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Abstract. We introduce a probability density function 1 Introduction

(PDF)-based scheme to parameterize cloud fraction, average

liquid water and liquid water flux in large-scale models, that The cloud fraction and the average liquid water in a given
is developed from and tested against large-eddy simulationgolume depend on the variability of temperature and mois-
and observational data. Because the tails of the PDFs are cridre within that volume. If subgrid variability is not taken
cial for an appropriate parameterization of cloud properties,jnto account at all, the grid volume is either entirely subsat-
we use a double-Gaussian distribution that is able to repreurated or entirely saturated. To overcome this problem, di-
sent the observed, skewed PDFs properly. Introducing twagnostic relative humidity schemes have been developed, for
closure equations, the resulting parameterization relies on thexample bySmagorinsky(1960 andSundqyvist et al(1989

first three moments of the subgrid variability of temperaturewho parameterized partial cloud fraction as a function of
and moisture as input parameters. The parameterization ieelative humidity with a certain critical relative humidity at
found to be superior to a single-Gaussian approach in diagwhich a partial cloud cover first appears. This kind of pa-
nosing the cloud fraction and average liquid water profiles. Arameterization has been developed further by implementing
priori testing also suggests improved accuracy compared tsecondary predictors like condensate content (Xg.and
existing double-Gaussian closures. Furthermore, we find thalRandall 1996 or vertical velocity (e.g.Slingg, 1987).

the error of the new parameterization is smallest for a hori- Another approach in diagnosing cloud fraction is based on
zontal resolution of about 5-20 km and also depends on th@ne-dimensional probability density functions (PDFs) of the
appearance of mesoscale structures that are accompanied sybgrid variability in temperature and moisttirdssuming
higher rain rates. In combination with simple autoconversiona single-Gaussian PDF, these schemes go ba8otome-
schemes that only depend on the liquid water, the error intia and Deardorf(1977 and Mellor (1977 and need not
troduced by the new parameterization is orders of magnitudenly the grid-box mean temperature and moisture but also the
smaller than the difference between various autoconversioistandard deviations as input parameters. Because the success
schemes. For the liquid water flux, we introduce a parame-of such schemes crucially depends on the ability to quan-
terization that is depending on the skewness of the subgridify the tails of the distribution Bougeault 19823, further
variability of temperature and moisture and that reproducesstudies additionally took into account the skewness of the
the profiles of the liquid water flux well.

1Assuming a uniform PDF of the total water subgrid-scale vari-
ability and the variance as a constant fraction of the saturation value,
it has been shown (e.g., Quaas 2012, that theSundqvist et al.
(1989 relative humidity scheme is a special case of PDF-based
schemes.
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distribution which lead to the use of, for example, double- parameterization of the liquid water flux are introduced in
Gaussian l(ewellen and Yoh1993 Larson et al. 20013, Sect.3. Next, in Sect4, we perform a priori testing of the
Gamma Bougeault1982h or Beta Tompkins 2002 distri- new cloud closure with LES data as input to examine the pa-
butions.Perraud et al(2011) tested several of this distribu- rameterization’s behaviour under idealized conditions, that
tions against model data and found that the double-Gaussiais, excluding the interplay with other model components as
distribution gives best results. would be done with a posteriori testing in an NWP model
Compared to relative humidity schemes, PDF-basedor a GCM. In the following Sect$ and®6, the error depen-
schemes typically need more and higher moments as indence of the parameterization on domain size and the role of
put parameters. While the first two moments are commonlymesoscale structures are discussed and the introduced cloud
available in numerical weather prediction (NWP) models andclosure is extended to the diagnosis of the autoconversion
general circulation models (GCMs), there are ongoing ef-rate. Finally, in Sect7, we give some concluding remarks.
forts to develop higher-order closure boundary layer models
which include an estimate of the third moment, that is, the
skewness Gryanik and Hartmann2002 Gryanik et al,
2005 Mironov, 2009 Machulskaya and Mirongv2013.
Apart from this disadvantage, PDF schemes have several a

vantages over relative humidity schemes. In PDF schemesyhe | ES model used in this study is the University of

the shape of the PDF is parameterized but the variableggjitornia. Los Angeles LES (UCLA-LESStevens et a|.
aimed for, such as cloud fraction and average liquid waterpgog Stevens2007 with one major difference to previous
are derived directly from this PDF. Therefore, the variables,, ok that is. the time stepping is done with a third-order
are calculated consistently from the assumed PDF. Also, NURunge—Kutta scheme instead of the former leapfrog scheme.

merical models that ignore subgrid variability are known 10 prognostic equations for each of the following variables are
encounter systematic errors in cloud and radiative properyg)yed: the three components of the velocity, the total wa-

ties (Pincus and Klein200Q Rotstayn 200Q Larson etal. o mixing ratio, the liquid water potential temperature, the

2001h. To tackle this issue, the knowledge of the subgrid 1455 mixing ratio of rain water and the mass specific number
PDF is essential. Furthermore, PDF schemes can potentlallgf rain-water drops. Considering only warm clouds, we use
be used in a wide range of cloud regimes. Other than for relyne gouble-moment bulk microphysical scheme freifert

ative humidity schemes, no trigger functions to switch from 5,4 Beheng2003). Subgrid fluxes are modelled with the
one regime (and its according parameterization) to a”OtheSmagorinsky—Lilly model.

regime are needed and artificial distinctions can be avoided. Fq; our study, we adapt the UCLA-LES to four differ-

~ As a further development from one-dimensional PDFS,gnt case studies which span over a range of different cloud
joint PDFs have been introduced recently (e.g.,Layson  yegimes. Shallow cumulus over ocean (RRE®eeRauber

et al, 2002. In joint-PDF schemes the variability of tem- & al, 2007 and over land (ARM: seeBrown et al, 2002
perature and moisture are usually not summarized in 0Nge considered as well as stratocumulus (DYCOMS:e
variable and the distribution of the vertical velocity can be gievens et al2003 and the transition from stratocumulus to
added as further input. Because the vertical velocity is taken ,mulus (ASTEX: seeAlbrecht et al, 1995. Domain sizes

into account, the liquid water flux can be derived consis- 5 resolutions of the different LES cases are given in Ta-
tently from the joint PDF. This advantage has to be paidpe 1.

for by the prediction or diagnosis of several more moments

and correlations among temperature, humidity and verticab.1.1  ARM

velocity (e.g.,Larson et al. 2002 used 19 parameters in-

stead of 5 for a double-Gaussian distribution). Hence joint-The LES setup of the ARM case follows that of the sixth in-
PDF schemes are much more computational expensive thalercomparison project, performed as part of the GT3s-
one-dimensional PDF schemes and their usage in operationgram and described [Brown et al.(2009).

NWP models or GCMs is challenging with todays computa-
tional power. 2.1.2 ASTEX

We therefore step back to one-dimensional PDF scheme L
P he setup of the LES study for the ASTEX case is similar

and focus on improving the double-Gaussian PDF schem h d by the Eucli ASTEX L . del
to diagnose subgrid cloud fraction and average liquid water!© that proposed by the Euclipse agrangian mode

2 Model and data

(;_.1 Large-eddy simulations

The formulation followsLarson et al(20013 and is devel- 2Rain in cumulus over the ocean
oped from and tested against large-eddy simulations (LES) 3atmospheric radiation measurement
as well as aircraft measurements. In S@cthe LES model, 4Dynamics and chemistry of marine stratocumulus

the case studies the model is applied to and the observa- Satlantic stratocumulus transition experiment
tional data set are described. The use and construction of a SGEWEX (Global Energy and Water Experiment) Cloud system
double-Gaussian PDF, the refined closure equations and thetudies
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Table 1. Overview of the different LES cases used in this study. The four cases on the left hand side are used to develop (DYCOMS and
RICO) and test (ARM and ASTEX) the parameterizations introduced in this study. The three cases on the right hand side are solely used in
the Sect5.

ARM ASTEX DYCOMS RICO RICO

standard standard moist moist
nx 256 256 512 512 1024 1024 2048
L 12.8km 10.2km 10.2km 20.5km 25.6km 25.6km 51.2km
H 5.1km 3.2km 1.4km 4.0km 4.0km 4.0km 4.0km
Ax 50m 40m 20m 40m 25m 25m 25m
Az 40m 20m 5-52m 20m 25m 25m 25m
t 15h 42 h 5h 36h 30h 30h 30h

nx: number of grid points in each horizontal directidn,horizontal domain sizet : vertical domain sizeAx:
horizontal resolutionAz: vertical resolution;: length of simulation.

intercomparison cas@dn der Dussen et aR013. The ini- obtained from the NSF/NCAR Research Aviation Facility
tial profiles are identical to the first GCSS ASTEX “A209” C-130Q Hercules aircraft (Tail Number N130AR) at 25 Hz.
modelling intercomparison case and the model is forced byBesides the static pressure and the ambient temperature, the
time-varying sea surface temperature and divergence takewater vapor mixing ratio measured with a Lyman-alpha hy-

from Bretherton et al(1999. grometer as well as the liquid water content measured with a
Gerber PV-100 probe were used in this study. Because the
2.1.3 DYCOMS temperature sensor is susceptible to wetting during cloud

penetrations, periods of cloud presence were defined by a
For the LES setup of DYCOMS, we follow the DYCOMS-  {hrashold value of 10 cloud droplets (3 to 45 um diameters)

II'lRFO1 setup of the eighth case study conducted under theer cn$ and in-cloud temperature was measured by a radio-
auspices pf the GCSS boundary layer cloud working groupmetric temperature sensor that is not sensitive to wetting. In
and described b$tevens et a(20095. 17 research flights (RF01 to RF13 and RF16 to RF19) all
214 RICO available five-minutes intervals at moderate height (pressure

o > 600 hPa) and with relatively constant pressure (standard

The initial data and the large-scale forcing for the standarode\”‘r’lt'On< 1hPa) were selected and analysed. (Note that,

RICO simulations are based on the precipitating shallow Cu_unfortunately, during research flight 14 and 15 the Lyman-

mulus case that was constructed by the GCSS boundary lay
working group and described bsan Zanten et al(2011).

A modified moister version, which differs from the stan-
dard setup only by a moister initial profile, was first used
by Stevens and Seife(R008, to which we refer for a de-
tailed setup of the case. The moister initial condition leadsg 1 pata analysis: the double-Gaussian PDF
to higher rain rates compared to the standard case and sub-

sequently to mesoscale organization of the cloud field due tqor diagnosing the cloud fraction and the average liquid wa-

the formation of cold pools mainly caused by evaporation ofter, Perraud et a(2011) show that the temperature variability

rain in the sub-cloud layeSgifert and Heuy2013. should not be neglected relative to the humidity variability.
Unless stated otherwise, we refer to our standard RICQue therefore followSommeria and DeardorfL977), Mellor

setup withnx =512 when analysing LES data from the (1977 andLewellen and Yot{1993 and define the extended
RICO case. The three RICO cases on the right hand side ifquid water mixing ratios (g, 7j), by

Table1 are equal to the LES runs RO1, M01 and M@%bf

pha hygrometer was out of service, so no analysis of these
ights is possible.)

3 Introducing a refined cloud closure

Seifert and Heu$2013. For this study they are solely used gt —gs(7i) 1
in Sect.5 when discussing the error dependence on domair’ = 14 L (@) ’ @
size and the role of mesoscale structures. ep \T )7,

2.2 Observational data whereg; is the total water mixing ratiogs(7) is the satu-

ration mixing ratio at a given value of the liquid water tem-
To be able to test our parameterization against observaperaturelj = 6,7 /0 and(dqs/9T )r=7, =qu(T|)/(RVT|2) is
tional data, we used RICO field campaign daRagber the slope of the saturation mixing ratio &t= 7j. T is the
et al, 2007. This data set includes airborne measurementdemperature§ the potential temperaturé, the liquid water

www.geosci-model-dev.net/6/1641/2013/ Geosci. Model Dev., 6, 184b7, 2013
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potential temperaturd, the latent heat of vaporization,,
the specific heat at constant pressure &dhe gas con-
stant for water vapor. The extended liquid water mixing ratio 10°
takes into account the temperature variability as well as the
humidity variability and is a measure of subsaturation if

is negative. Fos > 0, s is approximately equal to the liquid
water mixing ratio,g. Note that the ratio of the mean ef

a) RICO with positive skewness (z = 1170 m, sk = 3.4)

..... new param.
——=- Larson et al. 2001a

DG-Fit -
—— LES data F

3o
A
— ST

s, to the standard deviation ef o, can be approximated by & 10% 2
the normalized saturationgefic'@l, which is defined as the ,f
bulk value ofs, spy = s(qt, 1), divided byo (Lewellen and g 10° 4 ‘M“:._h B

Yoh, 1993 ¢ therein).

If the PDF ofs is known for each grid box in an NWP
model or a GCM, the cloud fraction and the average liquid 10°
water can be calculated by integration over the PDJ-(ske

|
/

Egs.8 and9 for the formulation of the integral). As this is
not the case, and only the first moments of the PDFE of
can usually be predicted in large-scale models, we are using

o -
w -
o

As/o

9 12

high-resolution LES and observational data to investigate the
behaviour of the distribution of on the subgrid scale of an
NWP model or a GCM.

Considering the distribution affrom each model level in ]
the LES data over the whole domain, we find that the PDF of 10" o
s can be highly skewed in the cloud layer with positive skew- ]
ness for shallow cumulus and negative skewness for stra-
tocumulus (Fig.1). For shallow cumulus, cloud formation
is driven by surface heat fluxes that initiate few but strong
updrafts in a slowly descending environment. Therefore the
PDF ofs is positively skewed with the moist tail representing
the (cloudy) updrafts. In contrast, stratocumulus is driven by
radiative and evaporative cooling at cloud top. Hence non-
cloudy downdrafts emerge in a dry tail of the PDFsadind ]
the PDF tends to be skewed negativéfelfand and Kalnay 10°
1983 Moeng and Rotunnd.990. Consequently for both the -10
shallow cumulus regime and the stratocumulus regime, the
success of a scheme diagnosing the cloud fraction and the

average liquid water depends crucially on its ability to quan-FIg' 1. PDF ofs for a.specmc height in the C|.0lljd layer. Further- .
. . e more, the corresponding best skewness-retaining double-Gaussian
tify the tail of the distribution.

. fit (DG-Fit) and the resulting PDF when using the closure equations
Following Larson et al(20013, we choose to represent g, | arson et al(2001a (Eq.3) and the introduced closure equa-
the PDF ofs by a double-Gaussian distribution which can tjons (Eq.4) are shown. It isAs = s — 5. The black, dashed line

represent skewed distributions and is able to reproduce th@dicates the saturation value=Q).

tail. The double-Gaussian distribution is quite populaar{

son et al.2001a Perraud et al2011) because the two single-

Gaussian distributions that the double-Gaussian distribution The choice of the double-Gaussian PDF is further sup-

is composed of can be interpreted physically as the updraftported by direct numerical simulations (DNS) of an evap-

and their slowly descending environment in case of a cumu-oratively driven cloud top, where scales between a few mil-

lus regime Neggers et al.2009 or as the downdrafts and limeters and a few meters are resolvbti(lado et al, 2010.

their well-mixed environment in the case of a stratocumulusConsistently with the physical interpretation in terms of the

regime. In both regimes the dominant mode of the PDFH®f  large-scale updraft and downdraft flow structure presented

associated with the well-mixed environment and assumed t@bove, agreement between the LES and the DNS data?jFig.

be Gaussian distributed. The tail of the PDF is represented iindicates that the non-Gaussianity is quite insensitive to the

a secondary mode and is associated with the thermal updraftetails of the small scales, since DNS resolves them and

in shallow cumulus and the negatively buoyant downdrafts inLES parameterizes them. Therefore, the skewed shape of the

stratocumulus (Fidl). This secondary mode is also assumed PDF seems to be related to the fact that buoyancy is one of

to be Gaussian distributed. the main forcing mechanisms, which is often the case when
clouds are present in the system.

b) DYCOMS with negative skewness (z =775 m, sk = —3.0)

10° oo b b by b b

PDF of s

As/o
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double-Gaussian distribution. Instead of varying the five

107 Aot bbb b e parameters of the double-Gaussian distributinn{, s2, o1,
| 0?) like Larson et al(20013 did, we express; as a function
DNS data of a, 57, 01, 02 and the mean, the standard deviation and the
—— LESdata ’—‘ | skewness of the given PDF, o andsk, using the definition
o of the third standardized moment of a double-Gaussian

107
| u I distribution: sk=a (3(&) (0_1)2 + (uf) +

(o2 o o

|

PDF of s

1-a) <3<%) (2)2+(%)3> (Lewellen and Yoh

o

1993 Larson et al.20013.

The values of, o andsk are obtained from the LES data
or the observational data to evaluate the above equation and
10° 4 L hence four parameters are left to be fittedst, o1, a2). To
calculate the best skewness-retaining fit for each level of the
LES data and each five-minute interval in the observational
data set, we first dg?-tests in the relevant region of the pa-
rameter space. Because this procedure gets computationally

Fig. 2. PDF ofs from LES data of DYCOMS and from a DNS F.:xpgn.sive easily (at least if four parameters are to pe fit.ted

study. Both PDFs are calculated at a height level close to the clouaIke Itis dong here), we only search for a coarse estlmatlon

top where the variance of horizontal winds are at their respective®f the best fit for the four parameters and then use this best

maximum. The DNS data corresponds to a local study of turbu-fit @s input for the Nelder-Mead downhill simplex method

lent mixing at cloud top, due solely to evaporative coolifgllado  (Press et al.1992 to find the actual minimum. In Fidl. two

etal, 2010. examples of the distribution afin a cloud layer of the LES
data, one with positive skewness and one with negative skew-

ness, are shown together with their best skewness-retaining
Using a double-Gaussian distribution, the PDF fwrit- double-Gaussian fit.
ten as

102 o C

L I R I I I
50 40 -30 -20 -1.0 00 10 20

As/oc

3.2 Closure equations
P(s) =aPi(s) + (1—a) PaAs)

s —s1

_a ox l(
B V2moq P 2\ o1

of s are readily available from an NWP model or a GCM, for
example, from a higher-order closure boundary layer model,

>2> Even if we assume that the first three moments of the PDF

1—4 1/s—s0\2 the number of parameters has to be reduced from five to
4+ ———exp _E( ) (2) three, that is, two closure equations are necessamnson
A 2moy 02 et al.(20013 suggested
where P; and P, are single-Gaussian distributions and o1 sk o9 sk
s2, 01 andoy are the mean and the standard deviation of the’ = = 1+ V—mv o 1- V—m ®)

two single-Gaussian distributions. The relative weighésd

(1—a) can be interpreted as the corresponding area fractionwith « = 2.0 andy = 0.6 ands1 > s» by convention.

(see Appendix). By convention and without loss of general- Analysing the different LES cases by fitting a double-

ity, we choose; > s,. With five parameters to determine the Gaussian distribution to the (normalized) PDFsdbr each

PDF, the double-Gaussian distribution is highly flexible on vertical level as described in Se&J1, we obtaino; /o and

the one hand. On the other hand, operational NWP models>/0 and plot them as a function ok (Fig. 3a and b). It

or GCMs are not able to predict five moments of the distri- is noted that highoy /o or o2/0 values & 1.5) atsk =0

bution of s. Therefore closure assumptions will have to be are an artifact of a double-Gaussian distribution being fit-

chosen carefully (see Seét2). ted to a distribution that is not skewed. In this case a single-
In order to be able to analyse the LES data and theGaussian distribution might represent the given distribution

observational data in terms of the closure equations, we nextvell. So if a approaches.0 (or 10) during the fitting pro-

aim to find the best fit of a double-Gaussian distribution to cedure, the second (or first) single-Gaussian distribution of

the PDF ofs for each level of our LES data set and each the double-Gaussian distribution might fit the given distribu-

five-minute interval in the observational data set. Becausdion so well that the termination criteria for the fitting pro-

the skewness of the distribution is a crucial parameter incedure is reached, independent of the shape of the first (or

our closure, we establish an additional constraint for the fitsecond) single-Gaussian distribution which is essentially ir-

which retains the skewness of the given PDF for the fittedrelevant because of its small amplitude. Thereforeskoe O

www.geosci-model-dev.net/6/1641/2013/ Geosci. Model Dev., 6, 184b7, 2013
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b) LES data for o2

¢) observational data for o1

40 4

3.0

6.0 -

50 .

4.0

] - observation: RICO
- —— new parameterization

Larson et al. 2001a

LES (20)

o,/o

3.0

o,/o

30

20

2.0 4.0 6.0 8.0

0.0 2.0

4.0 6.0 8.0

00 20
sk sk sk

4.0 6.0 8.0

Fig. 3. LES data of ARM, ASTEX, RICO and DYCOMS and observational data from the RICO campaign along with the closure equations
from Larson et al(20014 (dashed line) and the new closure equations (solid line). Note that the new closure equations are fitted to the LES
data of RICO and DYCOMS rather than to all available case studies. The grey shatihgarresponds to two times the standard deviation

from the four LES cases ifa). The legend ir{a) also applies tgb).

particularly high or low values of1/0 or o2/0 can be ig-
nored, when evaluating the closure equations.

Because we defined > s», large values fob1 /o repre- o1 1+ 7’15/—% if sk>0
sent the cloudy tail in shallow cumulus, whesehas high 5 = | 14353k if sk<O
positive values. In stratocumulus, where the skewness is neg- Votsk? ()
ative, large values fas, /o represent the non-cloudy part of 1—yp—2k > if sk>0
the cloud layerLarson et al(20013 analysed observational 22 _ M "‘SJ,QS" .
data from the ASTEX campaign and found only very few © 1- V4W if  sk=<0

measurements of high positive skewness. They therefore sug-
gested an antisymmetric behaviour tar/o and 02/0 de- with o = 2.0 adopted from_arson et al(2001a) Flttlng the
pending onsk (Fig. 3a and b). In contrast, we find from the Parameters, with a simple least square fit to the LES data
different LES case studies that in the cumulus regimes ~ Sets of DYCOMS and RICO, we find best agreement for
has higher values tham/o in the stratocumulus regime. y1=0.73,y2 = 0.46,y3 = 0.78 andys = 0.73. By fitting the

This broken antisymmetric behaviour is consistent with closure equations to only the two data sets of DYCOMS and
the physical understanding that cloudy updrafts in shallowRICO, which cover the stratocumulus and the cumulus type
cumulus are more vigorous than non-cloudy downdrafts incloud regime, respectively, the LES data sets of ASTEX and
stratocumulus. For the shallow cumulus cloud cores the upARM remain as independent test data sets. This generic di-
per limit is a moist adiabatic ascent, while the stratocumulusvision in training and test data aims to permit a later com-
downdrafts are only initially cloudy and as soon as they be-Parison between the error of this new parameterizations and
come cloud-free follow a dry adiabatic descent. Because th@ther parameterizations from the literature (see SgcThe
downdrafts are not exact|y the reversed process of the upmain difference between this set of closure equations and the
drafts, the tails of the PDFs ofare different for both cloud one fromLarson et al.(20013 is the dependence ef /o
regimes, that is, the tails are heavier in the cumulus regimén sk for (large) positive values of skewness, that is, for the
than in the stratocumulus regime. shallow cumulus regime.

Using thes; > s» convention, we suggest a refinement of ~ The new parameterization is also supported by observa-

the parameterization dfarson et al(20013 using a modi-  tional aircraft data from the RICO campaign (F8g). Com-
fied set of closure equations (Figa and b) pared to the simulated RICO case, the skewness from the ob-

servational data does not reach values as high as the skewness
from the LES. This might be due to the sampling strategy of
the observational data with the aircraft. The RICO project
was targeting for early stage growing shallow cumulus tow-
ers from initiation to early rain formation. The statistics for
the observational data set is therefore biased toward those
types of clouds and away from fully developed, later stage

Geosci. Model Dev., 6, 16411657, 2013 www.geosci-model-dev.net/6/1641/2013/
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A B S S S ] (Larson et al.2001a Egs. 22—-24 therein):
o5 | T : . ot
| — lesaa sk—[a(l—a) <l—a(;) ~a-a(2) )]
02 i
] ["/ 3 U_l 2_3 2 2 1-2a
o 1 ,‘/‘/ |: (U) (a) +a(1—a)
S .015 [’// L o1r2 o2
5 J/ <1—a(—) ~a-a(%) )}:o 5)
o ] y o o
01 / L - . ; i N
1 s§1—358 —a 1 02
- - —< a ) (1—“(;) —<1—“>(;)) ©)
005 L ) )
/ S2—38 a 2 01\2 02\2\ 2
o =— 1—a(E)Y —a-a (2 ,
0 o , — o (1—a> ( a(o) ( a)<0)>
40 30 20 -1.0 3.0 (7)

_ _ ~ where Eq. §) may be solved numerically foz. Alterna-
Fig. 4. Bimodal PDF ofs from the RICO case at cloud base with tjvely, to avoid an iterative solution for a more computational
sk =0.04. While the LES data shows a bimodal distribution and gffjcient implementation in a GCM or an NWP model, an
the double-Gaussian fit is able to capture this shape, the two pa:ge.g_ polynomial or matched asymptotics) approximation of
rameterizations coincide in assuming a single-Gaussian distributio ) as’a function ofik can be used. For the present analvsis
for vanishing skewness. For further explanation of the legend se%owever we solve for numericaI.Iy using e{)simple bise)é
Fig. 1. . S : - )

g tion method with an accuracy of 18 which typically took

about 30 iterations.

clouds (A. Schanot, personal communication, 2012) while Comparing the parameterized distributionsab the orig-
with LES all stages of the life cycle of such clouds are mod-inal LES data in all four case studies (Fig. ASTEX and
eled. Therefore in the observational data regions with particARM not shown), we find that the new parameterization is
ularly highs are undersampled. Nevertheless, the few datzable to represent the differences in the distributiors ar
points with high skewness obtained from observational dat shallow cumulus regime as well as a stratocumulus regime
of the RICO campaign fit well into the range of values found and therefore represents the tails in a shallow cumulus regime
from LES and align rather with the introduced closure equa-Petter than the parameterization lbgrson et al(20013.
tions than with the ones frosarson et al(20013. Having determined a double-Gaussian PDF,dhe cloud

A difficulty in the parameterization oLarson et al. fraction,C, and the average liquid water of a large-scale grid
(20013 as well as in the new parameterization is the treat-PoX, g, are found by integration:
ment of distributions that are characterizedstdy~ 0. Both
sets of closure equations are constructed such that-at0 C— /"O P(s)ds = a <1+ erf( 51 ))
the normalized standard deviationg/o = 02/0 =1, that 0 2 V201
is for the closure equations the double-Gaussian distribution 1 _ , 52
collapses to a single-Gaussian distribution as the skewness > (1+erf<ﬁ ))
vanishes. In the LES data in the range bf: 0, distributions o 72
that match a single-Gaussian distribution occur as well as biz, — / P(s)sds
modal double-Gaussian distributions, where the two modes 0

balance in a way that the skewness almost vanishes4fig. o2 14 erf 51 4 l1-a 14 erf 52
The latter distributions often appear in the cumulus regimes "+ 2 V201 272 V202

at cloud base and are characterizeddiyo ~ o2/0 < 1 2 2
- o2exp

®)

(Fig. 3). Though the bimodal distributions with zero skew- 4 —%_; exp( ——L. | + 1-a

ness cannot be captured adequately by the closure equations, v 27 Vr

the induced error is relatively small and will be discussed

again in Sect4. Note that for the introduced parameterization the normal-
Knowing the first three moments of the distribution ized parameters of the double-Gaussian PBRsq —5) /o,

of s for a certain model levelo; and o2 can now  (sp—5)/0,01/0,02/0)only depend onk (Egs.4—7). There-

be calculated via the closure equations (B, while fore with 01 ~5/0, Egs. 8) and @) can be rearranged such

a, s1 and so are obtained from the definition of the thatC and the normalized average liquid watgy/o, are

first three moments of a double-Gaussian distributionfunctions ofsk and Q1 only.

©)

2 2
201 202
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3.3 Parameterization of the liquid water flux

In contrast to the cloud fraction and the average liquid water,

the liquid water flux cannot be found analytically by taking

only s into account, but it also depends on the vertical veloc-

ity, w. Instead of using a joint PDF afandw, we are here
heading for a more straightforward way followit@uijpers
and Bechtold1995. They determined the liquid water flux,
w'q], from the flux ofs, w’s’, by

w'gl = FCw's’,

(10)

whereC is the cloud fractionF is a proportionality constant

that forC < 1.0 can be interpreted as a measure of which part

of the joint PDF ofw’ ands’ is found in the cloudy part of the
domain. Therefore, lig_, 10 F = 1.0. Using coarse resolu-

tion LES data of shallow cumulus and stratocumulus cases,

Cuijpers and Bechtol@1995 found a dependence d@f on
the normalized saturation defici®;, andsk with the depen-
dence orsk most notable near cloud base whekeis close
to zero. Nevertheless, they suggest thas described fairly
well as a function ofQ1 only, giving F = exp(—1.4Q) for
Q1 <0andF =1.0forQ; > 0.

Using Eg. (0), we find from the different LES cases a
dependence of on both Q1 and sk (Fig. 5, ARM and
DYCOMS not shown). Using our training data sets (RICO,
Fig. 5a, and DYCOMS), we propose

|

with a = 1.5 andb = 0.25 for a new parameterization. The

if
if

aexpb sk) Q% +1
1.0

01<0
01>0

(11)

proposed parameterization seems to be appropriate also for

the testing data sets (ARM and ASTEX, Fhp). Because
this new parameterization is too sensitive to high for

01 < —4.0 and therefore gives unreasonable values at a thin

layer near cloud top, we limit their range of application to
01> —4.0. We findQ1 < —4.0 only in a thin layer at cloud
top, where the liquid water flux is close to zero. A similar

A. K. Naumann et al.: A refined statistical cloud closure
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Fig. 5. New parameterization of (dashed lines) as a function of

unreasonable behaviour is found for the parameterization ofhe normalized saturation deficit and the skewness along with the
Cuijpers and Bechtold1995 and we will therefore apply parameterization o€uijpers and Bechtol§1995 CB95) and the
the same limit to both parameterizations when testing it inLES data (crosses).

the following with LES data. In a GCM or an NWP model

the cloud top behaviour is very sensitive to the interplay of

the cloud parameterization and the boundary layer schemet. tina in LES and b ing the introduced teri
Therefore a meaningful validation of the cloud top behaviour esting in and by comparing the introduced parameter-

should be done in such a model with all feedbacks presen
However, as a first attempt'q| = 0 for 03 < —4.0 might be

sufficient.
4 A priori testing of the cloud closure

Having introduced a new set of closure equationssigio,
o2/0 and F (Eq. 4 and Eq.11, respectively), we now anal-
yse the quality of the new parameterizations with a priori

Geosci. Model Dev., 6, 16411657, 2013

tzations with parameterizations from the literature. Note that

the usefulness of a priori testing is in the assessment of va-
lidity and accuracy of the parameterizations assumptions (see
e.g., Pope 200Q p. 601). To decide which parameterization
is most useful in a certain NWP model or GCM a comparison
based on a posteriori testing has still to be done.

In Fig. 6, the new parameterization and the parameteri-
zation ofLarson et al.(20013 are shown compared to the
LES data of the ASTEX case, which is one of the testing
data sets. We focus on the cumulus part of the ASTEX case

www.geosci-model-dev.net/6/1641/2013/
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Fig. 6. The parameterizations (dashed lines) as a function of the normalized saturation deficit and the skewness shown together with the LES
data of the ASTEX case (crosses).

(positive sk and negativeD ) because the main differences  To give an estimate of the error of the different parameter-
between these two parameterizations are found for the cuizations, the profiles of, 7, andw’q/ from the LES test data
mulus regime. For stratocumulus the two parameterizationsets are compared with the results of the different parameter-
differ only marginally. izations (Fig.7a, b and c¢). The new parameterization is able
For high positive skewness itis found that the new parame+o reproduce the profiles @ andg, in the shallow cumu-
terization reproduces the LES data better than the parametelus layer better than the parameterization using the closure
ization ofLarson et al(20013 which overestimate€ andg, equations from_arson et al.(20013. Both cloud schemes
for a givenQ1. Remember that zero skewness for the closureare clearly superior to a single-Gaussian cloud closure, which
equations equals the case of a single-Gaussian distributiogeverely underestimatgs andC and in particular is hardly
of s (like assumed irBommeria and Deardorfi977 Mel-  able to diagnose any liquid water between cloud base and
lor, 1977), while in the LES data bimodal distributions occur cloud top in the shallow cumulus layer. For the stratocumu-
as well. In this case and with increasing normalized saturaius layer, the three parameterizations do not differ noticeably.
tion deficit (which at cloud base corresponds to increasingA distinct difference between testing error (as in ASTEX;
height), the parameterizations first overestimate and later unFig. 7a and b) and training error (as in RICO; Fitgl and €)
derestimate the cloud fraction. For the normalized averagés not found.
liquid water the effect is less relevant (see also Fjg. For the profiles oszql’ , Eq. (LO) is used withF param-
eterized like suggested for the new parameterization. For
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Fig. 7. Profiles of cloud fraction, average liquid water and the liquid water flux from LES cases ASTEX (testing data set) after 25h and
RICO (training data set) after 36 h of simulation. For the liquid water flixised in Eq. 10) has either been taken from the original LES

data C LES) or from the new parameterizatiofi ew). The legend ia) also applies tdb, d, e), the legend ir(c) also applies td¢f). Note

the logarithmic scale on theaxis in(a) and(b).

comparison the parameterization Byijpers and Bechtold For a more quantitative analysis, the errors of the different
(1995 using an exponential fit of* that only depends on parameterizations are summarized for the testing data sets in
Q1 is also shown in Fig7c for the ASTEX case. The new Table2 and for the training data sets in Tal#e The dif-
parameterization is able to reproduce the shape of the proferent error metrics used are the mean absolute éirdhe

files of w'q as well as their absolute values. Again, for stra- root mean square error, RMSE, the maximum absolute er-
tocumulus the two parameterization do not differ noticeably.ror, /o, and the bias. Their computation formulas are given
To estimate the effect of in the new parameterizatiod;, in the caption of Tabl@. For the cloud fraction and the av-
used in Eq. 10) has either been taken from the original LES erage liquid water, the proposed closure equations are fit to
data or from the new parameterization. It is shown thiat the LES data sets of RICO and DYCOMS. Therefore the new
has a minor influence on the profile compared to the differ-parameterization is optimized for RICO and DYCOMS and
ence between the two different parameterizationg ofit the error given for the new parameterization for those cases is
the top of the cumulus layer for both the test data set ASTEXa training error which is potentially lower than the error of an
and the training data set RICO the new parameterization unindependent test data set. Nevertheless, we do not find a per-
derestimatesy’q/. Note again that for a shallow layer with ceptible higher error for the test data sets ASTEX and ARM
01 < —4.0 at cloud top the parameterizations of the liquid compared to the training data sets RICO and DYCOMS.

water flux are not valid while the liquid water flux is close to ~ For all four LES data sets, the single-Gaussian parameteri-
zero. zation performs poorly compared to the other two parameter-

izations which are based on double-Gaussian distributions.
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Table 2. Errors of the different parameterizations for the testing data sets, ASTEX and ARM.

c q) w’ql’

[%] [gkg™t-1073] [gkg~tms™t.1073)
SG LO1 new para. SG LO1 new para. CB95 new para.

< 1 1.10 0.66 0.41 2.37 1.21 0.72 3.39 2.43
l,J_J RMSE  2.67 1.26 0.88 4.00 2.00 151 5.22 3.54
<</(> lo 19.70 9.31 7.05 23.12 10.73 10.98 19.11 11.44
bias -0.16 0.35 0.19 -1.22 0.82 0.42 -1.41 -0.83
1 1.35 0.61 0.53 4.60 0.97 0.57 35.51 8.72
5 RMSE 1.85 0.84 0.87 6.67 1.42 1.15 42.10 11.78
< Ix 5.33 2.83 3.58 16.00 6.10 6.30 109.93 34.73
bias -1.21 0.30 -0.02 -4.43 -0.29 0.32 35.51 5.30

Parameterizations: SG — single Gaussian, LQ&rson et al(20013, CB95 —Cuijpers and Bechtol{Ll995, new para. — new

parameterization. Error metridg:=1/n)_7_q|Ax;|, RMSE= (1/n Z;':O(Axi)z)0~5, loo =maX_q |Ax;| and bias= 1/n 377" Ax; with

AX; = Xpara,i —*LES,i» X € [C,q|, w'q{] andi being a index for different vertical levels and output time steps. Values shown are averages over
the last three output time steps of the LES data, where clouds are present, and over all vertical levels, wherg gjtioerpara ; are

nonzero. To calculate’ql’para_, CLgs has been used in EdL@). Smallest errors are printed in bold, largest in typewriter. Note that the

parameterizations ob’ql’ is only valid for Q1 > —4.0, while C andg) are calculated over the whole range®f.

Table 3. Errors of the different parameterizations for the training data sets, RICO and DYCOMS.

C q| w/£1|/

[%] [gkg~*-1073] [gkg*ms™*.1073]
SG LO1 new para. SG LO1 new para. CB95 new para.

I1 1.19 0.88 0.41 4.91 181 0.71 7.54 2.61
8 RMSE 1.44 1.16 0.59 6.03 251 1.08 8.80 3.81
X I 3.28 3.57 2.05 14.19 7.61 3.98 18.68 10.97
bias  -0.87 0.76 0.03 -4.86 1.28 0.32 3.01 -1.29
(é) 1 3.09 1.53 1.73 4.17 3.24 3.42 1.07 0.84
O RMSE 424 2.83 3.06 8.26 6.95 7.34 1.50 1.04
§_) Iso 11.03 9.73 9.98 27.24 28.49 31.70 5.43 2.43
O  pias -0.74 -0.51 -0.51 -3.27 -0.99 -0.97 0.69 0.33

For further description of the abbreviations and error measures please se2.Table

Though the double-Gaussian parameterizations are restricteatcurs in ASTEX but is rather scarce for ARM. The same
to their double-Gaussian families by the respective closureeffect can also be found in the training error (TaBjeWhile
equations, both double-Gaussian families are able to reprea lower error of the new parameterization compared to the er-
sent skewed distributions while a single-Gaussian distributor of the parameterization dfarson et al(20013 is found
tion is not skewed. Therefore the double-Gaussian familiedor RICO (where high positive skewness occurs frequently),
are able to represent both cumulus and stratocumulus. Faimilar error magnitudes are found for DYCOMS (where the
stratocumulus the absolute values of skewness are less thakewness is small).
for cumulus, therefore the difference in the errors between For the liquid water flux, the error of the parameteriza-
the single-Gaussian and the double-Gaussian parameterizéion can be reduced distinctly by the new parameterization
tions is smaller. compared to the parameterization@dijpers and Bechtold
Comparing the two parameterizations based on double{1995. The new parameterization depends@nas well as
Gaussian distributions, the new parameterization matches then sk while the parameterization @uijpers and Bechtold
LES data better than the parameterizationUayson et al. (1995 is only dependent o@1. The additional dependence
(20013 for ASTEX, whereas for ARM the two parameteri- of the new parameterization ek enables a more precise es-
zations have similar error magnitudes (TaBJeThis is rea-  timation of F which reduces the error in all four LES cases.
sonable, because the closure equations have most notably
been changed for high positive skewness which frequently
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5 Error dependence on domain size and the role of more localized but more intense convection and the large
mesoscale structures cloud free cold pool areas in the moist RICO case. The pa-
rameterized double-Gaussian PDF, which is fitted to non-
NWP models approach resolutions of only a few kilometersorganized random cloud fields with small rain rates, is not
(e.g.,Baldauf et al.2017) which is considerably less than the able to capture the longer tails of the distributionss afd-
domain sizes of all our LES cases. Hence, the question arisesquately. Therefore, for a given skewness the normalized
if the introduced PDF scheme is still applicable at such resovariancer; /o is underestimated for moist RICO simulations
lutions. We therefore investigate the dependence of the errowith mesoscale structures.
of the new parameterizations on the domain size considered. The discussed error dependence on the domain size and
To do so the domain of the four different RICO simulations the investigation of the moist RICO case show, on the one
has been divided into subdomains, the RMSE and the biakand, that even with a perfect knowledge of the first three
have been calculated in each subdomain and then averagedoments of the PDF of it remains challenging to construct
over all subdomains of the same size. These subdomains ia parameterization which is truly scale adaptive. On the other
our analysis of the LES data correspond to the grid spacindiand, the statistics of the cloud field at small scales seems
of an NWP or mesoscale model. The RICO simulations usedo be independent enough from the mesoscale structures and
differ in their overall domain size as well as in the initial hu- higher rain rates to make the PDF scheme useful for a broader
midity profiles of the simulations, giving “standard RICO” range of cloud regimes than the original LES data set used for
and “moist RICO” simulations (see Se2tl.4). the parameterization. Taking into account both the increas-
For subdomain sizes smaller than 5km, the RMSE in-ing error at very small subdomain sizes and the difficulties of
creases rapidly with decreasing subdomain size for boththe scheme to represent cloud properties in the moist RICO
standard and moist RICO simulations (FR). This rapid case, we conclude that the proposed scheme is most appro-
increase is probably due to the subdomain size approachingriate for NWP models or GCMs with horizontal resolution
the size of individual cloud structures (i.e., larger cumulus of about 5-20 km.
clouds). When these two scales converge, the variability in- For the liquid water flux, the new parameterization does
creases rapidly and a continuous, smooth distribution like thenot depend explicitly on a certain family of PDFs but the
proposed family of double-Gaussian PDFs cannot approprifactor F is directly parameterized and dependg®nandsk.
ately represent the shapes of the subdomain PDFs. This ré/ith this parameterization the error of the liquid water flux
sults in a larger spread of the LES data around the closurseems to be less dependent on the development of mesoscale
equations and consequently in an increasing RMSE with destructures and higher rain rates, possibly because there is no
creasing subdomain size. The increasing RMSE can be indirect dependence of the parameterization on the shape of the
terpreted such that the PDF-based, deterministic scheme b&DF ofs. A dependence of the error of the liquid water flux
comes inappropriate at such small scales and one would hawen the subdomain size is found in accordance with the error
to use a stochastic approach instead. of the cloud fraction and average liquid water.
With standard initial conditions, rain rates are small and
no mesoscale structures develop, that is, the cloud field re- ) )
mains random. Then, for subdomain sizes larger than 10kn® EXténsion to autoconversion rate

the RMSE is small, being around 0.005 and 0.001tg Autoconversion of cloud droplets to rain drops is a key

for cloud fraction and liquid water, respectively. With moist : . T
o " S . process in the formation of precipitation in warm clouds.
initial conditions, precipitation appears more readily and . : -

. Besides the cloud fraction, the average liquid water and
mesoscale structures, that is, cloud streets, mesoscale argjs

) e liquid water flux discussed above, the autoconversion
and cold pools, develop from 20h onwards as discusse rate is another variable that depends among others on the
by Seifert and Heus(2013. In these moist cases and P 9

with subdomain sizes larger than 10km, the cloud frac-vamabllIt.y of the I|qu_|d water mixing rf_mo (e.gPincus
. - : and Klein 2000. In simple autoconversion schemes (e.g.,
tion as well as the liquid water are mostly overestimated

by the double-Gaussian parameterization (positive bias). Th(la<ess|er 1969 Sundqvist 1978, other dependencies are ne-

RMSE amounts to about 0.017 and 0.04 gkdor cloud glected and the autoconversion rate only depends on the lig-

. o . . . uid water mixing ratio. With this simplification the autocon-
fraction and liquid water, respectively, which for each vari- .
able corresponds to roughly 10% of their respective max.Version rate can also be handled by PDF-based schemes.
Following Kessler(1969 K69) and replacing the liquid

imum values. With decreasing subdomain size the RMSE o ) o L
) ) . . water mixing ratio with the extended liquid water mixing ra-

for the moist RICO simulations decreases until the subdo-tio the autoconversion rate. is given as

main size reaches 5-10km. At such subdomain sizes the K69, 1S 9

RMSE is S|'m|Iar for sf[andar'd and moist RICO S|mu[at|qns. Axeo(s) = k(s — serit) H (s — Scrit). (12)

For the moist RICO simulations and large subdomain sizes,

the PDFs ofi have comparatively longer tails with few very

high values ofs. This different shape emerges from the
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Fig. 8. Dependence of the error of the parameterized cloud fraction, liquid water and liquid water flux on the domain size. Shown are
different simulations of the RICO case (average error over two output time steps after 24 h); in the moist RICO cases mesoscale structures
develop, while in the standard cases the cloud field remains random.

whereH is the Heaviside step functiosgit = 0.5gkg?! solved analytically foKessler(1969), this is not possible for
is a critical threshold below which no autoconversion occursthe scheme oKhairoutdinov and Koga2000 because the
andk is a rate constant set to= 1035 1. exponent of, ¢z, is not a natural number.

Alternatively, Khairoutdinov and Kogar{200Q KKO0O0) Seifert and Behen(001, SB01) derived an explicit equa-
suggested a parameterization based on data from a singtén for the autoconversion rate which is formulated using
large-eddy simulation using spectral bin microphysics, thatLong'’s piecewise polynomial collection kernel and a uni-
is, resolving the drop size distribution explicitly. They found versal function that is estimated by numerically solving the
that a good fit to the bulk autoconversion rate is stochastic collection equation. Doing so they arrived at

Akkoo(s) = c1s2H (s) (13) kaukz po 4

AsBo1= N2 H(s) (15)

with ¢ = (5829“06)‘2 and ¢, = 1.89. Within the factor
c1, they mtroduced a dependence on the number of cloud;, kau=6.808x 108 m3kg~1s! and k; = 1+ Pau(r)

droplets, Nc. BecauseN; in UCLA-LES is assumed to be -0z
constant throughout a simulatiosy, can be treated as con- Here po Is the base state denS|ty depending on helght and

. . ) i niversal function nding on the internal
stant in this study, au(t) is a universal function depending on the internal

For both autoconversion schemes, K69 and KKO0O0, the timescalez = 1—qi/ (g1 +4r), designed to take into account
Cthe broadening of the droplet spectrum with time. Note that
domain-averaged autoconversion rate,is then found by

integration over the PDF af gr is the rain water c.ontent w_hlch is not mclud_e(_qu Thls_
) dependence on the internal timescale makes it impossible to
_ o0 integrateAsgp1 according to Eq.14) as long as the PDF of
Apara —fs Apara(s) P (s)ds (14) ¢ is unknown in terms of the PDF ofwhich would require
the use of a joint PDF or even the introduction of time cor-
with sg = s¢rit for Kessler (1969 and sp = ngg‘1 for relations to the problem. Nevertheless, as the SB0O1 autocon-
Khairoutdinov and Kogaif2000. While the integral can be version rate is expected to give more realistic results than the

0
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simple autoconversion schemes described above, the SB0O1

autoconversion rate is used as a reference to be compared to : : = : =
the other autoconversion schemes. In our study the full 4-D 2400 ] i
field of z is, of course, known from LES and a compensatory L
factor fork, can be determined for each level and each time ] R T = |
step individually by solving 2000 - //) -
ALes(z.1) (16) € 1600 | -
1 kau,OO nx nx 4 = b i
=kelEs(z, 1) — s*(xi, yj, 2z, t) H(s) = ] i
nESE D TN ;; (.30 2.1) © 1200 4 s
T 2 Pars keoba |
""" ara. B
for k. Les. Herenx is the number of LES grid boxes in 800 ] — LES K69 o
each horizontal direction. Then the ability of the new double- : para. K S o1 |
Gaussian parameterization to be used in combination with T A% o Faakkooda |
the SBO1 autoconversion rate can be tested usings: 400 para. 3801 S -
< kauoo [ ] — LES sBot i
Aspo1= k¢ LES(2, 1) N2 / s4P(s)ds. a7) 0 T T T S B
c 70 10% 10 10 10% 10" 10°
Note that for the use in an NWP model or a GCM es autoconversion rate in g/ (kg s) x 10
would have to be estimated by some other method and that
kzLEs is not equal to a horizontal mean fof. Fig. 9. Profile of the autoconversion rate in ASTEX after 25h

From Fig.9 showing the different autoconversion rates for of simulation. Note the logarithmic scale on theaxis. Notation:
the ASTEX case, it is apparent that the profiles of the au-Lgs: autoconversion rate calculated using the full 3-D field of LES
toconversion rate differ substantially both in shape and bydata, SG: single-Gaussian parameterization, DG: double-Gaussian
several orders of magnitude in absolute value among thegarameterization using the new closure equations, DG L01: double-
different parameterizations of the autoconversion rate (K69 Gaussian parameterization using the closure equationslfeoson
KK00, SBO1). While the single-Gaussian cloud closure only €t al.(20013.
captures the stratocumulus type cloud layer around 2100 m,
the new double-Gaussian cloud closure is additionally able _
to diagnose the autoconversion rate quite accurately for thg Conclusions

cumulus layer. The same results hold for the other three I‘E§Ne introduce a refined statistical cloud closure using double-

cases (not shown). Gaussian PDFs. Following the workloérson et al(20013,

Usingk-,Les as described above, the new double-Gaussian, ., , provided an elegant framework for a diagnostic param-

cloud clos_ure is able to reproduce t_he proﬁlg OT the SBO1 AUterization of the cloud fraction and the average liquid water,
toconversion rate well for most heights. This is remarkable

b o . tional to the 4th ¢ sfwhich we modified their parameterization especially in the case of
ecauseisgo1 1S proportional to the 4th moment SWhIC strong positive skewness of the distribution of the extended
makesAsgoz especially sensitive to errors introduced by the

loud ¢l N thel t the cloud t  the strat liquid water mixing ratio,s, that is, for shallow cumulus
cloud closure. Nevertheless, at the cloud top ot the StraloCUg, ., s The introduced double-Gaussian closure is based on

r_nulus layer the new double—Ga_tus&an clouq closure OVer€Syifferent LES case studies and is supported by observational
timates the SBO1 autoconversion rate. This overestlmatloraata from aircraft measurements in shallow cumulus. It is re-
might be re.lated to the difficulties of LES in resolving the lying on the first three moments fas input parameters and

strong gradients that occur at a stratocumulus cloud top. is shown to be superior in diagnosing the cloud fraction and

. (ljJsmg the cl(l)sure f{:ﬁl:ﬁtl(:(n}(sotéarson et tal(_zo?_la _(a?g't average liquid water profiles compared to a single-Gaussian
IS done exemplary wi € parameterization in . pproach that only needs the first two momentsfof input.

corrt;p?)rled to ﬁs.'glg tg_t:fnew cIos.urf[ehequano?s g:lves small an priori testing also suggests improved accuracy compared
prc()J a y”nt(:]g '3' EI |Gerench IrI;DIS cur:nu us fayer. ¢ I_to existing double-Gaussian closures.
verall the double-t>aussian Scheéme IS SUCCESSIUIN £ the liquid water flux, we introduce a new parameteri-

capturing the effect of the sub-grid variability on the autocon-, o, of the factor which is relating the liquid water flux

version rate, which is crucial for the representation in the cu-, 11 flux ofs. With F depending on the skewness of the dis-

Sribution of s and the normalized saturation deficit, the new
arameterization is able to reproduce the shape of the pro-

mulus layer. Nevertheless, the uncertainty due to the choic
of the autoconversion scheme itself remains. Especially th
K69 scheme leads to a strong overestimation cpmpared Bles of the liquid water flux better than when the dependence
KKO00 ar_1d SBOl_, but also KKOO shows a much higher auto- Jc o ckewness is not retained.

conversion rate in the lowest part of the cumulus cloud layer

compared to SBO1.
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The dependence of the error of the parameterization orwhere Pg);(s|I =) is the conditional PDF of in the sub-
the domain size and the appearance of mesoscale structureagion:. Inserting Egs.A2) and @A3) in Eq. (A1), we arrive
has also been tested a priori with LES. Below a domain sizeat
of about 5km the error of the parameterization of the cloud
fraction, the average liquid water and the liquid water flux is Pg(s) = / Psi(slI=i)(@d(i—1D)+A—a)d(i—2)di
increasing rapidly with decreasing domain size. If mesoscale
structures occur that are accompanied by higher rain rates =aPsjr (s|/ =1) + (1 —a) P51 (s|I =2)
and the domain size is chosen large enough to include these = aPi(s) + (1 —a) Pa(s). (A4)
mesoscale structures, the error of the parameterization of the
cloud fraction and the liquid water is larger than without the ~ Assuming that the PDFs of in the subregionsp; and
occurrence of mesoscale structures. Considering the liquid®2, are Gaussian distributed, Ecp4) is equal to Eq. 2).
water flux, the error of the parameterization seems to be in-Therefore, in the shallow cumulus regimgthe relative am-
sensitive to the occurrence of mesoscale structures. plitude of the two single-Gaussian distributions, can be di-

Finally, the cloud scheme has been applied to diagnose theectly interpreted as the area fraction of the thermals while in
autoconversion rate. Using autoconversion schemes of difthe stratocumulus regim@ — a) is the area fraction of the
ferent complexity, the new parameterization is able to re-downdrafts.
produce profiles of the autoconversion rate adequately. The
e S onictementte ey o ek T Hes o 1

ing the LES data of the ARM case, Allen Scharnot for his advise
closures. o . . while analysing the observational data set from RICO, Dmitrii

As a next step, a posteriori testing of the introduced pa-\ironov and Ekaterina Machulskaya for beneficial discussion on
rameterization in a NWP model or a GCM that diagnosesthe closure and its possible application in NWP, Robert Pincus for
or predicts the first three moments gffor example, from  beneficial discussion on model selection and Cathy Hohenegger
a higher-order closure boundary layer moddhthulskaya as well as two anonymous reviewers for helpful comments that
and Mironoy 2013, is essential to decide which parameter- improved this manuscript. The separation in training and test
ization is most useful in the chosen NWP model or GCM. data was suggested by both reviewers. The observational data

However, such a analysis is beyond the scope of this studjfom RICO was provided by NCAR/EOL under sponsorship of
and therefore left for further research. the National Science Foundatiomtip://data.eol.ucar.eflu This

research was carried out as part of the Hans-Ertel Centre for

Weather Research. This research network of Universities, Research
Appendix A Institutes and the Deutscher Wetterdienst is funded by the BMVBS

(Federal Ministry of Transport, Building and Urban Development).
Derivation of the assumed PDF _ . -

The service charges for this open access publication

The distributionP (s) = Ps(s) in Eq. () for a given region  have been covered by the Max Planck Society.

(e.g., the LES domain) is a marginal of a joint PPy (s, i), Edited by: K. Gierens
Ps(s) = / Pgy(s,i)di. (A1)

The discrete random variable which is commonly used
in turbulent flows to introduce conditional statistics (e.g., Alorecht, B. A., Bretherton, C. S., Johnson, D., Schubert, W. H., and
Pope 2000, is defined to take different values in differ-  Frisch, A. S.: The Atlantic stratocumulus transition experiment —
ent subregions. As subregions we choose to distinguish be- ASTEX, Bull. Am. Met. Soc., 76, 889-903, 1995.
tween thermal areas & 1) and its well-mixed environment Baldauf, M., Seifert, A., Forstner, J., Majewski, D., Raschen-
(I =2) in case of shallow cumulus or between the well- dorfer, M., and Reinhardt, T.: Operationl convective-scale nu-
mixed environment X = 1) and downdrafts /(= 2) in case merical weather prediction with the COSMO model: Descrip-

of stratocumulus. Then the distribution btan be written as tion and sensitivities, Mon. Weather Rev., 139, 3887-3905,
doi:10.1175/MWR-D-10-05013,2011.
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