## Supplement to 'EMPOL 1.0: A new parameterization of pollen emission in numerical weather prediction models'

EMPOL is an integral part of the NWP model system COSMO-ART. It is written in Fortran. The NWP model system is distributed in two parts: COSMO can be obtained from the German Weather Service (DWD). The ART part (containing EMPOL) can be obtained from the Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Dr. Bernhard Vogel.

Contact COSMO: cosmo-licence@cosmo-model.org Contact ART: bernhard.vogel@kit.edu

Table 1 gives an overview about the necessary input and model fields that have to be provided when implementing the emission parameterization EMPOL into a different NWP model system.

Table 2 gives an overview about the differences of the emission parameterizations described in the publication.

The different steps of the pollen emission parameterization EMPOL are displayed in Figure 1.

Table 1: Parameters and their units used in the emission parameterization EMPOL. The third column indicates the role of the parameters: 'I' - parameter provided as input field, 'M' - parameter taken from the NWP model (at best from the model level that corresponds to the emission height), 'T' - tuning parameter, 'C' - parameter calculated within EMPOL.

| Parameter               | Unit                   | Info         | Description                                                                  |  |  |
|-------------------------|------------------------|--------------|------------------------------------------------------------------------------|--|--|
| Q <sub>pollen.day</sub> | $m^{-2}$               | Т            | total amount of pollen that can be released per day under perfect conditions |  |  |
| $Q_{pollen,\Delta t}$   | $m^{-2}$               | Т            | amount of pollen that can be released per time step under perfect conditions |  |  |
| $R_{pollen}$            | $m^{-2}$               | С            | content of the pollen reservoir, current time step                           |  |  |
| $\hat{R_{pollen,old}}$  | $m^{-2}$               | С            | content of the pollen reservoir, previous time step                          |  |  |
| $R_{pollen,sum}$        | $m^{-2}$               | С            | total amount of released pollen since midnight                               |  |  |
| $\Delta R_{pollen}$     | $m^{-2}$               | С            | pollen released during the current time step                                 |  |  |
| $F_{E,pollen}$          | $m^{-2} s^{-1}$        | $\mathbf{C}$ | emission flux of pollen grains                                               |  |  |
| $C_{pollen}$            | $m^{-3}$               | С            | pollen concentration                                                         |  |  |
| $\Psi_{random}$         | -                      | Т            | loss of pollen from the reservoir due to random processes                    |  |  |
| $\Psi_{precip}$         | -                      | Т            | loss of pollen from the reservoir due to precipitation                       |  |  |
| $\Phi_{plant}$          | -                      | С            | plant-dependent influences on pollen emission                                |  |  |
| $\Phi_{met}$            | -                      | С            | meteorological influences on pollen emission                                 |  |  |
| $\Phi_{biol}$           | -                      | С            | biological influences on pollen emission                                     |  |  |
| $f_{R,T}$               | -                      | Т            | fraction of open flowers as a function of temperature                        |  |  |
| $f_{R,RH}$              | -                      | Т            | fraction of open flowers as a function of relative humidity                  |  |  |
| $f_{E,TKE}$             | -                      | Т            | fraction of emitted pollen as a function of turbulent kinetic energy         |  |  |
| $f_{E,RH}$              | -                      | Т            | fraction of emitted pollen as a function of relative humidity                |  |  |
| $f_{Q,cov}$             | -                      | Ι            | fraction of the grid box covered with the specific plant                     |  |  |
| $f_{Q,seas}$            | -                      | Ι            | mathematical description of the course of the pollen season                  |  |  |
| $f_{Q,alt}$             | -                      | Ι            | productivity of the plants as a function of altitude                         |  |  |
| T                       | Κ                      | Μ            | temperature at the lowest model level                                        |  |  |
| rh                      | %                      | Μ            | relative humidity at the lowest model level                                  |  |  |
| TKE                     | $m^2  s^{-2}$          | Μ            | turbulent kinetic energy at the lowest model level                           |  |  |
| $\Delta t$              | S                      | Μ            | time step of the simulation                                                  |  |  |
| р                       | $kg \ m^{-2} \ s^{-1}$ | М            | sum of convective and grid-scale precipitation                               |  |  |

Table 2: Differences between the four parameterizations of pollen emission (see text) that are mentioned in the publication.

| Feature                                                                                                                         | $H_{orig}$                                                                                                                                              | $H_{opt}$                                                                                                                        | S13                                                                                                                                                                                     | EMPOL                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of<br>the pollen<br>season                                                                                          | Invariable formulation: the<br>pollen season has the shape<br>of a parabola and a fixed<br>length of 30 days.                                           | Use of an external model<br>that describes start, end<br>and course of the pollen<br>season as functions of<br>temperature sums. | Start and course of the<br>pollen season are variable<br>and depend on temperature<br>sums. The end of the season<br>is determined via a pollen<br>reservoir.                           | Use of an external model<br>that describes start, end<br>and course of the pollen<br>season as functions of<br>temperature sums.                                                                                                                   |
| Influence of<br>meteorological<br>parameters on<br>pollen release<br>and<br>entrainment of<br>the pollen into<br>the atmosphere | Pollen release and<br>entrainment are combined:<br>- friction velocity<br>- wind speed<br>- temperature<br>- relative humidity                          | Pollen release and<br>entrainment are combined:<br>- friction velocity<br>- wind speed<br>- temperature<br>- relative humidity   | <ul> <li>Pollen release and</li> <li>entrainment are combined:</li> <li>10 m wind speed</li> <li>convective velocity scale</li> <li>relative humidity</li> <li>precipitation</li> </ul> | <ul> <li>Pollen release and pollen</li> <li>reservoir:</li> <li>temperature</li> <li>relative humidity</li> <li>precipitation</li> <li>random losses</li> <li>Entrainment:</li> <li>turbulent kinetic energy</li> <li>relative humidity</li> </ul> |
| Upper limit for<br>emission with<br>high wind<br>speeds?                                                                        | no                                                                                                                                                      | yes                                                                                                                              | yes                                                                                                                                                                                     | yes                                                                                                                                                                                                                                                |
| Additional<br>aspects/factors<br>included in the<br>parameteriza-<br>tion                                                       | <ul> <li>leaf area index</li> <li>height of the plants</li> <li>resuspension</li> <li>maximum value for the<br/>sum of emitted pollen grains</li> </ul> | <ul><li>leaf area index</li><li>height of the plants</li><li>reducing factor for altitude</li></ul>                              | - maximum value for the<br>sum of emitted pollen grains                                                                                                                                 | <ul> <li>reducing factor for altitude</li> <li>pollen reservoir</li> <li>cut-off of the release of<br/>pollen if a daily maximum<br/>value is reached</li> </ul>                                                                                   |



Figure 1: Flowchart displaying the different steps and influencing parameters of the emission parameterization EMPOL.