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Abstract. Models of vegetation dynamics that are designed
for application at spatial scales larger than individual forest
gaps suffer from several limitations. Typically, either a pop-
ulation average approximation is used that results in unreal-
istic tree allometry and forest stand structure, or models have
a high computational demand because they need to simulate
both a series of age-based cohorts and a number of replicate
patches to account for stochastic gap-scale disturbances. The
detail required by the latter method increases the number of
calculations by two to three orders of magnitude compared
to the less realistic population average approach. In an ef-
fort to increase the efficiency of dynamic vegetation mod-
els without sacrificing realism, we developed a new method
for simulating stand-replacing disturbances that is both ac-
curate and faster than approaches that use replicate patches.
The GAPPARD (approximating GAP model results with a
Probabilistic Approach to account for stand Replacing Dis-
turbances) method works by postprocessing the output of de-
terministic, undisturbed simulations of a cohort-based veg-
etation model by deriving the distribution of patch ages at
any point in time on the basis of a disturbance probabil-
ity. With this distribution, the expected value of any output
variable can be calculated from the output values of the de-
terministic undisturbed run at the time corresponding to the
patch age. To account for temporal changes in model forc-
ing (e.g., as a result of climate change), GAPPARD per-
forms a series of deterministic simulations and interpolates
between the results in the postprocessing step. We integrated
the GAPPARD method in the vegetation model LPJ-GUESS,

and evaluated it in a series of simulations along an altitudinal
transect of an inner-Alpine valley. We obtained results very
similar to the output of the original LPJ-GUESS model that
uses 100 replicate patches, but simulation time was reduced
by approximately the factor 10. Our new method is there-
fore highly suited for rapidly approximating LPJ-GUESS re-
sults, and provides the opportunity for future studies over
large spatial domains, allows easier parameterization of tree
species, faster identification of areas of interesting simulation
results, and comparisons with large-scale datasets and results
of other forest models.

1 Introduction

Forests are an important part of the Earth system, at present
covering roughly 30 % of Earth’s land surface, and are
responsible for about half of the total terrestrial carbon
(Fischlin and Midgley, 2007). Ongoing pressures on forest
ecosystems including climate and land use change affect for-
est structure, composition and carbon storage, and changes
in forests may in turn feed back to affect climate and ecosys-
tem services (Fischlin and Midgley, 2007; Purves and Pacala,
2008). In order to assess the importance of forests in the
Earth system and understand their sensitivity to ongoing en-
vironmental change, it is essential to have forest models that
can be applied at continental to global scales. Large-scale
forest models that can be used to address these questions are
complex, as they should include a dynamic representation of
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forest demography, particularly with respect to forest distur-
bances and structure-related competition (Quillet et al., 2010;
Bonan, 2008). The most widely used tools for assessing the
role of plant cover in the Earth system are dynamic global
vegetation models (DGVMs). All DGVMs simulate forest
growth and include a representation of plant physiology and
vegetation dynamics (Prentice et al., 2007), but the first gen-
eration DGVMs did not explicitly simulate forest structure,
and showed important limitations in their ability to model
competition and disturbances (Quillet et al., 2010). Recently,
DGVMs have been developed that explicitly account for for-
est structural characteristics, improve the modeling of com-
petition and small-scale disturbances, and, thus, lead to more
realistic simulations of forest dynamics (e.g.,Hickler et al.,
2008; Sato et al., 2007; Fisher et al., 2010). Therefore, these
new hybrids between original DGVMs and models that simu-
late forest structures, also called second generation DGVMs,
have substantial advantages over the original DGVMs in
terms of realism, but this typically comes at the cost of com-
putational demand, which puts limits on the spatial domain
or maximum resolution that can be simulated in a reasonable
amount of time.

One commonly applied computationally time-consuming
way of including dynamic forest structure into a DGVM is
to apply the “gap model” approach (Shugart, 1984), in which
forest dynamics are simulated on small patches that roughly
represent the area of influence of one mature tree. Models
relying on the gap model approach simulate the fate of indi-
vidual trees, determined by growth and death processes and a
stochastic establishment, leading to demographic stochastic-
ity. Other stochastic elements can be climatic drivers and in
particular stochastically appearing small-scale disturbances
(disturbance stochasticity). A gap model simulates a num-
ber of replicate patches with the same external forcing (cli-
mate, soils) and aggregates these when providing grid-cell-
level output. Due to the stochasticity, individuals and vegeta-
tion biomass on each replicate patch develop differently and
simulations of many patches have to be averaged to yield the
forest dynamics, requiring a lot of computational time. To
obtain realistic results,Bugmann et al.(1996) recommended
the use of 200 successive repetitions of simulations per stand
for gap models.

An example of one second generation DGVM that applies
a gap model approach is LPJ-GUESS (Smith et al., 2001;
Hickler et al., 2004), which combines the plant physiologi-
cal representations of the first generation LPJ-DGVM (Sitch
et al., 2003) with the GUESS model of forest demographics
(Smith et al., 2001). In LPJ-GUESS, most commonly 50 or
100 replicate patches are used (Koca et al., 2006; Miller et al.,
2008; Hickler et al., 2008, 2009; Wramneby et al., 2008), but
to save computational time, the number of patches is often
smaller. Small-scale disturbances have a stronger effect on
species composition, forest height, age structure and biomass
than the demographic stochasticity (stochastic establishment
and mortality). Demographic stochasticity varies only the

numbers of individuals in cohorts (by drawing from a Pois-
son distribution in the establishment function and by impos-
ing expected mortality rates as probabilities for stochastic
death in the mortality function) and leads only to moderate
deviations from the non-stochastic case. Small-scale distur-
bances, in contrast, have a strong effect on the simulated for-
est dynamics (Hickler et al., 2004; Gritti et al., 2006), be-
cause they are assumed to destroy all trees in a patch (Fig.1;
b1–bn): after a disturbance all living biomass in that patch is
removed to the litter (dead organic matter), and growth suc-
cession starts again from the bare ground. As a result, the
total biomass (mean of all replicate patches) of a disturbance
simulation is typically smaller than in an undisturbed run
(Fig. 1a). Second generation DGVMs that use the gap model
approach, and specifically LPJ-GUESS, are computationally
expensive for two main reasons. They need to (1) simulate
plant physiology in 5–50 age-based cohorts that represent
the height structure of individual patches, and (2) simulate
a high number of replicate patches to represent adequately
the variability resulting from stochastic disturbance, estab-
lishment and mortality at the grid-cell level. Combined, these
requirements increase the computational demand of a sec-
ond generation DGVM by two to three orders of magnitude
as compared to a first generation DGVM. Considering the
great impact of small-scale disturbances in LPJ-GUESS and
the large number of replicate patches required, we identified
a need to develop a new approach to simulating small-scale
disturbances that was both efficient and accurate.

LPJ-GUESS has been successfully applied to a wide num-
ber of studies over recent years, but because it is compu-
tationally expensive, global runs at high spatial resolution
(e.g., on the 0.5◦ grid commonly used by the LPJ-DGVM,
Friedlingstein et al., 2006) are currently impractical without
supercomputers. The LPJ-GUESS study that used the largest
scale performed simulations for Europe with a 10′ resolution,
but modeled only 20 stochastic replicates for each grid cell
to save simulation time (Hickler et al., 2012). LPJ-GUESS,
like generally all DGVMs, has also limitations on a finer
scale. Simulations on smaller areas with smaller cell sizes
lead to the same numbers of cells simulated. Thus, compu-
tational resources are still stretched. Furthermore, applica-
tions on finer scales are limited because the parameterization
of vegetation in LPJ-GUESS is not specifically adapted to
local characteristics. In the first LPJ-GUESS version, tree
species were classified into plant functional types (PFTs),
since for research questions that address the global scale it
is hardly possible to parameterize all species (Jarvis, 1995).
Only recently first parameterizations of most common Eu-
ropean tree species have been developed (Koca et al., 2006;
Wolf et al., 2008a; Hickler et al., 2012) with the aim to re-
flect the species compositions within the relatively coarse
grid cells (10–100 km resolution), which are characterized
by mean climate. Additionally, this approach only focused on
wide-spread species. These coarse parameterizations thus ne-
glect the heterogeneity of both drivers and comparison data,
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Fig. 1. Principle of GAPPARD. Development of any vegetation state variable (e.g. biomass of a species) y over

time t. a) solid line: average development with disturbances; dashed line: development without disturbances.

b1-bn) development of the state variable for patch 1 to n, stand-replacing disturbances appear with disturbance

probability p. c) necessary information to calculate y with the GAPPARD method at time T. For years x1 to

xT−1 the same development of y is applied.
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Fig. 1. Principle of GAPPARD. Development of any vegetation
state variable (e.g., biomass of a species)y over timet . (a) solid
line: average development with disturbances; dashed line: develop-
ment without disturbances. (b1–bn) development of the state vari-
able for patch 1 ton, stand-replacing disturbances appear with dis-
turbance probabilityp. (c) necessary information to calculatey with
the GAPPARD method at timeT . For yearsx1 to xT −1, the same
development ofy is applied.

and are unlikely to work also at higher resolutions (Hick-
ler et al., 2012). Modeling of vegetation dynamics on finer
grids results in a higher need for a more specific vegetation
parameterization. LPJ-GUESS still does not incorporate the
specific vegetation of every important region. For example,
there are some area-wide LPJ-GUESS studies for northern
Europe (Wolf et al., 2008b; Koca et al., 2006; Smith et al.,
2008) in which vegetation was described as plant functional
types, but forests were modeled realistically because there
are only a few main species present in that region. The lat-
est Europe-wide species parameterization does not include
parameters for every and especially locally important tree
species, and variations within species were not considered
(Hickler et al., 2012). Another important gap of LPJ-GUESS
and second generation DGVMs in general is that there is no
parameterization specifically for the Alpine vegetation. For
example, the two particularly for the Alpine region impor-
tant tree speciesLarix deciduaandPinus cembrawere still
not parameterized for LPJ-GUESS.

In this paper we describe a new approach to simulating for-
est dynamics that dispenses with the need to simulate repli-
cate patches in a second generation DGVM and is both as

accurate as and substantially more computationally efficient
than traditional models. We compare our new approach to
standard LPJ-GUESS in a series of experiments along an en-
vironmental gradient in the Swiss Alps and demonstrate the
quality of the new method. We adapt the tree species set of
LPJ-GUESS to an Alpine environment and use Swiss Na-
tional Forest Inventory data to adjust the vegetation parame-
ters. We then suggest potential applications for this new, ef-
ficient model for addressing large-scale problems on the role
of forests in the Earth system, and, with regard to the new
parameterization, specifically in the Alps.

2 Material and methods

2.1 New approach to include small-scale disturbances

2.1.1 Basic assumptions

We maintain the idea that a forest consists of many patches,
each of which is affected by disturbance independently, and
that disturbances work on a yearly time step. We also main-
tain patch-destroying disturbances (i.e., living biomass state
variables are set to 0 by a disturbance).

Consequently, at a given timeT , the patches have different
patch agesa that depend on the timesT −a, when they were
affected by a disturbance, and the distribution of patch ages
P(a) at timeT determines the forest state. A patch of age
a has state variables (e.g., numbers per species and height
class, sapwood, and heartwood mass, etc.) and output vari-
ables (e.g., biomass per height class). Here, we refer to both
as output variablesy(a) because each state variable can eas-
ily be treated as an output variable and because we apply the
new method in a postprocessing way.

Our approach is based on the idea that a forest does
not necessarily have to be represented by different replicate
patches but can be calculated using a small number of undis-
turbed simulations starting from different time points, using
the information of the patch age distribution. This includes
a temporal upscaling of the information gained from such
undisturbed, deterministic, and thus computationally effi-
cient model runs. These runs include exactly the same model
functions as the base models but do not simulate patch-
destroying disturbances (if included in the base model), and
switch off stochasticity. This, for example, means for LPJ-
GUESS that the mortality and establishment functions are
calculated in the deterministic mode: mean values to de-
termine the number of dying and newly establishing indi-
viduals are used. We will refer to our new method as the
GAPPARD method (approximating GAP model results with
a Probabilistic Approach to account for stand Replacing Dis-
turbances).

www.geosci-model-dev.net/6/1517/2013/ Geosci. Model Dev., 6, 1517–1542, 2013
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2.1.2 Constant drivers

If the drivers are constant (e.g., during the spin-up phase of
a climate change simulation), we assume that each re-growth
following a disturbance leads to the same development of
output variables as the initial forest development (Fig.1b),
i.e., y(a) = y(x), with x the time since the startx0 of the
undisturbed simulation anda the time since the last distur-
bance in the disturbed simulation (i.e., patch age). In our
simulations, we do not dynamically update several state vari-
ables that in reality would be indirectly affected by distur-
bance, including soil moisture and temperature, and the state
of the snowpack.

To have agea at a given timeT , a patch of a disturbed
forest first must have encountered a disturbance and subse-
quently surviveda years. Given the probability of a distur-
bancepdist, the probability that a patch afterwards survivesa

years without any disturbance is(1− pdist)
a . Consequently,

the probability that a forest patch has agea is

P(a) = pdist (1− pdist)
a . (1)

A special case is given by the patches surviving from the
beginning (T = 0) to exactly timeT ; they have not encoun-
tered any disturbance, but started from bare ground (“were
killed”) for sure (pdist = 1) at time 0:

P(T ) = 1 (1− pdist)
T . (2)

The expectation valueY of simulation resulty is then
given by

Y (T ) =E[y(T )] = P(T ) y(T )+

T −1∑
a=1

P(a) y(a)

=(1− pdist)
T y(T ) + pdist

T −1∑
a=1

(1− pdist)
a y(a). (3)

To calculate the resulting expectation values, we first per-
form one simulation without disturbances (SWD) leading to
y(x) for all time pointsx. Afterwards, Eq. (3) must be ap-
plied in a postprocessing step.

The method presented here is a modified version of the
von Foerster equation (von Foerster, 1959), a general age-
structured population dynamics approach, in which instead
of the patch age distribution the individual age distribution is
constantly changed during the simulation.

2.1.3 Changing drivers

When drivers change, disturbances occurring at different
times have different impacts. For example, under low tem-
perature conditions, succession after a disturbance will most
probably be slower than in a warmer climate. In order to
account for such transient drivers, we modify the standard
method of running only one SWD (described above) by run-
ning several SWDs with different starting timessi (“nodes”),
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Fig. 2. Principle of GAPPARD applying changing drivers. a) dashed lines: developments of two subsequent

trajectories starting from si and s(i+1); dotted line: result after applying the GAPPARD method using both

trajectories. b1), b2) weight of the trajectory on the calculation of a state variable at time point T with age a

for all T−a that are between si and s(i+1), where T is a year after si to which the output variable is calculated

and a is the patch age (time since last disturbance). A darker trajectory stands for a bigger influence. The solid

lines characterize the weight of the trajectories for T−a. Here, the trajectory starting from s(i+1) has a higher

weight because T−a is closer to s(i+1) than to si.
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Fig. 2. Principle of GAPPARD applying changing drivers.
(a) dashed lines: developments of two subsequent trajectories start-
ing from si ands(i+1); dotted line: result after applying the GAP-
PARD method using both trajectories. (b1) and (b2) weight of the
trajectory on the calculation of a state variable at time pointT with
agea for all T − a that are betweensi and s(i+1), whereT is a
year aftersi to which the output variable is calculated anda is the
patch age (time since last disturbance). A darker trajectory stands
for a bigger influence. The solid lines characterize the weight of the
trajectories forT − a. Here, the trajectory starting froms(i+1) has
a higher weight becauseT − a is closer tos(i+1) than tosi .

i = 0. . .n. This yields different trajectories of the output vari-
ablesyi(si + x), each starting at a different starting timesi
with yi(si) = 0.

For each time pointT of the output,E[y(T )] is determined
similarly to Eq. (3). However, in this case instead of using
one undisturbedy at one time pointx = a in the summa-
tion, the two values that belong to two subsequent trajecto-
ries starting before and after the target time pointT − a are
used to describe the state of a patch with agea (Fig. 2).

The two output valuesy(si +a) andy(s(i+1) +a) are then
interpolated according to the distance ofT − a to the nodes
si ands(i+1), so that the trajectory with the node closer to the
target timeT − a has more weight than the other one.

yinterpol(T ,a) = . . . (4)

. . .


y0(s0 + a) ∀ T − a ≤ s0

...

y(s(i+1) + a)
(

s(i+1)−(T −a)

s(i+1)−si

)
+ y(si + a)

(
1 −

s(i+1)−(T −a)

s(i+1)−si

)
∀ si−1 < T − a ≤ si

y(sn + a) ∀ a > sn

Substituting Eq. (5) into Eq. (3) yields then

Y (T ) = (1− pdist)
T yinterpol(T ,a)

+ pdist

T −1∑
a=1

(1− pdist)
x yinterpol(T ,a). (5)

Geosci. Model Dev., 6, 1517–1542, 2013 www.geosci-model-dev.net/6/1517/2013/
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Fig. 3. Terrain around and location of the modeled stands(a)–(h).
See Table2 for detailed values of the stands’ altitude.

2.2 Model application and evaluation

To evaluate the GAPPARD method, we applied it to LPJ-
GUESS (LPJ-GUESS-G) and compared the results to the
stochastic runs of LPJ-GUESS. We used only LPJ-GUESS
to parameterize our tree species: if the parameters are valid
for LPJ-GUESS, they must be also valid for LPJ-GUESS-G,
because it is an upscaled version of LPJ-GUESS.

2.2.1 Location and climate data

We selected the Rhone Valley in the Swiss canton of Valais to
test our new approach. The bottom of this valley is one of the
driest regions in Switzerland, and the hillsides lead to steep
gradients in environmental conditions. In the region, man-
agement generally did not affect the species compositions to
such extents as in most Swiss regions, so that we were able
to use recent forest data to parameterize our modeled tree
species. We selected eight stands along a north-facing tran-
sect (Fig.3, Table2) that cover the vegetation zones where
homogeneous forest areas exist (from ca. 150 m above the
valley bottom to tree line). Each stand location was derived
from climate data points of 100-meter grid in a way that the
altitudinal distances between two stands would be approxi-
mately 200 m.

Climate data are applied after the simulation year 1900. Up
to 1900 we applied randomly selected values of the first 30
climate data years for the model spinup. For the 1901–1929
simulation period, we used CRU (Climatic Research Unit’s
monthly TS 1.2 dataset) data downscaled to a 100-meter grid
(Mitchell et al., 2004). For the 1930–2006 simulation period,
we used Swiss weather station data from the Federal Office
of Meteorology and Climatology MeteoSwiss interpolated to
a 100-meter grid by applying the Daymet method (Thornton
et al., 1997). For the 2007–2100 simulation period, we used

CRU climate data of the A1b climate scenario (Mitchell
et al., 2004). Along with that scenario CO2 levels reach
703 ppm in 2100 (IPCC, 2001, Annex II).

Based on the soil suitability map of Switzerland (Frei,
1976), we chose to use a low value of usable volumetric soil
water holding capacity of 0.1 (fraction of soil layer depth)
and a value for soil thermal diffusivity at 15 % water hold-
ing capacity of 0.8 mm2 s−1. These values correspond to the
poorly developed soils on the slopes of the Rhone Valley.

2.2.2 Tree species parameterization

Using LPJ-GUESS, we optimized the parameterization of
each tree species present in our study area to obtain the best
possible fit to observed forest inventory data. We used the
stochastic LPJ-GUESS for the parameter optimization be-
cause this model served as the reference for the subsequent
model comparison, and applied the same optimized param-
eter set for simulations with the GAPPARD method. The
tree species parameters we used are generally based on the
existing LPJ-GUESS parameterizations for plant functional
types (Hickler et al., 2004; Wolf et al., 2008a) and for species
(Koca et al., 2006; Miller et al., 2008; Hickler et al., 2012).
In our experiments, we used the most abundant Swiss for-
est species, selected according to the species used inLischke
et al. (2006a), and then analyzed those of them that already
had been parameterized for LPJ-GUESS. We excluded all
LPJ-GUESS species not present in the Swiss Alps, and added
parameterizations for three new species that are abundant
in our study area:Larix decidua, Pinus cembraand Pinus
mugo. For Larix deciduawe generated an additional func-
tion to model its leaf phenology based on results presented
by Migliavacca et al.(2008) (Appendix A2).

We further optimized the species-specific parameters used
in our experiments so that model results would best match
forest inventory data from the Swiss National Forest Inven-
tories NFI1 (EAFV, 1988) and NFI3 (Brändli, 2009). We se-
lected inventory data only from plots located south of the
Rhone and within a 30 km distance of our simulation plots,
and further stratified the inventory information into eight al-
titudinal classes analogous to the altitudes of the eight simu-
lated stands. At each altitudinal class we calculated the mean
and the standard deviation of the biomass of all living tree
species and estimated carbon mass assuming that half of a
tree’s biomass is carbon (IPCC, 2003; see Appendix A1 for
more details).

We used total forest carbon mass (above- and below-
ground) as the sole main metric for evaluating the model per-
formance in light of the NFI data. Our aim was to optimize
the model parameters so that for each altitudinal class the
simulated total and main species carbon mass were similar
to the NFI data. The parameters we optimized for all species
included drought tolerance, minimum growing degree day
sum, and maximum temperature for establishment (dtol,
gdd5mine and tcmaxe in TableD3 of the Appendix). We

www.geosci-model-dev.net/6/1517/2013/ Geosci. Model Dev., 6, 1517–1542, 2013
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Table 1.Variables appearing in the equations.

Variable Description

T Time in final postprocessed results (for simplicity of notation, we set initial timeT0 = 0)
x Simulation time in undisturbed simulation
a Patch age
P(a) Probability that a patch has agea

y(T ) Output variable of non-disturbed simulation at timeT

pdist Disturbance probability
si Node, i.e., starting point of non-disturbed simulation with changing drivers,i = 0. . .n

yi(si + a) State or output variable of non-disturbed simulation starting from nodei with agea

further adjusted the allometric parameters for some species,
in particular the steepness-influencing parameter in diameter
to height relation (kallom2 in TableD3 of the Appendix).
Further details on the parameterization, especially for the tree
species newly added to LPJ-GUESS, are described in Ap-
pendix A2 and TablesD1–D3.

We applied one altitude-specific set of LPJ-GUESS av-
erage return intervals for generic, patch-destroying distur-
bances (RID, inverse ofpdist in Sect. 2.3.2). We assumed
that the stands along the height gradient underlie different
disturbances. In general, stands close to the valley bottom
are more frequently disturbed by fire in the Valais region
(Zumbrunnen et al., 2009). Furthermore, we assumed that
more uphill stands are disturbed more frequently by storm
events, rockfall and especially avalanches. On the one hand
altitude is not a good explanatory characteristic for avalanche
appearance, andSchneebeli and Meyer-Grass(1992) found
that in spruce- and larch-dominated forests steepness favors
the release of avalanches, but on the other hand a thin crown
cover, big gap lengths and higher proportions of larches also
increase the probability of avalanche release. The steepness
is approximately the same for all our simulated stands ex-
cept the most upper stand, which is on slightly flatter ground.
At this highest elevation site however, shade-intolerant larch
is very abundant; the trees are exposed to avalanches from
higher altitudes, while the annual maximum snowpack is
deeper, and trees grow with larger gaps surrounding them.
First tests with the same RID values used for all stands led
to less precise results, especially concerning the total mod-
eled carbon mass (not shown). To create an altitude-specific
disturbance distribution, we used an RID value of either 65
or 100 for each single stand, depending on which value suits
best to predict the total carbon mass (RID in Table2).

To evaluate the tree species parameterization, we used two
indices: the Euclidean distance scaled to one and the percent-
age similarity coefficient (Bugmann, 1994). Details on both
indices can be found in the Appendix.

2.2.3 Analyzed output variables

For our analysis, we used as investigated output variables
(1) the total of the tree carbon mass of a species, and (2) this

variable stratified by certain height classes (of 4 m height ex-
cept the lowest being 2 m high). We examined the course
of these variables from an LPJ-GUESS simulation includ-
ing small-scale disturbances and 400 replicate patches, and
compared the outcome to the results of LPJ-GUESS-G.

2.2.4 GAPPARD method versus stochastic LPJ-GUESS
model runs

The crucial test of the GAPPARD method is its ability to
reproduce the behavior of LPJ-GUESS disturbance runs in
terms of total carbon mass, species composition and height
structure. To apply the GAPPARD method, we used the RID
values of the defined altitude-specific disturbance distribu-
tion (RID in Table2) and took its inverse values for Eqs. (3)
and (5). Using the new set of parameters and the altitude-
specific disturbances, we simulated forest growth for all eight
stands with a spinup time of 800 yr and a total simulation
time of 1000 yr covering a simulation period from 1100 to
2100.

In addition to a full time SWD (including 800 yr spinup),
we used four nodes from which we started SWDs that pro-
vide the input for the GAPPARD method to account for cli-
mate change: 1950, 2000, 2050 and 2080. All simulations
ended with the year 2100.

Without disturbance, as forests become taller the model
needs to calculate light interception in an increasing num-
ber of foliage layers (Prentice et al., 1993), which consumes
computational resources. Therefore, we increased the depth
of these layers from 2 to 5 m after 200 yr and to 10 m after
400 yr for the full time SWD. This change did not lead to a
decline in result quality because without disturbances forests
become homogenous in such a way that a less detailed light
calculation does not have much influence. In addition, such
old forests are rather rare so that such a simplification has an
even smaller impact.

To examine the analysis, we first tracked the total car-
bon mass of the different species from the end of the spinup
phase until 2080. Second, we mapped the carbon mass results
of the different species along height classes for all stands
and two time points of simulation: 1900 and 2080. We did
not analyze simulation years after 2080 because they do not
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Table 2. Specific characteristics for stands a to h. Lat: latitude in Swiss coordinates (CH1903/lv03 projection; longitude is 638 300 m for all
stands); Alt: altitude above sea level; Temp: mean annual temperature; Prec: sum of precipitation of main growing period (April–September);
NFI-alt: altitudinal range set for NFI plots associated with the modeled stands; NFI1, NFI3: numbers of plots per altitudinal range; RID:
return intervals for generic, patch-destroying disturbances.

a b c d e f g h

Lat in m 127 400 127 100 126 800 126 500 126 200 125 900 125 500 124 800
Alt in m 795 1003 1214 1415 1588 1793 1990 2190
Temp in◦C 9.5 8.5 7.3 6.2 5.3 4.3 3.2 2.1
Prec in mm 385 436 486 535 576 624 670 719

NFI- 700– 900– 1100– 1300– 1500– 1700– 1900– 2100–
alt in m 900 1100 1300 1500 1700 1900 2100 2300

NFI1 15 19 29 32 50 54 30 12
NFI3 8 14 21 14 34 24 22 6

RID in yr 65 65 100 100 100 65 65 65

represent interpolated results between two nodes but a pro-
longing of 2080 conditions (Eq.5, casea > y(sn)). Third,
to quantify the quality of the results we calculated the root
mean square error (RMSE) for each stand and each species,
based on simulation results of a 10 yr resolution. The RMSE
corresponds to the differences in carbon mass between two
models (described in detail in Appendix C), and is calculated
from the sums of all individuals of one species reaching a
certain height class and an adjacent height class (tolerance
to difference in height classes). For every species, each of
these differences enters into the calculation of the RMSE as
a fraction of the maximum possible difference appearing in
that stand and the calculated simulation period. Hence, the
maximum RMSE is one (completely different results). We
calculated the RMSEs separately for two time periods: the
spinup period and the climate change period. For both, we
calculated the RMSE between LPJ-GUESS with 400 repli-
cate patches and (1) LPJ-GUESS with 100, (2) LPJ-GUESS
with 25 replicate patches and (3) LPJ-GUESS-G.

To test the model performance, we compared the sim-
ulation times of stochastic LPJ-GUESS model runs with
400, 100 and 25 replicate patches, and LPJ-GUESS-G.
Listed times needed for the simulations using the GAPPARD
method consider only initial runs. The computational time
needed for the GAPPARD method is negligibly short. The
simulations ran on one core of an AMD Opteron 2439
2.8 GHz processor.

3 Results

3.1 Tree species parameterization

We successfully parameterized the LPJ-GUESS forest model
using data from the Swiss National Forest Inventories (NFIs)
of the Rhone Valley. We achieved a high accordance between

the used NFI data and the simulated data of carbon mass for
total living forest and for main species (Table3).

Combined, the NFI1 and NFI3 data show an increase in
forest biomass from the lowest site at 800 m to middle ele-
vations of approximately 150 tha−1 (from 100–120 to 250–
270 tha−1; from 5–6 to 12.5–13.5 kgCm−2) followed fur-
ther upslope by a decline in biomass to 130–170 tha−1 (6.5–
8.5 kgCm−2) at the upper alpine vegetation zone (see Ta-
blesD4 andD5 in the Appendix for more details). In general,
we were able to simulate these altitudinal shifts, although
we rather overestimated the NFI1 data and rather underes-
timated the NFI3 data. Consistent with the data, our simula-
tions also show a small increase in forest carbon at all sites
between the years in which the NFI was performed. We have
reached percentage similarity coefficients higher than 0.93
and Euclidean distances scaled to 1 of smaller than 0.35 for
the comparison of the total carbon mass over all altitudinal
classes (T11 in Table3).

With the new LPJ-GUESS parameters and functions, we
were able to simulate the general pattern of a dominantPi-
nus sylvestrisat stands closer to the valley bottom, dominant
Picea abiesandLarix deciduain forests at a mid-altitudinal
elevation, dominantPinus cembraand Larix decidua in
forests at the upper alpine vegetation zone, and a continuous
decrease of the proportion of broad-leaved tree species with
altitudinal height (Figs.D1 and D2 in the Appendix). The
newly parameterized LPJ-GUESS simulated the NFI distri-
bution of most species with percentage similarity coefficient
values of over 0.5 and Euclidean distances scaled to 1 of
smaller than 1.0 (Table3). There are only two major excep-
tions. First, the NFI data, especially at mid-altitudinal eleva-
tions, show high biomass ofLarix deciduathat LPJ-GUESS
does not capture with the parameterizations, model func-
tions, and initial modeling conditions we used. Concomi-
tantly, the model generally predicts morePicea abiesthan
is observed in the NFI data, so the sum of the carbon mass of

www.geosci-model-dev.net/6/1517/2013/ Geosci. Model Dev., 6, 1517–1542, 2013



1524 M. Scherstjanoi et al.: GAPPARD

Table 3. Evaluation of model parameterization. T1:Picea abies; T2: Larix decidua; T3: Pinus sylvestris; T4: Pinus cembra; T5: Abies alba;
T6: Pinus mugo; T7: Quercus spec.; T8: Betula pubescens; T9: Fraxinus excelsior; T10: other broad-leaved species; T11: all tree species;
NFI1: model results (carbon mass) for simulation year 1985 compared with NFI1 data; NFI3: model results (carbon mass) for simulation
year 2006 compared with NFI3 data; V1: Euclidean distance scaled to 1 (lower values are better). To provide greater clarity, values smaller
than 0.67 are written in bold; V2: percentage similarity coefficient (higher values are better). To provide greater clarity, values higher than
0.67 are written in bold. Both similarity measures were calculated by comparing the carbon mass of simulated and measured data (see for
details on the calculation).

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

NFI1
V1 0.63 1.39 0.37 0.56 0.6 0.7 1.07 0.83 0.64 0.88 0.19
V2 0.78 0.5 0.8 0.66 0.72 0.69 0.05 0.71 0.69 0.65 0.96

NFI3
V1 0.76 1.37 0.51 0.59 0.53 0.74 0.67 0.86 0.72 0.85 0.34
V2 0.7 0.47 0.77 0.69 0.74 0.66 0.54 0.68 0.5 0.63 0.94
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Fig. 4. Tree carbon mass development. Tree carbon mass from
spinup time (before 1900) until 2080 with the new GAPPARD
method applied to LPJ-GUESS (LPJ-GUESS-G) and for LPJ-
GUESS using 400, 100 and 25 replicate patches.

both species leads to a good coherence to the NFI data. Sec-
ond, the modeled carbon mass ofQuercus pubescensexceeds
the NFI1 values in stand a, which is reflected in both used in-
dices. Moreover, although there is basically noTilia cordata
andCarpinus betulusappearing in the NFI data, both species
established as minor tree species in lower altitude stands in
LPJ-GUESS.

3.2 Development of forest species composition and
carbon mass with LPJ-GUESS

The climate change scenario we applied led to several
changes in all simulated stands. Over the period from 1900
to 2000, the total carbon mass in most stands slightly in-
creased. During the 21st century the carbon mass increased
in all stands with highest increase at the beginning of the 21st
century (black solid line in Fig.4).

At lower standsQuercus pubescensand Picea abies
(stands a and b) or drought-tolerant broad-leaved species
(stands b to e) profited from a decrease ofPinus sylvestris. In
all stands, the proportion of broad-leaved species increased.
Generally the increase of broad-leaved species was lowest
at higher altitudes (< 0.1 kgCm−2 in stand h), and high-
est at low altitudes (approximately 1 kgCm−2 in stand a).
Like Quercus pubescensandPinus sylvestris, with climate
changePicea abiesestablished at higher altitudes. Although
no Picea abiesappeared in stands g and h in 1900, in 2080
this species made approximately one-third of the total carbon
mass in stand g and one-fifth in stand h.

The three stochastic LPJ-GUESS model runs (using 400,
100 and 25 of replicate patches) in the long term showed
similar results for tree carbon mass development (Fig.4).
However, it is clearly illustrated, that carbon mass can vary
strongly for decades as well as for centuries (in the case of
25 replicate patches). A high number of replicate patches
minimizes the chances of intensively altering output vari-
ables. However, as can be clearly seen in Fig.4, even the
results of the 400-replicate and 100-replicate simulations are
quite different. Only for periods with extreme climatic situa-
tions, all of the three LPJ-GUESS runs were affected equally
(e.g., in the beginning of the 1920).

3.3 Development of forest species composition and
carbon mass with the GAPPARD method

Our comparison between LPJ-GUESS results using 400
replicate patches and LPJ-GUESS with GAPPARD (LPJ-
GUESS-G) shows that the GAPPARD method successfully
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Fig. 5. Single-species carbon mass for stands(a), (d) and(h) simu-
lated with LPJ-GUESS and LPJ-GUESS-G. LPJ-GUESS: stochas-
tic simulation run using 400 replicate patches, LPJ-GUESS-G:
GAPPARD applied to LPJ-GUESS. Development of carbon mass
until 2080. Bars indicate the NFI1 (1985) and NFI3 (2006) data.
Black bar sections stand for broad-leaved species that were not
modeled.

reproduces the stochastic LPJ-GUESS simulations. The
overall development of total forest carbon mass was cap-
tured in most simulation runs (Figs.5 and6, and Figs.D3
and D4 and TableD6 in the Appendix). The total carbon
mass produced with LPJ-GUESS-G was in the range of LPJ-
GUESS results for each stand and at any simulation time
(Fig. 4). However, using the GAPPARD method smoothed
the results over time so that changes of output variables only
occur gradually with the simulation years, which can be seen
in total carbon mass results and for single species. Also con-
cerning species composition, LPJ-GUESS-G was successful
in reproducing LPJ-GUESS results. Mean root mean square
error (RMSE) values are in the range of the mean RMSE
between LPJ-GUESS using 100 and LPJ-GUESS using 400
replicate patches. The only case where LPJ-GUESS-G pro-
duced a different species composition was in stand g. There,
Picea abiesestablished in the middle of the 20th century in
the LPJ-GUESS stochastic simulation run, but arrived only
about a century later in the LPJ-GUESS-G run.

Our comparison of simulation times shows that the
GAPPARD approach performed approximately 11 times
faster than LPJ-GUESS using 100 replicate patches (Ta-
ble 4). The full time simulation without disturbance con-
tributed to a great extent to the simulation time of the
GAPPARD approach (results not shown) because there trees
can get much older and taller. These taller trees claim
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Fig. 6. Simulation results for stands(a), (d) and(h) for the simula-
tion years 1900 and 2080. Carbon mass per tree species is plotted
against tree height classes for (I) LPJ-GUESS using 400 replicate
patches and (II) LPJ-GUESS-G (GAPPARD method used on LPJ-
GUESS). Height class 1: trees of 2–6 m height; height class 2: trees
of 6–10 m height, and so on.

unproportionally more simulation time than smaller trees
mainly because of a more complex light calculation.

For the spinup period, the mean RMSE between LPJ-
GUESS using 400 replicate patches and LPJ-GUESS-G was
approximately 0.1 (calculated for species that produced at
least 0.5 kgCm−2 in one of both models). For the simula-
tion period, the mean RMSE between LPJ-GUESS and LPJ-
GUESS-G was approximately 0.05. Reducing the numbers
of replicate patches in a stochastic LPJ-GUESS run down
to 25 resulted in a mean RMSE (between the 400- and the
25-replicate simulation runs) of approximately 0.09 for the
spinup period and 0.07 for the simulation period, and was
roughly four times faster than the 100-replicate simulation
(Table4).

4 Discussion

This study identified a novel, efficient method to run
disturbance-driven models and also yielded an LPJ-GUESS
parameterization and adaptation, and climate change simula-
tions for a region with specific properties.
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Table 4. Simulation times and mean RMSE. Sum of simulation times of all 8 simulated stands for 800 yr of spinup and simulation from
1900–2100 with LPJ-GUESS using replicate patches and using the new GAPPARD method. RMSE for model spinup of 800 yr (RMSE SPI)
and for the simulation time 1900–2080 (RMSE SIM). The mean RMSE is calculated using all species that produced at least 0.5 kgCm−2 in
one of both models at any point in time during the simulation. The reference to RMSE calculation is always LPJ-GUESS with 400 replicate
patches. The 400-replicate run was done once, the others shown as means of 10 simulation runs that use the same random number of seeds
for stochasticity (thereby producing the same output) to account for the different loads of the processor nodes. Simulations were run on one
core of an AMD Opteron 2439 2.8 GHz processor.

400 replicates 100 replicates 25 replicates GAPPARD

Simulation times 7 h 31 min 11 s 1 h 15 min 33 s 17 min 58 s 6 min 56 s
Mean RMSE SPI – 0.10 0.09 0.10
Mean RMSE SIM – 0.05 0.07 0.05

4.1 Parameterization

For the first time the Alpine mountain forest speciesLarix
decidua, Pinus cembraandPinus mugowere parameterized
for LPJ-GUESS. We were able to include both newPinus
species by using only existing model functions. One achieve-
ment of the parameterization is the newly added function to
model the leaf phenology ofLarix decidua(see Sect.2.2.2
and Appendix A2). We used observed forest biomass from
inventory data as the only variable upon which to optimize
the LPJ-GUESS species-level parameters. Although this sim-
ple approach does not account for the properties influencing
forest dynamics, such as tree age, height or width, it led to
a considerable similarity between the newly parameterized
LPJ-GUESS results and the NFI data. With the NFI data,
we were able to use a relatively dense sample of plots close
to the modeled stands, which makes the results highly reli-
able. Sources of error mainly concern the estimation of the
biomass from the NFI data on the one hand, and the compar-
ison with LPJ-GUESS allometry-based simulated values on
the other hand. Using the LPJ-GUESS allometry function,
trees with identical diameter always have the same height
and therefore the same mass. As a consequence, it could be
possible that the model results might match the carbon mass
results of the NFI, but not the diameter at breast height. This
may particularly be the case in high mountain settings where
tree allometry is strongly influenced by meteorologically im-
posed constraints (e.g., wind), which we did not consider in
our models directly. Such an inconsistency, which might vary
for different species, could lead to an unrealistic simulation
of the vertical structure of the forest, and thus to further devi-
ations from observations. However, the good agreement be-
tween our simulations and the observed biomass data indi-
cates that differences in allometry are compensated for in the
model (e.g., through changes in stand density controlled by
disturbance). Another source of error may be linked to the
development of the forests in the used NFI plots. It is not
clear in detail how strong the influence of the management
in the specific NFI plots is. It is also not exactly known on
which stands clear cuts or big disturbance events have taken
place. We assume that the mean state of all used stands is

representative of the overall disturbance regime, so that the
constant probability of disturbance events we use can repro-
duce it. Despite all sources of error, our parameterization re-
sults show high consistency between NFI data and simulated
values. Furthermore, the simulated carbon mass and forest
species distribution in the different stands at the time of the
NFI dating are plausible to a great extent.

4.2 Simulation results

Using the altitude-specific disturbance distribution and the
new parameters, we were able to simulate total forest car-
bon mass and a species composition that largely reflects the
NFI data. We were able to reproduce forest species compo-
sition and tree carbon mass without using a specific distur-
bance function like the LPJ-GUESS fire function (Thonicke
et al., 2001). However, to account for feedback effects be-
tween fire and forest growth and the spreading of fire, and
both especially in the context of climate change, an appro-
priate modeling of the fire function could be important for
area-wide simulations of the modeled region. However, as
our main concern was to present a new modeling technique,
we accept approximations regarding missing modeling detail
of disturbance types.

The few discrepancies between the simulation results and
the NFI data may be partly due to uncertainties in the in-
terpretation of the data. It is very likely that the situation
with the high carbon mass ofLarix deciduaand low one
of Picea abiesin mid-altitudinal stands is to a high de-
gree a result of management practices in the Rhone Val-
ley (Gimmi et al., 2010). In addition, including specific to-
tal disturbance years (removal of all living carbon mass of
all replicate patches in one pre-defined year) did not lead to
a significant increase in the biomass of early successional
Larix deciduabecausePicea abiescompletely overgrew it
after only 30 yr of succession (results not shown). Although
this suggests that succession may occur too quickly in LPJ-
GUESS, it can be assumed that in the absence of forest man-
agement the real forests analyzed here at altitudes between
1200 m and 1800 m would be strongly dominated byPicea
abies(Frehner et al., 2005). For the speciesCarpinus betulus
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and Tilia cordata, the simulation results exceeded the NFI
data, which possibly is enhanced by not modeling all exist-
ing broad-leaved summergreen species. It is generally known
thatCarpinus betulusdoes not exist in this part of the Rhone
Valley (Welten and Sutter, 1982), which is also reflected by
the NFI data. In contrast,Tilia cordatausually exists in this
region (Welten and Sutter, 1982; Svejgaard Jensen, 2003),
but for unknown reasons is found only on very few plots of
the NFI data in the analyzed region.

The increase of tree carbon mass with climate change, also
at the lowest site, can mainly be explained by the 20th cen-
tury increase in atmospheric CO2 concentrations (Fischlin
and Midgley, 2007). Test simulations with a constant level
of CO2 led to a decrease in tree carbon mass in the 21st
century in most plots (results not shown). This decrease can
be traced back to a drier climate with more pronounced wa-
ter stress so that growth rates might be reduced and respi-
ration rates increased. With rising CO2 levels this effect can
be compensated, at least to a certain degree, because stomatal
regulation maintains high production rates and prevents plant
water loss. In our results, the increase of tree carbon mass is
more pronounced in stands with more frequent disturbances
(close to valley bottom or upper tree line). Two reasons may
be responsible for that. First, species more adapted to the new
climatic conditions could profit from opening gaps. Second,
species adapted to previous climatic conditions (which sur-
vive more likely with less disturbances) could be affected
negatively by the changing conditions opening space for new
species. However, at the lowest stand (ca. 800 m) the increase
of carbon mass may be unrealistically large. Closer to the
bottom of the Rhone Valley, extreme drought events causing
forest diebacks are expected to occur more frequently in the
near future (Rebetez and Dobbertin, 2004). But the modeled
future carbon stock does not show the effect of such extreme
events (compare with the dry year 1921 in Fig.4) suggest-
ing that the downscaled climate data that we used may un-
derestimate the climate variability, and thus drought events,
or that the CO2 effect is too strong. In addition, the north-
facing aspect of all the sites we simulated means that they
may be relatively less sensitive to interannual climate vari-
ability than the inner-Alpine region as a whole. However, the
carbon mass of LPJ-GUESS results does not continuously in-
crease over time, mainly due to stochastic variances, so that
long-term trends are much more significant than changes in
carbon mass over decades. This is one reason why a quantita-
tive analysis of the carbon mass development between NFI1
and NFI3 is not fully reliable. However, the limited sample
size of the NFI data does not allow the strict quantitative
analysis of changes in carbon stocks.

With climate change, the occurrence ofPinus sylvestris
at stands closer to the Rhone Valley bottom will most prob-
ably be reduced and exchanged by broad-leaved drought-
resistant species likeQuercus pubescens(Rebetez and Dob-
bertin, 2004; Bigler et al., 2006). This is well reflected in
our modeling results. But it is not entirely clear why in

our simulations with LPJ-GUESS the carbon mass ofPicea
abies increases at the lowest stand, while the mass ofPi-
nus sylvestrisdecreases, especially because the latter is more
drought-resistant thanPicea abies. We assume that the sim-
ulated decrease inPinus sylvestrisbiomass is partly because,
using LPJ plant physiological functions, it profits far less
from increased CO2 levels in comparison with broad-leaved
summergreen tree species (Cheaib et al., 2012). Another rea-
son for the decrease inPinus sylvestrisbiomass might be that
the lowest stand is still roughly 150 m above the valley bot-
tom, so that conditions are still good enough forPicea abies.
This is also reflected in the NFI data where the carbon mass
of Picea abiesat the lowest stand approximately doubled be-
tween NFI1 and NFI3 (Fig.5, upper row). The general in-
crease from the NFI1 to the NFI3 biomass confirms the in-
crease of forest biomass, although this change also can be
due to past forest management and the prevention of distur-
bance events.

It is unclear whether the modeled shift of species to higher
altitudes as a consequence of climate change happened in a
reasonable amount of time. In LPJ-GUESS, tree establish-
ment of new species only depends on the environment and
does not consider changes in and feedbacks to the seed pool.
It is well known that modeling seed pools and the dispersal
of seeds have a large potential to change simulation results
(Lischke, 2005; Lischke et al., 2006b; Epstein et al., 2007;
Neilson et al., 2005). Incorporation of seed dispersal and mi-
gration into LPJ-GUESS remains an open problem for future
research.

4.3 GAPPARD method

With GAPPARD we utilized a modified version of the von
Foerster equation. Several other approaches also used von
Foerster types but during the simulations for each year and
without using computationally efficient interpolation meth-
ods (Kohyama, 1993; Moorcroft et al., 2001; Falster et al.,
2010). Despite the success of our method, there are some lim-
itations. With the method presented here, it is currently not
possible to include any spatial interactions between neigh-
boring grid cells or patch-to-patch interactions. Therefore,
seed dispersal or the spatial mass effect of LPJ-GUESS (es-
tablishment in a patch depends on carbon mass of other
patches in a stand) cannot be applied yet. The stochastic
mortality and establishment functions of LPJ-GUESS seem
to have a much smaller effect on forest carbon mass and
species composition than do stochastic small-scale distur-
bances. With a more significant impact on demographic
stochasticity, LPJ-GUESS might lead to results that could
not be reproduced with the GAPPARD method as adequately
as we show here. In this case, the methods used in the for-
est models TreeMig (Lischke et al., 2006b) or TreeM-LPJ
(Scherstjanoi et al., 2013) to model vertical and horizontal
heterogeneity could provide possible solutions. Although it
might not have an influence on the stands modeled here, one
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additional limitation of the GAPPARD method could be that
the influence of climatic extreme events is not visible in the
model output because of the linear interpolation between dif-
ferent initial undisturbed runs (see Sect.2.1.2, Eq. 5) and
because of the preset node positions. Thus, a central ques-
tion for future applications would be the number and setup of
starting points of simulations without disturbances (SWDs).
Especially if a disturbance has happened before an extreme
climatic event (e.g., extreme dry years) the following succes-
sion may show large differences to the mean calculated with
our new method. Hence, nodes must be set such that long-
term trends and short-term variabilities are depicted. Here,
we use pre-defined starting points for the SWDs (nodes) cho-
sen independently from climate data. However, despite of us-
ing this simplification concerning extreme climatic events we
met our goals, also because unresolved spatial heterogene-
ity (e.g., microhabitats) implies that not all patches respond
in the same way to extreme climate variability and extreme
events. Still, this simplification might be the reason for the
underestimation ofPicea abiesgrowth in stand (g). Our first
SWD starts in 1950. An additional SWD starting in 1900
did not substantially change the model results (not shown).
Hence, the combination of suitable establishment conditions
in one or more specific years in the beginning of the 20th
century in combination with disturbance events must be the
reason whyPicea abiesestablishes earlier in LPJ-GUESS.

Furthermore, it remains unclear whether a different in-
terpolation method (e.g., spline interpolation) between two
nodes could lead to even better results. In addition, errors
may result from ignoring that some state variables are not set
to 0 after a disturbance event in stochastic LPJ-GUESS sim-
ulations (e.g., amount of litter, soil water and snow layer) but
with our method we assume they were. Another source of
error can be explained by the effect of the smaller sample
size in our method on the establishment of saplings com-
pared to the gap model approach of LPJ-GUESS. Using
replicate patches theoretically more combinations of differ-
ent light conditions (e.g., very good light conditions after dis-
turbances) and different climatic conditions can be attained.

It is important to note that at the moment the new method
cannot serve to track output variables in the same way as the
original LPJ-GUESS can. However, the method presented
here is not designed to model carbon or nutrient cycles. Fur-
thermore, the method is best applicable if state variables that
are typically reset by disturbances do not influence the sub-
sequent tree establishment.

5 Conclusions and outlook

With GAPPARD, we provided a new method of efficiently
simulating the dynamics of tree biomass and forest species
composition. It can be used for any output variable that can
be produced with the deterministic run and that is reset by
disturbance. GAPPARD can further be applied for any model

that uses a gap model approach and that applies disturbances
as stand-replacing events. Our simulations demonstrated that
the GAPPARD method can also be used for simulations that
consider the transient effects of changes in climate and at-
mospheric CO2 concentrations. Moreover, the principle of
the method could be applied to implement newly the effect
of stand-replacing disturbances in any dynamic forest or veg-
etation model.

The GAPPARD method is particularly suitable for simu-
lating a great number of stands in a fast way, and hence is
applicable on larger scales. The results can be used to make
first estimations about the development of output variables
(e.g., species composition) or to identify hot spots of unusual
or interesting simulation results, which then can be analyzed
in more detail with the original models.

As a next step, we plan to apply the efficient method
developed here in combination with the optimized species-
level parameter set for Swiss tree taxa in Switzerland- and
Europe-wide simulations on a 1 km grid. Furthermore, we
plan to extend the method by implementing effects of demo-
graphic stochasticity, non-stand-replacing disturbances and
spatial interactions.

Appendix A

Parameterization details

A1 Adaptation of NFI data

The selection of the NFI plots is based on the distance to
the simulated stands, on the stand type, and topographical
considerations. We used only NFI plots that were classified
as accessible forest areas, and that are all located south of
the Rhone, at most 30 km westward or eastward of the sim-
ulated stands, and at most 30 km southward of the southern-
most stand. We also classified the chosen NFI plots accord-
ing to their exposition, but the results were not sensitive to it
(results not shown).

The NFI1 and NFI3 data of all plots are split into two
parts. One part comprehends trees with diameter at breast
height (DBH) higher than 12 cm (older trees), and the other
trees with DBH lower than 12 cm (young trees). For the older
trees, the biomass per area is estimated for each occurring
species. The young trees in the NFI1 are classified into DBH
classes of 0–4 cm, 4–8 cm or 8–12 cm, or are classified as 30–
130 cm high. The young trees in the NFI3 are classified into
height classes of 10–40 cm or 40–130 cm, or are classified as
having a DBH of 0–12 cm. To estimate their biomass we used
the mean values of the classes, applied it to the LPJ-GUESS
allometry function and calculated the biomass considering
wood density (Assmann, 1962).

For the parameter tuning, we utilized a set of simulation
runs that all used 800 yr of spinup period and simulated forest
developments from 1900 up to the years the NFI data were
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estimated. To smooth stochastic variations widely, we used a
number of 400 replicate patches for the final parameter fine-
tuning simulation runs.

A2 New plant physiological functions and parameters

We added three new tree species to LPJ-GUESS that have not
been included before:Larix decidua, Pinus cembraandPi-
nus mugo. Hence, we had to parameterize them from scratch.
Both Pinusspecies were applicable to existing functions of
LPJ-GUESS. But first plausibility tests showed that these
functions were not sufficient forLarix decidua, mainly due
to the tree species’ specific phenology. In LPJ-GUESS, the
foliage of summergreen species is transferred to litter all at
once on one simulation day (typically in autumn) when the
maximum number of equivalent days with full leaf cover per
growing season exceeds a certain value. For most species,
this approximation has no significant negative influence be-
cause photosynthetic efficiency in general is reduced more
suddenly. But especially for larches, leaf senescence can be
a process lasting for months during which photosynthetic
intensity is reduced stepwise. Based onMigliavacca et al.
(2008), we included this physiological trait by defining a new
phenology type forLarix decidua. It will be modeled like a
summergreen species, but in autumn the phenological state
of the larches will decrease with an S-shaped curve, depend-
ing on the number of days since the start of fall of leaves (sd)
and the number of days with full leaf cover this year (md)
due to the LPJ-GUESS leaf phenology function:

phen(t) =


phen(t−1)

1+exp(0.15(sd−50)) ; md> 120
phen(t−1)

1+exp
(
0.15

(
sd−

(
50+ md−120

8

))) ; else (A1)

We determined the other parameters ofLarix deciduaori-
ented on expert knowledge and literature about the species
(TableD3). We defined it as a shade-intolerant species with a
high ratio of leaf area to sapwood cross-sectional area (Oren
et al., 1995). Although it is a boreal species that also grows
under very cold conditions, it can establish under warmer
conditions, too. Furthermore, saplings do not need much
soil water for establishment. The parameters of the newPi-
nusspecies are mainly based onPinus sylvestrisparameters.
However, both newPinus species are more cold-resistant,
have seeds that are less drought-resistant and their needles
have a higher longevity. Moreover,Pinus mugowas defined
as shade-intolerant.

An important issue was the parameterization of the
drought tolerance (dtol in Table D3) of the three new
species. Referring toEllenberg(1986), Bugmann(1996) de-
fined Larix deciduaas a rather drought-intolerant species.
However, he also listed other authors that had defined inter-
mediate values for it.Eilmann and Rigling(2012) showed
that Larix deciduais, in comparison to, for example,Pinus
sylvestris, strongly affected by drought events. On the other
hand,Lischke et al.(2006b) andShuman et al.(2011) defined

it as a very drought-tolerant species.Yan and Shugart(2005)
used different larch species but also defined them as drought-
tolerant.Matras and P̂aques(2008) noted that the response
of Larix deciduato drought can vary strongly depending on
stand conditions.Klimek et al. (2011) discussed the water
consumption ofLarix deciduaseedlings compared to other
conifers, and reported different observations ranging from
same water uptake rates among all conifers to studies that
show thatLarix deciduaconsumes 10 times more than other
conifers. If soil conditions allow it, this species can survive
dry years better than other species that are more drought-
adapted because its root system is very deep (Anfodillo et al.,
1998; Valentini et al., 1994). Considering all this, we deter-
minedLarix deciduato have a high proportion of fine roots
in the deeper soil layer and a moderately high drought tol-
erance (TableD3). Based onBugmann(1996) andLischke
et al. (2006b), we also used a rather high drought tolerance
for Pinus cembraand Pinus mugo. According toValentini
et al. (1994), Pinus cembrawith its root system is also able
to use groundwater from deeper layers, which is also in line
with general knowledge. Thus, we determined a high propor-
tion of fine roots in the deeper soil layer for both newPinus
species.

We modified several values of the latest existing LPJ-
GUESS species parameterization (Hickler et al., 2012) (Ta-
bleD3). Main changes address the soil water content needed
for establishment, which we increased forFagus sylvatica,
Abies albaandQuercus robur, and decreased forBetula pen-
dula and Picea abies. Furthermore, we introduced a new
shade tolerance class, particularly forPicea abies(column
“ns” in TableD1). With this, we contribute toPicea abiesbe-
ing less shade-tolerant thanFagus sylvaticaor Abies albabut
more shade-tolerant than intermediate shade-tolerant species
(Bugmann, 1994; Roloff, 2010).

Based on the Switzerland-wide applied forest models
FORCLIM (Bugmann et al., 1997) and TreeMig (Lischke
et al., 2006b), we additionally adapted the allometry param-
eters. As a result,Betula Pendula, Pinus cembraandPinus
mugohave a higher stem diameter to tree height ratio than the
other species. As another important issue, we changed the pa-
rameter of needed growing degree sum required for full leaf
cover of Betula Pendulaand Larix deciduato account for
their comparatively fast budburst (Murray et al., 1989).

Another important change concerns the parameter of max-
imum 20 yr coldest month mean temperature for establish-
ment (TMAXest). This limit is not associated with plant phys-
iological functions, but rather represents a surrogate for func-
tions not implemented in LPJ-GUESS that are responsible
for outcompeting cold adapted species under warmer cli-
mates. We removed this limit for all species butPinus cem-
bra. In a previous version, the implementation of TMAXest
values of−1.5 (Miller et al., 2008; Hickler et al., 2012) or
−2 (Koca et al., 2006) for Picea abies, and of−1 (Koca
et al., 2006; Miller et al., 2008; Hickler et al., 2012) for Pinus
sylvestrisled to two discontinuities (results not shown). First,
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both species should have been able to establish in the lowest
of the analyzed elevations (ca. 800 m), which is reflected by
the NFI data. But maintaining the limits led to a prevention
of establishment of both because the climate is “too warm”.
Second, if the climate in a stand was near the limit of the
TMAX est, a species did not grow during the spinup (1901–
1930 climate) but established in the slightly colder 1940s. Al-
though it became much warmer afterwards, the cold-adapted
species, once established, did not become extinct (e.g., de-
spite drought stress). This created the inverse picture of cold
adapted species that grow better under warmer climates. A
future application of this parameterization in regions with
warmer winters might need further tests and possibly a re-
implementation of TMAXest for some species.

Similarly, the drought tolerance parameter used covers
only a part of plant physiological responses to drought. There
is a high risk that its values will be defined varying from
realistic values to also cover other plant-related effects that
are not included in LPJ-GUESS (e.g., plant water storage,
plant water conduction traits, certain stomata closure effects
or absence caused by dispersal barriers). This complicated
the parameterization of the drought tolerance. In accordance
with the occurrence of species in the NFI data andBugmann
(1996) and Lischke et al.(2006b), Picea abiesand Betula
pendulaare more drought-resistant than the drought toler-
ance values ofHickler et al. (2012) might reflect. Conse-
quently, we increased the drought tolerance ofPicea abies
and Betula pendula(decreased dtol value, TableD3). For
the same reason we decreased the drought tolerance ofAbies
alba, Quercus roburand Fagus sylvatica(increased dtol
value, TableD3). We included C3 grass as a plant functional
type into our modeling without changes to the existing LPJ-
GUESS functions. We did not use a bole height to calculate
the daily fraction of incoming photosynthetically active ra-
diation (PAR). In other words, the leaf area of all species
and the foliage layers to calculate the PAR are equally dis-
tributed vertically from ground to treetops. This could be
a problem for the modeling of species that produce foliage
high above the ground (e.g.,Pinus sylvestris), and by that
might have an advantage because they are less shaded. How-
ever, bole height is parameterized in LPJ-GUESS while in
reality it shall be dependent on stand density and tree age,
and therefore treated as a state variable.

Appendix B

Used similarity measures for the evaluation of the
parameterization

The Euclidean distance

ed=

√∑
(xi − yi)2 (B1)

is proportional to the sum of the squared distances of all data
points. For this reason, a lower value stands for better results.

To be able to compare results of different dimensions, we
scaled the data of each elevation class, giving the highest of
all occurring values of one altitudinal height class the value
one and normalized the other values to the highest value.

The percentage similarity coefficient

sc= 1−

∑
|xi − yi |∑
(xi + yi)

(B2)

has a minimum of zero when the distances of the data points
equal their sum, and one, if the two datasets are equal (Bug-
mann, 1994).

Appendix C

Calculation of the root mean square error

The differences in carbon mass of one species between the
two model outputs to compare (Cm1, Cm2) are summed up
for eachy betweenystart andyend (10 yr resolution), and for
each height class (htcl) up to the number of height classes
(nhtcl), also considering neighboring height classes (htcln).
These differences

cmd,y,htcl =
∑min(htcl+1,nhtcl)

htcln=max(htcl−1,1) Cm1,htcln,y

−
∑min(htcl+1,nhtcl)

htcln=max(htcl−1,1) Cm2,htcln,y (C1)

are scaled by the maximum carbon mass appearing in that
period:

cmm = max
(∑nhtcl

htcl=1
∑min(htcl+1,nhtcl)

htcln=max(htcl−1,1) Cm1,htcln,ystart, ,∑nhtcl
htcl=1

∑min(htcl+1,nhtcl)
htcln=max(htcl−1,1) Cm2,htcln,ystart,∑nhtcl

htcl=1
∑min(htcl+1,nhtcl)

htcln=max(htcl−1,1) Cm1,htcln,ystart+1,∑nhtcl
htcl=1

∑min(htcl+1,nhtcl)
htcln=max(htcl−1,1) Cm2,htcln,ystart+1,

. . .∑nhtcl
htcl=1

∑min(htcl+1,nhtcl)
htcln=max(htcl−1,1) Cm1,htcln,yend,∑nhtcl

htcl=1
∑min(htcl+1,nhtcl)

htcln=max(htcl−1,1) Cm2,htcln,yend

)
. (C2)

Then its square is summed up and divided by the number
of elements to sum up (height classes times years). The root
of it is the root mean square error:

rmse=

√√√√√∑nhtcl
htcl=1

∑yend
y=ystart

(
Cmd,y,htcl

Cmm

)2

nhtcl yend−ystart
10

. (C3)

Appendix D

Figures and tables
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LPJ−GUESS carbon mass in kg m−2
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Fig. D.1. Comparison of the NFI1 data with LPJ-GUESS runs. LPJ-GUESS results were produced using

400 replicate patches and altitude specific disturbances (see RID in Table 2). See the lower right chart for

descriptions. Note that for some species the two inner quartiles of the NFI data are located at 0 in all plots.
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Fig. D1. Comparison of the NFI1 data with LPJ-GUESS runs. LPJ-GUESS results were produced using 400 replicate patches and altitude-
specific disturbances (see RID in Table2). See the lower right chart for descriptions. Note that for some species the two inner quartiles of the
NFI data are located at 0 in all plots.
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Fig. D.2. Comparison of the NFI3 data with LPJ-GUESS runs. Note that for some species the two inner

quartiles of the NFI data are located at 0 in all plots. See Fig. D.1 for description.
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Fig. D2. Comparison of the NFI3 data with LPJ-GUESS runs. Note that for some species the two inner quartiles of the NFI data are located
at 0 in all plots. See Fig.D1 for description.
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Fig. D3. Single-species carbon mass with LPJ-GUESS using 400 replicate patches. Development of carbon mass until 2080. Bars indicate
the NFI1 (1985) and NFI3 (2006) data. Black bar sections stand for broad-leaved species that were not modeled.

Table D1. Shade tolerance parameters. The affiliations to species are given in TableD3. st: shade-tolerant; ns: nearly shade-tolerant; ist:
intermediate shade-tolerant; si: shade-intolerant.

st ns ist si

Minimum forest-floor PAR
1.25 1.625 2 2.5

for establishment (MJ m−2 day−1)

Growth efficiency threshold
0.04 0.06 0.08 0.1

(kgC m−2 yr−1)

Maximum establishment rate
0.05 0.075 0.1 0.2

(saplings m−2 yr−1)

Recruitment shape parameter
2 4 6 10

afterFulton(1991)

Annual sapwood to heartwood
0.05 0.0575 0.065 0.08

turnover rate (yr−1)

www.geosci-model-dev.net/6/1517/2013/ Geosci. Model Dev., 6, 1517–1542, 2013



1534 M. Scherstjanoi et al.: GAPPARD

Altitude [m]

cm
as

s

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15 a)
kg m−2

Altitude [m]

cm
as

s

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15 b)

Altitude [m]

cm
as

s

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15 c)

Altitude [m]

cm
as

s

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15 d)

Altitude [m]

cm
as

s

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15 e)

Altitude [m]

cm
as

s

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15 f)

cm
as

s

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15 g)

cm
as

s

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15

1900 2000 2080  

5

10

15 h)

Carpinus betulus
Corylus avellana
Fagus sylvatica
Fraxinus excelsior
Quercus robur
Quercus pubescens
Tilia cordata

Picea abies
Pinus sylvestris
Larix decidua
Pinus cembra
Pinus mugo
Abies alba
Betula pendula

Fig. D4.Single-species carbon mass with LPJ-GUESS applying the GAPPARD method. See Fig.D3 for descriptions.

Table D2. Climatic range parameters. The affiliations to species are shown in TableD3.

Boreal Temperate

Optimal temperature range
10–25 15–25

for photosynthesis (◦C)

Maximum temperature range
−4–38 −2–38

for photosynthesis (◦C)

Geosci. Model Dev., 6, 1517–1542, 2013 www.geosci-model-dev.net/6/1517/2013/



M. Scherstjanoi et al.: GAPPARD 1535

Altitude [m]

cm
as

s

2

4

     

1900

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

2000

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

2080

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

Altitude [m]

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

cm
as

s

2

4

  5 10

Altitude [m]

cm
as

s

2

4

     

cm
as

s

2

4

  5 10

−
10

0

Picea abies
Pinus sylvestris
Larix decidua
Pinus cembra
Pinus mugo

−
10

0

Abies alba
Betula pendula
Carpinus betulus
Corylus avellana
Fagus sylvatica

−
10

0

Fraxinus excelsior
Quercus robur
Quercus pubescens
Tilia cordata

−100

kg m−2

a)

I)

II)

−100

b)

I)

II)

−100

c)

I)

II)

d)

I)

II)

height
class

Fig. D5. Simulation results for stands(a)–(d) for the simulation years 1900, 2000 and 2080. Carbon mass per tree species is plotted against
tree height classes for (I) LPJ-GUESS using 400 replicate patches, and (II) using the new GAPPARD method against LPJ-GUESS. Height
class 1: trees 2–6 m height, height class 2: 6–10 m, and so on.
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Fig. D5.Simulation results for stands(e)–(h) for the simulation years 1900, 2000 and 2080.
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Table D3. Specific tree parameters. b: boreal; t: temperate; st: shade-tolerant; ns: nearly shade-tolerant; ist: intermediate shade-tolerant; si:
shade-intolerant; e: evergreen; s: summergreen; d: summergreen with decelerated senescence; phenramp: growing degree sum on 5 degree
base required for full leaf cover; klatosa: ratio of leaf area to sapwood cross-sectional area; rootdistu and rootdistl: proportion of roots
extending into upper and lower soil layer; chillb: changed chilling parameter (Sykes et al., 1996); d tol: drought tolerance, lower values
show higher tolerance (minimum soil water content needed for establishment, averaged over the growing season and expressed as a fraction
of available water holding capacity, and water uptake efficiency); gdd5min: minimum growing degree day sum on 5◦C base, tcmaxe and
tcmin e: minimum and maximum 20-year coldest month mean temperature for establishment; tcmins: maximum 20-year coldest month
mean temperature for survival; kallom2: steepness-influencing parameter in diameter to height relation. longevity and leaf longevity are in
years. Lar dec:Larix decidua; Pic abi:Picea Abies; Pin cem:Pinus cembra; Pin mug:Pinus mugo; Pin syl:Pinus sylvestris; Abi alb: Abies
Alba; Bet pen:Betula pendula; Car bet:Carpinus betulus; Cor ave:Corylus avellana; Fag syl:Fagus sylvatica; Fra exc:Fraxinus excelsior;
Que rob:Quercus robur; Que pub:Quercus pubescens; Til cor: Tilia cordata; ∗ newly added species.

Lar dec∗ Pic abi Pin cem∗ Pin mug∗ Pin syl Abi alb Bet pen

climatic range b b b b b t t
shade tolerance si ns ist si ist st si
phenology type d e e e e e s
phenramp 100 – – – – – 100
k latosa 5000 4000 2000 2000 2000 4000 5000
rootdist u 0.6 0.8 0.6 0.6 0.6 0.8 0.8
rootdist l 0.4 0.2 0.4 0.4 0.4 0.2 0.2
leaf longevity 0.5 4 4 4 2 4 0.5
chill b 100 100 100 100 100 100 400
longevity 500 500 500 500 500 350 200
d tol 0.3 0.35 0.3 0.3 0.25 0.4 0.3
gdd5min 300 600 300 400 600 900 700
tcmaxe – – −3 – – – –
tcmin e −29 −29 −29 −29 −29 −3.5 −29
tcmin s −30 −30 −30 −30 −30 −4.5 −30
k allom2 40 40 22 30 40 40 30

Car bet Cor ave Fag syl Fra exc Que rob Que pub Til cor

climatic range t t t t t t t
shade tolerance ist si st ist ist ist ist
phenology type s s s s s s s
phenramp 200 200 200 200 200 200 200
k latosa 5000 4000 5000 5000 4500 4000 5000
rootdist u 0.7 0.7 0.8 0.8 0.6 0.6 0.8
rootdist l 0.3 0.3 0.2 0.2 0.4 0.4 0.2
leaf longevity 0.5 0.5 0.5 0.5 0.5 0.5 0.5
chill b 600 400 600 100 100 100 600
longevity 350 300 500 350 500 500 350
d tol 0.33 0.3 0.5 0.4 0.4 0.2 0.33
gdd5min 1200 800 1300 1100 1100 1900 1000
tcmaxe – – – – – – –
tcmin e −7 −10 −2.5 −15 −15 −5 −17
tcmin s −8 −11 −3.5 −16 −16 −6 −18
k allom2 40 40 40 40 40 40 40
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Table D4. Forest biomass of the NFI1 inventory and LPJ-GUESS results for the simulation year 1985 (all in tha−1). T1: Picea abies;
T2: Larix decidua; T3: Pinus sylvestris; T4: Pinus cembra; T5: Pinus mugo; T6: Abies alba; T7: Quercus spec.; T8: Betula pubescens; T9:
Fraxinus excelsior; T10: other broad-leaved species; T11: all tree species; SIM: LPJ-GUESS results (400 replicate patches).

Stand T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

a
NFI 11.95 15.59 63.08 0 0 0 0.24 3.79 0 8.31 103.19
SIM 12.77 1.58 74.92 0 2.61 3.42 10.6 6.85 0.68 16 129.44

b
NFI 68.62 18.83 29.59 0 6.51 1.63 0.12 4.85 2.55 6.38 139.3
SIM 48.61 3.28 34.43 0 11.28 2.02 3.06 8.27 1.74 26.62 139.31

c
NFI 91.64 95.99 19.18 0 14.27 0 0.09 3.08 1.34 19.42 245.03
SIM 118.05 5.06 17.44 1.31 33.25 1.29 3.78 7.12 2.8 26.1 216.19

d
NFI 113.89 63.11 25.49 0.38 19.14 0.24 0 4.53 0.26 2.93 232.39
SIM 173.49 12.49 5.83 1.22 20.15 1.11 0.44 7.54 0.3 8.74 231.31

e
NFI 120.49 85 16.15 2.62 3.45 2.61 0 1.01 0 0.84 232.8
SIM 217.51 25.56 2.19 0.91 0 0.9 0 1.81 0 0.29 249.18

f
NFI 72.01 106.45 5.01 14.37 0 3.3 0 0.27 0 0 201.41
SIM 139.97 35.61 1.12 2.54 0 1.94 0 0.11 0 0 181.29

g
NFI 18.54 74.72 2.16 31.9 0 6.58 0 0 0 0 133.89
SIM 15.77 61.06 0.08 56.4 0 5.22 0 0 0 0 138.53

h
NFI 0 78.9 0 50.14 0 1.69 0 0 0 0 130.73
SIM 0.69 37.15 0 97.23 0 1.62 0 0 0 0 136.69

Table D5. Forest biomass of the NFI3 inventory and LPJ-GUESS results for the simulation year 2006 (all in tha−1). See TableD4 for
descriptions.

Stand T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

a
NFI 30.59 0.78 49.87 0 0 0 6.05 12.57 0 8.33 114.86
SIM 14.95 1.14 72.14 0 3.96 2.12 15.37 8.59 0.71 19.95 138.94

b
NFI 63.84 29.21 32.8 0 10.89 0.81 2.82 3.83 5.31 17.71 167.23
SIM 47.91 2.78 32.56 0 12.31 1.53 4.35 11.54 2.07 31.7 146.76

c
NFI 65.56 148.39 20.1 0 22.56 1.12 0.48 4.02 1.06 9.6 273.08
SIM 113.01 5.87 19.34 0.43 41.06 0.92 4.52 8.51 2.88 27.36 223.91

d
NFI 66.83 97.49 26.65 0 28.7 2.1 0 5.25 0 17.81 247.29
SIM 177.44 17.54 4.85 0.73 21.12 0.71 0.78 9.26 0.52 8.85 241.79

e
NFI 130.08 101.2 20.58 2.3 7.69 0.65 0 0.64 0 1.54 265.2
SIM 227.29 29.93 1.72 0.62 0 0.62 0 2.83 0 0.67 263.67

f
NFI 74.81 169.62 0 18.58 0 0 0 0.98 0 0 266.23
SIM 147.41 44.55 1.07 2.33 0 1.42 0 1.01 0 0.01 197.82

g
NFI 28.34 89.99 0 47.21 0 4.68 0 0 0 0 170.39
SIM 23.16 79.06 0.22 59.96 0 4.81 0 0 0 0 167.21

h
NFI 0 131.13 0 44.18 0 0 0 0 0 0 179.87
SIM 0.54 57.83 0.01 97.31 0 1.92 0 0 0 0 157.6
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Table D6.Root mean square error (RMSE) between LPJ-GUESS using 400 replicate patches and LPJ-GUESS with GAPPARD for stands a
to h. All values were calculated with a temporal resolution of 10 yr. spi: RMSE for simulation spinup time (800 yr); sim: RMSE for simulation
years 1900–2100; yr: only actual year difference considered; p: period of 50 yr considered. Numbers in italics indicate that in both models
less than 0.5 kgCm2 of that species were produced at any one point during the simulation. Bold numbers indicate values less than 0.2.
(1) Larix decidua; (2) Picea abies; (3) Pinus cembra; (4) Pinus mugo; (5) Pinus sylvestris; (6) Abies alba; (7) Betula pendula; (8) Carpinus
betulus; (9) Corylus avellana; (10)Fagus sylvatica; (11)Fraxinus excelsior; (12)Quercus robur; (13)Quercus pubescens; (14)Tilia cordata.

(a) (b) (c) (d) (e) (f) (g) (h)
spi sim spi sim spi sim spi sim spi sim spi sim spi sim spi sim

(1) 0.03 0.1 0.03 0.12 0.02 0.14 0.03 0.13 0.03 0.05 0.02 0.05 0.03 0.09 0.04 0.07
(2) 0.04 0.08 0.08 0.1 0.04 0.11 0.03 0.14 0.03 0.09 0.03 0.08 – 0.19 – 0.06
(3) – – – – – 0.08 – 0.07 0.01 0.08 0.01 0.13 0.06 0.05 0.03 0.07
(4) 0.04 0.1 0.04 0.07 0.02 0.08 0.01 0.07 0.01 0.07 0.01 0.09 0.02 0.08 – 0.25
(5) 0.07 0.09 0.18 0.16 0.09 0.23 0.04 0.18 0.03 0.1 0.01 0.06 – 0.07 – 0.08
(6) 0.23 0.15 0.12 0.18 0.11 0.18 0.05 0.1 0.13 0.07 – 0.1 – 0.1 – 0.11
(7) 0.04 0.13 0.02 0.07 0.02 0.05 0.03 0.07 0.02 0.05 0.09 0.07 – 0.06 – 0.1
(8) 0.05 0.09 0.04 0.06 0.03 0.06 – 0.05 – 0.06 – 0.1 – 0.1 – 0.1
(9) 0.03 0.11 0.02 0.06 0.03 0.1 0.02 0.08 0.01 0.07 – 0.05 – 0.07 – 0.1

(10) – 0.09 0.18 0.1 0.1 0.21 – 0.12 – 0.1 – 0.11 – 0.11 – –
(11) 0.25 0.16 0.06 0.09 0.05 0.14 – 0.12 – 0.03 – 0.11 – 0.1 – 0.1
(12) 0.27 0.14 0.11 0.09 0.06 0.09 – 0.16 – 0.03 – 0.11 – 0.1 – 0.1
(13) – 0.07 – 0.05 – 0.1 – 0.1 – 0.1 – – – – – –
(14) 0.05 0.1 0.03 0.06 0.04 0.08 0.04 0.12 – 0.03 – 0.09 – 0.1 – 0.1
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