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Abstract. An important source of uncertainty in climate
models is linked to the calibration of model parameters. In-
terest in systematic and automated parameter optimization
procedures stems from the desire to improve the model cli-
matology and to quantify the average sensitivity associated
with potential changes in the climate system. Building upon
on the smoothness of the response of an atmospheric cir-
culation model (AGCM) to changes of four adjustable pa-
rameters,Neelin et al.(2010) used a quadratic metamodel
to objectively calibrate the AGCM. The metamodel accu-
rately estimates global spatial averages of common fields of
climatic interest, from precipitation, to low and high level
winds, from temperature at various levels to sea level pres-
sure and geopotential height, while providing a computa-
tionally cheap strategy to explore the influence of parameter
settings. Here, guided by the metamodel, the ambiguities or
dilemmas related to the decision making process in relation
to model sensitivity and optimization are examined. Simula-
tions of current climate are subject to considerable regional-
scale biases. Those biases may vary substantially depend-
ing on the climate variable considered, and/or on the per-
formance metric adopted. Common dilemmas are associated
with model revisions yielding improvement in one field or
regional pattern or season, but degradation in another, or im-
provement in the model climatology but degradation in the
interannual variability representation. Challenges are posed
to the modeler by the high dimensionality of the model out-
put fields and by the large number of adjustable parameters.
The use of the metamodel in the optimization strategy helps
visualize trade-offs at a regional level, e.g., how mismatches
between sensitivity and error spatial fields yield regional er-
rors under minimization of global objective functions.

1 Introduction

General circulation models (GCMs) are an invaluable tool
to understand and predict climate variability and change.
Climate simulations, however, involve complex interactions
among many processes, including turbulent mixing in both
ocean and atmosphere, cloud physics, small-scale moist con-
vection, and aerosol dynamics, among others. These pro-
cesses are too small scale or too complex to be explicitly re-
solved, and are commonly replaced by parameterizations of
various sophistication. The modeling of those processes and
their interactions remains imperfect, and GCM predictions
have large uncertainties that depend on the climate variable
of interest. For example, over tropical regions the representa-
tion of mean precipitation or wind patterns is prone to biases
comparable in magnitude to the observed signal in certain
areas (Covey et al., 2003; Dai, 2006; Meel et al., 2007; Kid-
ston and Gerber, 2010; Stephens et al., 2010; Swart and Fyfe,
2012; van Oldenborgh et al., 2012; Barimalala et al., 2012).

Model biases depend on both parameterizations and on the
choice of parameters used, and there is no general agree-
ment on the set of key model parameters that are uncertain
yet critical in GCM performances. It is also not clear if all
relevant uncertainties are linked to parameterization and pa-
rameter choices, or else if GCMs are prone to structural insta-
bilities that cannot be expressed only as parameter variations
(McWilliams, 2007). Systematic investigations of parameter
space in climate models have been performed for single mod-
els using the so called “perturbed physics” strategy (Murphy
et al., 2004; Knight et al., 2007; Rougier et al., 2009; Collins
et al., 2010; Rowlands et al., 2012). The outcome of those
simulations has to then be compared with observations to
narrow the range of acceptable parameters.
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Alternatively to the perturbed physics approach, for
a given GCM it is common practice to settle on an optimized
set of parameters – optimized according to the modeler needs
– and retest andtunemultiple aspects of the model every time
a given parameter value or parameterization scheme are mod-
ified. This exercise is carried out primarily by trial and error,
and in most, if not all, cases a model revision in the GCM
parameter setting yields improvement in one field or geo-
graphic region, but degradation in another. InNeelin et al.
(2010) we proposed an algorithm that would partially au-
tomate this process in a computationally efficient manner,
helping to condense information for the modeler. This ap-
proach stems from the engineering and theoretical optimiza-
tion literature and uses a multi-objective optimization tech-
nique, while relaying on standard packages available for con-
strained optimization problems. It is based on approximating
the model’s parameter dependence to a low-order polyno-
mial by using a limited number of model integrations, and
it assumes that the error metric varies smoothly whenever
parameters are changed. The smoothness assumption relies
on the GCM experiments shown here, and on other unpub-
lished explorations performed using the Community Atmo-
spheric Model (CAM) version 4 (Neal et al., 2010), and it
is supported by the non-hydrostatic regional simulations pre-
sented inBellprat et al.(2012). It is not an a priori funda-
mental property of GCMs, and it needs to be verified for each
variable and parameter of interest. WhileHairer and Majda
(2010) present a theoretical argument that could justify the
framework of linear response theory in climate science, sim-
ple idealized models have been found to provide non-smooth
responses (Hakkarainen et al., 2012). A significant advan-
tage of the procedure that we outlined inNeelin et al.(2010)
is that optimization can be performed repeatedly for as many
objective functions as the user desires at low computational
cost.

Here we further explore basic issues in model param-
eter dependence using an atmospheric circulation model
(AGCM) to assess the potential for a wide implementation
of this procedure, while focusing on the ambiguities related
to the parameter decision process. When trying to optimize
a model setup, it is necessary to define an objective or cost
function that measures the distance between selected metrics
of the model output for a given set of parameters, and those
of the observed climate. We focus on exploring optimization
differences for varying metrics of interest, for example us-
ing square- or root-mean-square (RMS) error of key climate
variables versus using regressions on a widely used El Niño
Southern Oscillation index. We also investigate regional spa-
tial patterns of signal, sensitivity, and error, as the choice of
the objective function is expected to be user dependent and
possibly focused on a given spatial region.

2 Model and experimental design

The atmospheric model used in this study is the International
Centre for Theoretical Physics (ICTP) AGCM (Molteni,
2003). It is based on a hydrostatic spectral dynamical core
(Held and Suarez, 1994), and adopts the vorticity-divergence
form described inBourke (1974). The ICTP AGCM in-
cludes, in the parameterized processes, short- and long-
wave radiation, large-scale condensation, convection, sur-
face fluxes of momentum, heat and moisture, and lateral
and vertical diffusion. Convection is represented by a mass-
flux scheme that is activated where conditional instability is
present, and boundary layer fluxes are obtained by stability-
dependent bulk formulae. Land and ice temperature anoma-
lies are determined by a simple one-layer thermodynamic
model. In this study, the AGCM is configured with eight
vertical (sigma) levels and with a spectral truncation at to-
tal wavenumber 30. Applications of the ICTP AGCM can be
found in e.g.,Bracco et al.(2004) andKucharski et al.(2006,
2007, 2009).

As in Neelin et al.(2010), we analyze a suite of AGCM in-
tegrations forced by observed sea surface temperatures (SST)
from the HadISST data set (Rayner et al., 2003). Four param-
eters are varied, specifically the subgrid scale wind gustiness
(WGust), a horizontal viscosity parameter corresponding to
a damping time (Damp), the cloud albedo parameter (ClAlb),
and the relative humidity parameter from the deep convec-
tive parameterization (RHConv). To each of those we assign
an admissible range based on the properties of the parame-
terization and the model numerics, and we choose nine val-
ues centered at the standard setting recommended and vali-
dated by ICTP (http://users.ictp.it/~kucharsk/speedy8_clim_
v41.html). We verified that most of those parameters, in
the selected ranges, do not influence substantially the glob-
ally averaged top-of-atmosphere net energy flux (variations
are less than 10 %). A noticeable exception is ClAlb , which
causes unrealistic variations of the energy flux from−10 to
26 Wm−2. Ensembles of ten members, each member starting
from slightly different initial conditions, are carried out over
the period 1977–2002 for each parameter value considered.
The last 25 yr are used in the following analysis and the first
year is discarded as spin-up.

3 Metamodel formulation and accuracy

In Neelin et al.(2010) we explored the parameter dependence
of the ICTP AGCM in a suite of global measures and found
it generally smooth. Such characteristic has been confirmed
by Bellprat et al.(2012) for a state-of-the-art regional climate
model (RCM) when varying a suite of five parameters, and
by Archibald et al.(2012) for CAM in relation to changes
to the critical relative humidity thresholds for the formation
of low level or middle to high level clouds. The smooth-
ness leads us to adopt a low-order polynomial strategy of
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fitting parameter dependencies. More specifically, we con-
structed a computationally cheap metamodel to estimate the
root-mean-square error of any model quantity for a given
combination of the input parameters, assuming that changes
due to a perturbation of one parameter are approximated by
a second-order polynomial regression. If two parameters are
varied at once, a nonlinear term for each parameter pair is
introduced in the metamodel computation, and perturbations
of more than two parameters are approximated by the sum of
the nonlinear terms of all possible pairs.

Following Neelin et al.(2010), the quadratic metamodel
fit to a climate fieldφ(x, t) that depends on space and time
can be expressed as

φmm = φstd+

N∑
i=1

aiµi +

N∑
i=1

N∑
j=1

bi,jµiµj , (1)

whereµi = µipert − µistd is the parameteri taken relative to
its standard value,N the number of parameters considered,
andφ(x, t) is any statistic from the model output chosen by
the modeler. Hereai(x, t) is a high-dimensional vector con-
taining the linear coefficients for each parameter at each grid
point in time, andbi,j (x, t) represents the quadratic (diag-
onal) and interaction (off-diagonal) terms, with the assump-
tionbi,j (x, t) = bj,i(x, t). Thus a fit procedure of orderN al-
lows to estimate the linear sensitivity and the quadratic non-
linearity, while the off-diagonal coefficients, obtained with
a number of simulations of orderN2, can be calculated from
the corners of pairwise planes.

Figure1 exemplifies the procedure by showing the RMS
error of the ensemble mean climatologies compared to the
National Centers for Environmental Predictions (NCEP) re-
analysis (Kalnay et al., 1996) (panels a–c) or the Cli-
mate Prediction Center (CPC) Merged Analysis of Precip-
itation (CMAP, Xie and Arkin, 1997) (panel d) for slices
along the four parameter directions for different climate
variables. The variables vary from zonal wind at 200 hPa
(WGust), to meridional wind at 925 hPa (ClAlb), geopotential
height anomalies at 500 hPa (Damp), and rainfall (RHConv).
We consider climatologies in boreal summer (June–August,
JJA), winter (December–February, DJF), and annual aver-
ages. In Fig.1, together with the RMS errors evaluated from
the model output, we present the error reconstructions by the
quadratic metamodel (solid lines) and its linear counterpart
(dashed lines) using only the endpoints and the standard case,
and an estimation of the ensemble spread of the RMS er-
ror. As already mentioned, in all cases the parameter depen-
dence is smooth in large-scale measures, and the quadratic fit
reproduces it extremely well when the ten-member ensem-
ble mean is used, independently of the parameter or climate
variable selected. If only one 25 yr long ensemble member is
considered, on the other hand, it is possible to achieve an es-
timate of sensitivity but the variation inφ is not very smooth
for many parameters and variables.
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Fig. 1. RMS error of the ensemble mean AGCM climatology of
(a)zonal wind at 200 hPa for varying WGust,(b) meridional wind at
925 hPa for varying ClAlb , (c) vertical velocity at 500 hPa for vary-
ing Damp, and(d) precipitation for varying RHConv in December–
February (DJF) in blue, in June–August (JJA) in red, and for an-
nual averages in black relative to the National Centers for Envi-
ronmental Prediction reanalysis for wind fields and vertical veloc-
ity, and to CPC Merged Analysis of Precipitation for precipitation.
The AGCM values are compared to the quadratic metamodel re-
construction based on the endpoints for each parameter, and to its
linear counterpart. Note that the linear metamodel gives quadratic
terms (with positive curvature) in the RMS error. Units on abscissa
are ms−1 for WGust, days for Damp and nondimensional for the
remaining parameters. Error bars provide an estimate of the spread
of the RMS error in the ten ensemble members (±1 standard error
of the ensemble).

Often, the linear metamodel provides a reasonable fit over
the entire parameter range, with the quadratic term con-
tributing only a small correction. In few cases, however, the
quadratic term is essential to capture the negative curvature
of the dependence, as for the RMS error of precipitation on
RHConv. In Fig. 1 it is also evident that the parameter depen-
dence varies with seasons, and the parameter optima for sum-
mer, winter or annual averages may not coincide, as in the
case of the wind fields analyzed. This is a known, common
problem, especially in coupled general circulation models,
and identifies a first dilemma associated with parameter opti-
mization and sensitivity: its temporal dependence. For global
quantities, the RMS errors in the annual averages tend to be
smaller than the corresponding seasonal ones, again suggest-
ing that the model error may change sign within the year,
and cancelations are common whenever all months are con-
sidered.
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We have shown so far that the metamodel is helpful in re-
constructing the globally averaged model error for varying
parameters. In doing so, we synthesized the parameter de-
pendence in one number. In the spatial structure, however,
discrepancies between the AGCM output and the metamodel
reconstruction could be large but homogeneously distributed
around zero, and cancel each other when averaged glob-
ally. Before proceeding in our optimization exercise and in
the analysis of regional parameter dependencies, we need to
quantify those discrepancies. By construction, the model and
metamodel error patterns coincide at the standardµi values
and at the two extremes (µiMin andµiMax). The four ensem-
bles at intermediateµ values, on the other hand, allows us
to compare the model output with the reconstructed one. As
an example, the maps of the DJF modeled precipitation error
for RHConv = 0.8, of the reconstructed error from the meta-
model, and of their difference, are shown in Fig.2. In the dif-
ference, both positive and negative contributions are indeed
present, but overall their amplitude is small (at most 10 % of
the AGCM error). We verified for a large number of variables
of climate interest that the metamodel provides indeed a very
good approximation of the globally averaged RMS error and
of its pattern. Videos displaying the evolution across the pa-
rameter space of the modeled precipitation error, of the meta-
model error, and their difference for allµi can be found in the
Supplement. Obviously, the metamodel allows for evaluating
the error patterns for continuous variations ofµi , and not just
for a subset of discrete values. Videos of the metamodel rep-
resentation of precipitation error changes (evaluated against
CMAP) for all four parameters continuously varied in their
acceptable range are also available in the Supplement.

4 Global-scale optimization ambiguities

Having established the ability of the metamodel in identify-
ing the optima parameter space over the feasible range, we
summarize such space in Table 1 for a number of variables
of common interest to climate scientists, from precipitation,
low level winds, land surface temperature and mean sea level
pressure, to vertical velocity at 500 hPa, and temperature and
winds at the top of the atmosphere, for boreal winter and
summer. The parameter optima are easily obtained from the
metamodel (here including the quadratic terms) using a stan-
dard Matlab function for constrained optimization (fmincon),
which is part of the Optimization Toolbox. The location of
the optima in parameter space differs significantly for dif-
ferent climate variables and in the two seasons, highlighting
the contradictions faced by the modeler whenever optimiz-
ing one variable versus another, or summer versus winter cli-
matologies. The metamodel, on the other hand, proves to be
a practical and computationally cheap tool to estimate the
model sensitivity and the trade-offs between objective func-
tions.
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Fig. 2. (a) Spatial distribution the AGCM precipitation error rela-
tive to CPC Merged Analysis of Precipitation for RHConv= 0.8 and
all other parameters kept to standard values in December–February.
(b) Same as above but reconstructed using the quadratic metamodel.
(c) Difference between AGCM and metamodel reconstructed error.
Note the different color scale in(c) compared to(a) and(b). Unit:
mmday−1.

Once the optima have been identified, it is important to
evaluate them together with trade-offs associated with pa-
rameter changes around the optima. In other words, it is im-
portant to quantify the error introduced adopting a parame-
ter setting different from the optimized one, for any given
variable. This information can be easily obtained with the
metamodel and is provided in Tables 2 and 3, where we sum-
marize the trade-offs for all other climate variables at the op-
timum parameter setting of each of them, one at a time, for
boreal winter and summer, respectively. The examination of
the steepness of the fits provides also hints to this end, with
flat curves being indicative of small dependence, and vice
versa. Two-dimensional plots as the one shown in Fig.3 for
DJF precipitation help in visualizing the relative dependence
of the parameters, two at a time. In the figure, together with
the evolution of the RMS error of the modeled climatology
in the parameter space, we also indicate the areas in which
the increase in RMS error from its minimum at the optima is
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Table 1. Optimized parameter setting for nine commonly analyzed climate variables in boreal winter, December–January, and summer,
June–August.

WGust DJF ClAlb DJF RHConv DJF Damp DJF WGust JJA ClAlb JJA RHConv JJA Damp JJA

Precip 4.42 0.43 0.90 10.29 5.00 0.44 0.90 7.89
U 925 hPa 3.00 0.28 0.88 6.98 4.85 0.37 0.90 4.90
V 925 hPa 5.40 0.28 0.90 5.70 7.00 0.41 0.90 7.04
MSLP 3.00 0.28 0.72 3.91 4.43 0.52 0.77 9.79
LSTA 3.00 0.52 0.9 2.00 4.19 0.52 0.90 2.85
� 500 hpa 4.97 0.4 0.9 7.01 5.00 0.42 0.90 7.00
U 200 hPa 4.53 0.51 0.75 7.02 3.00 0.49 0.89 2.86
V 200 hPa 5.74 0.31 0.82 8.32 6.50 0.45 0.90 8.31
T 200 hPa 3.00 0.52 0.77 2.00 3.00 0.52 0.87 2.00

less than 1, 5, and 10 %. The examination of Fig.3 reveals
that the choice of Damp plays a lesser role in the represen-
tation of precipitation (and, as it appears, of most variables),
while the optimum in the RHConv direction occurs at or near
the upper boundary of the feasible range, with rapid degrada-
tion away from this, suggesting the need for careful scrutiny
of the convective parameterization scheme.

It is important to stress that the approximate smoothness
found for the RMS error of the model climatologies holds,
even if not as precisely, for all other quantities we experi-
mented with. The modeler may indeed be more interested
in optimizing the representation of specific climate modes
of variability and their teleconnections, instead of the model
climatology, and the metamodel still proves useful. Here we
consider, as example, the difference between observed and
modeled El Niño Southern Oscillation (ENSO) regressed
patterns, constructed using the Niño 3.4 index (Trenberth and
Stepaniak, 2001). In Fig. 4 we show results for precipitation
varying all four parameters, for all seasons. The RMS error
in the regression patterns is far smaller than in the case of
the climatological error, indicating that the ICTP AGCM cor-
rectly simulates the response to changes in SST forcing in the
equatorial Pacific, and it is almost insensitive to the parame-
ter choices in winter and fall, where the SST anomalies asso-
ciated with ENSO are the strongest. The spread of the RMS
error within the ensemble considered, on the other hand, is
large, due to the internal variability in the atmospheric re-
sponse to the (few) ENSO events recorded between 1977 and
2002. The error grows from boreal winter and fall, to sum-
mer and then spring, following inversely the strength of the
SST signal, and in summer and spring a negative curvature
characterizes most fits, pointing to a nonlinear dependence in
those seasons. The seasonally dependent evolution and neg-
ative curvatures persist for all other variables, from surface
winds to geopotential height, if their level is 500 hPa or closer
to the surface. The model representation of the atmospheric
circulation at higher levels regressed onto the ENSO index,
on the other hand, does not display any seasonal dependence,
and the ENSO regressions of 200 hPa fields are almost unaf-
fected by the parameter changes.
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Fig. 3. Pairwise planes of the four-dimensional parameter space
showing the root-mean-square globally averaged precipitation error
in mmday−1 estimated by the quadratic metamodel in December–
February. The white dotted (dashed; solid) contours indicate regions
where the model error increases by 1 % (5 %; 10 %) compared to its
minimum value at the parameter optima. Units on axes are ms−1 for
WGust, days for Damp and nondimensional for ClAlb and RHConv.

A different picture emerges if the North Atlantic Oscilla-
tion (NAO) index is used instead of the Niño 3.4. The error in
the ICTP AGCM representation of the atmospheric variabil-
ity associated with changes in the NAO index is quite large,
and so is the internal model variability (Bracco et al., 2004).
The spread within the ten-member ensembles considered
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Table 2.Trade-offs associated with optimizing one variable at a time according to the setting in Table 1 for nine climatic variables in boreal
winter, December–February. The last column provides the sum of the trade-offs given the optimization of one given variable. Trade-offs are
quantified as global root-mean-square error at the given parameter setting divided by the error at the variable optima.

Precip U 925 hPa V 925 hPa MSLP LSTA � 500 hPa U 200 hPa V 200 hPa T 200 hPa Total

Precip 1 1.08 1.05 1.13 1.17 1.01 1.04 1.09 1.16 9.73
U 925 hPa 1.18 1 1.03 1.02 1.35 1.07 1.22 1.10 1.34 10.31
V 925 hPa 1.17 1.07 1 1.12 1.38 1.09 1.10 1.01 1.40 10.34
MSLP 1.32 1.03 1.04 1 1.34 1.15 1.23 1.11 1.32 10.54
LSTA 1.23 1.10 1.14 1.06 1 1.19 1.09 1.26 1.01 10.08
� 500 hPa 1.02 1.08 1.03 1.13 1.22 1 1.04 1.05 1.22 9.79
U 200 hPa 1.10 1.09 1.10 1.11 1.06 1.07 1 1.15 1.07 9.75
V 200 hPa 1.17 1.11 1.01 1.17 1.36 1.08 1.09 1 1.17 10.34
T 200 hPa 1.26 1.11 1.13 1.05 1.01 1.19 1.08 1.24 1 10.07

Table 3.As in Table 2 but for boreal summer, June–August.

Precip U 925 hPa V 925 hPa MSLP LSTA � 500 hPa U 200 hPa V 200 hPa T 200 hPa Total

Precip 1 1.02 1.03 1.01 1.20 1.01 1.10 1.02 1.19 9.58
U 925 hPa 1.08 1 1.05 1.04 1.37 1.04 1.11 1.06 1.27 10.02
V 925 hPa 1.07 1.05 1 1.03 1.27 1.03 1.20 1.01 1.32 9.98
MSLP 1.13 1.08 1.09 1 1.02 1.10 1.14 1.04 1.09 9.69
LSTA 1.16 1.08 1.09 1.03 1 1.14 1.08 1.03 1.06 9.65
� 500 hPa 1.01 1.01 1.03 1.02 1.24 1 1.09 1.02 1.21 9.63
U 200 hPa 1.21 1.07 1.12 1.05 1.08 1.14 1 1.06 1.03 9.76
V 200 hPa 1.05 1.06 1.01 1.02 1.18 1.03 1.20 1 1.25 9.80
T 200 hPa 1.29 1.09 1.15 1.06 1.01 1.20 1.00 1.06 1 9.86

here is too large for the metamodel to be well determined
(not shown), due to the large internal variability relative to
the parameter sensitivity.

Once the metric of interest has been defined and the meta-
model has been fitted to the chosen points (here the extremes
in the available parameter ranges), the AGCM output of any
parameter combination can be estimated, and the associated
temporal and regional changes can be visualized. As an ex-
ample, in Fig.5 we present the spatial pattern of the lin-
ear (ai) and quadratic (bii) contributions of the metamodel
(Eq. 1), constructed using the climatological RMS error as
metric for boreal winter and summer, in the ClAlb direction
for meridional wind at 925 hPa, and in the RHConv direction
for precipitation. All fits are from the parameter endpoints
only, i.e for forµiMax relative to the standard value (ClAlb =

0.52, and RHConv = 0.90). The sum of the two fields quanti-
fies the change atµiMax from the standard case. For the wind
fields, the linear contribution is about three times larger than
the nonlinear one, is stronger in summer than in winter, and
off-phase between the two seasons considered. Both linear
and nonlinear terms show an alternation of positive and neg-
ative areas, so that the global RMS error does not change sig-
nificantly between ClAlb = 0.52 and the standard value (see
Fig.1), but the overall modeled wind field does. In the case of
rainfall, the linear sensitivity and the quadratic nonlinearity

tend to reinforce each other in most regions, as for example in
the Indian basin and Pacific Warm Pool in JJA, or over South
America in DJF, and are both sufficiently strong to modify
the overall patterns, especially in the tropics, where convec-
tive precipitation dominates. The model response to an in-
crease in RHConv corresponds to stronger dependence of the
convection on the humidity content above the boundary layer.
This yields sensitivity to factors such as ventilation by dry air
from adjacent regions tending to reduce convection on cer-
tain margins of the convection zones. When the metamodel is
constructed using ENSO regression patters as metric, the lin-
ear and quadratic contributions for all near surface variables
are of comparable intensity. In Fig.6 we show both contri-
butions to the near surface zonal wind for WGust= 7.0 com-
pared to the standard. An increase of WGust has the overall
impact of strengthening the near surface wind anomalies as-
sociated with ENSO in the central equatorial Pacific, while
relative changes at higher latitudes are small (less than 7 %
of climatological values). It is also evident that in the same
season linear and quadratic contributions in several regions
have opposite signs and tend to cancel each other. The analy-
sis of those spatial patterns help in visualizing where changes
are occurring at the regional scale, and the geographical im-
portance of nonlinearity as function of the desired metric.
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Fig. 4.Root-mean-square precipitation error of the modeled regres-
sion coefficients for the El Niño 3.4 index in December–February in
blue, March–May in magenta, June–August in red, and September–
November in black, relative to the CPC Merged Analysis of Precip-
itation data set. The AGCM values are compared to the quadratic
metamodel reconstruction based on the endpoints for each param-
eter, and to its linear counterpart. Units on abscissa are ms−1 for
WGust, days for Damp and nondimensional for ClAlb and RHConv.
Error bars quantify the spread of the RMS error in the ten ensemble
members (±1 standard error of the ensemble).

5 Regional ambiguities

As already remarked, some of the more pressing ambigui-
ties in selecting climate model parameters are linked to con-
siderable pattern biases in different regions. When tuning
global general circulation models there are multiple poten-
tial weightings that depend on assessments at regional scales.
It is not uncommon, for example, to verify separately the
model representation of the Asian monsoon, or of precipi-
tation patterns over land, or of the variability associated with
the North Atlantic Oscillation over North America and Eu-
rope. Those biases may vary substantially between climate
variables, and/or on the performance metrics, and a model
revision that improves one field or geographical area, may
cause degradation in another. This is exemplified in Fig.7,
where we show the JJA RMS error in the precipitation cli-
matology zooming over the Indian Ocean and western Pacific
at RHConv standard value (top), at its maximum (RHConv =

0.90) – where the global error is at its minimum – (middle),
and the absolute value of the error difference (bottom). By
increasing RHConv, the effect of shallow convection on the
moisture flux is increased. This causes greater convective ac-
tivity where convection is limited by the humidity above the
boundary layer, as for example over land, but it also carries

away moisture from the boundary layer so that, in some loca-
tions, the threshold amount of humidity is not fulfilled any-
more. As a result, the model representation of the Indian
summer monsoon and of precipitation over parts of Vietnam
and China improves substantially, and the RMS error is re-
duced to half of its standard counterpart. On the other hand,
the model rainfall signal over the Indian Ocean south of the
Equator, part of Indonesia and Papua New Guinea degrades,
approximately by the same amount.

The metamodel allows for visualizing those trade-offs
very effectively, at little computational cost. The evolution of
the absolute value of the error difference between the stan-
dard case and any other value can be constructed for each
parameter and any values within a realistic range simply us-
ing the ensembles atµiStd, µiMax andµiMin . Notwithstanding
the approximation error associated with the quadratic meta-
model, usually limited to less than 10 % of the amplitude of
the reconstructed error field, and not significant in terms of
overall pattern identification, the analysis of the regional evo-
lution of the model biases for varying parameter values offers
a powerful tool to select parameter combinations.

The quadratic metamodel can also be used to construct
objective functions for targeted areas. Given the interest of
the climate community for certain key regions, where model
biases are large, we further explore the regional ambigu-
ities associated with model tuning focusing on the Indian
Ocean basin and Indian subcontinent (40–110◦ E, 30◦ S–
22◦ N), South America (75–36◦ W, 30◦ S–10◦ N), and the Pa-
cific Warm Pool (120–170◦ E, 20◦ S–20◦ N). For each re-
gion, we construct the metamodel as before, using only in-
formation from the ensemble mean at the standard setup,
and the integrations atµiMax andµiMin . In Fig. 8 we portray
the regional parameter dependence of the RMS error of the
precipitation climatology in boreal winter. The quadratic fit
provides an accurate approximation of the parameter depen-
dence in all regions and for all four parameters. The model
error is greater over South America, independently of the
parameter investigated, identifying a deficiency of the model
in representing convective precipitation over land. Over the
Indian Ocean, improvements in the WGust and Clalb space
are achieved in the opposite direction than in the other re-
gions or in the global average.

A different picture emerges if the model representation
of ENSO teleconnections is alternatively used as metric
(Fig. 9). The quadratic metamodels in this case provide
valuable information on the general tendencies, but they
do not always capture the functional form of the depen-
dency. It should be noted, however, that the absolute value
of the difference between the metamodel fit and the ac-
tual model response is small in all cases. This is verified
for most variables, not only for precipitation. A good ex-
ample is provided by the Pacific’s Warm Pool region de-
pendency on RHConv. The Pacific Warm Pool undergoes the
strongest parameter dependence in association to ENSO, fol-
lowed by the Indian Ocean, and then by South America.
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occur at the positive end of the feasible range of ClAlb and RHConv. The quadratic contributionsbii , similarly given asbiiµ
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in ms−1 and

mmday−1, are shown in the second and bottom pairs of panels. The two contributions added together represent the total difference between
µiMax and the standard case. Here the subscripti denotes ClAlb for the wind maps and RHConv for precipitation.

This is consistent with the decreasing relative importance of
ENSO-associated anomalies in the precipitation field from
the Warm Pool to South America. Globally, the model re-
produces well the ENSO response for all parameter choices,
the error in the regressions being very small (at least three
times smaller than the error in the representation of the

precipitation climatology). Independent of the parameter
choices, the model is capable of simulating the globally av-
eraged ENSO response in rainfall (and in all low level atmo-
spheric variables we tested). The error is larger where the cli-
mate signal is the strongest, i.e., over the Pacific Warm Pool,
where it follows the global tendencies. An opposite curvature
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Fig. 8. Root-mean-square error of the AGCM precipitation clima-
tology in December–February for target regions relative to the CPC
Merged Analysis of Precipitation data set. The AGCM values are
compared to the quadratic metamodel reconstruction based on the
endpoints for each parameter, and to its linear counterpart. Global
average in black, Pacific Warm Pool in magenta, Indian Ocean basin
in blue and South America in red. Units on abscissa are ms−1 for
WGust, days for Damp and nondimensional for ClAlb and RHConv.
Error bars quantify the spread of the RMS error within the ten en-
semble members (±1 standard error of the ensemble).

to that for South America is found over the Indian Ocean for
varying WGust and Clalb, while error and signal averaged
globally are small.

Figure10 compares the regional objective functions with
the global ones for the low level meridional winds (left) and
for zonal 200 hPa zonal winds (right) when varying WGust
and RHConv in DJF. The modeled climatologies for both wind
fields are not very sensitive to RHConv changes, and a larger
than standard value of RHConv will decrease the precipitation
error (see Fig.8) in most of the globe without disrupting the
near surface wind, while causing a limited downgrading in
the upper level wind over the Indian Ocean and the Pacific
Warm Pool. Variations in WGust, on the other hand, show
a far more complex response. At 200 hPa the globally aver-
aged climatology displays an optimum around the standard
value, but the error over the Indian Ocean and the warm pool
is minimized only at the maximum WGust explored, with
a significant improvement in the Indian basin, while a smaller
than standard WGust is beneficial over South America. Close
to the Earth’s surface, the meridional wind dependence in
the Indian and Pacific regions is in the same direction of the
upper level zonal wind field, and over South America the
minimum WGust value minimizes the RMS error. For both
wind fields considered, the tendency for varying WGust is
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Fig. 9. Root-mean-square precipitation error of the AGCM regres-
sion coefficients for the El Niño 3.4 index in December–February
for target regions relative to the CPC Merged Analysis of Precip-
itation data set. The AGCM values are compared to the quadratic
metamodel reconstruction based on the endpoints for each param-
eter, and to its linear counterpart. Global average in black, Pacific
Warm Pool in magenta, Indian Ocean basin in blue and South Amer-
ica in red. Units on abscissa are ms−1 for WGust, days for Damp
and nondimensional for ClAlb and RHConv. Error bars estimate the
spread of the RMS error within the ten ensemble members (±1 stan-
dard error of the ensemble).

opposite to that of precipitation over the Indian Ocean and
South America.

We summarize the dilemmas associated with choosing
model parameters while optimizing specific regional patterns
(a problem of interest also to the regional modeling commu-
nity) by visualizing the different relative dependence of the
parameters considered, two at a time, for the Indian Ocean
basin (Fig.11) and the Pacific Warm Pool (Fig.12). We
present results for DJF precipitation, to allow for a compar-
ison with the correspective global analysis shown in Fig.3,
and again we indicate the areas in which the increase in re-
gional RMS error from its minimum is less than 1, 5, and
10 %. The optimization of WGust and ClAlb in any one basin,
for example, causes a large degradation in the other, while the
optimization based on the global RMS error provides inter-
mediate values between the ones found here. It is evident that
the parameter dependence of regional patterns is complicated
by the fact that improvement in one variable over one region
may cause strong deterioration in another area.
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Fig. 10. Root-mean-square error of the AGCM meridional wind
at 925 hPa (left) and zonal wind at 200 hPa (right) climatology in
December–February for target regions relative to the National Cen-
ters for Environmental Prediction reanalysis. The AGCM values are
compared to the quadratic metamodel reconstruction based on the
endpoints for each parameter, and to its linear counterpart. Global
average in black, Pacific Warm Pool in magenta, Indian Ocean basin
in blue and South America in red. Units on abscissa are ms−1 for
WGust (top panels) and nondimensional for RHConv (bottom pan-
els). Error bars quantify the spread of the error within the ten en-
semble members (±1 standard error of the ensemble).

5.1 Analytical solutions

We finally recall, as discussed inNeelin et al.(2010), that
analytic approximations based on the metamodel provide an
alternative, computationally cheap, tool to highlight the re-
gional dilemma typical of the optimization problem when-
ever spatial averages, instead of global ones, are of interest.
The analysis of the spatial patterns in the analytic solution
allows the identification of regions where the parameter de-
pendence does not follow the global average one, without the
need of calculating a large number of regionally targeted ob-
jective functions. Given that the quadratic fit to the climate
field φ provides RMS error objective functionsf (here omit-
ting subscriptk) with fourth-order terms inµ, we can obtain
an analytical approximation using the square error (which
has the same extrema as RMS), expand inµ about a refer-
ence value (for simplicity here we use the standard case),
and retain the second-order terms inµ for expediency. After
differentiating, we obtain
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Fig. 11. Pairwise planes of the four-dimensional parameter space
showing the root-mean-square precipitation error in mmday−1 es-
timated by the quadratic metamodel over the Indian Ocean basin in
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∇µf = g + Aµ (2)

gi = 2〈aiφerr〉; (3)

Aij = Aji = 2
(
〈aiaj 〉 + 2〈bijφerr〉

)
. (4)

Hereg is the gradient inµ, A is the Hessian matrix derived
from the curvature of the metamodel fit, both evaluated at the
standard case, andφerr is the error of the standard case with
respect to observations.

The off-diagonal terms inA originate from the linear con-
tributions〈aiaj 〉 and from〈bijφerr〉. They are usually small
compared to the diagonal given that parameter pairs do not
interact much (Neelin et al., 2010; Bellprat et al., 2012), and
they can be neglected when trying to get a general idea of the
basic model behavior. Practically,gi provides a spatial pro-
jection of the sensitivityai with φerr, the error of the standard
case, and a reduction in error at regional scales is achieved
only if the spatial pattern ofai matches the error pattern. If,
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for example,ai has large amplitude in a localized area that
does not project on the error, then the global RMS optimiza-
tion will introduce a significant error in such area despite
yielding a solution that reduces the model error globally.
Therefore, maps of the spatial patterns of the different con-
tributions in Eq. (2) allow for quantifying at a regional level
the properties of objective functions defined for global quan-
tities. Examples are provided in Fig.13 for 200 hPa zonal
wind dependence on WGust in JJA, and for rainfall depen-
dence on RHConv, again in DJF. On top we showaiφerr nor-
malized by the diagonal contribution〈a2

i 〉, which is propor-
tional to the objective function gradientgi . If the majority of
points is of the same sign, as in the case for the precipita-
tion dependence on RHConv in boreal summer, presented in
Neelin et al.(2010, see their Fig. 5), then it is to be expected
that regionally focused optimizations will yield optima in the
same direction as found for the global averages. Specifically,
optima should be found close to the WGust and Clalb min-
ima for the wind fields, for which, however, the global RMS
is only slightly reduced compared to the standard case, given
that the model error is large at high latitudes, where changes
in the surface wind gustiness cannot influence significantly
the model climatology, and at the RHConv maximum for pre-
cipitation (see Fig.1). Here, however, the same sign require-
ment is not satisfied everywhere; for precipitation it does not
hold over the equatorial Indian Ocean, for the physical rea-
son noticed in the discussion of Fig.7, or in part of Brazil’s
Nordeste, and in the case of the wind fields, positive and neg-
ative patterns alternate throughout the domain.

The middle panels in Fig.13 display the quantity
2biiφerr〈a

2
i 〉, and provides a measure of the importance of

nonlinearity in the diagonal term. If the average of this term
over the area of interest is negative, and its magnitude is
greater than one, then the curvature of the metamodel fit
is reversed, as in the case of global precipitation (left pan-
els). Finally, at the bottom we present the model error dif-
ference between the case whenµi is at its minimum (maxi-
mum) value for winds (precipitation), and whenµi is at the
standard. Negative values are indicative of regions where the
model error decreases compared to the error of the standard
case, and vice versa for positive values. It is clear that the
analysis of theaiφerr, together with 2biiφerr〈a

2
i 〉 whenever

the metamodel fit points to a significant role for nonlineari-
ties, provides an alternative low-cost way to gather informa-
tion on the model parameter dependence at regional scales
that assists the modeler’s ability to digest high dimensional
spatial information on the impact of a parameter change.

6 Conclusions

In this work, we evaluate the sensitivity of an atmospheric
circulation model to changes in four of its tunable parameters
using a metamodeling approach in which the coefficients of
the quadratic expansion in parameter space include spatial
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Fig. 12.As in Fig.11but for the Pacific Warm Pool region.

and seasonal dependence as inNeelin et al. (2010). The
metamodel offers a strategy to systematize the calibration
and analysis of the parameter dependence in climate mod-
els whenever the smoothness of the error metrics for varying
parameter values is verified. Such strategy consists in iden-
tifying the parameters and metrics, performing few GCM
runs, fitting the metamodel, exploring the decision dilemmas
encountered by varying the parameters, and finally choos-
ing the best, or least unsatisfactory, parameter set. Rather
than employing these tools in “blind” automated optimiza-
tion based on global objective functions, we emphasize their
use for identification of sensitive parameter ranges and of
trade-offs among multiple objective functions involving dif-
ferent physical climate variables and spatial regions of in-
terest. From the metamodel, we estimate objective functions
based on both global spatial averages and the distribution of
regional patterns of several common fields of climatic in-
terest, from precipitation to winds, in different seasons and
in annual averages. We also present the parameter depen-
dence analysis of the ICTP AGCM response to ENSO sea
surface temperatures, finding substantial nonlinearity in most
low level variables. In all cases, we find that the error ob-
jective functions vary sufficiently smoothly through the ex-
plored parameter ranges for an analytic metamodel approach
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U 200 hPa, JJA,WGust Prec,DJF,RHConv V 925 hPa,DJF,ClAlb
Fig. 13. Contributions to the analytic solution for the ensemble mean zonal wind at 200 hPa in June–August in the WGust direction (left
panels), and for precipitation in December–February in the RHConv direction (right panels). Top panels:aiφerr normalized by the diagonal
contribution〈a2

i
〉. Middle panels: contribution 2biiφerr/〈a

2
i
〉 (see Eq. 4). Bottom panels: the model error difference betweenµi at its optimum

(µiMin for the wind fields andµiMax for precipitation), and at standard value.

to be useful, and find the quadratic truncation adequate to
estimate leading nonlinear effects.

Guided by the metamodel, we present a strategy to visual-
ize the dilemmas associated with the parameter selection, and
to quantify the trade-offs of given parameter choices. Com-
mon ambiguities result from not having direct control over
how climate patterns change with parameter changes. Most
dilemmas faced by modelers are associated with parameter
(or parameterization) changes that improve one field or re-
gional pattern over a given season, but cause degradation in
another, or improve the model climatology but degrade its
representation of interannual variability. Because different
applications would place different weight on the accuracy of
the simulation in particular regions or variables, this results
in the situation typical of multi-objective optimization: while
some sets of parameter choice yield improvements in all ob-
jective functions of interest, within these sets trade-offs arise

among different objective functions. In climate applications,
the fidelity of the simulation evaluated for multiple variables
over many small regions in space and season can be viewed
as a very high dimensional set of objective functions. A key
aim is thus to present information on the trade-offs among
these in a way that is digestible to the modeler. We have
shown that using the metamodel it is possible (a) to visualize
global- and regional-scale biases for any climate variable of
interest, any season, and different performance metrics at lit-
tle computational cost (using climate model simulations sim-
ilar to those typically carried out to evaluate more basic el-
ements of parameter sensitivity), and (b) to quantify objec-
tively those biases without performing an excessively large
number of simulations. For example, information such as the
location of the optimum and the minimum global-average
RMS error for individual climate variables over the param-
eter space provides useful information on just how severe

www.geosci-model-dev.net/6/1673/2013/ Geosci. Model Dev., 6, 1673–1687, 2013



1686 A. Bracco et al.: Decision dilemmas in climate models

the trade-offs are among different variables. Spatial maps of
fields that directly enter the optimization problem, such as the
product of the linear sensitivity spatial pattern with the error
field at the standard parameter settings, can rapidly provide
intuition regarding spatial regions that will be improved or
degraded by a particular parameter change.

Many of the dilemmas are unresolvable as different mod-
elers have different priorities regarding which pattern should
be improved at the expense of others. The metamodel, how-
ever, provides a constructive tool to identify those spatial pat-
terns and to characterize what the most acute dilemmas are
for each given metric.

Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/6/
1673/2013/gmd-6-1673-2013-supplement.zip.
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