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Abstract. We introduce a probability density function
(PDF)-based scheme to parameterize cloud fraction, average
liquid water and liquid water flux in large-scale models, that
is developed from and tested against large-eddy simulations
and observational data. Because the tails of the PDFs are cru-
cial for an appropriate parameterization of cloud properties,
we use a double-Gaussian distribution that is able to repre-
sent the observed, skewed PDFs properly. Introducing two
closure equations, the resulting parameterization relies on the
first three moments of the subgrid variability of temperature
and moisture as input parameters. The parameterization is
found to be superior to a single-Gaussian approach in diag-
nosing the cloud fraction and average liquid water profiles. A
priori testing also suggests improved accuracy compared to
existing double-Gaussian closures. Furthermore, we find that
the error of the new parameterization is smallest for a hori-
zontal resolution of about 5–20 km and also depends on the
appearance of mesoscale structures that are accompanied by
higher rain rates. In combination with simple autoconversion
schemes that only depend on the liquid water, the error in-
troduced by the new parameterization is orders of magnitude
smaller than the difference between various autoconversion
schemes. For the liquid water flux, we introduce a parame-
terization that is depending on the skewness of the subgrid
variability of temperature and moisture and that reproduces
the profiles of the liquid water flux well.

1 Introduction

The cloud fraction and the average liquid water in a given
volume depend on the variability of temperature and mois-
ture within that volume. If subgrid variability is not taken
into account at all, the grid volume is either entirely subsat-
urated or entirely saturated. To overcome this problem, di-
agnostic relative humidity schemes have been developed, for
example bySmagorinsky(1960) andSundqvist et al.(1989)
who parameterized partial cloud fraction as a function of
relative humidity with a certain critical relative humidity at
which a partial cloud cover first appears. This kind of pa-
rameterization has been developed further by implementing
secondary predictors like condensate content (e.g.,Xu and
Randall, 1996) or vertical velocity (e.g.,Slingo, 1987).

Another approach in diagnosing cloud fraction is based on
one-dimensional probability density functions (PDFs) of the
subgrid variability in temperature and moisture1. Assuming
a single-Gaussian PDF, these schemes go back toSomme-
ria and Deardorff(1977) and Mellor (1977) and need not
only the grid-box mean temperature and moisture but also the
standard deviations as input parameters. Because the success
of such schemes crucially depends on the ability to quan-
tify the tails of the distribution (Bougeault, 1982a), further
studies additionally took into account the skewness of the

1Assuming a uniform PDF of the total water subgrid-scale vari-
ability and the variance as a constant fraction of the saturation value,
it has been shown (e.g., byQuaas, 2012), that theSundqvist et al.
(1989) relative humidity scheme is a special case of PDF-based
schemes.
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distribution which lead to the use of, for example, double-
Gaussian (Lewellen and Yoh, 1993; Larson et al., 2001a),
Gamma (Bougeault, 1982b) or Beta (Tompkins, 2002) distri-
butions.Perraud et al.(2011) tested several of this distribu-
tions against model data and found that the double-Gaussian
distribution gives best results.

Compared to relative humidity schemes, PDF-based
schemes typically need more and higher moments as in-
put parameters. While the first two moments are commonly
available in numerical weather prediction (NWP) models and
general circulation models (GCMs), there are ongoing ef-
forts to develop higher-order closure boundary layer models
which include an estimate of the third moment, that is, the
skewness (Gryanik and Hartmann, 2002; Gryanik et al.,
2005; Mironov, 2009; Machulskaya and Mironov, 2013).
Apart from this disadvantage, PDF schemes have several ad-
vantages over relative humidity schemes. In PDF schemes,
the shape of the PDF is parameterized but the variables
aimed for, such as cloud fraction and average liquid water,
are derived directly from this PDF. Therefore, the variables
are calculated consistently from the assumed PDF. Also, nu-
merical models that ignore subgrid variability are known to
encounter systematic errors in cloud and radiative proper-
ties (Pincus and Klein, 2000; Rotstayn, 2000; Larson et al.,
2001b). To tackle this issue, the knowledge of the subgrid
PDF is essential. Furthermore, PDF schemes can potentially
be used in a wide range of cloud regimes. Other than for rel-
ative humidity schemes, no trigger functions to switch from
one regime (and its according parameterization) to another
regime are needed and artificial distinctions can be avoided.

As a further development from one-dimensional PDFs,
joint PDFs have been introduced recently (e.g., byLarson
et al., 2002). In joint-PDF schemes the variability of tem-
perature and moisture are usually not summarized in one
variable and the distribution of the vertical velocity can be
added as further input. Because the vertical velocity is taken
into account, the liquid water flux can be derived consis-
tently from the joint PDF. This advantage has to be paid
for by the prediction or diagnosis of several more moments
and correlations among temperature, humidity and vertical
velocity (e.g.,Larson et al., 2002, used 19 parameters in-
stead of 5 for a double-Gaussian distribution). Hence joint-
PDF schemes are much more computational expensive than
one-dimensional PDF schemes and their usage in operational
NWP models or GCMs is challenging with todays computa-
tional power.

We therefore step back to one-dimensional PDF schemes
and focus on improving the double-Gaussian PDF scheme
to diagnose subgrid cloud fraction and average liquid water.
The formulation followsLarson et al.(2001a) and is devel-
oped from and tested against large-eddy simulations (LES)
as well as aircraft measurements. In Sect.2, the LES model,
the case studies the model is applied to and the observa-
tional data set are described. The use and construction of a
double-Gaussian PDF, the refined closure equations and the

parameterization of the liquid water flux are introduced in
Sect.3. Next, in Sect.4, we perform a priori testing of the
new cloud closure with LES data as input to examine the pa-
rameterization’s behaviour under idealized conditions, that
is, excluding the interplay with other model components as
would be done with a posteriori testing in an NWP model
or a GCM. In the following Sects.5 and6, the error depen-
dence of the parameterization on domain size and the role of
mesoscale structures are discussed and the introduced cloud
closure is extended to the diagnosis of the autoconversion
rate. Finally, in Sect.7, we give some concluding remarks.

2 Model and data

2.1 Large-eddy simulations

The LES model used in this study is the University of
California, Los Angeles LES (UCLA-LES;Stevens et al.,
2005; Stevens, 2007) with one major difference to previous
work, that is, the time stepping is done with a third-order
Runge–Kutta scheme instead of the former leapfrog scheme.
Prognostic equations for each of the following variables are
solved: the three components of the velocity, the total wa-
ter mixing ratio, the liquid water potential temperature, the
mass mixing ratio of rain water and the mass specific number
of rain-water drops. Considering only warm clouds, we use
the double-moment bulk microphysical scheme fromSeifert
and Beheng(2001). Subgrid fluxes are modelled with the
Smagorinsky–Lilly model.

For our study, we adapt the UCLA-LES to four differ-
ent case studies which span over a range of different cloud
regimes. Shallow cumulus over ocean (RICO2; seeRauber
et al., 2007) and over land (ARM3; seeBrown et al., 2002)
are considered as well as stratocumulus (DYCOMS4; see
Stevens et al., 2003) and the transition from stratocumulus to
cumulus (ASTEX5; seeAlbrecht et al., 1995). Domain sizes
and resolutions of the different LES cases are given in Ta-
ble1.

2.1.1 ARM

The LES setup of the ARM case follows that of the sixth in-
tercomparison project, performed as part of the GCSS6 pro-
gram and described byBrown et al.(2002).

2.1.2 ASTEX

The setup of the LES study for the ASTEX case is similar
to that proposed by the Euclipse ASTEX Lagrangian model

2Rain in cumulus over the ocean
3Atmospheric radiation measurement
4Dynamics and chemistry of marine stratocumulus
5Atlantic stratocumulus transition experiment
6GEWEX (Global Energy and Water Experiment) Cloud system

studies

Geosci. Model Dev., 6, 1641–1657, 2013 www.geosci-model-dev.net/6/1641/2013/



A. K. Naumann et al.: A refined statistical cloud closure 1643

Table 1. Overview of the different LES cases used in this study. The four cases on the left hand side are used to develop (DYCOMS and
RICO) and test (ARM and ASTEX) the parameterizations introduced in this study. The three cases on the right hand side are solely used in
the Sect.5.

ARM ASTEX DYCOMS RICO RICO

standard standard moist moist

nx 256 256 512 512 1024 1024 2048
L 12.8 km 10.2 km 10.2 km 20.5 km 25.6 km 25.6 km 51.2 km
H 5.1 km 3.2 km 1.4 km 4.0 km 4.0 km 4.0 km 4.0 km
1x 50 m 40 m 20 m 40 m 25 m 25 m 25 m
1z 40 m 20 m 5–52 m 20 m 25 m 25 m 25 m
t 15 h 42 h 5 h 36 h 30 h 30 h 30 h

nx: number of grid points in each horizontal direction,L: horizontal domain size,H : vertical domain size,1x:
horizontal resolution,1z: vertical resolution,t : length of simulation.

intercomparison case (van der Dussen et al., 2013). The ini-
tial profiles are identical to the first GCSS ASTEX “A209”
modelling intercomparison case and the model is forced by
time-varying sea surface temperature and divergence taken
from Bretherton et al.(1999).

2.1.3 DYCOMS

For the LES setup of DYCOMS, we follow the DYCOMS-
II RF01 setup of the eighth case study conducted under the
auspices of the GCSS boundary layer cloud working group
and described byStevens et al.(2005).

2.1.4 RICO

The initial data and the large-scale forcing for the standard
RICO simulations are based on the precipitating shallow cu-
mulus case that was constructed by the GCSS boundary layer
working group and described byvan Zanten et al.(2011).
A modified moister version, which differs from the stan-
dard setup only by a moister initial profile, was first used
by Stevens and Seifert(2008), to which we refer for a de-
tailed setup of the case. The moister initial condition leads
to higher rain rates compared to the standard case and sub-
sequently to mesoscale organization of the cloud field due to
the formation of cold pools mainly caused by evaporation of
rain in the sub-cloud layer (Seifert and Heus, 2013).

Unless stated otherwise, we refer to our standard RICO
setup withnx = 512 when analysing LES data from the
RICO case. The three RICO cases on the right hand side in
Table1 are equal to the LES runs R01, M01 and M01big of
Seifert and Heus(2013). For this study they are solely used
in Sect.5 when discussing the error dependence on domain
size and the role of mesoscale structures.

2.2 Observational data

To be able to test our parameterization against observa-
tional data, we used RICO field campaign data (Rauber
et al., 2007). This data set includes airborne measurements

obtained from the NSF/NCAR Research Aviation Facility
C-130Q Hercules aircraft (Tail Number N130AR) at 25 Hz.
Besides the static pressure and the ambient temperature, the
water vapor mixing ratio measured with a Lyman-alpha hy-
grometer as well as the liquid water content measured with a
Gerber PV-100 probe were used in this study. Because the
temperature sensor is susceptible to wetting during cloud
penetrations, periods of cloud presence were defined by a
threshold value of 10 cloud droplets (3 to 45 µm diameters)
per cm3 and in-cloud temperature was measured by a radio-
metric temperature sensor that is not sensitive to wetting. In
17 research flights (RF01 to RF13 and RF16 to RF19) all
available five-minutes intervals at moderate height (pressure
> 600 hPa) and with relatively constant pressure (standard
deviation< 1 hPa) were selected and analysed. (Note that,
unfortunately, during research flight 14 and 15 the Lyman-
alpha hygrometer was out of service, so no analysis of these
flights is possible.)

3 Introducing a refined cloud closure

3.1 Data analysis: the double-Gaussian PDF

For diagnosing the cloud fraction and the average liquid wa-
ter,Perraud et al.(2011) show that the temperature variability
should not be neglected relative to the humidity variability.
We therefore followSommeria and Deardorff(1977), Mellor
(1977) andLewellen and Yoh(1993) and define the extended
liquid water mixing ratio,s(qt,Tl), by

s =
qt − qs(Tl)

1+
L
cp

(
∂qs
∂T

)
T =Tl

, (1)

whereqt is the total water mixing ratio,qs(Tl) is the satu-
ration mixing ratio at a given value of the liquid water tem-
peratureTl = θlT/θ and(∂qs/∂T )T =Tl = Lqs(Tl)/(RvT

2
l ) is

the slope of the saturation mixing ratio atT = Tl . T is the
temperature,θ the potential temperature,θl the liquid water
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potential temperature,L the latent heat of vaporization,cp

the specific heat at constant pressure andRv the gas con-
stant for water vapor. The extended liquid water mixing ratio
takes into account the temperature variability as well as the
humidity variability and is a measure of subsaturation ifs

is negative. Fors > 0, s is approximately equal to the liquid
water mixing ratio,ql . Note that the ratio of the mean ofs,
s, to the standard deviation ofs, σ , can be approximated by
the normalized saturation deficit,Q1, which is defined as the
bulk value ofs, sbu = s(qt, Tl), divided byσ (Lewellen and
Yoh, 1993, ζ therein).

If the PDF of s is known for each grid box in an NWP
model or a GCM, the cloud fraction and the average liquid
water can be calculated by integration over the PDF ofs (see
Eqs.8 and9 for the formulation of the integral). As this is
not the case, and only the first moments of the PDF ofs

can usually be predicted in large-scale models, we are using
high-resolution LES and observational data to investigate the
behaviour of the distribution ofs on the subgrid scale of an
NWP model or a GCM.

Considering the distribution ofs from each model level in
the LES data over the whole domain, we find that the PDF of
s can be highly skewed in the cloud layer with positive skew-
ness for shallow cumulus and negative skewness for stra-
tocumulus (Fig.1). For shallow cumulus, cloud formation
is driven by surface heat fluxes that initiate few but strong
updrafts in a slowly descending environment. Therefore the
PDF ofs is positively skewed with the moist tail representing
the (cloudy) updrafts. In contrast, stratocumulus is driven by
radiative and evaporative cooling at cloud top. Hence non-
cloudy downdrafts emerge in a dry tail of the PDF ofs and
the PDF tends to be skewed negatively (Helfand and Kalnay,
1983; Moeng and Rotunno, 1990). Consequently for both the
shallow cumulus regime and the stratocumulus regime, the
success of a scheme diagnosing the cloud fraction and the
average liquid water depends crucially on its ability to quan-
tify the tail of the distribution.

Following Larson et al.(2001a), we choose to represent
the PDF ofs by a double-Gaussian distribution which can
represent skewed distributions and is able to reproduce the
tail. The double-Gaussian distribution is quite popular (Lar-
son et al., 2001a; Perraud et al., 2011) because the two single-
Gaussian distributions that the double-Gaussian distribution
is composed of can be interpreted physically as the updrafts
and their slowly descending environment in case of a cumu-
lus regime (Neggers et al., 2009) or as the downdrafts and
their well-mixed environment in the case of a stratocumulus
regime. In both regimes the dominant mode of the PDF ofs is
associated with the well-mixed environment and assumed to
be Gaussian distributed. The tail of the PDF is represented in
a secondary mode and is associated with the thermal updrafts
in shallow cumulus and the negatively buoyant downdrafts in
stratocumulus (Fig.1). This secondary mode is also assumed
to be Gaussian distributed.

a) RICO with positive skewness (z= 1170 m, sk= 3.4)

b) DYCOMS with negative skewness (z= 775 m, sk=−3.0)

Fig. 1. PDF of s for a specific height in the cloud layer. Furthermore, the corresponding best skewness-retaining

double-Gaussian fit (DG-Fit) and the resulting PDF when using the closure equations from Larson et al. (2001a)

(Eq. 3) and the introduced closure equations (Eq. 4) are shown. It is ∆s= s−s. The black, dashed line indicates

the saturation value (s=0).
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Fig. 1. PDF of s for a specific height in the cloud layer. Further-
more, the corresponding best skewness-retaining double-Gaussian
fit (DG-Fit) and the resulting PDF when using the closure equations
from Larson et al.(2001a) (Eq.3) and the introduced closure equa-
tions (Eq.4) are shown. It is1s = s − s. The black, dashed line
indicates the saturation value (s=0).

The choice of the double-Gaussian PDF is further sup-
ported by direct numerical simulations (DNS) of an evap-
oratively driven cloud top, where scales between a few mil-
limeters and a few meters are resolved (Mellado et al., 2010).
Consistently with the physical interpretation in terms of the
large-scale updraft and downdraft flow structure presented
above, agreement between the LES and the DNS data (Fig.2)
indicates that the non-Gaussianity is quite insensitive to the
details of the small scales, since DNS resolves them and
LES parameterizes them. Therefore, the skewed shape of the
PDF seems to be related to the fact that buoyancy is one of
the main forcing mechanisms, which is often the case when
clouds are present in the system.

Geosci. Model Dev., 6, 1641–1657, 2013 www.geosci-model-dev.net/6/1641/2013/



A. K. Naumann et al.: A refined statistical cloud closure 1645

Fig. 2. PDF of s from LES data of DYCOMS and from a DNS study. Both PDFs are calculated at a height level

close to the cloud top where the variance of horizontal winds are at their respective maximum. The DNS data

corresponds to a local study of turbulent mixing at cloud top, due solely to evaporative cooling (Mellado et al.,

2010).

a) LES data for σ1 b) LES data for σ2 c) observational data for σ1

Fig. 3. LES data of ARM, ASTEX, RICO and DYCOMS and observational data from the RICO campaign

along with the closure equations from Larson et al. (2001a) (dashed line) and the new closure equations (solid

line). Note that the new closure equations are fitted to the LES data of RICO and DYCOMS rather than to all

available case studies. The grey shading in (c) corresponds to two times the standard deviation from the four

LES cases in (a). The legend in (a) also applies to (b).
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Fig. 2. PDF of s from LES data of DYCOMS and from a DNS
study. Both PDFs are calculated at a height level close to the cloud
top where the variance of horizontal winds are at their respective
maximum. The DNS data corresponds to a local study of turbu-
lent mixing at cloud top, due solely to evaporative cooling (Mellado
et al., 2010).

Using a double-Gaussian distribution, the PDF ofs is writ-
ten as

P(s) = aP1(s) + (1− a)P2(s)

=
a

√
2πσ1

exp

(
−

1

2

(
s − s1

σ1

)2
)

+
1− a

√
2πσ2

exp

(
−

1

2

(
s − s2

σ2

)2
)

, (2)

whereP1 andP2 are single-Gaussian distributions ands1,
s2, σ1 andσ2 are the mean and the standard deviation of the
two single-Gaussian distributions. The relative weightsa and
(1−a) can be interpreted as the corresponding area fractions
(see Appendix). By convention and without loss of general-
ity, we chooses1 > s2. With five parameters to determine the
PDF, the double-Gaussian distribution is highly flexible on
the one hand. On the other hand, operational NWP models
or GCMs are not able to predict five moments of the distri-
bution of s. Therefore closure assumptions will have to be
chosen carefully (see Sect.3.2).

In order to be able to analyse the LES data and the
observational data in terms of the closure equations, we next
aim to find the best fit of a double-Gaussian distribution to
the PDF ofs for each level of our LES data set and each
five-minute interval in the observational data set. Because
the skewness of the distribution is a crucial parameter in
our closure, we establish an additional constraint for the fit
which retains the skewness of the given PDF for the fitted

double-Gaussian distribution. Instead of varying the five
parameters of the double-Gaussian distribution (a, s1, s2, σ1,
σ2) like Larson et al.(2001a) did, we expresss1 as a function
of a, s2, σ1, σ2 and the mean, the standard deviation and the
skewness of the given PDF,s, σ andsk, using the definition
of the third standardized moment of a double-Gaussian

distribution: sk = a

(
3
(

s1−s
σ

)(
σ1
σ

)2
+

(
s1−s

σ

)3
)

+

(1− a)

(
3
(

s2−s
σ

)(
σ2
σ

)2
+

(
s2−s

σ

)3
)

(Lewellen and Yoh,

1993; Larson et al., 2001a).
The values ofs, σ andsk are obtained from the LES data

or the observational data to evaluate the above equation and
hence four parameters are left to be fitted (a, s2, σ1, σ2). To
calculate the best skewness-retaining fit for each level of the
LES data and each five-minute interval in the observational
data set, we first doχ2-tests in the relevant region of the pa-
rameter space. Because this procedure gets computationally
expensive easily (at least if four parameters are to be fitted
like it is done here), we only search for a coarse estimation
of the best fit for the four parameters and then use this best
fit as input for the Nelder–Mead downhill simplex method
(Press et al., 1992) to find the actual minimum. In Fig.1 two
examples of the distribution ofs in a cloud layer of the LES
data, one with positive skewness and one with negative skew-
ness, are shown together with their best skewness-retaining
double-Gaussian fit.

3.2 Closure equations

Even if we assume that the first three moments of the PDF
of s are readily available from an NWP model or a GCM, for
example, from a higher-order closure boundary layer model,
the number of parameters has to be reduced from five to
three, that is, two closure equations are necessary.Larson
et al.(2001a) suggested

σ1

σ
= 1+ γ

sk
√

α + sk2
,

σ2

σ
= 1− γ

sk
√

α + sk2
(3)

with α = 2.0 andγ = 0.6 ands1 > s2 by convention.
Analysing the different LES cases by fitting a double-

Gaussian distribution to the (normalized) PDF ofs for each
vertical level as described in Sect.3.1, we obtainσ1/σ and
σ2/σ and plot them as a function ofsk (Fig. 3a and b). It
is noted that highσ1/σ or σ2/σ values (> 1.5) at sk = 0
are an artifact of a double-Gaussian distribution being fit-
ted to a distribution that is not skewed. In this case a single-
Gaussian distribution might represent the given distribution
well. So if a approaches 0.0 (or 1.0) during the fitting pro-
cedure, the second (or first) single-Gaussian distribution of
the double-Gaussian distribution might fit the given distribu-
tion so well that the termination criteria for the fitting pro-
cedure is reached, independent of the shape of the first (or
second) single-Gaussian distribution which is essentially ir-
relevant because of its small amplitude. Therefore, forsk = 0
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Fig. 2. PDF of s from LES data of DYCOMS and from a DNS study. Both PDFs are calculated at a height level

close to the cloud top where the variance of horizontal winds are at their respective maximum. The DNS data

corresponds to a local study of turbulent mixing at cloud top, due solely to evaporative cooling (Mellado et al.,

2010).

a) LES data for σ1 b) LES data for σ2 c) observational data for σ1

Fig. 3. LES data of ARM, ASTEX, RICO and DYCOMS and observational data from the RICO campaign

along with the closure equations from Larson et al. (2001a) (dashed line) and the new closure equations (solid

line). Note that the new closure equations are fitted to the LES data of RICO and DYCOMS rather than to all

available case studies. The grey shading in (c) corresponds to two times the standard deviation from the four

LES cases in (a). The legend in (a) also applies to (b).
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Fig. 3. LES data of ARM, ASTEX, RICO and DYCOMS and observational data from the RICO campaign along with the closure equations
from Larson et al.(2001a) (dashed line) and the new closure equations (solid line). Note that the new closure equations are fitted to the LES
data of RICO and DYCOMS rather than to all available case studies. The grey shading in(c) corresponds to two times the standard deviation
from the four LES cases in(a). The legend in(a) also applies to(b).

particularly high or low values ofσ1/σ or σ2/σ can be ig-
nored, when evaluating the closure equations.

Because we defineds1 > s2, large values forσ1/σ repre-
sent the cloudy tail in shallow cumulus, wheresk has high
positive values. In stratocumulus, where the skewness is neg-
ative, large values forσ2/σ represent the non-cloudy part of
the cloud layer.Larson et al.(2001a) analysed observational
data from the ASTEX campaign and found only very few
measurements of high positive skewness. They therefore sug-
gested an antisymmetric behaviour forσ1/σ andσ2/σ de-
pending onsk (Fig. 3a and b). In contrast, we find from the
different LES case studies that in the cumulus regimeσ1/σ

has higher values thanσ2/σ in the stratocumulus regime.
This broken antisymmetric behaviour is consistent with

the physical understanding that cloudy updrafts in shallow
cumulus are more vigorous than non-cloudy downdrafts in
stratocumulus. For the shallow cumulus cloud cores the up-
per limit is a moist adiabatic ascent, while the stratocumulus
downdrafts are only initially cloudy and as soon as they be-
come cloud-free follow a dry adiabatic descent. Because the
downdrafts are not exactly the reversed process of the up-
drafts, the tails of the PDFs ofs are different for both cloud
regimes, that is, the tails are heavier in the cumulus regime
than in the stratocumulus regime.

Using thes1 > s2 convention, we suggest a refinement of
the parameterization ofLarson et al.(2001a) using a modi-
fied set of closure equations (Fig.3a and b)

σ1

σ
=

1+ γ1
sk
√

α
if sk > 0

1+ γ3
sk√

α+sk2
if sk ≤ 0

σ2

σ
=

1− γ2
sk√

α+sk2
if sk > 0

1− γ4
sk√

α+sk2
if sk ≤ 0

(4)

with α = 2.0 adopted fromLarson et al.(2001a). Fitting the
parametersγn with a simple least square fit to the LES data
sets of DYCOMS and RICO, we find best agreement for
γ1 = 0.73,γ2 = 0.46,γ3 = 0.78 andγ4 = 0.73. By fitting the
closure equations to only the two data sets of DYCOMS and
RICO, which cover the stratocumulus and the cumulus type
cloud regime, respectively, the LES data sets of ASTEX and
ARM remain as independent test data sets. This generic di-
vision in training and test data aims to permit a later com-
parison between the error of this new parameterizations and
other parameterizations from the literature (see Sect.4). The
main difference between this set of closure equations and the
one fromLarson et al.(2001a) is the dependence ofσ1/σ

on sk for (large) positive values of skewness, that is, for the
shallow cumulus regime.

The new parameterization is also supported by observa-
tional aircraft data from the RICO campaign (Fig.3c). Com-
pared to the simulated RICO case, the skewness from the ob-
servational data does not reach values as high as the skewness
from the LES. This might be due to the sampling strategy of
the observational data with the aircraft. The RICO project
was targeting for early stage growing shallow cumulus tow-
ers from initiation to early rain formation. The statistics for
the observational data set is therefore biased toward those
types of clouds and away from fully developed, later stage
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Fig. 4. Bimodal PDF of s from the RICO case at cloud base with sk = 0.04. While the LES data shows

a bimodal distribution and the double-Gaussian fit is able to capture this shape, the two parameterizations

coincide in assuming a single-Gaussian distribution for vanishing skewness. For further explanation of the

legend see Fig. 1.
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Fig. 4. Bimodal PDF ofs from the RICO case at cloud base with
sk = 0.04. While the LES data shows a bimodal distribution and
the double-Gaussian fit is able to capture this shape, the two pa-
rameterizations coincide in assuming a single-Gaussian distribution
for vanishing skewness. For further explanation of the legend see
Fig. 1.

clouds (A. Schanot, personal communication, 2012) while
with LES all stages of the life cycle of such clouds are mod-
eled. Therefore in the observational data regions with partic-
ularly high s are undersampled. Nevertheless, the few data
points with high skewness obtained from observational data
of the RICO campaign fit well into the range of values found
from LES and align rather with the introduced closure equa-
tions than with the ones fromLarson et al.(2001a).

A difficulty in the parameterization ofLarson et al.
(2001a) as well as in the new parameterization is the treat-
ment of distributions that are characterized bysk ≈ 0. Both
sets of closure equations are constructed such that atsk = 0
the normalized standard deviationsσ1/σ = σ2/σ = 1, that
is for the closure equations the double-Gaussian distribution
collapses to a single-Gaussian distribution as the skewness
vanishes. In the LES data in the range ofsk ≈ 0, distributions
that match a single-Gaussian distribution occur as well as bi-
modal double-Gaussian distributions, where the two modes
balance in a way that the skewness almost vanishes (Fig.4).
The latter distributions often appear in the cumulus regimes
at cloud base and are characterized byσ1/σ ≈ σ2/σ < 1
(Fig. 3). Though the bimodal distributions with zero skew-
ness cannot be captured adequately by the closure equations,
the induced error is relatively small and will be discussed
again in Sect.4.

Knowing the first three moments of the distribution
of s for a certain model level,σ1 and σ2 can now
be calculated via the closure equations (Eq.4), while
a, s1 and s2 are obtained from the definition of the
first three moments of a double-Gaussian distribution

(Larson et al., 2001a, Eqs. 22–24 therein):
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where Eq. (5) may be solved numerically fora. Alterna-
tively, to avoid an iterative solution for a more computational
efficient implementation in a GCM or an NWP model, an
(e.g., polynomial or matched asymptotics) approximation of
a as a function ofsk can be used. For the present analysis
however, we solve fora numerically using a simple bisec-
tion method with an accuracy of 10−6 which typically took
about 30 iterations.

Comparing the parameterized distribution ofs to the orig-
inal LES data in all four case studies (Fig.1, ASTEX and
ARM not shown), we find that the new parameterization is
able to represent the differences in the distribution ofs in
a shallow cumulus regime as well as a stratocumulus regime
and therefore represents the tails in a shallow cumulus regime
better than the parameterization byLarson et al.(2001a).

Having determined a double-Gaussian PDF ofs, the cloud
fraction,C, and the average liquid water of a large-scale grid
box,q l , are found by integration:

C =

∫
∞
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P(s)ds =

a
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1+ erf
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2
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)
. (9)

Note that for the introduced parameterization the normal-
ized parameters of the double-Gaussian PDF (a, (s1 − s)/σ ,
(s2−s)/σ , σ1/σ , σ2/σ ) only depend onsk (Eqs.4–7). There-
fore withQ1 ≈ s/σ , Eqs. (8) and (9) can be rearranged such
that C and the normalized average liquid water,q l/σ , are
functions ofsk andQ1 only.
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3.3 Parameterization of the liquid water flux

In contrast to the cloud fraction and the average liquid water,
the liquid water flux cannot be found analytically by taking
only s into account, but it also depends on the vertical veloc-
ity, w. Instead of using a joint PDF ofs andw, we are here
heading for a more straightforward way followingCuijpers
and Bechtold(1995). They determined the liquid water flux,
w′q ′

l , from the flux ofs, w′s′, by

w′q ′

l = FCw′s′, (10)

whereC is the cloud fraction.F is a proportionality constant
that forC < 1.0 can be interpreted as a measure of which part
of the joint PDF ofw′ ands′ is found in the cloudy part of the
domain. Therefore, limC→1.0F = 1.0. Using coarse resolu-
tion LES data of shallow cumulus and stratocumulus cases,
Cuijpers and Bechtold(1995) found a dependence ofF on
the normalized saturation deficit,Q1, andsk with the depen-
dence onsk most notable near cloud base wheresk is close
to zero. Nevertheless, they suggest thatF is described fairly
well as a function ofQ1 only, givingF = exp(−1.4Q1) for
Q1 ≤ 0 andF = 1.0 for Q1 > 0.

Using Eq. (10), we find from the different LES cases a
dependence ofF on both Q1 and sk (Fig. 5, ARM and
DYCOMS not shown). Using our training data sets (RICO,
Fig. 5a, and DYCOMS), we propose

F =

{
a exp(b sk)Q2

1 + 1 if Q1 ≤ 0

1.0 if Q1 > 0
(11)

with a = 1.5 andb = 0.25 for a new parameterization. The
proposed parameterization seems to be appropriate also for
the testing data sets (ARM and ASTEX, Fig.5b). Because
this new parameterization is too sensitive to highsk for
Q1 < −4.0 and therefore gives unreasonable values at a thin
layer near cloud top, we limit their range of application to
Q1 ≥ −4.0. We findQ1 < −4.0 only in a thin layer at cloud
top, where the liquid water flux is close to zero. A similar
unreasonable behaviour is found for the parameterization of
Cuijpers and Bechtold(1995) and we will therefore apply
the same limit to both parameterizations when testing it in
the following with LES data. In a GCM or an NWP model
the cloud top behaviour is very sensitive to the interplay of
the cloud parameterization and the boundary layer scheme.
Therefore a meaningful validation of the cloud top behaviour
should be done in such a model with all feedbacks present.
However, as a first attemptw′q ′

l = 0 for Q1 < −4.0 might be
sufficient.

4 A priori testing of the cloud closure

Having introduced a new set of closure equations forσ1/σ ,
σ2/σ andF (Eq. 4 and Eq.11, respectively), we now anal-
yse the quality of the new parameterizations with a priori

a) RICO

, Q1

b) ASTEX

, Q1

Fig. 5. New parameterization of F (dashed lines) as a function of the normalized saturation deficit and the

skewness along with the parameterization of Cuijpers and Bechtold (1995, CB95) and the LES data (crosses).
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Fig. 5. New parameterization ofF (dashed lines) as a function of
the normalized saturation deficit and the skewness along with the
parameterization ofCuijpers and Bechtold(1995, CB95) and the
LES data (crosses).

testing in LES and by comparing the introduced parameteri-
zations with parameterizations from the literature. Note that
the usefulness of a priori testing is in the assessment of va-
lidity and accuracy of the parameterizations assumptions (see
e.g., Pope, 2000, p. 601). To decide which parameterization
is most useful in a certain NWP model or GCM a comparison
based on a posteriori testing has still to be done.

In Fig. 6, the new parameterization and the parameteri-
zation ofLarson et al.(2001a) are shown compared to the
LES data of the ASTEX case, which is one of the testing
data sets. We focus on the cumulus part of the ASTEX case
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a) parameterization of C by Larson et al. (2001a)

, Q1

b) new parameterization of C

, Q1

c) parameterization of ql by Larson et al. (2001a)

, Q1

d) new parameterization of ql

, Q1

Fig. 6. The parameterizations (dashed lines) as a function of the normalized saturation deficit and the skewness

shown together with the LES data of the ASTEX case (crosses).
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Fig. 6.The parameterizations (dashed lines) as a function of the normalized saturation deficit and the skewness shown together with the LES
data of the ASTEX case (crosses).

(positivesk and negativeQ1) because the main differences
between these two parameterizations are found for the cu-
mulus regime. For stratocumulus the two parameterizations
differ only marginally.

For high positive skewness it is found that the new parame-
terization reproduces the LES data better than the parameter-
ization ofLarson et al.(2001a) which overestimatesC andq l
for a givenQ1. Remember that zero skewness for the closure
equations equals the case of a single-Gaussian distribution
of s (like assumed inSommeria and Deardorff, 1977; Mel-
lor, 1977), while in the LES data bimodal distributions occur
as well. In this case and with increasing normalized satura-
tion deficit (which at cloud base corresponds to increasing
height), the parameterizations first overestimate and later un-
derestimate the cloud fraction. For the normalized average
liquid water the effect is less relevant (see also Fig.7).

To give an estimate of the error of the different parameter-
izations, the profiles ofC, q l andw′q ′

l from the LES test data
sets are compared with the results of the different parameter-
izations (Fig.7a, b and c). The new parameterization is able
to reproduce the profiles ofC andq l in the shallow cumu-
lus layer better than the parameterization using the closure
equations fromLarson et al.(2001a). Both cloud schemes
are clearly superior to a single-Gaussian cloud closure, which
severely underestimatesq l andC and in particular is hardly
able to diagnose any liquid water between cloud base and
cloud top in the shallow cumulus layer. For the stratocumu-
lus layer, the three parameterizations do not differ noticeably.
A distinct difference between testing error (as in ASTEX;
Fig. 7a and b) and training error (as in RICO; Fig.7d and e)
is not found.

For the profiles ofw′q ′

l , Eq. (10) is used withF param-
eterized like suggested for the new parameterization. For
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a) C in ASTEX b) ql in ASTEX c) w′q′l in ASTEX

d) C in RICO e) ql in RICO f) w′q′l in RICO

Fig. 7. Profiles of cloud fraction, average liquid water and the liquid water flux from LES cases ASTEX (testing

dataset) after 25 h and RICO (training dataset) after 36 h of simulation. For the liquid water flux, C used in

Eq. (10) has either been taken from the original LES data (C LES) or from the new parameterization (C new).

The legend in (a) also applies to (b,d,e), the legend in (c) also applies to (f). Note the logarithmic scale on the

x-axis in (a) and (b).
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Fig. 7. Profiles of cloud fraction, average liquid water and the liquid water flux from LES cases ASTEX (testing data set) after 25 h and
RICO (training data set) after 36 h of simulation. For the liquid water flux,C used in Eq. (10) has either been taken from the original LES
data (C LES) or from the new parameterization (C new). The legend in(a) also applies to(b, d, e), the legend in(c) also applies to(f). Note
the logarithmic scale on thex axis in(a) and(b).

comparison the parameterization byCuijpers and Bechtold
(1995) using an exponential fit ofF that only depends on
Q1 is also shown in Fig.7c for the ASTEX case. The new
parameterization is able to reproduce the shape of the pro-
files ofw′q ′

l as well as their absolute values. Again, for stra-
tocumulus the two parameterization do not differ noticeably.
To estimate the effect ofC in the new parameterization,C
used in Eq. (10) has either been taken from the original LES
data or from the new parameterization. It is shown thatC

has a minor influence on the profile compared to the differ-
ence between the two different parameterizations ofF . At
the top of the cumulus layer for both the test data set ASTEX
and the training data set RICO the new parameterization un-
derestimatesw′q ′

l . Note again that for a shallow layer with
Q1 < −4.0 at cloud top the parameterizations of the liquid
water flux are not valid while the liquid water flux is close to
zero.

For a more quantitative analysis, the errors of the different
parameterizations are summarized for the testing data sets in
Table 2 and for the training data sets in Table3. The dif-
ferent error metrics used are the mean absolute error,l1, the
root mean square error, RMSE, the maximum absolute er-
ror, l∞ and the bias. Their computation formulas are given
in the caption of Table2. For the cloud fraction and the av-
erage liquid water, the proposed closure equations are fit to
the LES data sets of RICO and DYCOMS. Therefore the new
parameterization is optimized for RICO and DYCOMS and
the error given for the new parameterization for those cases is
a training error which is potentially lower than the error of an
independent test data set. Nevertheless, we do not find a per-
ceptible higher error for the test data sets ASTEX and ARM
compared to the training data sets RICO and DYCOMS.

For all four LES data sets, the single-Gaussian parameteri-
zation performs poorly compared to the other two parameter-
izations which are based on double-Gaussian distributions.
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Table 2.Errors of the different parameterizations for the testing data sets, ASTEX and ARM.

C q l w′q ′
l

[%] [gkg−1
· 10−3] [gkg−1ms−1

· 10−3]

SG L01 new para. SG L01 new para. CB95 new para.

A
S

T
E

X l1 1.10 0.66 0.41 2.37 1.21 0.72 3.39 2.43
RMSE 2.67 1.26 0.88 4.00 2.00 1.51 5.22 3.54

l∞ 19.70 9.31 7.05 23.12 10.73 10.98 19.11 11.44
bias –0.16 0.35 0.19 -1.22 0.82 0.42 -1.41 –0.83

A
R

M

l1 1.35 0.61 0.53 4.60 0.97 0.57 35.51 8.72
RMSE 1.85 0.84 0.87 6.67 1.42 1.15 42.10 11.78

l∞ 5.33 2.83 3.58 16.00 6.10 6.30 109.93 34.73
bias -1.21 0.30 –0.02 -4.43 –0.29 0.32 35.51 5.30

Parameterizations: SG – single Gaussian, L01 –Larson et al.(2001a), CB95 –Cuijpers and Bechtold(1995), new para. – new
parameterization. Error metrics:l1 = 1/n

∑n
i=0 |1xi |, RMSE= (1/n

∑n
i=0(1xi )

2)0.5, l∞ = maxn
i=0 |1xi | and bias= 1/n

∑n
i=01xi with

1xi = xpara.,i − xLES,i , x ∈ [C,q l ,w
′q′

l ] andi being a index for different vertical levels and output time steps. Values shown are averages over
the last three output time steps of the LES data, where clouds are present, and over all vertical levels, where eitherxLES,i or xpara.,i are

nonzero. To calculatew′q′
l para., CLES has been used in Eq. (10). Smallest errors are printed in bold, largest in typewriter. Note that the

parameterizations ofw′q′
l is only valid forQ1 ≥ −4.0, while C andq l are calculated over the whole range ofQ1.

Table 3.Errors of the different parameterizations for the training data sets, RICO and DYCOMS.

C q l w′q ′
l

[%] [gkg−1
· 10−3] [gkg−1ms−1

· 10−3]

SG L01 new para. SG L01 new para. CB95 new para.

R
IC

O

l1 1.19 0.88 0.41 4.91 1.81 0.71 7.54 2.61
RMSE 1.44 1.16 0.59 6.03 2.51 1.08 8.80 3.81

l∞ 3.28 3.57 2.05 14.19 7.61 3.98 18.68 10.97
bias -0.87 0.76 0.03 -4.86 1.28 0.32 3.01 –1.29

D
Y

C
O

M
S l1 3.09 1.53 1.73 4.17 3.24 3.42 1.07 0.84

RMSE 4.24 2.83 3.06 8.26 6.95 7.34 1.50 1.04
l∞ 11.03 9.73 9.98 27.24 28.49 31.70 5.43 2.43
bias -0.74 –0.51 –0.51 -3.27 -0.99 –0.97 0.69 0.33

For further description of the abbreviations and error measures please see Table2.

Though the double-Gaussian parameterizations are restricted
to their double-Gaussian families by the respective closure
equations, both double-Gaussian families are able to repre-
sent skewed distributions while a single-Gaussian distribu-
tion is not skewed. Therefore the double-Gaussian families
are able to represent both cumulus and stratocumulus. For
stratocumulus the absolute values of skewness are less than
for cumulus, therefore the difference in the errors between
the single-Gaussian and the double-Gaussian parameteriza-
tions is smaller.

Comparing the two parameterizations based on double-
Gaussian distributions, the new parameterization matches the
LES data better than the parameterization byLarson et al.
(2001a) for ASTEX, whereas for ARM the two parameteri-
zations have similar error magnitudes (Table2). This is rea-
sonable, because the closure equations have most notably
been changed for high positive skewness which frequently

occurs in ASTEX but is rather scarce for ARM. The same
effect can also be found in the training error (Table3). While
a lower error of the new parameterization compared to the er-
ror of the parameterization ofLarson et al.(2001a) is found
for RICO (where high positive skewness occurs frequently),
similar error magnitudes are found for DYCOMS (where the
skewness is small).

For the liquid water flux, the error of the parameteriza-
tion can be reduced distinctly by the new parameterization
compared to the parameterization ofCuijpers and Bechtold
(1995). The new parameterization depends onQ1 as well as
on sk while the parameterization ofCuijpers and Bechtold
(1995) is only dependent onQ1. The additional dependence
of the new parameterization onsk enables a more precise es-
timation ofF which reduces the error in all four LES cases.
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5 Error dependence on domain size and the role of
mesoscale structures

NWP models approach resolutions of only a few kilometers
(e.g.,Baldauf et al., 2011) which is considerably less than the
domain sizes of all our LES cases. Hence, the question arises
if the introduced PDF scheme is still applicable at such reso-
lutions. We therefore investigate the dependence of the error
of the new parameterizations on the domain size considered.
To do so the domain of the four different RICO simulations
has been divided into subdomains, the RMSE and the bias
have been calculated in each subdomain and then averaged
over all subdomains of the same size. These subdomains in
our analysis of the LES data correspond to the grid spacing
of an NWP or mesoscale model. The RICO simulations used
differ in their overall domain size as well as in the initial hu-
midity profiles of the simulations, giving “standard RICO”
and “moist RICO” simulations (see Sect.2.1.4).

For subdomain sizes smaller than 5 km, the RMSE in-
creases rapidly with decreasing subdomain size for both
standard and moist RICO simulations (Fig.8). This rapid
increase is probably due to the subdomain size approaching
the size of individual cloud structures (i.e., larger cumulus
clouds). When these two scales converge, the variability in-
creases rapidly and a continuous, smooth distribution like the
proposed family of double-Gaussian PDFs cannot appropri-
ately represent the shapes of the subdomain PDFs. This re-
sults in a larger spread of the LES data around the closure
equations and consequently in an increasing RMSE with de-
creasing subdomain size. The increasing RMSE can be in-
terpreted such that the PDF-based, deterministic scheme be-
comes inappropriate at such small scales and one would have
to use a stochastic approach instead.

With standard initial conditions, rain rates are small and
no mesoscale structures develop, that is, the cloud field re-
mains random. Then, for subdomain sizes larger than 10 km
the RMSE is small, being around 0.005 and 0.001 gkg−1

for cloud fraction and liquid water, respectively. With moist
initial conditions, precipitation appears more readily and
mesoscale structures, that is, cloud streets, mesoscale arcs
and cold pools, develop from 20 h onwards as discussed
by Seifert and Heus(2013). In these moist cases and
with subdomain sizes larger than 10 km, the cloud frac-
tion as well as the liquid water are mostly overestimated
by the double-Gaussian parameterization (positive bias). The
RMSE amounts to about 0.017 and 0.04 gkg−1 for cloud
fraction and liquid water, respectively, which for each vari-
able corresponds to roughly 10 % of their respective max-
imum values. With decreasing subdomain size the RMSE
for the moist RICO simulations decreases until the subdo-
main size reaches 5–10 km. At such subdomain sizes the
RMSE is similar for standard and moist RICO simulations.
For the moist RICO simulations and large subdomain sizes,
the PDFs ofs have comparatively longer tails with few very
high values ofs. This different shape emerges from the

more localized but more intense convection and the large
cloud free cold pool areas in the moist RICO case. The pa-
rameterized double-Gaussian PDF, which is fitted to non-
organized random cloud fields with small rain rates, is not
able to capture the longer tails of the distributions ofs ad-
equately. Therefore, for a given skewness the normalized
varianceσ1/σ is underestimated for moist RICO simulations
with mesoscale structures.

The discussed error dependence on the domain size and
the investigation of the moist RICO case show, on the one
hand, that even with a perfect knowledge of the first three
moments of the PDF ofs it remains challenging to construct
a parameterization which is truly scale adaptive. On the other
hand, the statistics of the cloud field at small scales seems
to be independent enough from the mesoscale structures and
higher rain rates to make the PDF scheme useful for a broader
range of cloud regimes than the original LES data set used for
the parameterization. Taking into account both the increas-
ing error at very small subdomain sizes and the difficulties of
the scheme to represent cloud properties in the moist RICO
case, we conclude that the proposed scheme is most appro-
priate for NWP models or GCMs with horizontal resolution
of about 5–20 km.

For the liquid water flux, the new parameterization does
not depend explicitly on a certain family of PDFs but the
factorF is directly parameterized and depends onQ1 andsk.
With this parameterization the error of the liquid water flux
seems to be less dependent on the development of mesoscale
structures and higher rain rates, possibly because there is no
direct dependence of the parameterization on the shape of the
PDF ofs. A dependence of the error of the liquid water flux
on the subdomain size is found in accordance with the error
of the cloud fraction and average liquid water.

6 Extension to autoconversion rate

Autoconversion of cloud droplets to rain drops is a key
process in the formation of precipitation in warm clouds.
Besides the cloud fraction, the average liquid water and
the liquid water flux discussed above, the autoconversion
rate is another variable that depends among others on the
variability of the liquid water mixing ratio (e.g.,Pincus
and Klein, 2000). In simple autoconversion schemes (e.g.,
Kessler, 1969; Sundqvist, 1978), other dependencies are ne-
glected and the autoconversion rate only depends on the liq-
uid water mixing ratio. With this simplification the autocon-
version rate can also be handled by PDF-based schemes.

Following Kessler(1969, K69) and replacing the liquid
water mixing ratio with the extended liquid water mixing ra-
tio, the autoconversion rate,AK69, is given as

AK69(s) = k(s − scrit)H(s − scrit), (12)
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a) RMSE of C b) RMSE of ql c) RMSE of w′q′l

d) bias of C e) bias of ql f) bias of w′q′l

Fig. 8. Dependence of the error of the parameterized cloud fraction, liquid water and liquid water flux on the

domain size. Shown are different simulations of the RICO case (average error over two output time steps after

24 h); in the moist RICO cases mesoscale structures develop, while in the standard cases the cloud field remains

random.

Fig. 9. Profile of the autoconversion rate in ASTEX after 25 h of simulation. Note the logarithmic scale on

the x-axis. Notation: LES: autoconversion rate calculated using the full 3D-field of LES data, SG: single-

Gaussian parameterization, DG: double-Gaussian parameterization using the new closure equations, DG L01:

double-Gaussian parameterization using the closure equations from Larson et al. (2001a).
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Fig. 8. Dependence of the error of the parameterized cloud fraction, liquid water and liquid water flux on the domain size. Shown are
different simulations of the RICO case (average error over two output time steps after 24 h); in the moist RICO cases mesoscale structures
develop, while in the standard cases the cloud field remains random.

whereH is the Heaviside step function,scrit = 0.5gkg−1

is a critical threshold below which no autoconversion occurs
andk is a rate constant set tok = 10−3s−1.

Alternatively, Khairoutdinov and Kogan(2000, KK00)
suggested a parameterization based on data from a single
large-eddy simulation using spectral bin microphysics, that
is, resolving the drop size distribution explicitly. They found
that a good fit to the bulk autoconversion rate is

AKK00(s) = c1s
c2H(s) (13)

with c1 = (5.829×106

Nc
)c2 and c2 = 1.89. Within the factor

c1, they introduced a dependence on the number of cloud
droplets,Nc. BecauseNc in UCLA-LES is assumed to be
constant throughout a simulation,c1 can be treated as con-
stant in this study.

For both autoconversion schemes, K69 and KK00, the
domain-averaged autoconversion rate,A, is then found by
integration over the PDF ofs:

Apara.=

∫
∞

s0

Apara.(s)P (s)ds (14)

with s0 = scrit for Kessler (1969) and s0 = 0gkg−1 for
Khairoutdinov and Kogan(2000). While the integral can be

solved analytically forKessler(1969), this is not possible for
the scheme ofKhairoutdinov and Kogan(2000) because the
exponent ofs, c2, is not a natural number.

Seifert and Beheng(2001, SB01) derived an explicit equa-
tion for the autoconversion rate which is formulated using
Long’s piecewise polynomial collection kernel and a uni-
versal function that is estimated by numerically solving the
stochastic collection equation. Doing so they arrived at

ASB01=
kaukτρ0

N2
c

s4H(s) (15)

with kau = 6.808× 1018 m3kg−1s−1 and kτ = 1+
8au(τ )

(1−τ)2 .
Hereρ0 is the base state density depending on height and
8au(τ ) is a universal function depending on the internal
timescale,τ = 1−ql/(ql +qr), designed to take into account
the broadening of the droplet spectrum with time. Note that
qr is the rain water content which is not included inql . This
dependence on the internal timescale makes it impossible to
integrateASB01 according to Eq. (14) as long as the PDF of
τ is unknown in terms of the PDF ofs which would require
the use of a joint PDF or even the introduction of time cor-
relations to the problem. Nevertheless, as the SB01 autocon-
version rate is expected to give more realistic results than the
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simple autoconversion schemes described above, the SB01
autoconversion rate is used as a reference to be compared to
the other autoconversion schemes. In our study the full 4-D
field of τ is, of course, known from LES and a compensatory
factor forkτ can be determined for each level and each time
step individually by solving

ALES(z, t) (16)

= kτ,LES(z, t)
1

(nx)2

kauρ0

N2
c

nx∑
i=1

nx∑
j=1

s4(xi,yj ,z, t
)
H (s)

for kτ,LES. Here nx is the number of LES grid boxes in
each horizontal direction. Then the ability of the new double-
Gaussian parameterization to be used in combination with
the SB01 autoconversion rate can be tested usingkτ,LES:

ASB01= kτ,LES(z, t)
kauρ0

N2
c

∫
∞

0
s4P(s)ds. (17)

Note that for the use in an NWP model or a GCM,kτ,LES
would have to be estimated by some other method and that
kτ,LES is not equal to a horizontal mean ofkτ .

From Fig.9 showing the different autoconversion rates for
the ASTEX case, it is apparent that the profiles of the au-
toconversion rate differ substantially both in shape and by
several orders of magnitude in absolute value among the
different parameterizations of the autoconversion rate (K69,
KK00, SB01). While the single-Gaussian cloud closure only
captures the stratocumulus type cloud layer around 2100 m,
the new double-Gaussian cloud closure is additionally able
to diagnose the autoconversion rate quite accurately for the
cumulus layer. The same results hold for the other three LES
cases (not shown).

Usingkτ,LES as described above, the new double-Gaussian
cloud closure is able to reproduce the profile of the SB01 au-
toconversion rate well for most heights. This is remarkable
becauseASB01 is proportional to the 4th moment ofs which
makesASB01 especially sensitive to errors introduced by the
cloud closure. Nevertheless, at the cloud top of the stratocu-
mulus layer the new double-Gaussian cloud closure overes-
timates the SB01 autoconversion rate. This overestimation
might be related to the difficulties of LES in resolving the
strong gradients that occur at a stratocumulus cloud top.

Using the closure equations ofLarson et al.(2001a) (as it
is done exemplary with the KK00 parameterization in Fig.9)
compared to using the new closure equations gives small and
probably negligible differences in the cumulus layer.

Overall the double-Gaussian PDF scheme is successful in
capturing the effect of the sub-grid variability on the autocon-
version rate, which is crucial for the representation in the cu-
mulus layer. Nevertheless, the uncertainty due to the choice
of the autoconversion scheme itself remains. Especially the
K69 scheme leads to a strong overestimation compared to
KK00 and SB01, but also KK00 shows a much higher auto-
conversion rate in the lowest part of the cumulus cloud layer
compared to SB01.

a) RMSE of C b) RMSE of ql c) RMSE of w′q′l

d) bias of C e) bias of ql f) bias of w′q′l

Fig. 8. Dependence of the error of the parameterized cloud fraction, liquid water and liquid water flux on the

domain size. Shown are different simulations of the RICO case (average error over two output time steps after

24 h); in the moist RICO cases mesoscale structures develop, while in the standard cases the cloud field remains

random.

Fig. 9. Profile of the autoconversion rate in ASTEX after 25 h of simulation. Note the logarithmic scale on

the x-axis. Notation: LES: autoconversion rate calculated using the full 3D-field of LES data, SG: single-

Gaussian parameterization, DG: double-Gaussian parameterization using the new closure equations, DG L01:

double-Gaussian parameterization using the closure equations from Larson et al. (2001a).

31

Fig. 9. Profile of the autoconversion rate in ASTEX after 25 h
of simulation. Note the logarithmic scale on thex axis. Notation:
LES: autoconversion rate calculated using the full 3-D field of LES
data, SG: single-Gaussian parameterization, DG: double-Gaussian
parameterization using the new closure equations, DG L01: double-
Gaussian parameterization using the closure equations fromLarson
et al.(2001a).

7 Conclusions

We introduce a refined statistical cloud closure using double-
Gaussian PDFs. Following the work ofLarson et al.(2001a),
who provided an elegant framework for a diagnostic param-
eterization of the cloud fraction and the average liquid water,
we modified their parameterization especially in the case of
strong positive skewness of the distribution of the extended
liquid water mixing ratio,s, that is, for shallow cumulus
clouds. The introduced double-Gaussian closure is based on
different LES case studies and is supported by observational
data from aircraft measurements in shallow cumulus. It is re-
lying on the first three moments ofs as input parameters and
is shown to be superior in diagnosing the cloud fraction and
average liquid water profiles compared to a single-Gaussian
approach that only needs the first two moments ofs for input.
A priori testing also suggests improved accuracy compared
to existing double-Gaussian closures.

For the liquid water flux, we introduce a new parameteri-
zation of the factorF which is relating the liquid water flux
to the flux ofs. With F depending on the skewness of the dis-
tribution of s and the normalized saturation deficit, the new
parameterization is able to reproduce the shape of the pro-
files of the liquid water flux better than when the dependence
of the skewness is not retained.
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The dependence of the error of the parameterization on
the domain size and the appearance of mesoscale structures
has also been tested a priori with LES. Below a domain size
of about 5 km the error of the parameterization of the cloud
fraction, the average liquid water and the liquid water flux is
increasing rapidly with decreasing domain size. If mesoscale
structures occur that are accompanied by higher rain rates
and the domain size is chosen large enough to include these
mesoscale structures, the error of the parameterization of the
cloud fraction and the liquid water is larger than without the
occurrence of mesoscale structures. Considering the liquid
water flux, the error of the parameterization seems to be in-
sensitive to the occurrence of mesoscale structures.

Finally, the cloud scheme has been applied to diagnose the
autoconversion rate. Using autoconversion schemes of dif-
ferent complexity, the new parameterization is able to re-
produce profiles of the autoconversion rate adequately. The
differences between the various autoconversion schemes are
much larger than the error introduced by the double-Gaussian
closures.

As a next step, a posteriori testing of the introduced pa-
rameterization in a NWP model or a GCM that diagnoses
or predicts the first three moments ofs, for example, from
a higher-order closure boundary layer model (Machulskaya
and Mironov, 2013), is essential to decide which parameter-
ization is most useful in the chosen NWP model or GCM.
However, such a analysis is beyond the scope of this study
and therefore left for further research.

Appendix A

Derivation of the assumed PDF

The distributionP(s) = PS(s) in Eq. (2) for a given region
(e.g., the LES domain) is a marginal of a joint PDF,PSI (s, i),

PS(s) =

∫
PSI (s, i)di . (A1)

The discrete random variableI , which is commonly used
in turbulent flows to introduce conditional statistics (e.g.,
Pope, 2000), is defined to take different values in differ-
ent subregions. As subregions we choose to distinguish be-
tween thermal areas (I = 1) and its well-mixed environment
(I = 2) in case of shallow cumulus or between the well-
mixed environment (I = 1) and downdrafts (I = 2) in case
of stratocumulus. Then the distribution ofI can be written as

PI (i) = aδ(i − 1) + (1− a)δ(i − 2), (A2)

whereδ is the Dirac delta function anda is the area frac-
tion of the thermals in a shallow cumulus regime or the area
fraction of the well-mixed environment in a stratocumulus
regime.

For the joint PDF Bayes’ theorem gives

PSI (s, i) = PS|I (s|I = i)PI (i), (A3)

wherePS|I (s|I = i) is the conditional PDF ofs in the sub-
regioni. Inserting Eqs. (A2) and (A3) in Eq. (A1), we arrive
at

PS(s) =

∫
PS|I (s|I = i) (aδ (i − 1) + (1− a)δ (i − 2))di

= aPS|I (s|I = 1) + (1− a)PS|I (s|I = 2)

= aP1(s) + (1− a)P2(s) . (A4)

Assuming that the PDFs ofs in the subregions,P1 and
P2, are Gaussian distributed, Eq. (A4) is equal to Eq. (2).
Therefore, in the shallow cumulus regimea, the relative am-
plitude of the two single-Gaussian distributions, can be di-
rectly interpreted as the area fraction of the thermals while in
the stratocumulus regime(1− a) is the area fraction of the
downdrafts.

Acknowledgements.We are happy to thank Thijs Heus for provid-
ing the LES data of the ARM case, Allen Scharnot for his advise
while analysing the observational data set from RICO, Dmitrii
Mironov and Ekaterina Machulskaya for beneficial discussion on
the closure and its possible application in NWP, Robert Pincus for
beneficial discussion on model selection and Cathy Hohenegger
as well as two anonymous reviewers for helpful comments that
improved this manuscript. The separation in training and test
data was suggested by both reviewers. The observational data
from RICO was provided by NCAR/EOL under sponsorship of
the National Science Foundation (http://data.eol.ucar.edu). This
research was carried out as part of the Hans-Ertel Centre for
Weather Research. This research network of Universities, Research
Institutes and the Deutscher Wetterdienst is funded by the BMVBS
(Federal Ministry of Transport, Building and Urban Development).

The service charges for this open access publication
have been covered by the Max Planck Society.

Edited by: K. Gierens

References

Albrecht, B. A., Bretherton, C. S., Johnson, D., Schubert, W. H., and
Frisch, A. S.: The Atlantic stratocumulus transition experiment –
ASTEX, Bull. Am. Met. Soc., 76, 889–903, 1995.

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschen-
dorfer, M., and Reinhardt, T.: Operationl convective-scale nu-
merical weather prediction with the COSMO model: Descrip-
tion and sensitivities, Mon. Weather Rev., 139, 3887–3905,
doi:10.1175/MWR-D-10-05013.1, 2011.

Bougeault, P.: Modeling the trade-wind cumulus boundary layer.
Part I: Testing the ensemble cloud relations against numerical
data, J. Atmos. Sci., 38, 2414–2428, 1982a.

Bougeault, P.: Cloud-ensemble relations based on the Gamma prob-
ability distribution for the higher-order models of the planetary
boundary layer, J. Atmos. Sci., 39, 2691–2700, 1982b.

Bretherton, C. S., Krueger, S. K., Wyant, M. C., Bechtold,
P., van Meijgaard, E., and Teixeira, J.: A GCSS boundary-
layer cloud model intercomparison study of the first ASTEX

www.geosci-model-dev.net/6/1641/2013/ Geosci. Model Dev., 6, 1641–1657, 2013

http://data.eol.ucar.edu
http://dx.doi.org/10.1175/MWR-D-10-05013.1


1656 A. K. Naumann et al.: A refined statistical cloud closure

lagrangian experiment, Bound.-Lay. Meteorol., 93, 341–380,
1999.

Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke,
P. G., Golaz, J.-C., Khairoutdinov, M., Lewellen, D. C.,
Lock, A. P., MacVean, M. K., Moeng, C.-H., Neggers,
R. A. J., Siebesma, A. P., and Stevens, B.: Large-eddy sim-
ulation of the diurnal cycle of shallow cumulus convec-
tion over land, Quart. J. Roy. Met. Soc., 128, 1075–1093,
doi:10.1256/003590002320373210, 2002.

Cuijpers, J. W. M. and Bechtold, P.: A simple parametrization of
cloud water related variables for use in boundary layer models,
J. Atmos. Sci., 52, 2486–2490, 1995.

Gryanik, V. M. and Hartmann, J.: A turbulence closure for the con-
vective boundary layer based on a two-scale mass-flux approach,
J. Atmos. Sci., 59, 2729–2744, 2002.

Gryanik, V. M., Hartmann, J., Raasch, S., and Schröter, M.: A re-
finement of the Millionshchikov quasi-normality hypothesis for
convective boundary layer turbulence, J. Atmos. Sci., 62, 2632–
2638, 2005.

Helfand, H. M. and Kalnay, E.: A model to determine open or closed
cellular convection, J. Atmos. Sci., 40, 631–650, 1983.

Kessler, E.: On the distribution and continuity of water substance
in atmospheric circulations, Meteor. Monogr. 32, Amer. Meteor.
Soc., Boston, 1969.

Khairoutdinov, M. and Kogan, Y.: A new cloud physics parameteri-
zation in a large-eddy simulation model of marine stratocumulus,
Mon. Weather Rev., 128, 229–243, 2000.

Larson, V. E., Wood, R., Field, P., Golaz, J., Haar, T. H. V., and
Cotton, W.: Small-scale and mesoscale variability of scalars in
cloudy boundary layers: One-dimensional probability density
functions, J. Atmos. Sci., 58, 1978–1994, 2001a.

Larson, V. E., Wood, R., Field, P., Golaz, J., Haar, T. H. V., and
Cotton, W.: Systematic biases in the microphysics and thermody-
namics of numerical models that ignore subgrid-scale variability,
J. Atmos. Sci., 58, 1117–1128, 2001b.

Larson, V. E., Golaz, J., and Cotton, W.: Small-scale and mesoscale
variability in cloudy boundary layers: Joint probability density
functions, J. Atmos. Sci., 59, 3519–3539, 2002.

Lewellen, W. S. and Yoh, S.: Binormal model of ensemble partial
cloudiness, J. Atmos. Sci., 50, 1228–1237, 1993.

Machulskaya, E. and Mironov, D.: Implementation of TKE-scalar
variance mixing scheme into COSMO, COSMO newsletter, 13,
25–33, 2013.

Mellado, J. P., Stevens, B., Schmidt, H., and Peters, N.: Probability
density functions in the cloud-top mixing layer, New J. Phys., 12,
085010, doi:10.1088/1367-2630/12/8/085010, 2010.

Mellor, G. L.: The Gaussian cloud model relations, J. Atmos. Sci.,
34, 356–358, 1977.

Mironov, D.: Turbulence in the Lower Troposphere: Second-
Order Closure and Mass-Flux Modelling Frameworks, in: In-
terdisciplinary Aspects of Turbulence, edited by: Hillebrandt,
W. and Kupka, F., 756, 1–61, Springer Berlin Heidelberg,
doi:10.1007/978-3-540-78961-1_5, 2009.

Moeng, C.-H. and Rotunno, R.: Vertical-velocity skewness in the
buoyancy-driven boundary layer, J. Atmos. Sci., 47, 1149–1162,
1990.

Neggers, R. A. J., Köhler, M., and Beljaars, A. C. M.: A dual mass
flux framework for boundary layer convection, Part I: Transport,
J. Atmos. Sci., 66, 1465–1487, 2009.

Perraud, E., Couvreux, F., Malardel, S., Lac, C., Masson, V.,
and Thouron, O.: Evaluation of statistical distributions for
the parametrization of subgrid boundary-layer clouds, Bound.-
Lay. Meteorol., 140, 263–294, doi:10.1007/s10546-011-9607-3,
2011.

Pincus, R. and Klein, S. A.: Unresolved spatial variability and mi-
crophysical process rates in large-scale models, J. Geophys. Res.,
105, 27059–27065, 2000.

Pope, S. B.: Turbulent flows, Cambridge Univ. Press, 2000.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:

Numerical Recipes in FORTRAN, Cambridge University Press,
Cambridge, 1992.

Quaas, J.: Evaluating the “critical relative humidity” as a measure
of subgrid-scale variability of humidity in general circulation
model cloud cover parameterizations using satellite data, J. Geo-
phys. Res., 117, D09208, doi:10.1029/2012JD017495, 2012.

Rauber, R. M., Stevens, B., Ochs, III, H. T., Knight, C., Albrecht,
B. A., Blyth, A. M., Fairall, C. W., Jensen, J. B., Lasher-Trapp,
S. G., Mayol-Bracero, O. L., Vali, G., Anderson, J. R., Baker,
B. A., Bandy, A. R., Burnet, E., Brenguier, J. L., Brewer, W. A.,
Brown, P. R. A., Chuang, P., Cotton, W. R., Girolamo, L. D.,
Geerts, B., Gerber, H., Goke, S., Gomes, L., Heikes, B. G., Hud-
son, J. G., Kollias, P., Lawson, R. P., Krueger, S. K., Lenschow,
D. H., Nuijens, L., O’Sullivan, D. W., Rilling, R. A., Rogers,
D. C., Siebesma, A. P., Snodgrass, E., Stith, J. L., Thorn-
ton, D. C., Tucker, S., Twohy, C. H., and Zuidema, P.: Rain
in shallow cumulus over the ocean – The RICO campaign,
Bull. Am. Met. Soc., 88, 1912–1924, doi:10.1175/BAMS-88-12-
1912, 2007.

Rotstayn, L. D.: On the “tuning” of autoconversion parameteriza-
tions in climate models, J. Geophys. Res., 105, 15495–15507,
2000.

Seifert, A. and Beheng, K. D.: A double-moment parameterization
for simulating autoconversion, accretion and selfcollection, At-
mos. Res., 59-60, 265–281, 2001.

Seifert, A. and Heus, T.: Large-eddy simulation of organized pre-
cipitating trade wind cumulus clouds, Atmos. Chem. Phys., 13,
5631–5645, doi:10.5194/acp-13-5631-2013, 2013.

Slingo, J. M.: The development and verification of a cloud predic-
tion scheme for the ECMWF model, Q. J. R. Meteorol. Soc., 113,
899–927, 1987.

Smagorinsky, J.: On the dynamical prediction of large-scale con-
densation by numerical methods, in: Physics of Precipitation,
no. 5 in Geophys. Mon., 71–78, American Geophysical Union,
Washington, USA, 1960.

Sommeria, G. and Deardorff, J. W.: Subgrid-scale condensation in
models of nonprecipitating clouds, J. Atmos. Sci., 34, 344–355,
1977.

Stevens, B.: On the growth of layers of non-precipitating cumulus
convection, J. Atmos. Sci., 64, 2916–2931, 2007.

Stevens, B. and Seifert, A.: Understanding macrophysical outcomes
of microphysical choices in simluations of shallow cumulus con-
vection, J. Met. Soc. Jap., 86, 143–162, 2008.

Stevens, B., Lenschow, D., Vali, G., Gerber, H., Bandy, A.,
Blomquist, B., Brenguier, J., Bretherton, C., Burnet, F., Campos,
T., et al.: Dynamics and chemistry of marine stratocumulus –
DYCOMS-II, Bull. Am. Met. Soc., 84, 579–594, 2003.

Stevens, B., Moeng, C., Ackerman, A., Bretherton, C., Chlond,
A., De Roode, S., Edwards, J., Golaz, J., Jiang, H., Khairout-

Geosci. Model Dev., 6, 1641–1657, 2013 www.geosci-model-dev.net/6/1641/2013/

http://dx.doi.org/10.1256/003590002320373210
http://dx.doi.org/10.1088/1367-2630/12/8/085010
http://dx.doi.org/10.1007/978-3-540-78961-1_5
http://dx.doi.org/10.1007/s10546-011-9607-3
http://dx.doi.org/10.1029/2012JD017495
http://dx.doi.org/10.1175/BAMS-88-12-1912
http://dx.doi.org/10.1175/BAMS-88-12-1912
http://dx.doi.org/10.5194/acp-13-5631-2013


A. K. Naumann et al.: A refined statistical cloud closure 1657

dinov, M., Kirkpatrick, M., Lewellen, D., Lock, A., Muller, F.,
Stevens, D., Whelan, E., and Zhu, P.: Evaluation of large-eddy
simulations via observations of nocturnal marine stratocumulus,
Mon. Weather Rev., 133, 1443–1462, 2005.

Sundqvist, H.: A parameterization scheme for non-convective
condensation including prediction of cloud water content,
Q. J. R. Meteorol. Soc., 104, 677–690, 1978.

Sundqvist, H., Berge, E., and Kristjánsson, J. E.: Condensation
and cloud parameterization studies with a mesoscale numerical
weather prediction model, Mon. Weather Rev., 117, 1641–1657,
1989.

Tompkins, A. M.: A prognostic parameterization for the subgrid-
scale variability of water vapor and clouds in large-scale models
and its use to diagnose cloud cover, J. Atmos. Sci., 59, 1917–
1942, 2002.

van der Dussen, J. J., de Roode, S. R., Ackerman, A. S., Blossey,
P. N., Bretherton, C. S., Kurowski, M. J., Lock, A. P., Neggers,
R. A. J., Sandu, I., and Siebesma, A. P.: The GASS/EUCLIPSE
model intercomparison of the stratocumulus transition as ob-
served during ASTEX: LES results, J. Adv. Model. Earth Syst.,
5, 1–17, doi:10.1002/10.1002/jame.20033, 2013.

van Zanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P.,
Ackerman, A. S., Burnet, F., Cheng, A., Couvreux, F., Jiang,
H., Khairoutdinov, M., Kogan, Y., Lewellen, D. C., Mechem,
D., Nakamura, K., Noda, A., Shipway, B. J., Slawinska, J.,
Wang, S., and Wyszogrodzki, A.: Controls on precipitation
and cloudiness in simulations of trade-wind cumulus as ob-
served during RICO, J. Adv. Model. Earth Syst., 3, M06001,
doi:10.1029/2011MS000056, 2011.

Xu, K.-M. and Randall, D. A.: A semiempirical cloudiness param-
eterization for use in climate models, J. Atmos. Sci., 53, 3084–
3102, 1996.

www.geosci-model-dev.net/6/1641/2013/ Geosci. Model Dev., 6, 1641–1657, 2013

http://dx.doi.org/10.1002/10.1002/jame.20033
http://dx.doi.org/10.1029/2011MS000056

