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Abstract. We have ported an implementation of the spin-up
for marine ecosystem models based on transport matrices to
graphics processing units (GPUs). The original implementa-
tion was designed for distributed-memory architectures and
uses the Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc) library that is based on the Message Passing
Interface (MPI) standard. The spin-up computes a steady sea-
sonal cycle of ecosystem tracers with climatological ocean
circulation data as forcing. Since the transport is linear with
respect to the tracers, the resulting operator is represented by
matrices. Each iteration of the spin-up involves two matrix-
vector multiplications and the evaluation of the used biogeo-
chemical model. The original code was written in C and For-
tran. On the GPU, we use the Compute Unified Device Ar-
chitecture (CUDA) standard, a customized version of PETSc
and a commercial CUDA Fortran compiler. We describe the
extensions to PETSc and the modifications of the original C
and Fortran codes that had to be done. Here we make use of
freely available libraries for the GPU. We analyze the com-
putational effort of the main parts of the spin-up for two ex-
emplar ecosystem models and compare the overall computa-
tional time to those necessary on different CPUs. The results
show that a consumer GPU can compete with a significant
number of cluster CPUs without further code optimization.

1 Introduction

This work is motivated by the usually huge effort that
is needed when computing steady annual cycles (or,
mathematically speaking, periodic solutions) of spatially

three-dimensional marine ecosystem models. In most cases
this is done by “spinning up” the model, i.e. by using a time-
stepping algorithm with climatological, periodic forcing data
until the steady cycle is reached, at least up to a certain tol-
erance. This can take a huge number of iterations, in typ-
ical cases about 3000 to 5000 model years, each of which
involves thousands of time steps (e.g. 2880 steps for a three-
hour step-size). Thus the overall number of iterations may be
in the range of 106 to 107. When aiming at parameter opti-
mization or sensitivity studies, the spin-up process has to be
repeated several times, and thus in these cases a reduction of
the computational time of a single spin-up run is even more
important.

There are several strategies to reduce this computational
effort. The following ones are more or less independent from
each other: one of them is of course parallelization, usu-
ally by domain decomposition methods. The second one is
the usage of precomputedtransport matrices(seeKhatiwala,
2007) that represent the (possibly linearized) tracer transport
scheme applied in an ocean model. Monthly averaged matri-
ces for the explicit and the implicit parts of the ocean tracer
transport operator are usually used. In the ecosystem spin-
up, these “climatological” matrices are then interpolated ac-
cordingly in every time step. With this method, the transport
part of the ecosystem model reduces to matrix-vector mul-
tiplications, whereas the biogeochemical source-minus-sink
terms are evaluated separately. A third way to reduce com-
putational effort is to replace the standard spin-up (which, in
mathematically terms, is a fixed-point iteration) by variants
of Newton’s method, which have higher convergence rates.
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In this work we start from an implementation of a spin-
up that applies the first two strategies. In order to drive the
biogeochemical tracers, the software handles transport ma-
trices that are stored in a common sparse format. Moreover,
it uses routines of the Portable, Extensible Toolkit for Scien-
tific Computation (PETSc;Balay et al., 1997, 2012) library to
perform matrix-vector multiplications in parallel. The main
advantages of this toolkit is that all Message Passing Inter-
face (MPI;Walker and Dongarra, 1996) calls are hidden in
built-in functions, and that optimized functions for matrix-
vector operations (and more) already exist. The resulting
software can be coupled with a wide range of biogeochemi-
cal models, as long as they conform to a rather flexible and
general interface.

The main focus of this work is to describe the necessary
changes to the software to port it to GPU hardware and to
determine the resulting speed-up. High-performance com-
puting on GPU or other special, highly parallel hardware
is becoming more and more attractive in climate and geo-
physical research as well (e.g.Hanappe et al., 2011; Horn,
2012). To our knowledge there is no publication about us-
ing GPUs for marine ecosystem simulations. Since sparse
matrix-vector multiplication (SpMVM) is an integral part of
our spin-up implementation, this work is clearly motivated
by the performance gains (up to a speedup of 24) achieved by
the algorithms presented byBell and Garland(2008). More-
over, we are interested in the behavior of the incorporated
biogeochemical models ported to the GPU. For this purpose,
we take here two examples with two tracers each. One of
them is a simple linear model, describing for example the ra-
dioactive decay of two compounds. The second one is a well-
known biogeochemical model that serves as a basis for more
complex descriptions of the interplay of ocean biota and its
major nutrients. It was used for numerical experiments by
Parekh et al.(2005) or Kriest et al.(2010) for example.

Since we want to explicitly show what steps were neces-
sary for the mentioned CPU-to-GPU port, we start by de-
scribing the original software for the ecosystem spin-up and
the used biogeochemical models in Sect.2. Afterwards we
describe the standards, tools and libraries used for GPU pro-
gramming in Sect.3. We then show which GPU-adapted soft-
ware can be used and what kind of adaption we additionally
had to make in Sect.4. We then show numerical results in
Sect.5 for the two models, both on CPU and GPU hardware.
Finally, we conclude our work and give an outlook in Sect.6.

2 Coupled marine tracer transport simulation using
transport matrices

A marine ecosystem is usually modeled as a system of equa-
tions for the ocean circulation and the transport of temper-
ature, salinity and the incorporated biogeochemical tracers,
including their interactions. A fully coupled simulation –
reflecting the fact that tracers are advected by the ocean

circulation, their diffusion is dominated by the turbulent mix-
ing of marine water, and, vice versa, a tracer concentration
may effect the ocean circulation – is computationally expen-
sive. Even on high-performance hardware, such a coupled
(also called “online”) simulation in three spatial dimensions
is restricted to single model evaluations only, especially if
steady annual cycles, which require long term spin-ups, are
under investigation.

In contrast, a so-called “offline” computation is a simpli-
fied approach for tracers that are (or are regarded as) “pas-
sive”, i.e. they do not affect the ocean physics, or this influ-
ence is neglected. This results in a one-way coupling from the
ocean circulation to the tracer dynamics only, where the pre-
computed circulation data (advection velocity vector fieldv,
mixing coefficientκ, temperature, and optionally salinity)
enter the tracer transport equations as forcing.

With this data given, a marine ecosystem model consid-
ered in an offline computation consists of the following sys-
tem of parabolic partial differential equations (here forn trac-
ersyi summarized in the vectory = (yi)i=1,...,n):

∂yi

∂t
= ∇ · (κ∇yi) − ∇ · (v yi) + qi(y), i = 1, . . . ,n, (1)

in the space–time cylinder�×[0,T ] with � ∈ R3 being the
spatial domain (i.e. the ocean) and[0,T ],T > 0, the time
interval. Here, we neglect the additional dependency on the
space and time coordinates(x, t) in the notation for brevity.
Additionally, homogeneous Neumann boundary conditions
on0 = ∂� for all tracersyi are imposed. The source-minus-
sink or coupling termsqi in general are nonlinear and rep-
resent growth, dying, and tracer interaction. Each of them
need not necessarily depend onall tracers iny, but usually
on more than theyi itself. Theqi also include model pa-
rameters (as growth and dying rates, sinking velocities etc.)
that are often subject to identification or estimation. They are
usually spatially and temporally constant and not mentioned
explicitly here.

2.1 Transport matrices

Since in an offline simulation the ocean circulation data is
only used as pre-computed input for the tracer transport
equations (Eq.1), the spatial differential operators therein
can be represented as a linear operator and the equations can
be formally written as

∂yi

∂t
= L(κ,v, t)yi + qi(y), i = 1, . . . ,n. (2)

Here,L(κ,v, t) is a linear operator comprising the whole
transport, i.e. diffusion and advection, for the given ocean
circulation dataκ andv. It is time-dependent since the cir-
culation data also depend on time, both in case of a transient
simulation, and where a steady annual cycle driven by cli-
matological data is sought. The operatorL is identical for
all tracers if the molecular diffusion of the tracers is small
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Table 1. Resolution, sizes and sparsity of one block of the explicit and implicit transport matrices for two resolutions computed with the
MITgcm.

horizontal vertical matrix size number of non-zeros, total (nnz) and percent
resolution layers (nrows) Aexp Aimp

2.8125◦ 15 52 749 5 407 405 (0.1943 %) 672 779 (0.0024 %)
1◦ 23 682 604 76 567 216 (0.0164 %) 13 339 210 (0.0029 %)

Fig. 1. One block of the explicit (left) and implicit (right) transport matrices Aexp,Aimp computed using the MITgcm for a 2.8125◦

resolution (output of MATLAB®’s spy command).

Table 2. Parameters in the N-DOP model.

Name Description Unit

λ remineralization rate of DOP d−1

α maximum community production rate d−1

σ fraction of DOP 1
KN half saturation constant of N mmol P m−3

KI half saturation constant of light W m−2

KH2O attenuation of water m−1

b sinking velocity exponent 1

Fig. 2. Compilation and linking process of the spin-up for usage on
the GPU.

Fig. 1.One block of the explicit (left) and implicit (right) transport matricesAexp,Aimp computed using the MITgcm for a 2.8125◦ resolution

(output of MATLAB®’s spy command).

compared to the turbulent mixing, which is a reasonable sim-
plification.

The idea of the Transport Matrix Method (TMM) intro-
duced inKhatiwala et al.(2005) is to compute or approxi-
mate the matrices that represent an appropriate discretization
of L. This is done by running time steps of the ocean model
that has produced the circulation datav,κ etc., with spe-
cial, only locally non-zero initial distributions for one tracer.
By varying the support of the initial distributions over the
whole spatial domain, an approximation for one or several
time steps can be obtained, which can be then used to build
up a matrix representation ofL. A comprehensive discussion
of the temporal and spatial discretization as well as the pro-
cess of evaluating transport matrices, especially in combina-
tion with operator splitting schemes can be found inKhati-
wala et al.(2005). For our results we used twelve implicit and
twelve explicit transport matrices, which represent monthly
averaged diffusion and advection. The matrices are interpo-
lated linearly to the corresponding discrete time step during
simulation.

As a result, we obtain the following fully (temporal and
spatial) discrete scheme where we now denote byyj the ap-
propriately arranged vector of the values of alln tracers on
all spatial grid points at time stepj . In the same way, we
denote byqj the vector of the discretized source-minus-sink
terms at all spatial grid points in time stepj . Using the TMM
with a fixed time step-sizeτ , the time integration scheme for
(Eq.2) reads

yj+1 = A imp,j (Aexp,j yj + τ qj (yj )) =: ϕj (yj ). (3)

Here nτ is the total number of time steps and
A imp,j ,Aexp,j are the implicit and explicit transport matri-
ces at time stepj = 0, . . . ,nτ − 1. The matrices are block-
diagonal and sparse and depend on the used time-stepping
scheme: if – as a simple and unrealistic example – the whole
system were solved explicitly by an Euler step,A imp,j would

be the identity andAexp,j would be the discrete counterpart
of I + τL(κ,v, tj ). Summarizing, starting from a vectory0
of initial values, each step in the time integration scheme
(Eq. 3) to solve the tracer transport equations (Eq.1) con-
sists of the evaluation of the source-minus-sink term and two
matrix-vector multiplications per tracer.

Table1 shows typical values for the sizes and sparsity of
transport matrices generated by the MIT General Circulation
Model (MITgcm; Marshall et al., 1997) for two spatial res-
olutions, seeKhatiwala et al.(2005); Piwonski and Slawig
(2012). Since we deal with quadratic matrices and the spar-
sity patterns remain the same throughout the whole spin-up
process a characterization of the used matrices by the num-
ber of rows (nrows ) and the number of non-zero elements
(nnz ) is sufficient for our purpose. Figure1 shows the spar-
sity patterns. The matrix entries are stored asdouble preci-
sionvalues.

2.2 Computation of steady annual cycles

Computing a periodic solution of the discretized system
(Eq. 3) means looking for a fixed point of the mapping
8 = ϕnτ −1 ◦ · · · ◦ ϕ0, i.e. for a trajectory(yj )j=0,...,nτ with

ynτ = 8(y0) = y0. (4)

Thus one application of the mapping8 corresponds to the
computation of one year model time (or model year). The
time step used in our computations was 3 h, which corre-
sponds (taking 360 days a year) tonτ = 2880. The discretiza-
tion of the biogeochemical termsqi may include shorter time
steps (typically 8 per outer 3-h step).

The whole iteration to compute a steady cycle (or fixed
point) now consists of a repeated application of the mapping
8:

yl+1
= 8(yl), l = 0, . . . ,nl − 1, (5)
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Table 1. Resolution, sizes and sparsity of one block of the explicit and implicit transport matrices for two resolutions computed with the
MITgcm.

Horizontal Vertical Matrix size Number of non-zeros, total (nnz ) and percent

resolution layers (nrows ) Aexp Aimp

2.8125◦ 15 52 749 5 407 405 (0.1943 %) 672 779 (0.0024 %)
1◦ 23 682 604 76 567 216 (0.0164 %) 13 339 210 (0.0029 %)

where yl is the vector of discretized tracer afterl model
years, i.e.yl

= yl·nτ , andnl the total number of model years
necessary to reach a steady annual cycle. The resulting struc-
ture of the spin-up is sketched in Algorithm1.

From several computations it can be observed that after
aboutnl = 3000 iterations, a numerical steady solution (up
to an accuracy of about 10−2 in discreteL2(�)n norm) is ob-
tained. Thus we refer to this as a “converged steady annual
cycle”. This value ofnl was also used in (Kriest et al., 2010).
The residual can be further decreased by using a higher num-
bernl of model years.

2.3 Applying parallel algorithms using the
PETSc library

Obviously, a parallelization of the matrix-vector multiplica-
tion occurring every time step can significantly speed up the
process of computing the steady annual cycle by the pseudo-
time stepping (or fixed point iteration) described above. In
the CPU setting (e.g.Piwonski and Slawig, 2012) the par-
allelization is carried out on a multi-processor, distributed-
memory architecture. In order to avoid the direct implemen-
tation of MPI directives, we make use of the PETSc library.
It is a collection of data structures and algorithms for the
parallel solution of numerical problems and provides inter-
faces (APIs) to programming languages as Fortran, C, C++,
Python, and MATLAB®. Main advantages of PETSc for our
application are the parallelized matrix-vector-multiplication
routines and the usage of an efficient sparse matrix storage
format, in our case the default PETSc format, namely the
“AIJ” or “Yale sparse” or “CSR” (compressed sparse row)
format.

In our original implementation, the biogeochemical part
(Algorithm 1, line 4) is implemented in Fortran, whereas
the remainder of the code is realized in C. There is a dif-
ference with respect to the access of the tracer data that
becomes important later on the GPU: for the biogeochemi-
cal computations (line 4), the values of the separate tracers
and also on different spatial grid points (compare Eq.6) are
needed simultaneously. In contrast, the matrix-vector prod-
ucts (lines 6, 7) are executed separately for each tracer, thus
allowing us to store and work with one block of the trans-
port matrices only. Each matrix-vector product is computed
by one call to the PETSc routineMatMult() .

For the interpolation step in line 5, three other PETSc rou-
tines are used (for explicit and implicit matrix separately) to
compute the appropriately weighted matrices:

MatCopy(A[i_alpha], A_work, ...);
MatScale(A_work, alpha);
MatAXPY(A_work, beta, A[i_beta], ...);

These three routines together compute a linear inter-
polant or convex combination of two succeeding monthly
averaged matrices, which are stored in the arrayA start-
ing at indexi alpha and i beta , respectively. Thus the
above lines computeA work = alpha * A[i alpha]
+ beta * A[i beta] , which gives the desired interpo-
lated matrix inA work , if alpha, i alpha andbeta,
i beta are chosen correctly with respect to the time stepj .

2.4 Ecosystem and biogeochemical model examples

We use two simple models to test the computational gain pos-
sible with the GPU hardware. Each of them has two tracers
(i.e. n = 2 in Eq. 1 and thereafter). Source codes for both
models are available atPiwonski and Slawig(2012).

The first one is a simple radioactive decay model which is
uncoupled and has the autonomous source-minus-sink term

q(y) =

(
−λ1 y1
−λ2 y2

)
.

The parametersλ1,λ2 > 0 are the decay rates of the two
radioactive elements. We chose Iodine I131 with λ1 ≈ 44.88
and Caesium Cs137 with λ2 ≈ 0.0331. This uncoupled model
is used in order to test the gain in CPU time for the pure
matrix-vector multiplication and interpolation in the TMM.

The second model is a typical biogeochemical model, in-
cluding both coupling and nonlinearities. It is based on the
N-DOP model described inParekh et al.(2005), which was
also used inKriest et al.(2010), from which we basically
take the notation. The model incorporates phosphate (nutri-
ents, N,y1) and dissolved organic phosphorus (DOP,y2). The
source-minus-sink term is split up into the upper, sun-lit or
productive euphotic zone�1 with depthz′, and the lower,
aphotic zone�2:

Geosci. Model Dev., 6, 17–28, 2013 www.geosci-model-dev.net/6/17/2013/
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Algorithm 1: Marine ecosystem spin-up using TMM
Require: Set of monthly averaged transport matricesAimp,Aexp, initial tracer distributiony0, time stepτ
Ensure : At the endy is a tracer distribution (at one point in time) of a steady annual cycle

1 y = y0
2 repeat
3 for j = 0, . . . ,nτ − 1 do
4 compute biogeochemical source-minus-sink terms:ỹ = qj (y)

5 interpolate the monthly averaged transport matrices to the current time stepj

6 perform explicit step: ŷ = Aexp,j y

7 perform implicit step: y = Aimp,j (ŷ + τ ỹ)

8 end
9 until steady annual cycle is reached

q1(y) =

{
−f (y1) + λ y2 in �1

(1− σ) ∂
∂z

F(y1) + λ y2 in �2

q2(y) =

{
σf (y1) − λ y2 in �1
−λ y2 in �2

z being the vertical coordinate. The biological production is
calculated as a function

f (y1) = α
y1

y1 + KN

I

I + KI

of nutrients y1 and light I . The dependence on the lat-
ter is omitted here in the notation for brevity. The produc-
tion is limited by a half saturation function, also known as
Michaelis-Menten kinetics, and a maximum production rate
parameterα. Light is modeled as a portion of shortwave ra-
diationISWR, which is computed as a function of latitude and
season following the astronomical formula ofPaltridge and
Platt(1976). The portion depends on the photo-synthetically
available radiationσPAR = 0.4, the ice coverσice, and the ex-
ponential attenuation of water, i.e.

I = ISWR σPAR (1− σice) exp(−zKH2O).

A fraction σ of the biological production remains sus-
pended in the water column as dissolved organic phospho-
rus, which remineralizes with a rateλ. The remainder of the
production sinks as particulate to depth where it is reminer-
alized according to the empirical power–law relationship de-
termined byMartin et al.(1987),

F(y1) =

(
z

z′

)−b
z′∫

0

f (y1) dz. (6)

Similar modeling of biological production can be found
for example in Dutkiewicz et al. (2005). Algorithm 2
sketches the implementation of the N-DOP model, whereas
the model parameters are given in Table2.

Table 2.Parameters in the N-DOP model.

Name Description Unit

λ remineralization rate of DOP d−1

α maximum community production rate d−1

σ fraction of DOP 1
KN half saturation constant of N mmol P m−3

KI half saturation constant of light W m−2

KH2O attenuation of water m−1

b sinking velocity exponent 1

3 GPU computing with CUDA

In this section we describe the basic architecture of GPUs and
give an overview of some useful libraries. We concentrate
on NVIDIA’s Compute Unified Device Architecture (CUDA;
NVIDIA Corporation, 2012). One alternative is, for example,
OpenCL (The Khronos Group, 2012).

NVIDIA, as one of the leading producers of graphic cards,
has developed its own parallel architecture for executing
computationally expensive code on GPUs. By exploiting the
architecture of graphic cards as well as the increased memory
bandwidth, it is possible to perform a far greater number of
floating point operations per second (FLOPS) than on CPUs.
While CPUs have about one to eight cores each with up to
4 GHz clock rate, GPUs nowadays do have a lower clock
rate, but hundreds of cores which can run multiple threads
simultaneously.

The basic unit of the CUDA programming model is called
kernel. A kernel is a piece of program code invoked on the
CPUhostand executed on the GPUdeviceby threads. These
threads are organized in a “grid” of thread “blocks”. A call
to

kernel<<<gridSize, blockSize>>>();

createsgridSize blocks ofblockSize threads ready for
execution, whereas the order of processing the blocks de-
pends on the hardware.

www.geosci-model-dev.net/6/17/2013/ Geosci. Model Dev., 6, 17–28, 2013
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Algorithm 2: Computation of̃y = qj (y) for the N-DOP model.

Require: Tracer vectorsy, latitudeφ, ice coverσice, depthsz, layer heightsdz and parameters:λ,α,σ,KN,KH2O,KI ,b

Ensure : ỹ consists of the computed sinks and sources

1 for every water columni with ni layersdo
2 I = 0.4∗ (1− σice,i) ∗ ISWR(φi) // compute insolation
3 ỹ = 0 // zero all bio steps
4 for 8 biostepsdo
5 y′

= y + ỹ // take previous steps into account
6 ỹ′

= 0 // zero one bio step
7 for layer j = 1 to min(ni ,2) do // production layers
8 Ij = I ∗ exp(−zj KH2O)

9 fj = α ∗ y′
1,j

∗ Ij /(y′
1,j

+ KN)/(Ij + KI)

10 ỹ′
1,j = ỹ′

1,j − fj

11 ỹ′
2,j = ỹ′

2,j + σ ∗ fj

12 if last layerthen
13 ỹ′

2,j = ỹ′
2,j + (1− σ) ∗ fj

14 else
15 for every layerk beneathdo // approximation of dF/dz
16 if last layerthen
17 ỹ′

2,j = ỹ′
2,j + (1− σ) ∗ fj ∗ dzj ∗ (zk−1/zj )−b/dzk

18 else
19 ỹ′

2,j = ỹ′
2,j + (1− σ) ∗ fj ∗ dzj ∗ ((zk−1/zj )−b

− (zk/zj )−b)/dzk

20 end
21 end
22 end
23 end
24 for layer j = 1 to ni do // all layers
25 ỹ′

1,j = ỹ′
1,j + λ ∗ y′

2,j

26 ỹ′
2,j = ỹ′

2,j − λ ∗ y′
2,j

27 end
28 ỹ = ỹ + 1/8∗ ỹ′ // scale and add to all bio steps

29 end
30 end

The GPU hardware consists of several Streaming Multi-
processors (SMs). Each SM has its own buffer memory, reg-
isters, and a number of cores. The cores have their own units
for integer and floating-point calculation. For example, the
GeForce GTX 480 used here has 15 SMs with 32 cores each,
i.e. a total of 480 cores. On a core, the smallest executable
unit is a “warp”, which consists of 32 threads. The total
number of threads that can run simultaneously on a multi-
processor is dependent on the Compute Capability (CC) of
the graphics chips. For the GTX 480 the limit is 1536 threads,
which results in a maximum number of concurrent threads
for the entire GPU of 15× 1536= 23 040 (p. 159,NVIDIA
Corporation, 2011).

The device memory on the GPU is divided into three types
of physical and virtual portions. At first, a thread has access
to its own private memory which is, depending on the CC, be-
tween 16 kB and 512 kB. Secondly, threads within one block
have access to a shared memory of between 16 kB and 48 kB.
Finally, all threads have access to a shared global memory

whose size is limited by the total amount of memory of the
GPU. In order to run kernel code on the GPU, all data must
be transferred from the host memory of the CPU to the device
memory on the GPU.

NVIDIA provides a compiler (nvcc ) that translates C
code into the CUDA Instruction Set (called PTX) and be-
haves similarly to the C compiler (gcc ) included in the GNU
Compiler Collection (GCC). A port of the GNU debugger
gdb is also included in the CUDA toolkit.

3.1 Libraries

We make use of libraries that provide basic algorithms while
working with GPUs. The first one is: Thrust (Bell and Hobe-
rock, 2011), a C++ collection of generic algorithms, similar
to the C++ Standard Template Library (STL), that exploit the
parallelism of the GPU in a transparent way. Using Thrust,
many problems can be solved without even writing code for
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the GPU. For documentation and sample code we refer to
(Hoberock and Bell, 2012).

The second library is Cusp (Bell and Garland, 2010),
which provides data types for sparse matrices and algorithms
for basic linear algebra operations on them. All data struc-
tures in Cusp have a parameter that determines whether it is
stored in CPU or GPU memory. Operations on the data will
then take place in the respective storage area. For our ap-
plication, in particular the structurecusp::csr matrix
for the CSR format and the matrix-vector multiplication rou-
tine cusp::multiply that uses the algorithm described
in Bell and Garland(2008, 2009), which was specially de-
veloped for GPUs, are important. Documentation and sample
code can be found at (Bell and Garland, 2010).

The third library we used was the preliminary implementa-
tion of PETSc for the CUDA architecture presented inMin-
den et al.(2010). With the help of the Thrust and Cusp li-
braries, a large part of the PETScVector and some parts
of the Matrix class have been implemented. The funda-
mental problems of interaction of PETSc with the GPU have
been resolved, but only the routines that were necessary for
the example treated inMinden et al.(2010) have been im-
plemented. Basically this “PETSc GPU” extends the built-in
structures by a value that indicates in which memory the most
recent data are stored. This guarantees that the correct data is
available (and if necessary copied to) the memory that is cur-
rently used. Here, we employed the developer PETSc library
version 3.2-p5.

4 Port of the marine ecosystem simulation onto
the GPU

We now describe the necessary modifications and extensions
of the original program that was running on a multi-processor
CPU cluster in order to perform the simulation on a GPU.
Basically these modifications are extensions of PETSc GPU,
modifications necessary to use the CUDA Fortran compiler
for the biogeochemical model code and some routines for
conversions between different data alignments.

4.1 Necessary extensions of PETSc GPU

The preliminary PETSc GPU implementation was designed
to solve systems of equations, and thus not all functions nec-
essary for our applications were included. To avoid any copy-
ing of data between CPU and GPU storage that would have
destroyed the speed-up, we had to extend the library. In our
case, the three PETSc routinesMatCopy , MatScale , and
MatAXPYmentioned in Sect.2.2had to be modified.

If using sparse matrices with PETSc and working with
GPUs the PETSc wrapper function

MatCopy(Ain, Aout, ...);

accessesMatCopy SeqAIJCUSP() to copy the values
from matrixAin to Aout . Here, it is theoretically possible

that both matrices are either currently in the GPU memory,
the CPU memory or in both. For a complete and correct
implementation, it would have been necessary to cover all
these cases, and accordingly select the memory the matri-
ces are actually copied to. For our application it was suf-
ficient to cover only the case where the matrices are both
in the GPU memory, thus only this case was implemented.
Therefore, an additional call toMatCUSPCopyToGPU() in
MatCopy SeqAIJCUSP() ensures that both matrices are
in the GPU memory.

The PETSc routinesMatScale() andMatAXPY() im-
plement typical linear algebra subproblems, which are only
performed on the non-zero matrix elements. Consequently,
they could be completely realized using the Cusp BLAS li-
brary for the GPU.

4.2 PGI CUDA-Fortran

Many biogeochemical models are implemented in Fortran.
Mostly, they are part of a software that has evolved over
decades (e.g. MITgcm). Since we want to use them with
GPUs without any modification to original source code, we
need a Fortran compiler and the appropriate libraries. At the
time of this work there was only one candidate, namely the
PGI CUDA Fortran compiler (The Portland Group, 2012). It
extends the language by constructs for calling kernel as well
as the CUDA API functions. The syntax of a kernel call in
Fortran is

call kernel<<<gridSize, blockSize>>>()

and thus similar to CUDA C++ . There are some extensions
compared to CUDA C++, but also some restrictions. For de-
tails we refer to the manual (The Portland Group, 2011a, p.
14).

4.3 Other extensions to the implementation on the CPU

As mentioned in Sect.2.3, there are two different data align-
ments useful for the spin-up using the TMM: one for the bio-
geochemical source-minus sink terms, where all tracers of a
water column are kept in a contiguous piece of memory, and
another one for the multiplication with the transport matrices,
where every water column of a tracer is kept together to re-
duce the storage requirements for the matrices. Thus a copy-
ing between these two data alignments is necessary in every
step of the algorithm. For the use on the GPU, three copy-
ing functions in the original code were additionally modified
using the Thrust library.

4.4 The compilation process for the GPU

Here we briefly sketch the overall compilation and linking
process of the resulting code for the use on the GPU. The
process is visualized in Fig.2.

In a first step (top right in Fig.2) the biogeochemi-
cal model file model.F is included intodriver.CUF

www.geosci-model-dev.net/6/17/2013/ Geosci. Model Dev., 6, 17–28, 2013



24 E. Siewertsen et al.: Porting marine ecosystem model spin-up to GPUs

10 E. Siewertsen et al.: Porting marine ecosystem model spin-up to GPUs

Table 1. Resolution, sizes and sparsity of one block of the explicit and implicit transport matrices for two resolutions computed with the
MITgcm.

horizontal vertical matrix size number of non-zeros, total (nnz) and percent
resolution layers (nrows) Aexp Aimp

2.8125◦ 15 52 749 5 407 405 (0.1943 %) 672 779 (0.0024 %)
1◦ 23 682 604 76 567 216 (0.0164 %) 13 339 210 (0.0029 %)

Fig. 1. One block of the explicit (left) and implicit (right) transport matrices Aexp,Aimp computed using the MITgcm for a 2.8125◦

resolution (output of MATLAB®’s spy command).

Table 2. Parameters in the N-DOP model.

Name Description Unit

λ remineralization rate of DOP d−1

α maximum community production rate d−1

σ fraction of DOP 1
KN half saturation constant of N mmol P m−3

KI half saturation constant of light W m−2

KH2O attenuation of water m−1

b sinking velocity exponent 1

Fig. 2. Compilation and linking process of the spin-up for usage on
the GPU.

Fig. 2.Compilation and linking process of the spin-up for usage on
the GPU.

and processed todriver model.CUF by the pre-
processor of the C++ compilerpgcpp . The Fortran
compiler pgfortran then generates the object file
driver model.o .

The driver routinedriver.CUF has two tasks: at first
the Fortran compiler requires that all functions which
shall run on the GPU are marked with thedevice at-
tribute, seeThe Portland Group(2011b). Since the com-
piler has no ability to set default attributes for all func-
tions, it is necessary to integrate them through a preprocessor
macro. Therein the Fortran keywordsubroutine is re-
placed byattributes(device) subroutine . Sec-
ondly, the driver provides support functions for the three
entry points into the biogeochemical model, namely (i) the
evaluation of the source-minus-sink term, (ii) the initializa-
tion and (iii) deinitialization of the model. These three func-
tions need corresponding kernels for the GPU. This approach
ensures the original Fortran interface of the biogeochemical
model remains unaltered.

In a second step (top left of Fig.2) the original, unmodi-
fied C code is compiled with the MPI wrapper of the GNU
C compilermpicc , while CUDA extensions are translated
with nvcc . Finally all object code files are linked against
PGI Fortran libraries, which results in the final executable.

5 Numerical results

In this section we compare the performance of the spin-up
on our CPU/GPU test hardware. We use the two models
described in Sect.2.4. A special emphasis lies on the time
needed for the individual parts, namely the evaluation of the
biogeochemical source minus-sink term, the matrix interpo-
lation and the matrix-vector multiplication. Moreover, we
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Table 3. Minimum, maximum, average and standard deviation of computational time for one model year spent on the CPU and GPU. Shown
are results of 100 model years, each year timed separately. BGCStep block size: 160.

CPU GPU
model Min Max Avg StdDev Min Max Avg StdDev CPU Min : GPU Min

I-Cs 159.58 s 161.44 s 160.19 s 0.47 15.49 s 15.52 s 15.50 s 0.002 10.30
N-DOP 621.43 s 626.79 s 622.14 s 0.54 28.17 s 28.20 s 28.18 s 0.003 22.06

Table 4. The three main portions in every time step of the spin-up.

lines in Alg. 1 Routine Description

4 BGCStep evaluation of source-minus-sink terms
5 MatCopy, MatScale, MatAXPY interpolation of transport matrices
6, 7 MatMult multiplication of transport matrices with tracer vectors

Table 5. Mean computational time within one model year and performance gains of the individual routines depicted in Table 4.

I-Cs N-DOP
Routine CPU GPU CPU : GPU CPU GPU CPU : GPU

BGCStep 3.79 s 0.38 s 9.93 469.76 s 13.05 s 36.00
MatCopy 34.52 s 3.91 s 8.83 34.04 s 3.91 s 8.70
MatScale 23.83 s 1.99 s 11.96 23.33 s 1.99 s 11.70
MatAXPY 38.71 s 2.89 s 13.39 37.49 s 2.89 s 12.96
MatMult 60.04 s 5.87 s 10.22 58.19 s 5.87 s 9.92
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Fig. 3. Computational time needed for the I-Cs (left) and N-DOP (right) model within one model year depending on the block size.Fig. 3. Computational time needed for the I-Cs (left) and N-DOP
(right) model within one model year depending on the block size.

contrast the best GPU result for the N-DOP model with re-
sults from three different distributed-memory architectures.

5.1 Setup

The CPU/GPU test hardware consists of two GeForce GTX
480 graphic cards and two Intel® Xeon® E5520 CPUs run-
ning at 2.27 GHz. However, the following tests were per-
formed only ononeGPU and only onone coreof the CPU.
No display was connected to the graphic card and compu-
tations on the GPU were performed withdouble precision,
which is natively supported by the GTX 480. The theoretical
peak performance of the GPU is at 168 GFlop s−1 and the
internal bandwidth at 177 GB s−1. The performance of one
core of the CPU system is at 9.08 GFlop s−1, its bandwidth
at 21.2 GB s−1.

To test a specific biogeochemical model, the software
is compiled with the according source code and run for
100 model years. In detail, when the executable starts the
data (matrices, initial vectors, etc.) is copied into the CPU
or GPU memory and 100 iterations, 2880 time steps each,
are performed consecutively. In the case of a GPU run, the
results are copied back to CPU memory at the end.

Thus, the whole data has to fit into the memory of the de-
vice (or host). This is the case if the 2.8125◦ horizontal res-
olution is used. Here, the 1.5 GB RAM of a GTX 480 (or
40 GB of the CPU system) are enough for about 1 GB of data.
However, a monthly averaged set of transport matrices based
on a 1◦ resolution (approximately 13 GB) is too large for the
used GPU system. Such an amount of data requires a differ-
ent approach (see Sect.6). Hence, we focus on the 2.8125◦

resolution and omit profiling of data transfers between CPU
and GPU memory.

When processing source codes, thempicc , mpif90 and
nvcc compilers are switched to-O (i.e. optimize). For
pgfortran no optimization flags are used. To perform
time measurements, the profiling system of PETSc is ap-
plied. No further source code optimization is performed re-
garding the GPU.
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Table 3.Minimum, maximum, average and standard deviation of computational time for one model year spent on the CPU and GPU. Shown
are results of 100 model years, each year timed separately.BGCStep block size: 160.

CPU GPU

Model Min Max Avg StdDev Min Max Avg StdDev CPU Min: GPU Min

I-Cs 159.58 s 161.44 s 160.19 s 0.47 15.49 s 15.52 s 15.50 s 0.002 10.30
N-DOP 621.43 s 626.79 s 622.14 s 0.54 28.17 s 28.20 s 28.18 s 0.003 22.06

Table 4.The three main portions in every time step of the spin-up.

Lines in Alg.1 Routine Description

4 BGCStep Evaluation of source-minus-sink terms
5 MatCopy , MatScale , MatAXPY Interpolation of transport matrices
6, 7 MatMult Multiplication of transport matrices with tracer vectors

5.2 Results

We start by examining the block size parameter for the For-
tran kernel calls of the biogeochemical model. The block size
describes the number of vertical profiles (or water columns)
that are processed within a block. While the grid and block
dimensions are calculated automatically, if using Thrust or
Cusp for example, a suitable value for the Fortran kernel
must be determined experimentally for the time being. For
all tests we use just 100 model years (instead of 3000 or more
needed in practice, see Sect.2.2) to render the numerical ex-
periments feasible, especially when simulating the N-DOP
model on the CPU, which still takes about 17 h.

Figure 3 depicts the mean of 100 model years’ compu-
tational time spent on the GPU for biogeochemical model
steps depending on the block size. In both models, strong
fluctuations up to 100 % occur. However, both graphs show
similar occurrence of minima and maxima. We suppose this
is due to the unbalanced distribution of water columns (see
Sect.6). However, the absolute minimum (I-Cs: 0.38 s, N-
DOP: 12.6 s) is obtained for a block size of 160.

This value is used for the subsequent test, in which every
year is timed separately. Table3 shows the minimum, max-
imum and mean of computational time for one model year
spent on the CPU and GPU. The standard deviation is small
on the CPU (I-Cs: 0.47, N-DOP: 0.54) and marginal on the
GPU (I-Cs: 0.002, N-DOP: 0.003). However, the overall re-
duction is about 10 for the simpler I-Cs model and about 22
for the more complex N-DOP model, a difference we inves-
tigate further.

Thus, the next tests focus on the individual steps within the
repeat-until loop of Algorithm1, corresponding to one an-
nual cycle. The invoked routines are listed in Table4. Their
individual performance gain is depicted in Table5. Regard-
ing MatCopy , MatScale , MatAXPY andMatMult , we
see a similar relative performance gain for both models from
about 9 to 13. In contrast,BGCStep shows a speed-up of

about 10 for the I-Cs model, whereas for N-DOP a ratio be-
tween the CPU and GPU of 36 can be observed. In addition,
in Fig. 4 we recognize that 75 % of the overall time on the
CPU, which is spent for the evaluation of the N-DOP model,
is sped up by this factor on the GPU. This explains the over-
all ratio of 22. Note that the slightly higher average computa-
tional times in Fig.4 (compared to those in Table3) are due
to the higher granularity of profiling. Moreover, we see that
the computational effort for the I-Cs model, which is just a
scaling of the tracer vector, is smaller than 3 % on both ar-
chitectures. Here, the overall speed up is dominated by the
matrix operations.

Concerning the latter, we pickMatMult for a detailed
view on performance and bandwidth and compare our results
with those reported byBell and Garland(2008). We calculate
the number of floating point operations for one model year as
follows:

nops= nτ ∗ 2∗ (2∗ nnz exp+ 2∗ nnz imp) ≈ 70 GFlop,

which is the number of time steps per yeartimesnumber
of tracerstimes(explicit plus implicit) sparse matrix-vector
multiplication, which is exactly twice the number of non-
zeros. We consider the results from the N-DOP model and
dividenops by 58.19 s (CPU) and 5.87 s (GPU), respectively.
We obtain a performance of approximately 1.2 GFlop s−1

for the CPU and 11.9 GFlop s−1 for the GPU. This is about
13 % of the theoretical peak performance of one CPU core
(9.08 GFlop s−1) and about 7 % of 168 GFlop s−1, regarding
the GPU. The poor performance is due to the bandwidth lim-
itation, which is typical for sparse matrix-vector multiplica-
tions. FollowingBell and Garland(2008), we multiply nops
by 10 Byte Flop−1 (CSR vector kernel) and relate the result
to the computational time spent on the CPU and GPU, re-
spectively. We obtain 56.8 % (12 GB s−1) of the theoretical
bandwidth for the CPU and 67.4 % (119.4 GB s−1) for the
GPU.
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Table 5.Mean computational time within one model year and performance gains of the individual routines depicted in Table4.

I-Cs N-DOP

Routine CPU GPU CPU : GPU CPU GPU CPU : GPU

BGCStep 3.79 s 0.38 s 9.93 469.76 s 13.05 s 36.00
MatCopy 34.52 s 3.91 s 8.83 34.04 s 3.91 s 8.70
MatScale 23.83 s 1.99 s 11.96 23.33 s 1.99 s 11.70
MatAXPY 38.71 s 2.89 s 13.39 37.49 s 2.89 s 12.96
MatMult 60.04 s 5.87 s 10.22 58.19 s 5.87 s 9.92
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Fig. 4. Fraction of computational time needed for the individual parts in one year of the spin-up (Algorithm 1 and Table 4) for the I-Cs (top)
and the N-DOP (bottom) model on the CPU (left) and GPU (right).

Fig. 4.Fraction of computational time needed for the individual parts in one year of the spin-up (Algorithm1 and Table4) for the I-Cs (top)
and the N-DOP (bottom) model on the CPU (left) and GPU (right).

These figures in turn are satisfying and confirm a good
performance of the CSR vector kernel used byMatMult .
However, they also show that a sparse matrix-vector mul-
tiplication on a GTX 480, which is two generations ahead
of the GTX 280 used byBell and Garland(2008), is only
slightly faster. Here, we refer to the 10 GFlop s−1, achieved
by the GTX 280 for “unstructured” matrices, compared to
the 11.9 GFlop s−1 achieved by the GTX 480 for the trans-
port matrices. This is obviously due to the only slightly in-
creased memory bandwidth from 141.7 GB s−1 (GTX 280)
to 177 GB s−1 (GTX 480).

Nevertheless, motivated by the overall speed up, we per-
form simulations of the N-DOP model on three different
CPU clusters and put them in relation to the best performance
on the GPU as a last comparison. Figure5 shows that a GTX
480 can compete with approximately 56 Barcelona, 28 West-
mere, and 17 Gainestown processors.

6 Conclusions

In order to port our existing implementation of the spin-up
of marine ecosystem models using transport matrices from
CPU to GPU hardware, modifications of our own code and
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Fig. 5.Comparison between CPU cluster and the used GPU for one
model year for the N-DOP model, (“rzcluster” refers to the Kiel
University cluster, “HLRN” to the cluster of theNorth-German Su-
percomputing Alliance).

extensions to the used libraries were necessary. This work
required knowledge in the computing architecture of the used
CUDA programming framework and the PETSc, Thrust and
Cusp libraries. In order to compile Fortran code for the GPU,
a commercial compiler was necessary.

Concerning the computational gain of the used biogeo-
chemical models, we were surprised by the good perfor-
mance of the N-DOP implementation. Here, we can only
speculate about the reasons and see a need for a more detailed
investigation. Considering the complexity of Algorithm2,
however, such an effort was out of the scope of this work.
We thus reported only results here.

RegardingMatMult , we observed a similar good utiliza-
tion of memory bandwidth by the CSR vector kernel for
transport matrices as reported byBell and Garland(2008)
for “unstructured” matrices. Moreover, all matrix operations
showed a satisfactory performance gain.

Our results motivate us to investigate other biogeochemi-
cal models and to get to the bottom of the significantly higher
speed-up of the N-DOP model compared to other operations.
Additionally, we are eager to prepare the code for usage with
multiple GPUs and/or techniques of simultaneous copying
and computing.
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