-mode AOT consists of the two coarser
bins of sea-salt and the three coarser bins of dust aerosols.

Six sets of simulated observations are conducted based
on combinations of two existing and one imaginary satellite
in sun-synchronous polar orbits (Table 4) and data coverage
over ocean and land. The perfect experiment (PE) uses sim-
ulated observations over the globe (all sky; ocean and land)
at 3 h intervals, and is conducted to assess the capabilities of
the data assimilation system. In the PE, it is expected that the
AR recovers aerosol composites and emissions of the NR.

To investigate the impact of the observational frequency in
the inversion, we conducted Experiments 1–3 (E1–3). Obser-
vational data sets from one (Terra) and two (Terra and Aqua)
satellites were assigned to E1 and E2, respectively. E3 as-
similated the simulated AOTs measured by three satellites
(two existing and one imaginary satellite; see Table 4). Re-
mer et al. (2008) noted that compared to the land product,
the MODIS product over the ocean contains inherently more
information because of the spectral surface reflectance. It al-
lows the fine mode fraction (FMF; the fraction of the total
AOT composed of the fine-mode AOT) over the ocean to be
more reliable than that over the land, so that E1–3 use sim-
ulated AOTs only over the ocean. Two additional sensitiv-
ity experiments (Experiments 4 and 5) were also conducted
to evaluate how much the land product impacts the inver-
sion, because major aerosol sources (except sea-salt aerosol)
are situated over land. In the sensitivity experiments (E4
and E5), we assumed the case if we could obtain fine- and
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Fig. 4.Vertical distributions of annual and zonal averaged aerosol extinction coefficients.(a) total aerosol extinction coefficient by ONS and
deviations (OFS minus ONS) of aerosol extinction coefficient for(b) total, (c) sulfate,(d) carbon,(e)sea-salt, and(f) dust aerosols.

Table 4.List of satellites in sun-synchronous polar orbits considered in the inversion experiments.

Sensor/Satellite MODIS/Terra MODIS/Aqua MODIS/Ventus∗

Equator crossing time
10:30 13:30 16:30(Local Time)

* Imaginary satellite.
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coarse-mode AOTs over the land with the same frequency
and accuracy as those over the ocean. E4 and E5 are the coun-
terparts of E1 and E2, respectively. Additional land product
increases the total number of data by a factor of 1.6. In each
data set except PE, observations were limited to the clear sky
so as to reproduce more realistic observational coverage. The
cloud fraction modelled by the NR was used for the cloud
masking. The AOTs between 60◦ S and 70◦ N were assimi-
lated at 3 h intervals. We assumed that the observational error
was 0.05, referring to Kaufman et al. (2005). The six experi-
ments are summarized in Table 5.

The CR is driven with perturbed emissions given by

E′
= σE, (15)

whereE′ andE are the perturbed and base emissions, re-
spectively, andσ is the scaling factor. Emissions of SO2 from
fossil fuel and biomass burning, carbonaceous aerosol from
fossil fuel, biomass fuel, forest fires, and agriculture, sea salt,
and dust were perturbed independently and optimized in the
inverse modelling. Volcanic and DMS emissions were ex-
cluded from the inversion. The scaling factor was randomly
generated following a log-normal distribution with mean= 1
and variation= 2 for SO2 and carbon and with mean= 1 and
variation= 3 for sea-salt and dust emissions. The larger vari-
ation for the natural aerosol emissions reflects their relatively
larger uncertainties (Carmichael et al., 2008). The scaling
factor was allowed to vary in every grid, each day, and each
aerosol. The deviation (CR minus NR) is shown in Fig. 6b.
Compared with the averaged AOT of the NR (Fig. 6a), a large

deviation is found in the source and downwind regions. The
CR shows lower biases (see also the first column in Table 6)
due to the maximum limitation of the scaling factor, which
avoids extremely large perturbations. Comparing the emis-
sions, AOTs show better correlation and lower NMB, and
NME. The CR and NR were initialized with identical aerosol
fields, which cause the lower deviation in AOTs.

We assigned scaling factors of aerosol emissions to con-
trol parameters. The scaling factor allowed increases or de-
creases of the existing emissions, and could not detect miss-
ing sources. Because the CR was generated by emissions per-
turbed by the scaling factor (as shown by Eq. 15), detection
of missing aerosol sources is beyond the scope of this exper-
iment. Emissions of dust and sea-salt aerosols, which have
several particle bins, were adjusted as total emissions (not
each emission of their bins). The initial aerosol conditions
were not included in the control parameters, and the CR,
NR and ARs were initialized with identical aerosol fields.
The background errors were based on the setting of the CR.
We assigned 200 % for SO2 and carbon emissions. For the
natural aerosol emissions (dust and sea salt), 300 % of un-
certainty was assigned. Temporal and special correlations
were not considered in this study. The experimental period
was 10 days (21–31 May 2007) based on average lifetime
of aerosols in atmosphere. The assimilation window was the
full 10 day period. To demonstrate the feasibility of offline
and adjoint models in inverse modelling, all inverse experi-
ments were performed in the inner loop. In the other words,
we performed all the NRs, CRs, and ARs with the offline
model.

5.2 Results of the inversion experiments

The reduction of the cost function is shown in Fig. 7. Note
that the cost function is normalized by the initial values and
presented on a log scale. The cost function reduced by one
order of magnitude during 15–24 iterations in each exper-
iment. Compared with other ideal experiments (e.g. Henze
et al. 2007), the reduction rate is relatively low. This can be
attributed to the observation data. We assimilated two col-
umn quantities (i.e. fine- and coarse-mode AOTs) integrated
from vertical profiles of four aerosol species. In additional
inversion tests, in which the AOT of each individual aerosol
species was independently assimilated, the reduction of the
cost function became much faster; the cost function reduc-
ing by one order within at least 10 iterations (not shown).
One interesting feature is that the reduction rates of the cost
functions show different behaviours depending on the obser-
vational coverage, not on the number of observations; PE,
E4, and E5 exhibited the relatively rapid reduction rate dur-
ing early iterations. This is because they used observation
data over the land. Major emission sources (except sea-salt
aerosol) are situated over land and the observation data over
land covers information from around these sources.
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Table 5. Inversion experiments and their settings.

Experiment Measurement Satellite Cloud Cover Ocean/Land # of Data

Perfectassimilation (P) fine-mode AOTcoarse-mode AOT All Region All Sky Ocean,Land 912 384
Experiment 1 (E1) fine-mode AOTcoarse-mode AOT Terra Clear Sky Ocean 44 164
Experiment 2 (E2) fine-mode AOTcoarse-mode AOT Terra, Aqua Clear Sky Ocean 92 570
Experiment 3 (E3) fine-mode AOTcoarse-mode AOT Terra,Aqua,Ventus Clear Sky Ocean 141 194
Experiment 4 (E4) fine-mode AOTcoarse-mode AOT Terra Clear Sky Ocean,Land 69 940
Experiment 5 (E5) fine-mode AOTcoarse-mode AOT Aqua Clear Sky Ocean,Land 144 688

Table 6.Statistics of the six experiments versus the control run (CR) for aerosol optical thickness and emissions. All statistics were calculated
between 60◦ S and 70◦ N.

Experiment CR PE E1 E2 E3 E4 E5

AOT total R1 0.868 1.000 0.959 0.962 0.963 0.997 0.998
AE2 (%) – 96.3 46.7 48.7 48.9 84.2 86.8
NMB3 (%) −20.0 −0.3 −4.5 −3.8 −3.7 −2.3 −1.7
NME4 (%) 29.5 2.8 12.4 11.0 10.4 8.3 7.5

sulfate R 0.979 0.999 0.984 0.986 0.988 0.994 0.996
AE (%) – 79.0 18.6 24.2 30.3 47.1 57.6
NMB (%) −6.8 0.6 −1.1 −0.9 −1.0 0.3 0.6
NME (%) 11.0 3.2 6.2 5.8 5.6 5.0 4.7

carbon R 1.0 0.996 0.971 0.972 0.973 0.986 0.987
AE (%) – 70.4 19.3 20.5 22.1 44.7 45.7
NMB (%) −9.9 −1.2 −5.0 −4.8 −4.6 −2.6 −2.4
NME (%) 16.2 6.0 12.5 12.3 12.1 9.3 9.2

sea salt R 0.808 0.995 0.890 0.911 0.921 0.881 0.896
AE (%) – 83.1 23.5 31.0 35.3 20.4 25.3
NMB (%) −20.6 −1.0 −6.9 −5.0 −4.3 −8.1 −6.6
NME (%) 42.2 9.2 24.5 20.4 18.4 28.1 26.0

dust R 0.868 1.000 0.960 0.983 0.963 0.999 1.000
AE (%) – 97.7 47.5 49.3 49.3 91.5 95.8
NMB (%) −24.5 0.0 −4.1 −3.8 −3.9 −0.2 0.0
NME (%) 32.3 0.5 9.8 9.3 9.0 1.3 0.9

Emission SO2 R 0.582 0.764 0.679 0.684 0.690 0.720 0.723
AE (%) – 26.5 12.2 12.6 14.0 16.7 17.1
NMB (%) −15.5 0.0 −6.6 −6.1 −6.0 −1.7 −1.1
NME (%) 80.7 60.0 72.0 71.5 70.7 67.7 67.1

carbon R 0.630 0.899 0.735 0.750 0.752 0.841 0.847
AE (%) – 48.4 7.4 7.6 8.6 33.4 34.3
NMB (%) −18.4 −3.2 −11.3 −10.7 −10.3 −6.2 −5.7
NME (%) 76.6 48.6 71.3 70.9 70.4 60.9 60.7

sea salt R 0.487 0.957 0.622 0.674 0.704 0.603 0.634
AE (%) – 75.7 19.2 27.5 32.8 15.7 20.4
NMB (%) −22.8 −1.1 −8.6 −6.6 −5.8 −10.1 −8.5
NME (%) 88.8 28.2 61.7 52.9 48.1 69.4 65.8

dust R 0.470 0.998 0.736 0.752 0.751 0.985 0.995
AE (%) – 93.6 19.3 22.2 21.8 83.8 90.3
NMB (%) −37.0 0.0 −11.6 −10.9 −11.2 −1.6 −0.3
NME (%) 80.7 4.1 63.3 60.9 59.8 10.6 6.6

1 Correlation coefficient;2 root mean square error;3 normalized mean bias;4 normalized mean error.
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Fig. 6.Spatial distributions of the averaged AOT and its deviations (CR minus NR, and AR minus NR).(a) 10 day averaged total AOT from
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Fig. 7.Reduction rate of the cost function on a log scale.

Table 6 shows the statistics of the six experiments ver-
sus the CR. The assimilation efficiency (AE) is defined as
the reduction rate of the RMSE through the inversion (for-
mulation is given in Appendix A). The PE achieves sig-
nificant improvements (AE> 70 %) and agreement with the

NR (R > 0.99, absolute value of NMB< 1.2 %, and NME
<10 %) for the AOT. The 10 day averaged AOT (Fig. 6c)
shows that the deviation is less than 0.01, except for a few
grids over deserts and high-latitude oceans where no obser-
vation data were assimilated. These results confirm that the
PE successfully reproduces AOT fields of the NR and the
feasibility of the assimilation system. During E1–6, in gen-
eral, a larger observation number leads to better improvement
(Table 6). The impact of observation data over the land is dis-
cussed below.

Histograms of the deviations (CR minus NR, and AR mi-
nus NR) are shown in Fig. 8. The CR shows skewed dis-
tributions due to the emissions randomly perturbed by the
scaling factors, which have the maximum limitation. The in-
version results by E2 and E4 also show skewness. Regional
dependencies of assimilated data due to cloud cover and
land/ocean lead this skewness. However, the PE, in which
the simulated observations over the globe are assimilated,
achieves symmetric distributions and the best improvement,
considerably increasing the fractions of deviations between
−0.05 and 0.05. E2 also improves the AOT fields for ev-
ery aerosol species;R is higher than 0.9, AE is 18–47 %,
the absolute value of NMB is less than 1.2 %, and NME
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reduces by more than half except for carbon AOT (Table 6).
Except for sea-salt aerosol, E4 shows better agreement than
E2, especially for dust AOT, in spite of the fewer observation
data. It is mainly observation data near the source regions
that contribute to this advantage. Observation data over the
land, however, leads to slightly worse improvement in sea-
salt AOT, even in the same satellite orbit (i.e. E1 versus E4
and E2 versus E5). The least improvement in sea-salt AOT
is found around the North Pacific and North Atlantic oceans,
where various aerosols are transported from the source re-
gions and coexist (not shown). Modifications of the other
aerosols introduced by observation data over the land may
cause this disadvantage for sea-salt aerosol.

Comparison of the aerosol emission amounts show that the
inversion experiments lead to improved agreement with the
NR (Fig. 9). In particular, PE and E5 successfully recover
the emission amount of the NR with an absolute value of
NMB < 10 %. During E1–E3 (without data over land), bet-
ter improvement generally resulted from an increased use of
satellite data (also see Table 6). However, the additional im-
provement is limited. Observation data over land (E4 and E5)
brings significant improvement in the SO2, carbon, and dust
aerosol emissions. As mentioned above, the modification in
SO2 and carbon emissions complicates sea-salt emission in
the downwind regions where various aerosol species coex-
ist. Dust emission shows significant improvement (R > 0.99,
AE > 90 %, and NME< 7 %) in PE and E5 compared with
the other aerosols. Over land, the coarse-mode AOT is dom-
inated by dust aerosol. This definitive observation results
in the outstanding improvement. In contrast, acceptable im-
provements are found in SO2 and carbon emissions; PE
leads to AE= 26.5 % and 48.4 % andR = 0.764 and 0.899,
respectively. The fine-mode AOT is sensitive not only to
sulfate and carbonaceous aerosols but also to sea-salt and
dust aerosols. This makes categorical detection of individual

aerosols from the fine-mode AOT quite difficult. Moreover,
major SO2 sources coincide with carbonaceous sources in
industrialized and biomass burning regions. These overlap-
ping observational sensitivity and source regions cause the
relatively poorer improvement. We perform two additional
inversion tests. One uses sulfate AOT to optimize SO2 emis-
sion. The other assimilates AOT of carbonaceous aerosol for
carbon emission. The two tests achieveR = 0.922 and 0.964,
AE = 50.2 % and 70.8 %, and NMB= 37.7 % and 30.6 % for
SO2 and carbon emissions, respectively.

Figure 10 shows the relationships between AE and the
number of observations for AOT and aerosol emissions. In
general, higher AE is obtained with an increased number
of observation data over the ocean (E1–3) for both AOT
and emissions. The observation data over the ocean (E1–3)
show that the slope of AE versus the number of observations
ranges from 2.5 to 5.7× 10−5, except sulfate and sea-salt
AOT and emissions. However, sea-salt AOT and emissions
exhibit much higher slopes of 2.4–2.8× 10−4 because sea-
salt aerosol is emitted in sea spray and is distributed mainly
over the ocean. It is clear that observations over land give a
significant improvement in sulfate, carbonaceous, and dust
aerosols. In E5, the AEs of carbonaceous and dust emissions
increased more than 4 times more than in E3, in spite of it
having only a 2.5 % larger number of data than E3.

The experiments show that observation data over land have
a larger impact on inversion than data over ocean because
they can provide information from around the source regions.
Hsu et al. (2004) developed the Deep Blue algorithm, which
employs radiances from the blue channel (412 nm) of the
MODIS/Aqua satellite, and provides AOTs over bright sur-
faces (e.g. arid and semi-arid regions). The space-based lidar
CALIOP (Cloud-Aerosol Lidar with Orthogonal Polariza-
tion) satellite, which was launched on 28 April 2006 aboard
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder

www.geosci-model-dev.net/6/2005/2013/ Geosci. Model Dev., 6, 2005–2022, 2013
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Fig. 9. Comparisons of aerosol emission amounts for(a) SO2 [Gg/10 day],(b) carbonaceous [Gg/10 day],(c) sea-salt [Tg/10 day], and(d)
dust aerosols [Tg/10 day]. Boxes within dashed lines show the regions used to calculate the emission amounts.

Satellite Observation), transmits pulses of light at 532 and
1064 nm, measures the backscattered intensity, and provides
vertical distributions of aerosols regardless of the surface
conditions (Winker et al., 2010). These reliable observations
over land (around source regions) play an important role in
aerosol inverse modelling (Sekiyama et al., 2009; Ku and
Park, 2013). The second implication obtained from the in-
version experiment is the importance of information that dif-
ferentiates between aerosol species. The fine- and coarse-
mode AOTs are inadequate for identifying major tropo-
spheric aerosol species (sulfate and carbonaceous aerosols in
particular). Omar et al. (2009) have developed aerosol clas-
sification algorithms for CALIPSO aerosol products based
on a cluster analysis of a multiyear AERONET data set.
The Ångström exponent, depolarization ratio (Shimizu et al.,
2004) and colour ratio (Sugimoto et al., 2002) provide char-
acteristics of the aerosol layer (e.g. dominant aerosol species)
and are also useful for aerosol inverse modelling.

6 Conclusions

The SPRINTARS/4D-Var data assimilation system was de-
veloped based on a global aerosol climate model (SPRINT-
ARS) and four-dimensional variational data assimilation
method (4D-Var) with the aim of optimizing emissions, im-
proving four-dimensional composites, and obtaining the best
estimate of the climate effects of aerosol species with ob-
servational constraints. To reduce the huge computational
cost due to the iterative integrations of forward and adjoint
models, we employed an offline version of SPRINTARS

(OFS) in which the integrations of the dynamic core and
the physical package by the coupled GCM are skipped,
and pre-calculated meteorological, soil, and land data drive
aerosol advection, diffusion, chemistry, wet and dry deposi-
tions, gravitational settling, and emission processes. The cor-
responding adjoint model was derived from OFS, and the in-
ner loop is accelerated by more than 30 % at T42 horizontal
resolution (about 2.8◦ × 2.8◦) by using the offline and adjoint
models. At a finer resolution, the computational efficiency
should by greatly improved. The SPRINTARS/4D-Var sys-
tem also has the capability of an iterative outer loop that takes
the non-linearity and feedback of aerosols into account.

We validated OFS by using 1 yr simulation results. The
AOT of each individual aerosol species and the natural
aerosol emissions by OFS show good agreement with those
by the online (standard) SPRINTARS (ONS), withR >

0.97 and an absolute value of NMB< 7 %. The wind-blown
sea-salt and dust emissions are slightly underestimated
(NMB = −5.98 and−6.08) due to the time-interpolated (less
variable) wind velocity near the surface in OFS. These neg-
ative biases result in underestimation of the sea-salt and
dust AOTs around the desert region and the zone of wester-
lies over the ocean. A positive bias is found in sulfate and
carbonaceous AOTs with NMB= 6.90 % and 4.02 %. The
time-interpolated RH in OFS contributes to this bias mainly
through their hygroscopicity. A difference in the presentation
of precipitation and clouds between OFS and ONS causes
wet removal to be underestimated, which results in a positive
bias in the aerosol extinction coefficient around the Equator.
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Fig. 10. The relationships between AE and the number of assimi-
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To assess the capability of the developed assimilation sys-
tem in inverse modelling applications, several inversion ex-
periments based on the OSSE framework have been con-
ducted. In the inversion experiments, simulated fine- and
coarse-mode AOTs generated by the NR are assimilated to
the CR, in which perturbed emissions are used. The inversion
results successfully reproduce the original unperturbed emis-
sions, demonstrating the feasibility of the system. The inver-
sion experiments found that the addition of observations over
land (the observation coverage) had a significantly positive
impact on the inversion (except sea-salt emission) compared
with an increase of observations over the ocean because most
major aerosol sources are situated over land. This indicates
that reliable observations over land are important in aerosol
inverse modelling. Another implication obtained from the
inversion experiments is that information that differentiates
between aerosol species is crucial over regions where vari-
ous aerosols are brought together and coexist (e.g. industrial-
ized regions and the northern Pacific and northern Atlantic
oceans). Measurements of aerosol characteristics (e.g. the
Ångström exponent, depolarization ratio and colour ratio)
would be useful.

Subsequent studies will use real inversion modelling.
Coarse-mode AOT data from the MODIS/Terra and Aqua
satellites will be assimilated to reproduce the dust emission
over East Asia. These results will be presented in a forthcom-
ing publication.

Appendix A

Statistical measures

In Sects. 4 and 5, to validate the offline SPRINTARS and in-
version experiment, we use several statistical measures. The
root mean square error (RMSE) is a measure of the averaged
error, defined as follows:

RMSE=

√
1

N

∑
(a − b)2, (A1)

wherea andb denote the values in question and the corre-
sponding verifying values, respectively, andN is the num-
ber of data. Using RMSE, the assimilation efficiency (AE) is
given as

AE =
RMSEf

− RMSEa

RMSEf
× 100, (A2)

where RMSEf and RMSEa represent RMSE before and after
assimilation (inversion), respectively. A positive (negative)
AE indicates that the assimilated values are close to (devi-
ate from) observations, while AE= 100 % indicates that the
assimilated values completely agree with the observations.

The normalized mean bias (NMB) and normalized mean
error (NME) are defined as follows:

NMB =

∑
(a − b)∑

b
× 100, (A3)

NME =

∑
|a − b|∑

b
× 100. (A4)

Although NMB and NME are useful indicators that avoid
inflating the observed range of values, they can be very large
when the values of observations are quite small. The correla-
tion coefficient (R) measures the strength of the linear rela-
tionship between the values in question and the correspond-
ing verifying values. The slope and intercept are derived from
linear fitting with the least squares method.
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