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Abstract. The National Air Quality Forecast Capability
(NAQFC) project provides the US with operational and ex-
perimental real-time ozone predictions using two different
versions of the three-dimensional Community Multi-scale
Air Quality (CMAQ) modeling system. Routine evaluation
using near-real-time AIRNow ozone measurements through
2011 showed better performance of the operational ozone
predictions. In this work, quality-controlled and -assured Air
Quality System (AQS) ozone and nitrogen dioxide (NO2) ob-
servations are used to evaluate the experimental predictions
in 2010. It is found that both ozone and NO2 are overesti-
mated over the contiguous US (CONUS), with annual bi-
ases of+5.6 and+5.1 ppbv, respectively. The annual root
mean square errors (RMSEs) are 15.4 ppbv for ozone and
13.4 ppbv for NO2. For both species the overpredictions are
most pronounced in the summer. The locations of the AQS
monitoring sites are also utilized to stratify comparisons by
the degree of urbanization. Comparisons for six predefined
US regions show the highest annual biases for ozone predic-
tions in Southeast (+10.5 ppbv) and for NO2 in the Lower
Middle (+8.1 ppbv) and Pacific Coast (+7.1 ppbv) regions.
The spatial distributions of the NO2 biases in August show
distinctively high values in the Los Angeles, Houston, and

New Orleans areas. In addition to the standard statistics met-
rics, daily maximum eight-hour ozone categorical statistics
are calculated using the current US ambient air quality stan-
dard (75 ppbv) and another lower threshold (70 ppbv). Using
the 75 ppbv standard, the hit rate and proportion of correct
over CONUS for the entire year are 0.64 and 0.96, respec-
tively. Summertime biases show distinctive weekly patterns
for ozone and NO2. Diurnal comparisons show that ozone
overestimation is most severe in the morning, from 07:00 to
10:00 local time. For NO2, the morning predictions agree
with the AQS observations reasonably well, but nighttime
concentrations are overpredicted by around 100 %.

1 Introduction

The US National Air Quality Forecast Capability (NAQFC)
started as a joint effort between the National Oceanic and At-
mospheric Administration (NOAA) and the US Environmen-
tal Protection Agency (EPA) to provide advance notice for
future air pollution events with potential adverse health ef-
fects. By linking the National Centers for Environmental Pre-
diction (NCEP) Eta model with the Community Multi-scale
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Air Quality (CMAQ) modeling system, the NAQFC began
providing next-day predictions of ground-level ozone con-
centrations at a 12 km horizontal grid resolution for the
northeastern US in 2004 (Otte et al., 2005; Ryan et al., 2005).
In 2005, the CMAQ coverage was expanded to include the
states east of the Rocky Mountains (Pleim and Mathur, 2005;
Davidson et al., 2008; Eder et al., 2009). The next NAQFC
phase, operationally deployed in 2007, expanded coverage
to the contiguous United States (CONUS) and replaced the
hydrostatic Eta model with the non-hydrostatic mesoscale
model (NMM) within the Weather Forecasting and Research
framework (Eder et al., 2009). A prediction system that in-
cludes an aerosol module version 4 (AERO-4) and Carbon
Bond version CB05 gas-phase chemical mechanism (Sarwar
et al., 2008) was initially tested in 2006 (Gorline and Lee,
2009a) and it has been producing experimental ozone pre-
dictions for several years. Since 2007, both operational and
experimental prediction systems have been continuously up-
dated (Stajner et al., 2012).

The real-time operational NAQFC predictions, which rely
on the Carbon Bond Mechanism version IV (CBMIV) gas-
phase chemical mechanism (Gery et al., 1989), are accessible
through NOAA’s website athttp://airquality.weather.gov/.
These operational ozone predictions are used by state and lo-
cal environmental agencies as a basis for air quality forecasts
that they issue in terms of the Air Quality Index (AQI) to pro-
tect public health from impending poor air quality. The pub-
lic also obtains operational hour-by-hour predictions directly
from this web site. Vulnerable public uses NAQFC predic-
tions to protect their health by adjusting their daily activities
or medications.

The experimental NAQFC ozone predictions, accessible
at http://airquality.weather.gov/expr/, are produced using the
newer CB05 chemical mechanism. Due to higher ozone bi-
ases in the experimental predictions than those in the oper-
ational predictions through 2011 (Saylor and Stein, 2012),
these experimental predictions have not yet been transitioned
to operations. Our study provides a detailed evaluation of the
experimental ozone predictions, and a precursor species ni-
trogen dioxide (NO2), in order to understand and improve
performance of the experimental predictions system, with
a view towards its potential transition to operations.

A large amount of information created by continuous pre-
dictions is amenable to study of the chemical transport model
(CTM) performance. A careful evaluation of the model pre-
dictions over CONUS may help researchers better under-
stand, assess, and improve chemical mechanisms, coupling
methods between the meteorological model and the CTM,
and emission inventories along with the processing algo-
rithms.

The NAQFC ozone predictions up to 2009 have been ex-
tensively evaluated.Eder et al.(2006) compared the daily
maximum eight-hour ozone predictions for the northeast-
ern US with AIRNow observations (http://www.epa.gov/
airnow) from 1 June to 30 September 2004. They found

that the NAQFC system overpredicted ozone with a domain-
averaged mean bias (MB) of+10.2 ppbv and a root mean
square error (RMSE) of 15.7 ppbv. The NAQFC predictions
in the expanded eastern US domain during the warm season
from 2004 to 2007 were evaluated using AIRNow observa-
tions (Eder et al., 2009). It was found that the operational
NAQFC predictions steadily and gradually improved year af-
ter year as demonstrated by decreases in MB and RMSE.
The four-month MBs in the eastern US are+11.4,+10.9,
+10.5, and+7.9 ppbv in 2004, 2005, 2006, and 2007, re-
spectively. Correspondingly, the RMSEs are 16.8, 16.3, 15.6,
and 14.5 ppbv. They also showed that the MB and RMSE
for the whole CONUS domain in the summer months (June,
July, and August) of 2007 are+4.3 and 13.0 ppbv, respec-
tively. The CONUS categorical statistical metrics for the
same three-month period in 2007 were presented using both
the 84 and the 75 ppbv daily maximum eight-hour ozone
standards. With the 75 ppbv standard, the proportion of cor-
rect (POC), critical success index (CSI) or threat score (TS),
hit rate (HIT), and false alarm rate (FAR) are 0.924, 0.232,
0.425, and 0.663, respectively. Recently, the NAQFC ozone
predictions during the summers of 2007, 2008, and 2009
were compared with the AIRNow measurements byGorline
and Lee(2009b). In their study, the 2007 operational ozone
predictions with the CBMIV chemical mechanism were eval-
uated, while the 2008 and 2009 predictions were obtained
from the experimental predictions using the CB05 chemical
mechanism. They found that the MB in August 2009 was
about 2 ppbv higher than that in August 2008, and about
5 ppbv higher than the MB in August 2007. The unusually
cool summer of 2009 was speculated as a contributing factor
to the deteriorating predictions in 2009. Recently,Saylor and
Stein(2012) presented the NAQFC predictions in 2009 from
both operational and experimental versions. They showed
that the use of CB05 in the experimental version system-
atically increased ground-level ozone overpredictions. The
primary causes of the differences between the CBMIV and
CB05 systems were identified as two sets of reactions in the
CB05 mechanism that are absent from the CBMIV mecha-
nism.

Many operational air quality forecasting systems using 3-
D CTMs exist worldwide. In Europe, atmospheric composi-
tion forecast products have been delivered under the Mon-
itoring Atmospheric Composition and Climate-Interim Im-
plementation project as part of the pre-operational GMES At-
mosphere Service (http://www.gmes-atmosphere.eu, see also
Menut and Bessagnet, 2010). Similar forecasts are also avail-
able in Japan (Maki, 2012), Taiwan (http://taqm.epa.gov.
tw/taqm/en/b0204.aspx), and Canada (Talbot et al., 2008).
Zhang et al.(2012) summarized some recent real-time air
quality forecasting evaluation results. Among all evaluation
statistics for hourly ozone, the median positive MB, negative
MB, and RMSE, are +4.5,−8.1, and 16.8 ppbv, respectively.
For daily maximum eight-hour ozone categorical statistics,
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the median POC, CSI, TS, and HIT, are 0.92, 0.18, 0.32, and
0.65, respectively1.

The main goal of the paper is to continue the NAQFC
evaluations as a reference for real-time regional air quality
forecasts and future model developments. All the previous
NAQFC evaluations have utilized near-real-time AIRNow
measurements instead of quality-controlled and -assured Air
Quality System (AQS) data, which is the US EPA’s repos-
itory of ambient air quality data and is available through
the agency’s Technology Transfer Network (http://www.epa.
gov/ttn/airs/airsaqs/). Rather than reporting in near-real-time
as the AIRNow network requires, the AQS only mandates the
monitoring stations to report quarterly. In addition to ozone
and particulate matter (PM2.5 and PM10) observations avail-
able through AIRNow, a suite of other measurements such as
nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur
dioxide (SO2) are also available. As pointed out bySillman
(1999), the model uncertainty can be greatly reduced if ob-
servations of additional species besides ozone can be utilized
in model evaluation and diagnosis. In this study, the AQS
NO2 measurements along with the AQS ozone observations
are used for the NAQFC evaluations. NO2 is not only an im-
portant ozone precursor, it is also one of the critical air pol-
lutants regulated through the National Ambient Air Quality
Standards in the US, with its annual and hourly limits set as
53 and 100 ppbv, respectively. In the current evaluation, the
NAQFC model predictions are the original predictions with-
out any post-processing.

The remainder of the paper is organized as follows. A brief
description of the NAQFC model setup is given in Sect.2.
Section3 presents the AQS observations, including a com-
parison between the AQS and AIRNow ozone measure-
ments. Detailed comparisons between the model results and
observations are provided in Sect.4, followed by a sum-
mary and discussion in Sect.5. A list of abbreviations and
acronyms can be found in Appendix A.

2 Description of the NAQFC prediction system

The real-time NAQFC air quality prediction system dur-
ing the year 2010 comprised the CMAQ modeling system
(Byun and Schere, 2006) driven by the NCEP’s North Amer-
ican Mesoscale (NAM) meteorological predictions with the
WRF-NMM core (Janjic, 2003), similar to that described by
Eder et al.(2009). A pre-processor to CMAQ, PREMAQ,
prepares the CMAQ input files after taking WRF-NMM post-
processor outputs (Otte et al., 2005).

Figure1 shows the computational domain, which is cov-
ered by a grid with 442 columns and 265 rows in the lon-
gitudinal and latitudinal directions, respectively. The grid
has a 12 km horizontal grid resolution and follows the
Lambert conformal conic projection. There are 22 hybrid

1When a range is presented, the midrange value is used in cal-
culating the median value.
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Fig. 1. NAQFC computational domain and six predefined US re-
gions: Pacific Coast (PC), Rocky Mountain (RM), Southeast (SE),
Lower Middle (LM), Upper Middle (UM), and Northeast (NE).

pressure/sigma layers extending from the surface to 100 hPa,
which combine those of the WRF-NMM model (seeLee and
Ngan, 2011, for details). At lateral boundaries, fixed pro-
files based on climatological averages are used at in-flow grid
cells, and zero-flux-gradient is imposed at the outflow loca-
tions. However,Tang et al.(2009) showed that the NAQFC
surface ozone predictions can be improved with the use of the
MOZART global model predictions to better account long-
range transport, especially over the US west coast. A zero-
flux assumption at the top boundary is made in the CMAQ
computation. Not considering the stratospheric ozone in-
trusion may cause ozone underestimations at high latitudes
(Browell et al., 2003). Note that the real-time air quality pre-
dictions for the Alaska and Hawaii domains were tested and
designated operational in September of 2010, but they are
not included in the evaluation presented here. In 2010, real-
time air quality predictions for CONUS were continuously
provided with both the CBMIV and CB05 chemical mecha-
nisms. In this study, only the experimental version based on
CMAQ V4.6 with the CB05 chemical mechanism is evalu-
ated. Each day, there are four different predicting cycles, ini-
tialized at 00Z, 06Z, 12Z, and 18Z, which use the newest me-
teorological fields available. The cycles starting at 06Z and
12Z produce predictions for next 48 h. In this study, only the
first 24 h of the NAQFC experimental predictions initialized
at 12Z are evaluated. Recently,Savage et al.(2013) demon-
strated that there is little difference between day 1 and day
2 ozone forecasts for all metrics using Met Office Unified
Model results over the period May 2010–April 2011.

Gaseous and particulate emissions from anthropogenic
and natural sources were divided into four sectors (area,
mobile, point, and biogenic) and were processed using
data provided by various agencies. Area emissions includ-
ing off-road engine emissions are based on the US EPA
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2005 National Emission Inventory version 1 (NEI05v1) for
CONUS, the province-level 2000 Canadian Emissions In-
ventory for Canada, and the 1999 Mexico National Emis-
sion Inventories for Mexico (http://www.epa.gov/ttn/chief/
eiinformation.html, also seeUS EPA, 2011, for details).
These inventory data were processed using Sparse Matrix
Operator Kennel Emission (SMOKE) version 2.6 to repre-
sent monthly, weekly, daily, and holiday/non-holiday varia-
tions that are specific for each year (Houyoux et al., 2000).
Emissions from wildfires, prescribed burning, and residential
wood burning are based on a multi-year average inventory
for the years from 1996 to 2002. Ignoring the temporal and
spatial variability of the emission sources could cause large
ozone and NOx biases (McKeen et al., 2002; Duncan et al.,
2003; Martin et al., 2006). The current operational NOAA
Smoke Forecasting System (SFS) establishes the locations
and extents of the fires by utilizing fire and smoke data from
seven polar and geostationary satellites brought together by
the Hazard Mapping System (Rolph et al., 2009; Ruminski
et al., 2008). Incorporating the SFS to provide the CMAQ
model with near-real-time emissions from large wildfire and
agricultural burning is being explored. The EPA’s Office of
Transportation and Air Quality 2005 on-road emissions in-
ventory was used to generate mobile emissions over the US.
Both the electric generating unit (EGU) and the non-EGU
point sources were based on the NEI05v1 data. Oxides of ni-
trogen (NOx) and SO2 emissions from the US EGU sources
rely on 2008 continuous emission monitoring data. The An-
nual Energy Outlook (AEO) from the Department of En-
ergy released in April 2010 (US EIA, 2010) was used to
project the EGU emissions to 2010 and was implemented on
6 July 2010. Before that date, a similar projection was made
based on 2009 AEO data. Biogenic emissions were calcu-
lated dynamically using the Biogenic Emissions Inventory
System version 3.13 (Schwede et al., 2005), which consid-
ers variability in temperature and solar radiation to estimate
NOx and volatile organic compound (VOC) emissions from
forests and grasslands.

3 Observations

3.1 AIRNow and AQS observations

Real-time ozone and PM2.5 measurement data across the US,
Canada, and parts of Mexico are provided by the US EPA
through the AIRNow Gateway (http://www.airnowgateway.
org). Because of their easy accessibility, AIRNow observa-
tions are widely used. Although the AIRNow data are only
preliminary and not fully verified, they serve the purpose
for real-time AQI reporting and forecasting. Observational
data that have been subjected to additional quality control
are available from the EPA’s AQS, which is designed to meet
the needs of regulatory, academic, and public health research
communities. Without the requirement to disseminate data
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Fig. 2. Data counts of ozone and NO2 hourly measurements for
each day during 2010. “O3 overlap” shows the number of overlap-
ping ozone observation pairs and “O3 overlap*” is the number of
observation pairs after removing measurements from the 74 ques-
tionable sites (see text for details).

.

in real-time, the AQS system includes monitors from many
other surface networks and its measured species extend from
ozone and particulate matter (PM2.5 and PM10) to multi-
ple atmospheric chemistry components, such as NO2, CO,
SO2, and many VOC species. The AQS measurement data
were downloaded fromhttp://www.epa.gov/ttn/airs/airsaqs/
detaildata/downloadaqsdata.htm.

Figure2 displays the daily count of hourly observations in
2010 for both the AQS (version 5/16/12) and the AIRNow
systems. For both systems, there are almost twice as many
ozone measurements available in warm seasons as in cold
seasons since some monitors do not operate during the win-
ter. The number of ozone measurements in both the AQS and
the AIRNow data sets typically exceeds 10 000 per day. It
should be noted that some AIRNow measurements are not
available from the AQS system. This could be caused by de-
lays in reporting to the AQS system or elimination of poor-
quality data during the validation period. The data are consid-
ered to “overlap” if the measurements are reported from the
same monitor at the same time, even if measurement values
differ. The daily counts of “overlapped” measurement pairs
are also plotted in Fig.2. A snapshot of differences between
“overlapped” data is displayed in Fig.3a, which shows the
paired data between AQS and AIRNow at the same sites and
hours on 31 May 2010. While most data agree, some dif-
ferences are seen, probably due to the quality control work
carried out after AIRNow reporting.
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Fig. 3.Comparison between AIRNow and AQS data on 31 May 2010 before(a) and after(b) removing the 74 questionable sites using density
plots, in which color represents the count of observation pairs at each pixel. The data between 00:00 EDT and 23:00 EDT are included here.

3.2 Consistency check of ozone observations

Upon the examination of consistency between the AQS and
AIRNow data sets, potential problems with reporting of the
measurement time are suspected at several isolated sites. Ad-
ditional quality control is applied to remove these question-
able sites. In this process, hourly AQS and AIRNow ozone
observations from each monitor are separated into daily files
that run from 00:00 EDT to 23:00 EDT, or 00:00 EST to
23:00 EST following the US daylight saving time schedule.
Consecutive hourly measurements at one location over one
day form a 24-dimensional vector. At each location and for
each day, the L2-norm0(1t) is calculated for the differ-
ence vector between AQS and AIRNow ozone observations
at the matching hours (1t = 0), as well as for the lower-
dimensional difference vectors obtained by shifting the AQS
vector forward or backward by 1 or 2 h (1t = ±1,±2), as
given in Eq. (1).

0(1t) = ‖O3
AQS(t + 1t) − O3

AIRNow(t)‖, 1t = 0,±1,±2h. (1)

In addition to the shifting, missing data in either AQS and
AIRNow ozone observations results in reduced dimensions
of the difference vector. To account for variations in the di-
mension (N ) of difference vectors,� is calculated in Eq. (2).

�(1t) =
24

N(1t)
0(1t)2,1t = 0,±1,±2h, for N(1t) ≥ 12. (2)

Note that�(1t) is calculated only when there are no less
than 12 pairs of observations to form the difference vec-
tor. A monitor is flagged if�(1t) <

�(0)
10 , for any 1t =

±1,±2 h. This condition indicates a closer match between
AQS and AIRNow data sets after the measurement time is
adjusted by1t of −2, −1, 1, or 2 h for this monitor on
the particular day, implying a possible inconsistency between
measurement times reported in the two data sets. A total of
74 sites were flagged after checking the whole year. Observa-
tions from those flagged sites over the entire year were then

removed. Figure3b shows the comparison between AQS and
AIRNow after removing the questionable sites. The agree-
ment between AQS and AIRNow observations improves af-
ter eliminating the measurements from the flagged sites, with
the coefficient of determinationR2 increasing from 0.995 to
0.997. Ozone measurements from the monitor sites that are
unique to AQS cannot be examined in this fashion and they
are not included in the following evaluation either. Figure2
shows the data counts after these two exclusion criteria are
applied. Overall, more than 80 % of the AQS ozone data are
retained for the evaluation. The observations are from 1124
AQS ozone monitors.

3.3 AQS NO2 observations

There are no AIRNow NO2 data available to perform the
similar consistency examination between AIRNow and AQS
as what is done for ozone in Sect.3.2. All AQS NO2 mea-
surements are used in the following evaluation. It should be
noted that most of the AQS NO2 measurements were from
chemiluminescence monitors equipped with molybdenum
converters, which systematically overestimate NO2 concen-
trations (Dunlea et al., 2007; Steinbacher et al., 2007). Using
the Mexico City Metropolitan Area (MCMA) field campaign
data during April of 2003,Dunlea et al.(2007) reported that
the chemiluminescence monitor interference resulted in an
average concentration of up to 22 % greater than that from
co-located spectroscopic measurements. In this study, the
AQS NO2 measurements were used without any correction
to account for this issue. NO2 hourly measurements are also
shown in Fig.2. Unlike ozone monitoring that has a seasonal
variation, the daily NO2 measurement count from 408 sites
is almost constant throughout the year.

www.geosci-model-dev.net/6/1831/2013/ Geosci. Model Dev., 6, 1831–1850, 2013
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Fig. 4.Daily domain-wide average ozone and NO2 concentrations in 2010.

4 NAQFC evaluation results

When comparing model predictions with AQS observations,
model-predicted concentration counterparts are taken from
the monitor-residing grid cells. With such direct matching,
there is no interpolation applied and it is consistent with pre-
vious NAQFC evaluation studies (Eder et al., 2006, 2009;
Gorline and Lee, 2009b). However, there is a slight differ-
ence from what is described inEder et al.(2009), where mul-
tiple observations inside a single grid cell are averaged as the
representative measurement for the grid cell. In this paper,
each measurement is compared against model prediction in-
dependently when there are two or more monitors located
within one grid cell. In the following evaluations, the urban-
ization characteristics of each monitor site are utilized to fil-
ter observations into urban, suburban, and rural categories.
Among 1124 ozone sites, there are 200 urban, 455 suburban,
462 rural, and 7 unknown stations. The number of NO2 sites
at urban, suburban, rural, and unknown settings are 130, 148,
126, and 4, respectively.

In addition, separate evaluations in the six predefined re-
gions shown in Fig.1 are performed to investigate regional
variability in model performance.

4.1 Annual performance

Figure 4 shows the daily and domain-wide average ozone
and NO2 concentrations from AQS and CMAQ. Similar to
the 2009 NAQFC prediction results (Saylor and Stein, 2012),
the model significantly overestimates ozone during the sum-
mer. Until the end of May, there is very good agreement be-
tween model predictions and AQS observations for ozone.
As the NAQFC NO2 predictions are compared with the AQS
observations for the first time, it shows that the model over-
estimates NO2 for all four seasons. The NO2 overestimation
is more severe in the summer than during the other seasons.
The normalized monthly mean NO2 biases are 74.6, 79.8,

and 76.1 % for June, July, and August, respectively. January
has the lowest normalized monthly mean NO2 bias of 34.6 %.

Figure5 shows the annual performance in different local
settings for both ozone and NO2. The urban and suburban
sites mostly resemble what is shown in Fig.4. In rural ar-
eas, NO2 concentrations are more than 50 % lower than those
at urban sites, displayed by both the model and the obser-
vations. However, NAQFC still significantly overestimates
NO2 at the rural sites. For ozone, the model overestimation
in rural areas during the summer is more pronounced than
that in urban and suburban areas. As rural areas are mostly in
NOx-sensitive chemical regimes (Choi et al., 2012), the over-
estimated NO2 in the area, especially in the forest-dominant
Southeast region, can produce ozone much more efficiently
than in the urban and suburban areas. Figure5 also shows
that the average ozone concentrations are slightly larger at
rural sites than those at urban sites. The lower ozone concen-
trations in urban areas may be due to NOx titration at night-
time. This also indicates that due to its long lifetime ozone
pollution has non-local impacts.

The time series of daily and regionally averaged ozone and
NO2 are shown in Figs.6 and7. The ozone overestimation
in summer is seen in all the regions, but it is the most pro-
nounced in the Southeast region. NO2 is also overestimated
in all the regions during the summer, ranging from the high-
est biases in the Pacific Coast and Lower Middle regions to
minimal overestimation in the Rocky Mountain and North-
east regions.

The detailed monthly and annual average ozone biases
and RMSEs in different regions are listed in Tables1 and
2. Similar results for NO2 are listed in Tables3 and4. Ozone
biases in the Lower Middle and Pacific Coast are the low-
est, with the annual averages being+3.7 and+4.0 ppbv, re-
spectively. The most pronounced negative biases are seen in
February in the Upper Middle and Northeast regions, with
monthly average biases of−8.5 and−5.6 ppbv, respectively.
The largest positive monthly average bias of+17.6 ppbv is
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Fig. 5.Daily domain-wide average ozone and NO2 concentrations at urban, suburban, and rural sites in 2010.

seen in the Southeast region in August. Table2 also shows
that the Southeast region has the largest annual RMSE of
17.6 ppbv. The highest monthly RMSE of 22.5 ppbv is seen
in the Southeast in August. In agreement with Fig.7, Ta-
ble 3 also points to the Lower Middle and Pacific Coast as
the worst regions for NO2 predictions, with their annual av-
erage biases of+8.1 and+7.1 ppbv, respectively. When nor-
malized by the observation mean, the relative biases show

more than 100 % overestimation in the Lower Middle from
April to August, and in the Pacific Coast in June and July.
In July, the normalized monthly mean NO2 bias reaches its
peak (167.2 %). The Rocky Mountain region has the small-
est annual NO2 model bias of 0.4 ppbv (4.2 %) among all re-
gions and its monthly average biases range from−0.9 ppbv
(−7.1 %) in January to 1.7 ppbv (33.0 %) in July. All other
regions show consistent positive biases throughout the year.
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Fig. 6.Daily average ozone concentrations in 2010 for each of the six regions listed in Fig. 1.

The CONUS RMSEs for NAQFC NO2 predictions, listed
in Table 4, range from 11.7 ppbv in May to 15.4 ppbv in
September. In September, the Pacific Coast and Lower Mid-
dle have the highest monthly NO2 RMSEs of 19.6 and
19.1 ppbv, respectively.

4.2 Spatial patterns

The spatial distributions of the monthly average ozone and
NO2 AQS concentrations, model biases, and RMSEs at mon-
itoring sites in August are shown in Fig.8. They are similar
to the other summer months such as July (not shown here).
Higher monthly average ozone measurements are mostly lo-
cated in the California, Rocky Mountain, and mid-Atlantic
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Fig. 7.Daily average AQS (black) and NAQFC NO2 concentrations in 2010 for each of the six regions listed in Fig. 1.

(areas bordering the Northeast and Southeast regions) areas.
Multiple sites in Los Angeles and an isolated one in Den-
ver, Colorado, show very high NO2 observations. The spatial
distribution of ozone biases in Fig.8 shows a broad spread
of high positive ozone biases in the Southeast region. This is
consistent with Fig.6, which identifies the Southeast as the
region with the most severe ozone overestimation in summer.
As this region is mostly covered with forest, the abundance

of biogenic VOCs during the growing season helps to trans-
late NO2 overestimations into high ozone biases under the
NOx-sensitive regime.

Negative ozone biases are found around Los Angeles and
New Orleans, where high positive NO2 biases are shown in
Fig. 8. It is possible that the emission inventories do not fully
account for the actual emissions reduction due to the long-
lasting economic aftermath of hurricane Katrina on New
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Table 1.Monthly and annual average ozone biases in different regions and CONUS in 2010. Unit: ppbv.

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

Pacific Coast 5.6 3.7 0.3 −2.6 0.4 3.9 6.3 5.2 7.1 5.2 7.1 4.8 4.0
Lower Middle −0.3 −0.2 −1.6 −2.3 2.1 8.4 10.4 9.7 8.6 2.6 4.5 1.8 3.7
Southeast 4.7 2.9 3.3 3.7 9.8 14.0 15.4 17.6 13.9 10.4 9.8 6.2 10.5
Rocky Mountain 6.2 3.7 3.7 −1.1 −0.3 3.1 6.9 5.2 8.7 7.0 7.3 6.5 4.7
Upper Middle −3.0 −8.1 −0.6 −1.8 0.6 6.6 8.2 9.3 8.0 3.7 3.6 −1.5 4.4
Northeast −1.0 −5.6 −3.5 −1.1 1.5 7.0 10.5 10.4 11.0 6.9 5.2 0.2 5.1

CONUS 2.9 0.8 0.5 −0.6 2.6 7.5 9.8 9.9 9.7 6.3 6.4 3.7 5.6

Table 2.Monthly and annual average ozone RMSEs in different regions and CONUS in 2010. Unit: ppbv.

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

Pacific Coast 14.7 14.4 15.3 14.0 12.8 15.1 17.8 17.4 18.7 15.9 15.9 13.8 15.7
Lower Middle 12.7 12.9 15.0 13.9 15.2 16.3 17.3 18.8 17.9 16.2 13.3 11.8 15.4
Southeast 11.5 12.0 13.2 14.0 16.3 19.6 20.3 22.5 19.6 17.0 15.3 12.5 17.6
Rocky Mountain 14.1 13.8 13.8 12.5 12.5 14.0 15.4 15.1 16.3 14.8 14.2 13.8 14.3
Upper Middle 8.8 12.9 13.4 12.1 13.1 14.7 16.2 17.3 14.3 12.6 10.9 8.6 14.3
Northeast 8.4 10.6 12.3 12.8 12.9 15.1 17.8 17.5 16.3 13.0 11.4 8.3 14.4

CONUS 12.7 13.1 14.0 13.2 13.9 16.0 17.6 18.4 17.1 15.1 14.0 12.3 15.4

Orleans, thus resulting in the overestimation in that area. The
combination of high positive NO2 biases with negative ozone
biases suggests Los Angeles and New Orleans are proba-
bly under a VOC-sensitive regime, in which the increased
NO2 may lead to ozone reductions. Such model behavior in
NOx-rich urban regions is common. For instance,Tong et al.
(2006) showed that increasing NOx emissions actually re-
duced ozone in central Atlanta in their sensitivity studies to
assess ozone impacts from NOx emissions. Figure8 shows
that most of the higher ozone RMSEs are seen in the South-
east region and around Los Angeles. The Los Angeles and
New Orleans areas also have the highest NO2 RMSEs, as
shown in Fig.8.

4.3 Daily maximum eight-hour average ozone and its
categorical statistics

Eight-hour running averages are calculated for both the
model and the AQS hourly concentrations. A minimum of
six hourly observations in any eight-hour time window is re-
quired for the calculation. Otherwise, the eight-hour ozone
observation is flagged as missing. As the primary ozone stan-
dard in the US, the daily maximum eight-hour average con-
centration is currently set as 75 ppbv revised from its previ-
ous 0.08 ppm (effectively 84 ppbv due to rounding) in March
2008 (Environmental Protection Agency, 2008). Using the
standard as a threshold for daily maximum eight-hour aver-
age ozone, there are four possible scenarios:

a. prediction is above, but observation is below the
threshold (false alarm);

b. prediction and observation are above the threshold;

c. prediction and observation are below the threshold;

d. prediction is below, but observation is above the
threshold.

In Fig. 9 a scatter plot of one day’s observations in the
CONUS and collocated NAQFC predictions is presented and
four quadrants are marked according to scenarios a–d that
they correspond to. Hit rate (HIT), critical success index
(CSI) or threat score (TS), false alarm rate (FAR), equitable
threat score (ETS), and proportion of correct (POC), which is
referred as Accuracy inEder et al.(2006), are calculated for
the NAQFC predictions for the entire year. The definitions
are shown in Eqs. (3)–(7), whereNa, Nb, Nc, andNd repre-
sent the number of incidences in each scenario a, b, c and d,
respectively, as shown in Fig.9.

HIT =
Nb

Nb + Nd
(3)

CSI=
Nb

Na+ Nb + Nd
(4)

FAR =
Na

Na+ Nb
(5)

ETS=
Nb − Nr

Na+ Nb + Nd − Nr
, where

Nr =
(Na+ Nb) × (Nb + Nd)

Na+ Nb + Nc + Nd
(6)

POC=
Nb + Nc

Na+ Nb + Nc + Nd
. (7)
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Table 3. Monthly and annual averaged NO2 biases in different regions and CONUS in 2010. Unit: ppbv.

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

Pacific Coast 6.2 6.3 6.2 4.9 5.6 8.3 8.7 9.2 8.9 7.0 5.9 8.1 7.1
Lower Middle 8.6 8.4 8.2 7.1 7.0 7.2 8.1 8.7 9.7 8.2 7.9 7.6 8.1
Southeast 4.3 4.6 3.4 2.9 3.7 4.0 3.7 5.0 4.1 3.5 4.3 4.8 4.0
Rocky Mountain −0.9 −0.4 0.3 0.2 0.4 1.1 1.7 1.3 0.7 0.5 −0.2 0.0 0.4
Upper Middle 4.6 5.6 6.2 4.2 5.7 5.9 5.9 6.1 6.1 5.7 5.9 5.5 5.6
Northeast 4.0 4.9 3.4 2.9 2.9 2.4 2.2 3.0 3.7 3.9 4.3 3.6 3.4

CONUS 4.7 5.0 4.8 3.9 4.4 5.2 5.5 6.0 6.1 5.1 4.8 5.2 5.1

Table 4.Monthly and annual averaged NO2 RMSEs in different regions and CONUS in 2010. Unit: ppbv.

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

Pacific Coast 15.5 14.8 15.4 12.7 12.8 15.6 16.0 17.5 19.6 16.4 16.0 16.1 15.8
Lower Middle 16.0 16.0 17.3 15.7 15.6 14.2 15.0 17.8 19.1 18.6 15.8 15.2 16.4
Southeast 10.4 11.3 11.0 9.5 8.7 9.6 9.5 10.5 10.4 10.4 10.9 11.1 10.3
Rocky Mountain 12.0 11.3 11.0 8.5 8.1 8.0 8.5 8.6 9.6 9.6 9.8 10.5 9.7
Upper Middle 11.0 12.5 13.6 11.0 11.6 11.6 12.4 12.9 12.6 13.0 11.6 11.1 12.1
Northeast 11.1 12.1 12.4 11.4 9.5 9.4 9.6 10.1 10.3 10.3 11.3 10.2 10.7

CONUS 13.5 13.5 14.1 12.1 11.7 12.4 12.8 14.1 15.4 14.2 13.5 13.3 13.4

The HIT, CSI (or TS), FAR, and POC for the NAQFC pre-
dictions in previous years have been reported (Eder et al.,
2006, 2009). HIT measures the fraction of observed above
the threshold events that are predicted correctly. It is also re-
ferred as probability of detection. FAR is the fraction of pre-
dicted above the threshold events that are wrong. CSI mea-
sures the fraction of correctly predicted above the threshold
events after removing correctly predicted below the thresh-
old incidences. ETS measures the prediction skill more crit-
ically by negating the correct predictions by chance. While
“ETS = 1” means a perfect prediction, positive ETS val-
ues indicate skillful predictions relative to a random forecast
(Schaefer, 1990). ETS≤ 0 denotes no skill for the forecast.
POC is the fraction of predictions that match the above/below
threshold with the observations.

Using the AQS observations and NAQFC predictions for
the entire year and summer months (June–August), the cate-
gorical statistics for the daily maximum of eight-hour ozone
exceeding two thresholds are listed in Tables5 and6. Over-
all, the HIT values calculated for summer are better than
those calculated for the entire year, but CSI, FAR, ETS, and
POC values for summer are worse. The Rocky Mountain
region is an exception in that the CSI and FAR values for
summer are slightly better than those calculated for the en-
tire year. Using the current 75 ppbv standard as the thresh-
old, out of the total 4065 (Nb+Nd = 2616+1449) observed
cases exceeding this threshold in AQS measurements, 2541
(Nb +Nd = 1812+ 729) cases happened during the summer
months. HIT, CSI, FAR, ETS, and POC over CONUS for the
entire year are 0.64, 0.17, 0.81, 0.16, and 0.96, respectively;

while the same statistics calculated over CONUS for the
summer are 0.71, 0.17, 0.82, 0.15, and 0.91. The summer
HIT value is much better than HIT= 0.43 reported byEder
et al. (2009) for the 2007 summer months with the same
standard. However, the CSI, FAR, and POC values during
the summer are worse, with the current 0.17, 0.82, and 0.91
compared with 0.23, 0.66, and 0.92. The ETS values of 0.15
and 0.16 indicate some skill in the NAQFC predictions. In all
regions, the ETS scores are positive, showing that the predic-
tions are better than predictions by chance. The highest ETS
scores are 0.24 and 0.23 for the Pacific Coast and Northeast
regions. In the Rocky Mountain region, ETS= 0.06 reflects
little skill of the model, mostly caused by the high FAR val-
ues (0.93 for summer and 0.92 for the entire year). The an-
nual POC values are greater or equal to 0.95 in all regions,
but the summer values drops to as low as 0.87 in the Pacific
Coast region.

The categorical statistics are sensitive to the threshold used
to define the exceedance events, as shown byEder et al.
(2009) using both the 85 and the 75 ppbv standards. Similar
metrics calculated using a 70 ppbv threshold for daily maxi-
mum eight-hour ozone are also listed for CONUS in Tables5
and6. With the new threshold, the exceedances increase to
8577(Nb + Nd = 5753+ 2824) from 4065 with the 75 ppbv
standard for the year. The annual POC value drops from 0.96
to 0.93 and all other metrics improve for CONUS. It should
be noted that the large model biases greatly affect the cat-
egorical statistics. By implementing a bias-adjustment tech-
nique,Kang et al.(2010) showed significant improvement in
the categorical evaluation metrics, with increased HIT and
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Fig. 8. Spatial distributions of ozone (left) and NO2 (right) measurements (upper panels), model biases (middle panels), and RMSEs (lower
panels) in August 2010. Unit: ppbv.

decreased FAR at almost all locations during their study pe-
riod in 2008.

4.4 Weekly patterns of NAQFC performance

CTM predictions are highly sensitive to the model-ready
emissions inputs, which are generated using a large number
of month-of-year, day-of-week, and hour-of-day temporal
profiles. Section4.1already showed that the NAQFC perfor-
mance for ozone and NO2 predictions varies significantly by
month. These monthly variations in model performance are
influenced by differences in the meteorological conditions,

specifically the temperature change from month to month. It
is difficult to separate the emissions-induced effects caused
by the month-of-year profile from the meteorological im-
pacts. However, it has been well documented that the ozone
concentrations in urban areas peak at weekends, while nitro-
gen oxides and VOC emissions are generally lower at week-
ends than those on weekdays (Marr and Harley, 2002; Mur-
phy et al., 2007; Pierce et al., 2010). Instead of focusing on
the “weekend ozone effect”, here we study the weekly pat-
terns of NAQFC performance in order to investigate possible
systematic errors in weekly profiles that are used in emis-
sions processing.

Geosci. Model Dev., 6, 1831–1850, 2013 www.geosci-model-dev.net/6/1831/2013/
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Table 5.Daily maximum eight-hour ozone categorical statistics for 2010, with the 75 and 70 ppbv thresholds. See text for details.

Region, standard (ppbv) Na Nb Nc Nd HIT CSI FAR ETS POC

Pacific Coast, 75 2047 977 47 796 681 0.59 0.26 0.68 0.24 0.95
Lower Middle, 75 1156 168 44 875 217 0.44 0.11 0.87 0.10 0.97
Southeast, 75 2774 345 54 107 132 0.72 0.11 0.89 0.10 0.95
Rocky Mountain, 75 939 70 42 667 88 0.44 0.06 0.93 0.06 0.98
Upper Middle, 75 1963 281 52 056 171 0.62 0.12 0.87 0.11 0.96
Northeast, 75 2232 770 42 637 157 0.83 0.24 0.74 0.23 0.95

CONUS, 75 11 119 2616 284 706 1449 0.64 0.17 0.81 0.16 0.96

CONUS, 70 18 192 5753 273 121 2824 0.67 0.21 0.76 0.19 0.93

Table 6.Daily maximum eight-hour ozone categorical statistics for summer months (June–August) in 2010, See text for details.

Region, standard (ppbv) Na Nb Nc Nd HIT CSI FAR ETS POC

Pacific Coast, 75 1507 632 12 427 424 0.60 0.25 0.70 0.20 0.87
Lower Middle, 75 763 85 11 138 49 0.63 0.09 0.90 0.09 0.93
Southeast, 75 1835 219 16 984 22 0.91 0.11 0.89 0.09 0.90
Rocky Mountain, 75 712 61 12 001 62 0.50 0.07 0.92 0.06 0.94
Upper Middle, 75 1599 226 20 356 77 0.75 0.12 0.88 0.11 0.92
Northeast, 75 1799 584 13 703 92 0.86 0.24 0.75 0.20 0.88

CONUS, 75 8223 1812 86 747 729 0.71 0.17 0.82 0.15 0.91

CONUS, 70 12 810 3764 79 758 1179 0.76 0.21 0.77 0.17 0.86

In this section, the NAQFC predictions during the warm
months, i.e., from June to September are grouped into days
of the week. Strong weekly patterns are shown in the ozone
biases for different days of the week listed in Table7. Over
CONUS and most regions, O3 biases are higher on weekends
than on weekdays. The RMSEs calculated for the different
days of the week do not show a clear weekly pattern. This
indicates that the variability in prediction errors is influenced
by interactions among the emissions, chemistry and meteo-
rology, rather than stemming from the emissions alone.

Similarly, the day-of-week biases for NAQFC NO2 predic-
tions are listed in Table8. Contrary to ozone, the NO2 biases
over CONUS are lower on weekends than on weekdays. The
lowest biases in NO2 predictions occur on Saturdays in all re-
gions except the Northeast. The weekday–weekend contrast
is especially evident in the Pacific Coast, where the average
model biases are no less than 9.1 ppbv on weekdays and no
greater than 7.5 ppbv at weekends.

4.5 Diurnal cycles

Ozone and its precursors have distinctive diurnal cycles. Ex-
amination of corresponding cycles in a CTM may help iden-
tify and correct shortcomings in the model and thus improve
model predictions.van Loon et al.(2007) showed large diur-
nal cycle variations among seven different regional air qual-
ity models. The diurnal patterns of the NAQFC prediction

biases are also studied here. Unlike the weekly patterns that
mainly exhibit the emission signals, the diurnal patterns of
model performance are greatly affected by many diurnal
characteristics coming from the meteorological inputs. Di-
urnal profiles are obtained by averaging model–observation
pairs by their local time (LT). Note that LT here is based on
the official time zone of each AQS site and daylight saving
regime is not considered. In order to remove the impact of
monthly variations in meteorological conditions, the diurnal
patterns are studied separately for each month.

The diurnal profiles of ozone and NO2 for August, strat-
ified by the degree of urbanization are shown in Fig.10.
Ozone is overestimated for all hours, except at 19:00 LT
for suburban sites and 18:00–20:00 LT for urban sites. The
domain-averaged ozone predictions at rural sites have posi-
tive biases throughout the day. Ozone model biases peak in
the early morning, from 07:00 to 10:00 LT in all three ur-
banization settings. NO2 biases are positive for all hours at
urban and suburban sites, dipping to lowest levels between
08:00 and 13:00 LT. For the same time period, there are slight
underestimations at rural sites. The NO2 overestimation is
most pronounced at night, from 18:00 to 06:00 LT, by around
100 % for all urbanization settings. The standard deviations
of model predictions exceed those of the observations at al-
most all hours for NO2. Meanwhile, the ozone variations in
the model and observations are comparable.

www.geosci-model-dev.net/6/1831/2013/ Geosci. Model Dev., 6, 1831–1850, 2013
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Table 7.Ozone biases for the different days of the week in the six predefined regions and CONUS. June–September 2010. Unit: ppbv.

Region Sunday Monday Tuesday Wednesday Thursday Friday Saturday Week

Pacific Coast 7.3 6.0 4.9 4.9 4.9 5.3 6.2 5.6
Lower Middle 10.1 9.7 9.3 8.7 8.3 9.1 9.9 9.3
Southeast 16.0 15.6 15.1 14.8 14.4 15.2 15.7 15.2
Rocky Mountain 6.6 5.7 4.8 5.9 6.6 6.1 6.3 6.0
Upper Middle 8.7 8.4 7.6 8.8 7.4 7.1 8.3 8.0
Northeast 10.8 9.4 9.2 10.8 10.2 8.5 9.1 9.7

CONUS 10.1 9.4 8.7 9.3 8.8 8.8 9.5 9.2

Table 8.NO2 biases for the different days of the week in the six predefined regions and CONUS. June–September 2010. Unit: ppbv.

Region Sunday Monday Tuesday Wednesday Thursday Friday Saturday Week

Pacific Coast 7.5 9.3 9.4 9.1 9.4 9.2 7.2 8.8
Lower Middle 8.3 8.7 8.5 8.7 8.6 8.3 7.8 8.4
Southeast 4.2 4.6 4.8 4.6 4.1 3.9 3.1 4.2
Rocky Mountain 1.0 1.6 1.4 1.5 1.3 1.2 0.3 1.2
Upper Middle 5.5 6.5 7.0 6.4 6.2 5.4 5.1 6.0
Northeast 3.2 2.5 3.1 2.9 2.5 2.7 2.8 2.8

CONUS 5.3 6.0 6.1 6.0 5.9 5.7 4.7 5.7
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Fig. 9. Diagram of categorical statistics calculation. A scatter plot
with AQS observed and NAQFC predicted daily maximum eight-
hour average ozone on 17 August 2010 is shown as an example.
The US standard for daily maximum eight-hour average ozone of
75 ppbv is used as the threshold to delimit the scatter plots into four
regions,(a) prediction is above, but observation is below the thresh-
old; (b) prediction and observation are above the threshold;(c) pre-
diction and observation are below the threshold;(d) prediction is
below, but observation is above the threshold.

Figures11 and 12 show the regional diurnal profiles in
August for ozone and NO2, respectively. Ozone biases in the
Southeast region are positive for all 24 h. The other regions
display large positive ozone biases from morning until noon
and minimal positive to slight negative biases between 18:00
and 20:00 LT, similar to the urban and suburban ozone di-
urnal profiles in Fig.10. Note the close agreement between
predicted and observed ozone with respect to the average val-
ues and the variability during nighttime in the Pacific Coast
and Rocky Mountain regions. The regional diurnal profiles
of NO2 in the Pacific Coast, Lower Middle, Southeast, and
Upper Middle exhibit good agreement between the model
and the observations from early morning until early after-
noon, but show large biases at nighttime, resembling the ur-
ban and suburban NO2 diurnal profiles in Fig.10. In the
Northeast, the diurnal profile is similar, but NO2 biases at
night are much smaller. Good agreement between average
NAQFC NO2 and AQS observations for most hours of the
day is found in the Rocky Mountain region. However, NO2 is
still overestimated at 19:00 and 20:00 LT by more than 100 %
in this region.

5 Summary and discussion

In this paper, the NAQFC experimental ozone predictions
and real-time testing of prediction of precursor species NO2
in 2010 are evaluated against quality-assured AQS observa-
tions of ozone and NO2.
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Fig. 10.Diurnal profiles of ozone and NO2 at urban, suburban, and rural sites in August 2010. Average concentrations of the AQS observa-
tions and their NAQFC counterparts are shown with their standard deviations as a function of local hours.

It is found that the CONUS- and daily-averaged predic-
tions for both ozone and NO2 are overestimated throughout
the year, with peak overestimation in the summer. This sea-
sonal pattern persists when sites are stratified by the degree
of urbanization into urban, suburban, and rural sites. In Au-
gust, overprediction is more pronounced for rural than for
urban and suburban sites. The highest regional ozone bi-
ases were found in the Southeast during the summer. NO2

overprediction is pronounced in the Pacific Coast and Lower
Middle regions. The spatial distributions during the summer
show the largest positive NO2 biases in Los Angeles and
New Orleans, where ozone levels were underestimated. This
suggests that VOC-sensitive regimes prevailed during those
months in 2010 for these two areas.

The ozone categorical statistics using the current US
ambient air quality standard (75 ppbv) for daily maximum
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Fig. 11.Diurnal profiles of ozone in August 2010 for each of the six regions listed in Fig.1. Average concentrations of the AQS observations
and their NAQFC counterparts are shown with their standard deviations as a function of local hours.

eight-hour average ozone show mixed results when compar-
ing the 2010 experimental ozone predictions generated using
the CB05 mechanism with the operational ozone predictions
for earlier years that rely on the CBMIV mechanism. For
a lower threshold of 70 ppbv, HIT, CSI, FAR, and ETS eval-
uated over the CONUS for 2010, experimental predictions

improve, but POC deteriorates in comparison to the same
statistics evaluated for the 75 ppbv threshold.

The ozone and NO2 biases show distinct weekly patterns
in summer. While ozone biases are larger during the week-
ends than they are on weekdays, NO2 biases show the op-
posite patterns in most regions. Diurnal patterns show that
ozone overestimation is most severe in the morning, from

Geosci. Model Dev., 6, 1831–1850, 2013 www.geosci-model-dev.net/6/1831/2013/



T. Chai et al.: 2010 NAQFC ozone and NO2 evaluation 1847

Local hour

N
O

2
(p

pb
v)

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Observation
Model

Upper Middle

Local hour

N
O

2
(p

pb
v)

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Observation
Model

Southeast

Local hour

N
O

2
(p

pb
v)

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Observation
Model

Pacific Coast

Local hour

N
O

2
(p

pb
v)

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Observation
Model

Northeast

Local hour

N
O

2
(p

pb
v)

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Observation
Model

Rocky Mountain

Local hour

N
O

2
(p

pb
v)

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Observation
Model

Lower Middle

Fig. 12.Diurnal profiles of NO2 in August 2010 for each of the six regions listed in Fig. 1. Average concentrations of the AQS observations
and their NAQFC counterparts are shown with their standard deviations as a function of local hours.

07:00 to 10:00 LT, lower overnight, and lowest in the evening
hours, around 19:00 LT. For NO2, the morning predictions
are in close agreement with the AQS observations, but night-
time concentrations are overpredicted by around 100 %.

Comparisons on regional or domain-wide scales together
with monthly or annual evaluations aim to eliminate influ-
ence of dynamical meteorological and chemical conditions,

which vary significantly from site to site and from day
to day. The averaging avoids large uncertainties associated
with each individual site and time, thus exposing system-
atic model errors, which could be reduced in the future to
improve NAQFC predictions. For example, NO2 overesti-
mation throughout the year in almost all regions may have
contributed to the overall ozone estimation for the entire
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year. This is especially true during the growing season in
the Southeast region where forests are predominant. Under
the NOx-sensitive chemical regime with abundant biogenic
VOCs, the NO2 overestimations likely caused the severe pos-
itive ozone biases from May to September. Higher NO2 bi-
ases were found in the summer, and they are believed to con-
tribute to the larger ozone overestimations seen in the sum-
mertime in all regions. The clear weekly signals shown by
both ozone and NO2 model biases suggest that weekly pro-
files resulting from emissions processing may need adjust-
ments. It should be noted that other factors, such as chemical
mechanism, not considering long-range transport at lateral
boundaries or ozone intrusion from the stratosphere at the
domain top, all contribute to the current model errors.

However, drawing conclusions on the exact causes for the
current model problems requires further studies. There are
several limitations in our current evaluation study. For in-
stance, the AQS stations are quite sparse in some regions, es-
pecially for NO2 monitoring. Uncertainties in emission rates,
photochemical reaction rates, and meteorological inputs such
as surface temperature, wind speed and direction, and cloud
cover all contribute to uncertainties in NAQFC ozone and
NO2 predictions. Further analyses would benefit from mete-
orological measurements, observations of VOC species, and
vertical profiles of most parameters in order to fully explain
the evaluation results.

The type of analysis presented here has guided recent
updates to the NAQFC system that produces experimen-
tal ozone predictions. Concurrently with the updates to the
NCEP NAM model and the land use and land cover data
for emissions in October 2011, three additional updates were
made with the goal of reducing ozone biases discussed here.
Previous constant lateral boundary condition profiles for
most chemical species were replaced with monthly mean
profiles from GEOS-CHEM global model simulations for
2006 that follow the methodology ofBey et al.(2001). Dry
deposition was modified based on the Monin–Obukhov simi-
larity theory (Wu et al., 2003) as well as by including canopy
height and density based on recent Moderate Resolution
Imaging Spectroradiometer and Geoscience Laser Altime-
ter System satellite observations (Lefsky, 2010). Planetary
boundary layer (PBL) height was constrained to be at least
50 m. This mitigated the previous high ozone bias problem
due to low PBLs at areas close to large water bodies. It also
allows dilution of the mobile emissions near urban centers
and lessened the severity of ozone titration at nighttime. Test-
ing during the summer of 2011 has shown shown positive
impacts of these changes and they were all incorporated into
the experimental ozone predictions for 2012. The emission
data sets have been updated in June 2012, with about 35 %
decrease in total mobile NOx emissions. Preliminary evalu-
ation of the latest experimental predictions shows improve-
ments from this combination of updates. Examples of addi-
tional modifications that may prove beneficial for ozone pre-
dictions include the assimilation of observed chemical com-

position data, increase of the model resolution, inclusion of
newer versions of chemical and meteorological models, as
well as a closer coupling among system components.

Appendix A

List of abbreviations and acronyms.

AEO Annual Energy Outlook
AERO-4 Aerosol module version 4
AQI Air Quality Index
AQS Air Quality System
CB05 Carbon Bond Mechanism with 2005 updates
CBMIV Carbon Bond Mechanism version IV
CMAQ Community Multi-scale Air Quality modeling system
CONUS Contiguous United States, Alaska and Hawaii not included
CSI Critical Success Index
CTM Chemical Transport Model
EDT US Eastern Daylight saving Time
EGU Electric generating unit
EPA US Environmental Protection Agency
EST US Eastern Standard Time
ETS Equitable Threat Score
FAR False Alarm Rate
HIT Hit rate
LM Lower Middle
LT Local Time
MB Mean bias
NAM North American Mesoscale
NAQFC National Air Quality Forecast Capability
NCEP US National Centers for Environmental Prediction
NE Northeast
NEI05v1 US EPA 2005 National Emission Inventory Version 1
NMM Non-hydrostatic Mesoscale Model
NOAA US National Oceanic and Atmospheric Administration
NOx Oxides of nitrogen
PC Pacific Coast
PBL Planetary boundary layer
PM10 Particles that are 10 micrometers in diameter or smaller
PM2.5 Particles that are 2.5 micrometers in diameter or smaller
POC Proportion Of Correct
PREMAQ CMAQ pre-processor
RM Rocky Mountain
RMSE Root mean square error
SE Southeast
SFS Smoke Forecasting System
SMOKE Sparse Matrix Operator Kennel Emission
TS Threat Score
UM Upper Middle
VOC Volatile Organic Compound
WRF Weather Forecasting and Research model
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