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Abstract. Land surface heterogeneity has long been recog-
nized as important to represent in the land surface models. In
most existing land surface models, the spatial variability of
surface cover is represented as subgrid composition of mul-
tiple surface cover types, although subgrid topography also
has major controls on surface processes. In this study, we
developed a new subgrid classification method (SGC) that
accounts for variability of both topography and vegetation
cover. Each model grid cell was represented with a variable
number of elevation classes and each elevation class was
further described by a variable number of vegetation types
optimized for each model grid given a predetermined total
number of land response units (LRUs). The subgrid struc-
ture of the Community Land Model (CLM) was used to il-
lustrate the newly developed method in this study. Although
the new method increases the computational burden in the
model simulation compared to the CLM subgrid vegetation
representation, it greatly reduced the variations of elevation
within each subgrid class and is able to explain at least 80 %
of the total subgrid plant functional types (PFTs). The new
method was also evaluated against two other subgrid meth-
ods (SGC1 and SGC2) that assigned fixed numbers of el-
evation and vegetation classes for each model grid (SGC1:
M elevation bands–N PFTs method; SGC2:N PFTs–M el-
evation bands method). Implemented at five model resolu-
tions (0.1◦, 0.25◦, 0.5◦, 1.0◦and 2.0◦) with three maximum-
allowed total number of LRUs (i.e.,N_LRU of 24, 18 and
12) over North America (NA), the new method yielded more
computationally efficient subgrid representation compared to
SGC1 and SGC2, particularly at coarser model resolutions

and moderate computational intensity (N_LRU = 18). It also
explained the most PFTs and elevation variability that is
more homogeneously distributed spatially. The SGC method
will be implemented in CLM over the NA continent to assess
its impacts on simulating land surface processes.

1 Introduction

As the terrestrial component of earth system models, land
surface models play important roles in representing the inter-
actions between terrestrial biosphere and atmosphere, which
is important for predicting future states of the earth system
and assessing anthropogenic impacts on the climate system.
Using land surface parameters and meteorological forcing
data as input, land surface models simulate key land pro-
cesses such as photosynthesis, respiration, and evapotranspi-
ration that regulate mass, energy, moisture, and momentum
exchange between soil, vegetation and atmosphere. Realis-
tic and high spatial resolution representation of land surface
characteristics is important for accurate estimation of sur-
face hydrology, heat fluxes, and surface CO2 exchanges in
climate models for applications across global, regional, and
sub-regional scales.

In recent years, numerous efforts have improved the rep-
resentation of land surface characteristics either by develop-
ing higher-resolution land cover datasets (e.g., Bonan et al.,
2002a, b; Lawrence and Chase, 2007; Ke et al., 2012) or by
representing subgrid spatial heterogeneity of land surface pa-
rameters (e.g., Koster and Suarez, 1992; Seth et al., 1994).

Published by Copernicus Publications on behalf of the European Geosciences Union.



1610 Y. Ke et al.: Enhancing the representation of subgrid land surface characteristics

Although land surface parameters have been developed with
spatial resolution as fine as 5 km globally (Ke et al., 2012),
climate models cannot explicitly resolve land surface hetero-
geneity at fine scales because of computational constraints
on the grid resolutions that can be achieved. Therefore, rep-
resentations of subgrid land surface heterogeneity are still
needed and employed in many land surface models. It has
been well established that subgrid spatial variability in land
surface characteristics such as vegetation cover and topogra-
phy can significantly affect the estimation of surface evap-
otranspiration, runoff, soil moisture, surface albedo, snow-
pack, and other fluxes (Koster and Suarez, 1992; Seth et al.,
1994; Giorgi and Avissar, 1997; Ghan et al., 1997; Giorgi et
al., 2003; Li and Arora, 2012; Li et al., 2013).

Vegetation plays a key role in land surface water and
energy partitioning and carbon cycle. Current land sur-
face models widely adopt the concept of plant functional
type (PFT) to describe vegetation distributions (Oleson and
Bonan, 2000; Krinner et al., 2005, Ek et al., 2003; Sitch et
al., 2003; Niu et al., 2011). For example, the Noah land sur-
face model incorporates 13 PFTs (Ek et al., 2003), CLM has
15 PFTs (Oleson et al., 2010), and ORCHIDEE distinguishes
12 PFTs (Krinner et al., 2012). While some models such as
Noah represent a single dominant PFT in each model grid,
models such as CLM represent subgrid spatial heterogene-
ity of vegetation distribution with a composition of multiple
PFTs coexisting within each model grid. This representation
assumes that all plants of the same type cluster as a “tile”
within a model grid and a single atmospheric forcing is as-
signed to the tiles within a model grid.

In addition to horizontal landscape variability, spatial het-
erogeneity in topography is also a pronounced land surface
characteristic and has been considered in some land surface
simulations to help parameterize topographic variability in
precipitation, temperature and snow processes (Leung and
Ghan, 1995; Nijssen et al., 2001; Giorgi et al., 2003). The
Variable Infiltration Capacity (VIC) model is one example of
land surface models that divide a model grid cell into mul-
tiple subgrid elevation bands with 500 m elevation interval
to achieve improved simulations of surface hydrology (Ni-
jssen et al., 2001). Leung and Ghan (1995, 1998) developed
a subgrid parameterization to incorporate the influence of to-
pography on precipitation and snow cover and reported im-
proved simulations in a regional climate model that used the
subgrid parameterization with an explicit grid resolution of
90 km compared to simulations performed at a finer resolu-
tion of 30 km but without the subgrid parameterization, al-
though the latter is much more computationally demanding.

The subgrid parameterization of Leung and Ghan (1998) is
one of few that incorporate the joint distribution of both veg-
etation and topography parameters. Taking advantage of the
statistical relationship between topography and vegetation,
their method classifies the topography within each model
grid into subgrid elevation bands with predetermined eleva-
tion interval and parameterizes subgrid vegetation variability

by considering vegetation distribution in each elevation band.
This subgrid scheme allows a different atmospheric con-
dition to be assigned to each elevation band. For exam-
ple, elevation bands corresponding to higher elevation have
cooler near-surface air temperature and increased precipita-
tion compared to the grid cell mean values. Applying such
atmospheric forcing to different vegetation classes within the
same elevation class simulates surface fluxes and soil hydrol-
ogy that reflect the influence of atmospheric forcing at the
higher elevation on land surface processes, leading to im-
proved land surface simulations for the specific subgrid el-
evation/vegetation class as well as the overall grid cell av-
eraged conditions. With only one dominant vegetation type
considered for each subgrid elevation class in the study, 67 %
of the total vegetation was explained over the study area; the
approach resulted in improved surface temperature simula-
tion compared to simulations without considering topogra-
phy effect.

With the existing subgrid method in CLM4, each sub-
grid PFT within a model grid is a computational unit,
while with the subgrid method presented in Leung and
Ghan (1998) each subgrid vegetation–elevation class is a
computational unit. Although the subgrid scheme by Leung
and Ghan (1998) can be improved by representing each el-
evation band with distribution of multiple vegetation types,
the larger number of subgrid elevation/vegetation classes
within each model grid can greatly increase the computa-
tional burden because land surface processes are explicitly
simulated for each computational unit.

This study generalizes the method of Leung and
Ghan (1998) and aims to develop an improved and compu-
tationally efficient subgrid scheme based on high-resolution
satellite-based land cover and topography products in order
to enhance the representation of both vegetation cover and
topography. We chose the subgrid structure of CLM as an ex-
ample and used the PFTs defined in CLM to represent vege-
tation. The new subgrid PFT scheme assigned a flexible num-
ber of elevation bands and PFTs for each model grid and was
optimized to explain a maximal amount of elevation and veg-
etation variations in a computationally efficient manner. The
method is applied to North America (NA) at different model
resolutions and evaluated by comparing it with other subgrid
methods that use a fixed number of subgrid elevation bands
and vegetation types.

2 Method

2.1 CLM vegetation representation

CLM is a land model within the Community Earth System
Model (CESM). It has been widely applied at continental to
global scales to understand the impact of land processes on
climate change (Oleson et al., 2010). The spatial heterogene-
ity of land surface parameters in CLM is represented using
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Fig. 1. North America PFT map. *Area with legend “mixed C3/C4 grass” means the fraction of either C3 or C4 grass in each pixel is less
than 1.

a nested subgrid hierarchy. Each grid cell is composed of a
different number of land units including glacier, lake, wet-
land, and urban and vegetated surfaces. Vegetated surfaces
are represented with a composition of 15 possible PFTs such
as temperate needleleaf evergreen trees, temperate broadleaf
evergreen trees, etc., plus bare ground. In the current version
of CLM (CLM 4.0), the PFT data are available at 0.5◦ and
0.05◦ resolutions (Lawrence and Chase, 2007; Lawrence et
al., 2011; Ke et al., 2012) and the spatial distribution of each
PFT within a model grid is not explicitly represented.

2.2 Plant functional types mapping

The PFT map for North America was generated at 500 m
resolution based on the MODIS land cover product and
climate data following the method presented in Ke et
al. (2012). Briefly, seven PFTs, including needleleaf ever-
green trees, needleleaf deciduous trees, broadleaf evergreen
trees, broadleaf deciduous trees, shrubs, grasses and crop,
were directly determined from the MODIS MCD12Q1 C5
PFT classifications for each 500 m pixel. The WorldClim
5 arc-min (0.0833◦) (Hijmans et al., 2005) climatological
global monthly surface air temperature and precipitation data
were interpolated to the 500 m grids, and the climate rules
described by Bonan et al. (2002a) were used to reclassify
the 7 PFTs into 15 PFTs in the tropical, temperate and bo-
real climate groups. Similar to Lawrence and Chase (2007),

the fractions of C3 and C4 grasses were mapped based on
the method presented in Still et al. (2003). Pixels with barren
land and urban areas were reassigned to the bare soil class.
Figure 1 shows the 500 m-resolution PFT map for NA.

2.3 Digital elevation model

The HYDRO1k digital elevation model (DEM) for NA was
used to generate elevation data. The HYDRO1k is a compre-
hensive and consistent geographic database providing global
coverage of topographically derived datasets such as ele-
vation, slope, aspect, flow accumulation raster layers, and
stream lines vector layers. All raster datasets were gener-
ated from the USGS 30 arc-second global digital elevation
model (GTOPO30) at 1 km resolution, and covered all global
landmasses with the exception of Antarctica and Greenland.
(http://eros.usgs.gov/). Compared to other existing global-
scale elevation datasets such as 90 m DEM of the Shuttle
Radar Topography Mission (SRTM) (http://www2.jpl.nasa.
gov/srtm/) and the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) 30 m Global Digital El-
evation Model (GDEM) (http://asterweb.jpl.nasa.gov/), HY-
DRO1k DEM has more complete global coverage and its
resolution is closer to the existing global-scale land cover
data such as MODIS land cover product. Therefore, it has
been widely used for continental and global hydrologic and
land surface modeling and was also selected in our study. For
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Figure 2. Elevation distribution in North America. 2 
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Fig. 2.Elevation distribution in North America.

consistency with the PFT map, the elevation raster layer for
North America was bilinearly interpolated to 500 m resolu-
tion (Fig. 2). We excluded Greenland from our study because
HYDRO1k does not cover this area.

2.4 Optimal subgrid classification (SGC) method of
elevation and vegetation

The subgrid classification (SGC) method developed in our
study considered the joint distribution of elevation and veg-
etation. Within each model grid (e.g., at resolution 0.1◦

×

0.1◦), the SGC method first classified surface elevation from
the 500 m DEM data into a limited number of elevation bands
(or classes) of equal elevation range. A minimum area thresh-
old of 1 % was used to limit the area of each elevation band.
That is, an elevation band containing less than 1 % of the
land area of the model grid is added to the neighboring ele-
vation band so that each elevation band covers at least 1 % of
the grid land area. Within each elevation band in each model
grid, the area was further classified into a limited number of
PFTs. For example, withM elevation bands within a model
grid cell andN PFTs within each elevation band, the model
grid was represented with a total number ofM × N subgrid
classes or land response units (LRUs), with each elevation–
PFT LRU treated as a computational unit in the land sur-
face model simulation. The schematic comparison between
the new SGC method and CLM subgrid method is shown in
Fig. 3.
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Figure 3. Schematic diagram of subgrid classification method in (a) CLM 4.0 and (b) SGC 3 

method.  4 
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Figure 4. Baseline subgrid classification method. (a) 0.1°, number of PFTs; (b) 1.0°, number 6 

of PFTs; (c) 0.1°, average standard deviation of elevation σ!"; (d) 1.0°, average standard 7 
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Fig. 3. Schematic diagram of subgrid classification method in(a)
CLM 4.0 and(b) SGC method.

To restrict computational burden, we set the maximum-
allowed total number of LRUs to “N_LRU” (e.g., 18 LRUs)
for each model grid. The number of elevation bandsM

and the number of PFTsN for each elevation band are
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variable for each model grid, butM × N should not exceed
the maximum-allowed numberN_LRU (e.g., 18). Hence the
combination ofM andN is variable and is chosen to best
represent the subgrid variability of both PFT and elevation.
For example, forN_LRU = 18, possible combinations in-
clude 3 elevation bands and 6 PFTs per elevation band, or
2 elevation bands and 9 PFTs per elevation band, etc, but the
optimal combination was selected. Two criteria must be sat-
isfied for the optimal classification: (1) the elevation range
of each elevation band is less than and close to 100 m; and
(2) total percentage of subgrid PFTs correctly classified by
the method is no less than 80 % for each model grid. We
prioritized criteria (2) so that if none of the combinations
satisfies both conditions, the classification explaining more
than 80 % of PFTs and with elevation range greater than but
closest to 100 m was selected; if more than one combination
satisfy both conditions, the classification that correctly clas-
sifies the most subgrid PFTs was selected.

2.5 SGC method evaluation

In CLM 4.0, vegetation was represented as the composition
of 15 PFTs plus bare soil. The simplest and least compu-
tationally intensive way to incorporate elevation distribution
of vegetation is to assign a single elevation band to each PFT
within a model grid; that is, the surface elevation in the area
covered by each PFT was aggregated to one elevation band.
We used this method as a baseline to assess the performance
of the SGC at different model resolutions (0.1◦, 0.25◦, 0.5◦,
1.0◦, and 2.0◦).

The SGC method was also evaluated by comparing it with
two other subgrid classification methods based on a fixed
number of elevation bands and vegetation types. The first
subgrid classification method (SGC1) was theM elevation
bands–N PFTs method. Each model grid cell is first divided
into M equal-interval elevation bands and each elevation
band was further classified intoN PFTs. The second subgrid
classification method (SGC2) was theN PFTs–M elevation
bands method. Each model grid cell was first classified into
N PFTs and the area covered by each PFT was further di-
vided intoM equal-interval elevation bands. For both meth-
ods, we used the minimum area threshold of 1 % to restrict
the number of elevation bands in the same way that was used
in the SGC method. The SGC1 and SGC2 methods take dif-
ferent perspectives of topography–vegetation distribution in
that SGC1 examines the PFT distribution at different eleva-
tion bands and SGC2 examines the elevation distribution of
each PFT. However, both methods classify the model grids
into fixed numbers of elevation bands and PFTs throughout
the study area.

We implemented the classification methods SGC, SGC1
and SGC2 in North America at 0.1◦, 0.25◦, 0.5◦, 1.0◦

and 2.0◦ resolution with different combinations of number
of elevation bands and vegetation types: (1)Scheme 1:
N_LRU = 24, M = 6N = 4, meaning 24 maximum-allowed

classes for the SGC method and the combination of 6 eleva-
tion bands and 4 PFTs for the SGC1 and SGC2 methods;
(2) Scheme 2:N_LRU = 18M = 6N = 3; and (3)Scheme 3:
N_LRU = 12, M = 4N = 3. The baseline subgrid method
was also implemented at the five resolutions. The three
schemes represent different computational burdens with
Scheme 1 being most computationally intensive because it
has the largest number of maximum-allowed total subgrid
LRUs for each model grid.

The average number of total LRUs across NA was used to
evaluate and compare the methods’ computational burden. In
the baseline method, LRUs correspond to PFTs within each
model grid; in the SGC, SGC1 and SGC2 methods, LRUs
correspond to elevation–PFT classes within each model grid.
The total percentage of PFTs explained within each model
grid (% PFT) and the mean standard deviation of elevation
averaged over all elevation bandsσep were used to measure
and compare the methods’ abilities to characterize subgrid
vegetation and topography (Eqs. 1–3).

%PFT=

Nb∑
i=1

PAeb(i) ×

Np∑
j=1

PApft (i,j)

 , (1)

where PAeb(i) is the percent area of theith elevation band in
that grid, PApft (i, j) is the percent coverage of thej th domi-
nant PFT in theith elevation band,Np is the number of dom-
inant PFTs within each elevation band, andNb is the number
of elevation bands in that grid.

For the SGC and SGC1 methods,σep at a given model grid
was calculated as

σep =
1

Nb

Nb∑
i=1

σeb(i), (2)

whereσeb(i) is the standard deviation of subgrid surface ele-
vation within theith elevation band, andNb is the number of
elevation bands in that grid.

For the baseline and SGC2 methods,σep was calculated as

σep =
1

NP

NP∑
j=1

[
1

Nb

Nb∑
i=1

σeb(i,j)

]
, (3)

whereσeb(i,j) is the standard deviation of subgrid surface
elevation within theith elevation band for the jth dominant
PFT, andNp is the number of dominant PFTs in that grid.
For the baseline method,Np can be any number within 15
because all PFTs within each model grid were included, and
Nb equals 1 because only one elevation band was assigned to
each PFT.
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3 Results and discussions

3.1 Comparison of the SGC method and the baseline
method

Figure 4 shows the number of PFTs andσep from the base-
line subgrid classification method over the NA continent at
0.1◦and 1.0◦ resolutions. Both spatial resolutions show simi-
lar spatial patterns of subgrid variability of vegetation: more
PFT classes (6–8 PFTs at 0.1◦ resolution, over 8 PFTs at 1.0◦

resolution) per grid in the coastal areas than in the inland re-
gion such as the Great Plains (1–2 PFTs at 0.1◦ resolution,
3–5 PFTs at 1.0◦ resolution), where crop dominates the land-
scape. Increasing model grid size results in greater subgrid-
scale variability of PFTs (Fig. 4a and b). When assigning one
elevation band to each PFT within the model grid, the spatial
distribution ofσep clearly corresponds with topographic vari-
ations (Fig. 4c and d). In western NA with complex topogra-
phy such as the Coastal Range and Rocky Mountains,σep is
larger than in flat areas such as the Great Plains and coastal
area in southeast NA. The spatial contrast becomes more dis-
tinct at coarser resolution as the subgrid topographic vari-
ability becomes larger. The averageσep across the continent
rapidly increases from 43.1 m at 0.1◦ resolution to 62.7 m at
0.25◦ resolution, 79.9 m at 0.5◦ resolution, 99.1 m at 1.0◦ res-
olution, and 123.3 m at 2.0◦ resolution, indicating that with
the baseline method substantially less subgrid topographic
details are represented at coarser resolution.

Figure 5 compares the SGC method and the baseline
method in terms of computational burden, % PFT and the
elevation variability explained by the methods. Note that
although a maximum of 15 PFTs are allowed within each
model grid, the computational burden depends on the actual
number of PFTs needed to represent the subgrid PFT vari-
ability, which can be smaller than 15. It is apparent that SGC
is more computationally intensive even withN_LRU (= 12)
smaller than the maximum number of PFTs in the baseline
method (= 15). In the baseline method, the average number
of PFTs increases from 3.5 to 8.4 at resolutions varying from
0.1 to 2.0 degrees, while the average number of elevation–
PFT LRUs in the SGC method increases from 5.5 to 10.6
(N_LRU = 12). SGC explained slightly less PFTs than the
baseline method that allows all PFTs in each model grid
(Fig. 5b). IncreasingN_LRU required more computing re-
sources but yielded better PFT representation. However, the
small sacrifice in computational burden and % PFT resulted
in substantial improvement in elevation variability represen-
tation. Figure 5c demonstrates that the standard deviation of
elevation within each elevation band is greatly suppressed,
with the averageσep of SGC reduced to almost one third that
of the baseline method.

Compared to the baseline method where the number of
PFTs and the number of elevation band per PFT (= 1) were
predetermined, the optimal SGC method produced a much
more spatially variant number of elevation bands (M) and

number of PFTs within each elevation band (N) throughout
the continent (Figs. 6a, b and 7a, b). In topographically com-
plex areas, the SGC method shows great advantage over the
baseline method in representing details of subgrid topogra-
phy (Fig. 4c vs. Fig. 6d, Fig. 4d vs. Fig. 7d). This advantage
is more prominent at coarser resolution asσep is generally
less than 60 m for the SGC method in the Pacific Northwest
compared to over 200 m for the baseline method (Fig. 4d vs.
Fig. 7d). However, more detailed elevation information in the
SGC method compromises the representation of PFTs com-
pared to the baseline method that considers all PFTs within
each model grid. Nevertheless, the SGC method still ex-
plained a reasonable amount of PFT variability (over 80 %
in Figs. 6c and 7c, over 94 % in Fig. 5b) while greatly im-
proving the elevation variability, which has equally large if
not larger impacts on land surface processes than PFT vari-
ability (Leung and Ghan, 1998).

3.2 The SGC method with differentN_LRU and model
resolutions

The SGC method at different model resolutions (Fig. 6a vs.
7a, Fig. 6b vs. 7b) shows that bothM andN demonstrate
a similar spatial pattern in North America. In the areas with
more complex topography such as the Coastal Range, Rocky
Mountains, and the Appalachian Mountains (Fig. 2), more
elevation bands were generated than in flat areas such as the
central and coastal plains (Figs. 6b and 7b). The spatial dis-
tribution ofN within each elevation band, on the other hand,
generally shows an opposite pattern (Figs. 6a and 7a) because
the combined number of PFTs and elevation bands was re-
stricted byN_LRU. In the flat areas of central and eastern
NA, more than six PFTs were generated that explained over
98 % of the total PFTs in the model grids. In topographically
complex areas such as western NA, although smallerN were
produced than in other areas, the total PFTs explained by the
method was still over 80 % for each model grid (Fig. 6c and
7c) because PFT is more correlated with elevation over com-
plex terrains. This allows the SGC method to optimally rep-
resent subgrid variations in both topography and vegetation.

With decreasing model resolutions and increasing num-
ber ofN_LRU, the average computational burden increases.
At the finest resolution of 0.1◦, the average number of to-
tal LRUs increases only slightly with increasingN_LRU
(5.6 for N_LRU = 12, 6.3 for N_LRU = 18, and 6.8 for
N_LRU = 24) but increases rapidly at resolution of 2◦ (10.7,
14.9, and 18.9 forN_LRU equal 12, 18, and 24) (Fig. 5a).
This demonstrates that the low subgrid variability within a
small grid cell can be well represented by a small number
of subgrid LRUs. As the subgrid topography and vegeta-
tion variation increase with coarser model resolution, more
LRUs are required and the method is more restricted by
the maximum-allowed number of LRUs. This shows the
method’s ability in assigning optimal classes for different
model resolutions, and a larger number of maximum-allowed

Geosci. Model Dev., 6, 1609–1622, 2013 www.geosci-model-dev.net/6/1609/2013/
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Fig. 4. Baseline subgrid classification method.(a) 0.1◦, number of PFTs;(b) 1.0◦, number of PFTs;(c) 0.1◦, average standard deviation of
elevationσep; (d) 1.0◦, average standard deviation of elevationσep.

total classes gives more flexibility in assigning the best suit-
able combination of elevation bands and PFTs.

3.3 Comparison of three subgrid classification methods

The optimal subgrid classification method, SGC, was evalu-
ated against the SGC1 and SGC2 methods with a fixed num-
ber of elevation bands and PFTs.

The spatial distribution of the differences in the % PFT
(Fig. 8) andσep (Fig. 9) illustrate that at both fine and coarse
resolutions, the SGC method explained less PFTs (nega-
tive values of SGC-SGC1 or SGC-SGC2) and produced dis-
tinctly lower σep in the mountainous western NA with com-
plex topography. In these areas, the SGC method required
more elevation bands to represent reasonable variations of
elevation (e.g., over 6 elevation bands were produced in
these areas in Fig. 6b), thus sacrificing the total PFTs repre-
sented (only 2–3 PFTs were identified in this area in Fig. 6a
compared to four PFTs used in SGC1 and SGC2 methods).
In the southeast United States such as Florida, Mississippi,
South Carolina and Georgia, and in central Canada, the SGC
method identified more PFTs than the other two methods be-
cause few elevation classes are needed to represent the flat
topography (Fig. 8). Althoughσep in flat areas from SGC is
slightly greater than that from the other two methods (Fig. 9),

SGC is still able to produce reasonable representation of el-
evation variability asσep is less than 30 m in these areas
(Figs. 6d and 7d). This implies that using 6 or 4 elevation
bands may be redundant in these areas because topography
does not vary much and vegetation distribution has little rela-
tion to topography. When fewer PFTs were used in SGC1 and
SGC2 and fewerN_LRUs were used in SGC, the areas of
positive difference in the % PFT between SGC and the other
two methods expanded from central Canada to Alberta and
Saskatchewan provinces in western Canada (Fig. 8b and e).
In Mexico and Central America with distinct topographic re-
lief, SGC explained a considerably higher percentage of PFT
than SGC2. This emphasizes the advantages of SGC in to-
pographically complex and species-rich areas partly because
vegetation type correlates with topography.

With increasing model grid size and decreasingM or N ,
the average % PFT represented by each method decreases
(Fig. 10a), while the standard deviation of % PFT increases
(Fig. 10b). WithM = 6,N = 4 andN_LRU = 24, the SGC1
method, which first classifies topography into 6 elevation
bands and represents each elevation band with the 4 most
dominant PFTs, explains the most PFTs, while the opti-
mal classification method produced the lowest percentage of
PFTs except at 0.1◦ resolution. With 18 maximum-allowed
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Fig. 5.SGC method compared to baseline method.(a) Average number of total LRUs across NA;(b) average %PFT;(c) averageσep.

number of total LRUs in SGC,M = 6 andN = 3, the neg-
ative differences in PFTs between SGC and the other two
methods were compensated by positive differences (Fig. 8b
and e). Hence overall, the average percentage of PFTs ex-
plained by SGC is higher than the other two methods across
all resolutions (Fig. 10a). AsN_LRU decreases to 12, at the
finest resolution of 0.1◦, SGC explained a slightly greater
percentage of PFTs than the other methods. At the resolution
of 1◦ or higher, SGC explained a lower amount of PFTs than
the other two methods. As stated above, at coarse resolution
SGC is more restricted by the number of maximum-allowed
LRUs because larger variations of PFTs and topography ex-
ist. Since topography shows more distinct change than PFTs,
the balance between the number of elevation bands and PFTs
resulted in less PFTs explained by the method. Although the
SGC method shows varying performances in terms of the av-
erage percent of PFTs explained compared to the other two
methods, the PFTs explained by this method is more spa-
tially homogeneous – all model grids in the study area have
over 80 % of total PFTs explained regardless ofN_LRU and
model resolution. In contrast, the PFTs explained by SGC1
and SGC2 can be as low as 52 % (Fig. 10c), and around

92.7 % of the model grids have over 80 % of the PFTs ex-
plained (Fig. 10d).

The abilities of the three methods in explaining topo-
graphic variation are shown in Fig. 11. For all three meth-
ods, the averageσep increase with model grid size, i.e., re-
duced ability to represent subgrid topographic variability as
model resolution decreases. At fine resolutions from 0.1◦ to
0.5◦, the averageσep from the SGC method withN_LRU
of 24 (and 18) is greater than the SGC1 and SGC2 meth-
ods withM = 6 andN = 4 (andN = 3) (Fig. 11a), mean-
ing that SGC1 and SGC2 have better overall representation
of elevation variability at these scales. When model resolu-
tion decreases, the advantage of the SGC method in eleva-
tion representation emerges. At both 1◦ and 2◦ resolutions,
the averageσep from SGC is lower than that from SGC1
and SGC2. Compared to those from SGC1 and SGC2, the
averageσep from SGC climbs more slowly with increasing
model grid size and decreasing number of maximum-allowed
classes. Because topography shows much greater variability
at coarser scales, the slower change in averageσep indicates
more stable performance of the SGC method across different
scales. Although the averageσep from SGC is higher than
that from the other methods at fine resolution (e.g., less than
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Fig. 6. Optimal classification SGC with maximum-allowed total classesN_class= 18 at 0.1◦ resolution.(a) number of dominant PFTs
classified for each grid;(b) Number of elevation bands classified for each grid;(c) total percentage of PFTs explained by the method;
(d) average standard deviation of elevation in each elevation band in each model gridσep.

1◦), the variation ofσep across NA is smaller than that from
the other two methods (Fig. 11b) at each model resolution
and with each scheme of computational burden. This means
that the elevation variability explained by the SGC method
is more spatially homogeneous than the other two methods.
The combined examination of Figs. 8–11 and the statistical
analysis in Table 1 show that the SGC method is not necessar-
ily superior to the other two methods in terms of both vegeta-
tion and elevation variation explained, when a large number
of subgrid classes is allowed (N_LRU = 24). However, when
computational burden is moderately alleviated using fewer
number of subgrid LRUs (N_LRU = 18,M = 6 andN = 3),
the SGC method begins to demonstrate its advantage in bal-
ancing the variability of vegetation and elevation distribution
that can be explained. At the coarser resolutions of 1◦ to 2◦,
the SGC method becomes clearly superior to both SGC1 and
SGC2; i.e., a statistically greater percentage of PFTs was ex-
plained andσep is smaller (Table 1). WithN_LRU of 12, the
SGC method is better than SGC2 at the resolutions of 0.5◦ or
coarser and better than SGC1 only at the resolution of 0.25◦.

Despite the variable performance of SGC compared to
SGC1 and SGC2 in terms of PFT and elevation variabil-
ity, SGC is more computationally efficient, especially at
fine model resolutions (Fig. 12). For example, in Scheme 1
(N_LRU = 24,M = 6,N = 4), at model resolution of 0.1◦,

the average number of computational units for each model
grid for SGC increases quickly from 6.8 to 13.0 and 14.0
for SGC1 and SGC2. With decreasing model resolutions, the
differences in computational burden decrease. At coarse res-
olution such as 2.0◦, the average number of LRUs are similar
for all three methods.

4 Conclusions

In this study we presented a new subgrid land surface repre-
sentation method for LSMs that accounts for the joint distri-
bution of vegetation and topography. Using updated datasets
of high-resolution DEM and PFTs, this study provides a sys-
tematic analysis and comparison of different ways to classify
subgrid surface elevation and vegetation to provide an opti-
mal approach that improves both accuracy and computational
efficiency. For each model grid, the new method assigned
variable elevation and vegetation classes based on their joint
distribution so that the subgrid-scale variability of both can
be captured. Using predefinedN_LRU, the method ensures
that the optimal combination ofM classes for elevation and
N classes for PFTs is assigned to each model grid under the
restriction of a given computational burden. In flat areas with
rich vegetation diversity, this method assigns a smallM so
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Fig. 7. Optimal classification SGC with maximum-allowed total classesN_class= 18 at 1.0◦ resolution.(a) Number of dominant PFTs
classified for each grid;(b) number of elevation bands classified for each grid;(c) total percentage of PFTs explained by the method;
(d) average standard deviation of elevation in each elevation band in each model gridσep.

Fig. 8.Difference in percentage of total PFTs explained by SGC compared to SGC1 (top row), and SGC compared to SGC2 (bottom row) at
1.0◦ model resolution.
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Fig. 9. Difference in average standard deviation of elevation for SGC compared to SGC1 (top row) and SGC compared to SGC2 (bottom
row) at 1.0◦ model resolution.

Table 1.Pairedt test statistics for four classification schemes in terms of total PFT explained and standard deviation of elevationσep . Values
in bold indicate significant difference between the two classifications on a 95 % confidence level. Positive value in PFTs and negative value
in elevation standard deviation mean better capability of explaining both PFT and elevation. *: not significant.

Resolution
SGC vs. SGC1 SGC vs. SGC2

Percentage of σep Percentage of σep
PFTs explained PFTs explained

N_class= 24,M = 6,N = 4

0.1◦ −0.7* 277.3 47.4 434.8
0.25◦ −19.6 24.9 −1.9* 102.1
0.5◦ −16.9 −18.2 −7.1 17.7
1.0◦ −12.7 −21.5 −7.0 −6.7
2.0◦ −8.2 −17.9 −4.5 −11.3

N_class= 18,M = 6,N = 3

0.1◦ 106.0 312.4 150.2 464.6
0.25◦ 27.9 42.5 46.4 111.1
0.5◦ 8.6 −10.1 19.4 21.6
1.0◦ 1.4 −18.1 7.6 −4.3
2.0◦ 0.38* −15.8 4.4 −9.0

N_class= 12,M = 4,N = 3

0.1◦ 49.0 58.7 88.4 205.8
0.25◦ 3.2 −36.4 19.4 23.6
0.5◦ −4.9 −40.9 4.4 −10.9
1.0◦ −6.5 −31.4 −1.0* −15.7
2.0◦ −4.6 −21.1 −0.9* −14.1

that a large numberN of PFTs can be represented while el-
evation variation is still well represented. However, in topo-
graphically complex areas, the method assigns a largerM

and a smallerN so that elevation variation can be reason-
ably explained. Based on our analysis using high-resolution

DEM and vegetation data, we find that this classification is
feasible because, in topographically complex areas, elevation
has a dominant influence on vegetation through its effects on
climate, so assigning a small number of PFT classes within
each elevation class is able to capture the dominant subgrid
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Fig. 10.Total PFTs explained by methods SGC, SGC1 and SGC2 across NA.(a) Average % PFT within model grids;(b) standard deviation
of % PFT within model grids;(c) Minimum % PFT within model grids;(d) percentage of grids with total % PFT over 80 %. Black lines:
SGC; red lines: SGC1; blue lines: SGC2. Square symbol:N_LRU = 24; circular symbol:N_LRU = 18; triangular symbol:N_LRU = 12.

Fig. 11.Elevation variability explained by methods SGC, SGC1 and SGC2.(a) Averageσep; (b) standard deviation ofσep. Black lines: SGC;
red lines: SGC1; blue lines: SGC2. Square symbol:N_LRU = 24; circular symbol:N_LRU = 18; triangular symbol:N_LRU = 12.
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Fig. 12.Average number of total LRUs of method SGC, SGC1 and
SGC2 across NA. Black lines: SGC; red lines: SGC1; blue lines:
SGC2. Square symbol:N_LRU = 24; circular symbol:N_LRU =

18; triangular symbol:N_LRU = 12.

variations of PFT within the model grid cells. However, we
recognized that there is no simple relationship between vege-
tation distribution and topography since vegetation cover de-
pends not only on elevation but on other environmental fac-
tors such as slope/aspect and soil that also play an important
role in determining vegetation distribution, so it is important
to develop vegetation–elevation distribution for each model
grid.

Compared to the baseline method, which assigns a single
elevation class to each PFT, the new method provides an ob-
vious advantage in representing topographic variability. Al-
though the SGC method slightly compromised the ability to
represent vegetation variability and increased computational
burden compared to the baseline method, the new method
still explained at least 80 % of the total PFTs in each model
grid and produced substantial improvements in topography
representation. The effectiveness of the new method in repre-
senting subgrid variability in both topography and vegetation
is partly related to the correlation between topography and
vegetation. However, this effectiveness decreases with de-
creasing model resolution because the elevation dependence
of vegetation is weaker at coarser spatial scales.

Compared to the other subgrid approaches with prede-
termined number of elevation classes and vegetation types
(SGC1 and SGC2), the new method presented in this study
balanced the representation of both topography and vegeta-
tion variability under the restriction of a maximum-allowed
number of total LRUs. With the same maximum-allowed
LRUs, it requires less computational burden in LSM simula-
tion than the other two methods. Among the three schemes,
the new method shows advantages over the other methods
with moderate computation intensity (N_LRU = 18) and at

coarse scales in that both PFTs and topography variability
were best explained. Furthermore, the variability of both veg-
etation and elevation explained by the new method was more
spatially homogeneous compared to the SGC1 and SGC2
methods regardless of model resolutions and computational
burdens.

With the new subgrid scheme, the fractional area of each
elevation band and PFT can be determined and the mean
elevation of each elevation band can be defined. When im-
plemented in the model, each surface elevation class can be
forced by different atmospheric conditions by disaggregat-
ing the atmospheric forcing from each model grid cell to the
subgrid elevation class based on temperature and precipita-
tion lapse rate or the subgrid parameterization of orographic
precipitation described in Leung and Ghan (1995, 1998) and
Ghan et al. (2006). Separate calculations of surface processes
can be performed for each subgrid PFT within each subgrid
elevation class, and the output fluxes at each class can be
then aggregated in an area-weighted manner for each grid
cell. This will allow the impacts of subgrid variations of sur-
face topography and PFTs on the partitioning of the energy
and water budgets to be represented in land surface models.
The impacts of the new subgrid classification on land surface
simulations at different model resolutions will be studied in
the future.
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