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Abstract. Models of vegetation dynamics that are designedand evaluated it in a series of simulations along an altitudinal
for application at spatial scales larger than individual foresttransect of an inner-Alpine valley. We obtained results very
gaps suffer from several limitations. Typically, either a pop- similar to the output of the original LPJ-GUESS model that
ulation average approximation is used that results in unrealuses 100 replicate patches, but simulation time was reduced
istic tree allometry and forest stand structure, or models havéyy approximately the factor 10. Our new method is there-

a high computational demand because they need to simulati®re highly suited for rapidly approximating LPJ-GUESS re-
both a series of age-based cohorts and a number of replicatults, and provides the opportunity for future studies over
patches to account for stochastic gap-scale disturbances. Tharge spatial domains, allows easier parameterization of tree
detail required by the latter method increases the number opecies, faster identification of areas of interesting simulation
calculations by two to three orders of magnitude comparedesults, and comparisons with large-scale datasets and results
to the less realistic population average approach. In an efef other forest models.

fort to increase the efficiency of dynamic vegetation mod-
els without sacrificing realism, we developed a new method

for simulating stand-replacing disturbances that is both ac-

curate and faster than approaches that use replicate patchds. Introduction

The GAPPARD (approximating GAP model results with a

Probabilistic Approach to account for stand Replacing Dis-Forests are an important part of the Earth system, at present
turbances) method works by postprocessing the output of decovering roughly 30% of Earth’s land surface, and are
terministic, undisturbed simulations of a cohort-based veg-esponsible for about half of the total terrestrial carbon
etation model by deriving the distribution of patch ages at(Fischlin and Midgley 2007. Ongoing pressures on forest
any point in time on the basis of a disturbance probabil-€Cosystems including climate and land use change affect for-
ity. With this distribution, the expected value of any output €St structure, composition and carbon storage, and changes
variable can be calculated from the output values of the dein forests may in turn feed back to affect climate and ecosys-
terministic undisturbed run at the time corresponding to thet€m servicesKischlin and Midgley2007 Purves and Pacala
patch age. To account for tempora] Changes in model forczooa. In order to assess the importance of forests in the
ing (e.g., as a result of climate change), GAPPARD per_Earth system and understand their sensitivity to ongoing en-
forms a series of deterministic simulations and interpolatesvironmental change, it is essential to have forest models that
between the results in the postprocessing step. We integrate®n be applied at continental to global scales. Large-scale

the GAPPARD method in the vegetation model LPJ-GUESS forest models that can be used to address these questions are
complex, as they should include a dynamic representation of
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forest demography, particularly with respect to forest distur-numbers of individuals in cohorts (by drawing from a Pois-
bances and structure-related competitiQui{let et al, 201Q son distribution in the establishment function and by impos-
Bonan 2008. The most widely used tools for assessing theing expected mortality rates as probabilities for stochastic
role of plant cover in the Earth system are dynamic globaldeath in the mortality function) and leads only to moderate
vegetation models (DGVMs). All DGVMs simulate forest deviations from the non-stochastic case. Small-scale distur-
growth and include a representation of plant physiology andbances, in contrast, have a strong effect on the simulated for-
vegetation dynamicdfentice et aJ.2007), but the first gen-  est dynamicsHickler et al, 2004 Gritti et al,, 2006, be-
eration DGVMs did not explicitly simulate forest structure, cause they are assumed to destroy all trees in a patchl{Fig.
and showed important limitations in their ability to model b1-b,): after a disturbance all living biomass in that patch is
competition and disturbanceQ(illet et al, 2010. Recently,  removed to the litter (dead organic matter), and growth suc-
DGVMs have been developed that explicitly account for for- cession starts again from the bare ground. As a result, the
est structural characteristics, improve the modeling of com-otal biomass (mean of all replicate patches) of a disturbance
petition and small-scale disturbances, and, thus, lead to morsimulation is typically smaller than in an undisturbed run
realistic simulations of forest dynamics (e.Hickler et al, (Fig. 1a). Second generation DGVMs that use the gap model
2008 Sato et al.2007 Fisher et al.2010. Therefore, these approach, and specifically LPJ-GUESS, are computationally
new hybrids between original DGVMs and models that simu-expensive for two main reasons. They need to (1) simulate
late forest structures, also called second generation DGVMsplant physiology in 5-50 age-based cohorts that represent
have substantial advantages over the original DGVMs inthe height structure of individual patches, and (2) simulate
terms of realism, but this typically comes at the cost of com-a high nhumber of replicate patches to represent adequately
putational demand, which puts limits on the spatial domainthe variability resulting from stochastic disturbance, estab-
or maximum resolution that can be simulated in a reasonabléishment and mortality at the grid-cell level. Combined, these
amount of time. requirements increase the computational demand of a sec-
One commonly applied computationally time-consuming ond generation DGVM by two to three orders of magnitude
way of including dynamic forest structure into a DGVM is as compared to a first generation DGVM. Considering the
to apply the “gap model” approacBljugart 1984, in which great impact of small-scale disturbances in LPJ-GUESS and
forest dynamics are simulated on small patches that roughlyhe large number of replicate patches required, we identified
represent the area of influence of one mature tree. Models need to develop a new approach to simulating small-scale
relying on the gap model approach simulate the fate of indi-disturbances that was both efficient and accurate.
vidual trees, determined by growth and death processes and a LPJ-GUESS has been successfully applied to a wide num-
stochastic establishment, leading to demographic stochastider of studies over recent years, but because it is compu-
ity. Other stochastic elements can be climatic drivers and intationally expensive, global runs at high spatial resolution
particular stochastically appearing small-scale disturbancege.g., on the 0.5grid commonly used by the LPJ-DGVM,
(disturbance stochasticity). A gap model simulates a num+riedlingstein et a).200§ are currently impractical without
ber of replicate patches with the same external forcing (cli-supercomputers. The LPJ-GUESS study that used the largest
mate, soils) and aggregates these when providing grid-cellscale performed simulations for Europe with aE3olution,
level output. Due to the stochasticity, individuals and vegeta-but modeled only 20 stochastic replicates for each grid cell
tion biomass on each replicate patch develop differently ando save simulation timeHickler et al, 2012. LPJ-GUESS,
simulations of many patches have to be averaged to yield théke generally all DGVMs, has also limitations on a finer
forest dynamics, requiring a lot of computational time. To scale. Simulations on smaller areas with smaller cell sizes
obtain realistic resultugmann et al(1996 recommended lead to the same numbers of cells simulated. Thus, compu-
the use of 200 successive repetitions of simulations per stanthtional resources are still stretched. Furthermore, applica-
for gap models. tions on finer scales are limited because the parameterization
An example of one second generation DGVM that appliesof vegetation in LPJ-GUESS is not specifically adapted to
a gap model approach is LPJ-GUESSth et al, 200%; local characteristics. In the first LPJ-GUESS version, tree
Hickler et al, 2004, which combines the plant physiologi- species were classified into plant functional types (PFTSs),
cal representations of the first generation LPJ-DG\8tdh since for research questions that address the global scale it
et al, 2003 with the GUESS model of forest demographics is hardly possible to parameterize all specigaryis 1995.
(Smith et al, 200)). In LPJ-GUESS, most commonly 50 or Only recently first parameterizations of most common Eu-
100 replicate patches are us&w¢a et al, 2006 Miller et al., ropean tree species have been developedd et al, 2006
2008 Hickler et al, 2008 2009 Wramneby et aJ.2008, but  Wolf et al, 20083 Hickler et al, 2012 with the aim to re-
to save computational time, the number of patches is ofterflect the species compositions within the relatively coarse
smaller. Small-scale disturbances have a stronger effect ogrid cells (10—-100 km resolution), which are characterized
species composition, forest height, age structure and biomadsy mean climate. Additionally, this approach only focused on
than the demographic stochasticity (stochastic establishmentide-spread species. These coarse parameterizations thus ne-
and mortality). Demographic stochasticity varies only the glect the heterogeneity of both drivers and comparison data,
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accurate as and substantially more computationally efficient

than traditional models. We compare our new approach to

standard LPJ-GUESS in a series of experiments along an en-
vironmental gradient in the Swiss Alps and demonstrate the

quality of the new method. We adapt the tree species set of
LPJ-GUESS to an Alpine environment and use Swiss Na-

tional Forest Inventory data to adjust the vegetation parame-
ters. We then suggest potential applications for this new, ef-

ficient model for addressing large-scale problems on the role
of forests in the Earth system, and, with regard to the new

parameterization, specifically in the Alps.

2 Material and methods

2.1 New approach to include small-scale disturbances

2.1.1 Basic assumptions

We maintain the idea that a forest consists of many patches,

each of which is affected by disturbance independently, and

that disturbances work on a yearly time step. We also main-
t tain patch-destroying disturbances (i.e., living biomass state

) o _variables are set to 0 by a disturbance).

Fig. 1. F_>r|n0|ple of GAPPARD. Develqpment gf any veget'atlon Consequently, at a given tinfg the patches have different

S.tat_e variable (e.g., b'omass. of a specwsj\/e'r timer. (".") S.°|'d atch agea that depend on the tim&5— a, when they were

line: average development with disturbances; dashed line: developF-)]cf ted by a disturb d the distributi f patch

ment without disturbancesb{—bn) development of the state vari- aftecte . y adistur ar,lce’ an € distribution of patch ages

P(a) at time T determines the forest state. A patch of age

able for patch 1 ta, stand-replacing disturbances appear with dis- - : .
turbance probability. (c) necessary information to calculatevith a has state variables (e.g., numbers per species and height

the GAPPARD method at timg. For yearsy; to x7_1, the same  class, sapwood, and heartwood mass, etc.) and output vari-
development of is applied. ables (e.g., biomass per height class). Here, we refer to both
as output variableg(a) because each state variable can eas-
ily be treated as an output variable and because we apply the
new method in a postprocessing way.
and are unlikely to work also at higher resolutiomsiok- Our approach is based on the idea that a forest does
ler et al, 2012). Modeling of vegetation dynamics on finer not necessarily have to be represented by different replicate
grids results in a higher need for a more specific vegetatiorpatches but can be calculated using a small number of undis-
parameterization. LPJ-GUESS still does not incorporate th@urbed simulations starting from different time points, using
specific vegetation of every important region. For example,the information of the patch age distribution. This includes
there are some area-wide LPJ-GUESS studies for northerg tempora| upsca"ng of the information gained from such
Europe (Volf et al, 2008h Koca et al, 2006 Smith et al,  undisturbed, deterministic, and thus computationally effi-
2008 in which vegetation was described as plant functional cient model runs. These runs include exactly the same model
types, but forests were modeled realistically because thergnctions as the base models but do not simulate patch-
are only a few main species present in that region. The latdestroying disturbances (if included in the base model), and
est Europe-wide species parameterization does not includgwitch off stochasticity. This, for example, means for LPJ-
parameters for every and especially locally important treeGUESS that the mortality and establishment functions are
species, and variations within species were not consideregalculated in the deterministic mode: mean values to de-
(Hickler et al, 2012. Another important gap of LPJ-GUESS termine the number of dying and newly establishing indi-
and second generation DGVMs in general is that there is n&jiduals are used. We will refer to our new method as the
parameterization specifically for the Alpine vegetation. For GAPPARD method (approximating GAP model results with
example, the two particularly for the Alpine region impor- a Probabilistic Approach to account for stand Replacing Dis-
tant tree speciekarix deciduaandPinus cembravere still turbances).
not parameterized for LPJ-GUESS.
In this paper we describe a new approach to simulating for-
est dynamics that dispenses with the need to simulate repli-
cate patches in a second generation DGVM and is both as
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2.1.2 Constant drivers
A

If the drivers are constant (e.g., during the spin-up phase of y
a climate change simulation), we assume that each re-growth
following a disturbance leads to the same development of
output variables as the initial forest development (Hig),

i.e., y(a) = y(x), with x the time since the stany of the
undisturbed simulation and the time since the last distur-
bance in the disturbed simulation (i.e., patch age). In our
simulations, we do not dynamically update several state vari-
ables that in reality would be indirectly affected by distur-
bance, including soil moisture and temperature, and the state
of the snowpack.

To have age: at a given timeT, a patch of a disturbed
forest first must have encountered a disturbance and subse-
quently survivedu years. Given the probability of a distur-
bancepgist, the probability that a patch afterwards surviges
years without any disturbance (% — pgisp®. Consequently, t
the probability that a forest patch has agis

. Fig. 2. Principle of GAPPARD applying changing drivers.
P(a) = pdist (1 — pdisp”. (1) (a) dashed lines: developments of two subsequent trajectories start-

. . .. ing froms; ands;t1); dotted line: result after applying the GAP-
A special case is given by the patches surviving from thePARD method using both trajectorie® ] and p,) weight of the

beginning (" = 0) to exactly timeT’; they have not ENCOUN-  yrajectory on the calculation of a state variable at time pointith
tered any disturbance, but started from bare ground (“wereyge, for all 7 —a that are betwees; and si+1), WhereT is a

killed”) for sure (pdist = 1) at time O: year afters; to which the output variable is calculated ands the
T patch age (time since last disturbance). A darker trajectory stands
P(T)=1(1- pas)”- by igger i il i i
Is for a bigger influence. The solid lines characterize the weight of the

trajectories forT — a. Here, the trajectory starting frosg; 1) has

The ex ion val f simulation resulty is then . . .
& expectation valug’ of simulation resulty is the a higher weight because— a is closer tas(; 1) than tos;.

given by
T-1 o ) ) . .
Y(T) =E[y(T)] = P(T) w(T) + p i = 0...n. This yields different trajectories of the output vari-
() Ly (] (1) y(T) az::l (@) y(@) ablesy; (s; + x), each starting at a different starting time
7-1 with y; (s;) = 0.
=(1— paiso” y(T) + pdist Y, (1= paisd” y(@). (3) For each time poirit of the output£[y(7)] is determined
] similarly to Eq. @). However, in this case instead of using

) ) i one undisturbed at one time pointc =a in the summa-

To calculate the resulting expectation values, we first Perjon, the two values that belong to two subsequent trajecto-
form one simulation without disturbances (SWD) leading 10 jeg starting before and after the target time pdint a are
y(x) for all time pointsx. Afterwards, Eq. 8 must be ap-  ysed to describe the state of a patch with agEig. 2).
plied in a postprocessing step. 3 _ The two output values(s; +a) andy (s 1) +a) are then

The method presented here is a modified version of thenterpolated according to the distancemf- a to the nodes
von Foerster equatiorvgn Foerster1959, a general age-  ; ands,_ 1), so that the trajectory with the node closer to the

structured population dynamics approach, in which insteac{arget timeT — a has more weight than the other one.
of the patch age distribution the individual age distribution is

constantly changed during the simulation. Yinterpol(T', @) = ... 4
Yo(so+a) VT —a <so0

2.1.3 Changing drivers

. . . ) y(si+1) +a) (“"::;;:a)) + y(si+a) (l - V“j:;ifi;")) Vsiii<T—a<s
When drivers change, disturbances occurring at different Ynta)Va>s,

times have different impacts. For example, under low tem- Substituting Eq.%) into Eq. @) yields then

perature conditions, succession after a disturbance will most

probably be slower than in a warmer climate. In order to Y (7) = (1— pdist” interpol(T, @)

account for such transient drivers, we modify the standard T-1
method of running only one SWD (described above) by run- + pdist (1— pdisd)™ Yinterpol(T, a). (5)
ning several SWDs with different starting timgg“nodes”), a=1

Geosci. Model Dev., 6, 15171542 2013 www.geosci-model-dev.net/6/1517/2013/



M. Scherstjanoi et al.: GAPPARD 1521

CRU climate data of the Alb climate scenariditchell
et al, 2004. Along with that scenario C@levels reach
703 ppm in 2100IPCC, 2001, Annex II).

Based on the soil suitability map of Switzerlan@réi,
1976, we chose to use a low value of usable volumetric soil
water holding capacity of 0.1 (fraction of soil layer depth)
and a value for soil thermal diffusivity at 15 % water hold-
ing capacity of 0.8 mrhs~1. These values correspond to the
poorly developed soils on the slopes of the Rhone Valley.

[]800m-1000m

L \‘\ % 2.2.2 Tree species parameterization
ot =;§gg:1§g§: Using LPJ-GUESS, we optimized the parameterization of
Jd I 22002400 each tree species present in our study area to obtain the best
[ (], — possible fit to observed forest inventory data. We used the
_AY stochastic LPJ-GUESS for the parameter optimization be-

cause this model served as the reference for the subsequent
Fig. 3. Terrain around and location of the modeled staajs(h). model comparison, and applied the same optimized param-
See Table for detailed values of the stands’ altitude. eter set for simulations with the GAPPARD method. The
tree species parameters we used are generally based on the
existing LPJ-GUESS parameterizations for plant functional
types Hickler et al, 2004 Wolf et al,, 20083 and for species

To evaluate the GAPPARD method, we applied it to LPJ-(Koca et al, 2006 Miller et al., 2008 Hickler et al, 2012).
GUESS (LPJ-GUESS-G) and compared the results to thdn Our experiments, we used the most abundant Swiss for-
stochastic runs of LPJ-GUESS. We used only LPJ-GUESSSt Species, selected according to the species ussskinke
to parameterize our tree species: if the parameters are vali§t &l- (20063, and then analyzed those of them that already
for LPJ-GUESS, they must be also valid for LPJ-GUESS-G,had been parameterized for LPJ-GUESS. We excluded all

2.2 Model application and evaluation

because it is an upscaled version of LPJ-GUESS. LPJ-GUESS species not present in the Swiss Alps, and added
parameterizations for three new species that are abundant
2.2.1 Location and climate data in our study areaLarix decidua Pinus cembraand Pinus

muga For Larix deciduawe generated an additional func-

We selected the Rhone Valley in the Swiss canton of Valais taion to model its leaf phenology based on results presented
test our new approach. The bottom of this valley is one of theby Migliavacca et al(2008 (Appendix A2).
driest regions in Switzerland, and the hillsides lead to steep We further optimized the species-specific parameters used
gradients in environmental conditions. In the region, man-in our experiments so that model results would best match
agement generally did not affect the species compositions téorest inventory data from the Swiss National Forest Inven-
such extents as in most Swiss regions, so that we were abl@ries NFI1 EAFV, 1988 and NFI3 Brandli, 2009. We se-
to use recent forest data to parameterize our modeled trekected inventory data only from plots located south of the
species. We selected eight stands along a north-facing trarRhone and within a 30 km distance of our simulation plots,
sect (Fig.3, Table2) that cover the vegetation zones where and further stratified the inventory information into eight al-
homogeneous forest areas exist (from ca. 150 m above thgtudinal classes analogous to the altitudes of the eight simu-
valley bottom to tree line). Each stand location was derivedlated stands. At each altitudinal class we calculated the mean
from climate data points of 100-meter grid in a way that the and the standard deviation of the biomass of all living tree
altitudinal distances between two stands would be approxispecies and estimated carbon mass assuming that half of a
mately 200 m. tree’s biomass is carbohRCC, 2003 see Appendix Al for

Climate data are applied after the simulation year 1900. Upmore details).
to 1900 we applied randomly selected values of the first 30 We used total forest carbon mass (above- and below-
climate data years for the model spinup. For the 1901-192%round) as the sole main metric for evaluating the model per-
simulation period, we used CRU (Climatic Research Unit's formance in light of the NFI data. Our aim was to optimize
monthly TS 1.2 dataset) data downscaled to a 100-meter grithe model parameters so that for each altitudinal class the
(Mitchell et al, 2004). For the 1930—2006 simulation period, simulated total and main species carbon mass were similar
we used Swiss weather station data from the Federal Officéo the NFI data. The parameters we optimized for all species
of Meteorology and Climatology MeteoSwiss interpolated to included drought tolerance, minimum growing degree day
a 100-meter grid by applying the Daymet meth@dtigrnton ~ sum, and maximum temperature for establishmentol(d
et al, 1997). For the 2007-2100 simulation period, we used gdd5mine and tcmaxe in TableD3 of the Appendix). We

www.geosci-model-dev.net/6/1517/2013/ Geosci. Model Dev., 6, 19542 2013
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Table 1. Variables appearing in the equations.

Variable Description

T Time in final postprocessed results (for simplicity of notation, we set initial figne 0)
X Simulation time in undisturbed simulation

a Patch age

P(a) Probability that a patch has age

y(T) Output variable of non-disturbed simulation at tiffie

Ddist Disturbance probability

i Node, i.e., starting point of non-disturbed simulation with changing drivets)...n

vi(si +a)  State or output variable of non-disturbed simulation starting from nedé agea

further adjusted the allometric parameters for some speciesjariable stratified by certain height classes (of 4 m height ex-
in particular the steepness-influencing parameter in diametetcept the lowest being 2m high). We examined the course
to height relation (kallom2 in TableD3 of the Appendix).  of these variables from an LPJ-GUESS simulation includ-
Further details on the parameterization, especially for the treéng small-scale disturbances and 400 replicate patches, and
species newly added to LPJ-GUESS, are described in Apeompared the outcome to the results of LPJ-GUESS-G.
pendix A2 and TableB1-D3.
We applied one altitude-specific set of LPJ-GUESS av-2.2.4 GAPPARD method versus stochastic LPJ-GUESS
erage return intervals for generic, patch-destroying distur- model runs
bances (RID, inverse ofgist in Sect. 2.3.2). We assumed
that the stands along the height gradient underlie differenfThe crucial test of the GAPPARD method is its ability to
disturbances. In general, stands close to the valley bottoneproduce the behavior of LPJ-GUESS disturbance runs in
are more frequently disturbed by fire in the Valais region terms of total carbon mass, species composition and height
(Zumbrunnen et al.2009. Furthermore, we assumed that structure. To apply the GAPPARD method, we used the RID
more uphill stands are disturbed more frequently by stormvalues of the defined altitude-specific disturbance distribu-
events, rockfall and especially avalanches. On the one hantion (RID in Table2) and took its inverse values for Eg8) (
altitude is not a good explanatory characteristic for avalancheand 6). Using the new set of parameters and the altitude-
appearance, anfichneebeli and Meyer-Gragk992 found  specific disturbances, we simulated forest growth for all eight
that in spruce- and larch-dominated forests steepness favogands with a spinup time of 800yr and a total simulation
the release of avalanches, but on the other hand a thin crowtime of 1000yr covering a simulation period from 1100 to
cover, big gap lengths and higher proportions of larches als@100.
increase the probability of avalanche release. The steepness|In addition to a full time SWD (including 800 yr spinup),
is approximately the same for all our simulated stands ex-we used four nodes from which we started SWDs that pro-
cept the most upper stand, which is on slightly flatter ground.vide the input for the GAPPARD method to account for cli-
At this highest elevation site however, shade-intolerant larchmate change: 1950, 2000, 2050 and 2080. All simulations
is very abundant; the trees are exposed to avalanches froended with the year 2100.
higher altitudes, while the annual maximum snowpack is Without disturbance, as forests become taller the model
deeper, and trees grow with larger gaps surrounding themneeds to calculate light interception in an increasing num-
First tests with the same RID values used for all stands ledber of foliage layersKrentice et a).1993, which consumes
to less precise results, especially concerning the total modeomputational resources. Therefore, we increased the depth
eled carbon mass (not shown). To create an altitude-specifiof these layers from 2 to 5m after 200 yr and to 10 m after
disturbance distribution, we used an RID value of either 65400 yr for the full time SWD. This change did not lead to a
or 100 for each single stand, depending on which value suitslecline in result quality because without disturbances forests
best to predict the total carbon mass (RID in Tad)le become homogenous in such a way that a less detailed light
To evaluate the tree species parameterization, we used twealculation does not have much influence. In addition, such
indices: the Euclidean distance scaled to one and the percentld forests are rather rare so that such a simplification has an
age similarity coefficientgugmann 1994). Details on both  even smaller impact.

indices can be found in the Appendix. To examine the analysis, we first tracked the total car-
bon mass of the different species from the end of the spinup
2.2.3 Analyzed output variables phase until 2080. Second, we mapped the carbon mass results

of the different species along height classes for all stands
For our analysis, we used as investigated output variableand two time points of simulation: 1900 and 2080. We did
(1) the total of the tree carbon mass of a species, and (2) thiaot analyze simulation years after 2080 because they do not
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M. Scherstjanoi et al.: GAPPARD 1523

Table 2. Specific characteristics for stands a to h. Lat: latitude in Swiss coordinates (CH1903/Iv03 projection; longitude is 638 300 m for all
stands); Alt: altitude above sea level; Temp: mean annual temperature; Prec: sum of precipitation of main growing period (April-September);
NFIl-alt: altitudinal range set for NFI plots associated with the modeled stands; NFI1, NFI3: numbers of plots per altitudinal range; RID:
return intervals for generic, patch-destroying disturbances.

a b c d e f g h
Latin m 127400 127100 126800 126500 126200 125900 125500 124800
Altin m 795 1003 1214 1415 1588 1793 1990 2190
Temp in°C 9.5 8.5 7.3 6.2 5.3 4.3 3.2 2.1
Precin mm 385 436 486 535 576 624 670 719
NFI- 700— 900- 1100- 1300- 1500- 1700- 1900- 2100-
altin m 900 1100 1300 1500 1700 1900 2100 2300
NFI1 15 19 29 32 50 54 30 12
NFI3 8 14 21 14 34 24 22 6
RID in yr 65 65 100 100 100 65 65 65

represent interpolated results between two nodes but a prahe used NFI data and the simulated data of carbon mass for
longing of 2080 conditions (Edb, casea > y(s,)). Third, total living forest and for main species (Taldle
to quantify the quality of the results we calculated the root Combined, the NFI1 and NFI3 data show an increase in
mean square error (RMSE) for each stand and each speciefgrest biomass from the lowest site at 800 m to middle ele-
based on simulation results of a 10 yr resolution. The RMSEvations of approximately 150tha (from 100-120 to 250—
corresponds to the differences in carbon mass between twa70tha?; from 5-6 to 12.5-13.5kgCn¥) followed fur-
models (described in detail in Appendix C), and is calculatedther upslope by a decline in biomass to 130-170th&.5—
from the sums of all individuals of one species reaching a8.5kgCn12) at the upper alpine vegetation zone (see Ta-
certain height class and an adjacent height class (tolerandelesD4 andD5 in the Appendix for more details). In general,
to difference in height classes). For every species, each ofve were able to simulate these altitudinal shifts, although
these differences enters into the calculation of the RMSE asve rather overestimated the NFI1 data and rather underes-
a fraction of the maximum possible difference appearing intimated the NFI3 data. Consistent with the data, our simula-
that stand and the calculated simulation period. Hence, thé¢ions also show a small increase in forest carbon at all sites
maximum RMSE is one (completely different results). We between the years in which the NFI was performed. We have
calculated the RMSEs separately for two time periods: thereached percentage similarity coefficients higher than 0.93
spinup period and the climate change period. For both, weand Euclidean distances scaled to 1 of smaller than 0.35 for
calculated the RMSE between LPJ-GUESS with 400 repli-the comparison of the total carbon mass over all altitudinal
cate patches and (1) LPJ-GUESS with 100, (2) LPJ-GUESSRIlasses (T11 in Tablg).
with 25 replicate patches and (3) LPJ-GUESS-G. With the new LPJ-GUESS parameters and functions, we
To test the model performance, we compared the simwere able to simulate the general pattern of a domifrant
ulation times of stochastic LPJ-GUESS model runs with nus sylvestrist stands closer to the valley bottom, dominant
400, 100 and 25 replicate patches, and LPJ-GUESS-GPicea abiesandLarix deciduain forests at a mid-altitudinal
Listed times needed for the simulations using the GAPPARDelevation, dominantinus cembraand Larix deciduain
method consider only initial runs. The computational time forests at the upper alpine vegetation zone, and a continuous
needed for the GAPPARD method is negligibly short. The decrease of the proportion of broad-leaved tree species with
simulations ran on one core of an AMD Opteron 2439 altitudinal height (FigsD1 and D2 in the Appendix). The
2.8 GHz processor. newly parameterized LPJ-GUESS simulated the NFI distri-
bution of most species with percentage similarity coefficient
values of over 0.5 and Euclidean distances scaled to 1 of
smaller than 1.0 (Tabl8). There are only two major excep-

3 Results tions. First, the NFI data, especially at mid-altitudinal eleva-
) o tions, show high biomass afarix deciduathat LPJ-GUESS
3.1 Tree species parameterization does not capture with the parameterizations, model func-

) tions, and initial modeling conditions we used. Concomi-
We successfully parameterized the LPJ-GUESS forest modehntly, the model generally predicts moRicea abiesthan
using data from the Swiss National Forest Inventories (NFIs)is observed in the NFI data, so the sum of the carbon mass of
of the Rhone Valley. We achieved a high accordance between
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Table 3. Evaluation of model parameterization. TRicea abiesT2: Larix decidug T3: Pinus sylvestrisT4: Pinus cembraT5: Abies alba

T6: Pinus mugpT7: Quercus specT8: Betula pubescend9: Fraxinus excelsiarT10: other broad-leaved species; T11: all tree species;

NFI1: model results (carbon mass) for simulation year 1985 compared with NFI1 data; NFI3: model results (carbon mass) for simulation
year 2006 compared with NFI3 data; V1: Euclidean distance scaled to 1 (lower values are better). To provide greater clarity, values smaller
than 0.67 are written in bold; V2: percentage similarity coefficient (higher values are better). To provide greater clarity, values higher than
0.67 are written in bold. Both similarity measures were calculated by comparing the carbon mass of simulated and measured data (see fol
details on the calculation).

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

NEIL vi 063 139 037 056 06 0.7 107 083 064 088 0.19
v2 078 05 08 066 072 069 0.05 071 0.69 0.65 0.96

NEI3 vi 076 137 051 059 053 074 067 086 0.72 0.850.34
v2 07 047 077 069 0.74 066 054 068 05 0.63 094

a) b) 3.2 Development of forest species composition and
15 15 carbon mass with LPJ-GUESS

10

The climate change scenario we applied led to several
changes in all simulated stands. Over the period from 1900
* 000 2000 2000 . 1500 2000 2080 to 2000, the total carbon mass in most stands slightly in-
creased. During the 21st century the carbon mass increased

15 © 5 ) in all stands with highest increase at the beginning of the 21st
Lo e D eSO century (black solid line in Figd).
I 10 At lower standsQuercus pubescenand Picea abies
5 5 (stands a and b) or drought-tolerant broad-leaved species
0 (stands b to e) profited from a decreas®fus sylvestrisin
1900 2000 2080 1900 2000 2080

all stands, the proportion of broad-leaved species increased.
Generally the increase of broad-leaved species was lowest
at higher altitudes € 0.1kgCn12 in stand h), and high-
est at low altitudes (approximately 1kgCtin stand a).

5 5 Like Quercus pubescerend Pinus sylvestriswith climate
ol ‘ L ol ‘ ‘ changePicea abiesstablished at higher altitudes. Although
1900 2000 2080 1900 2000 2080 no Picea abiesappeared in stands g and h in 1900, in 2080
this species made approximately one-third of the total carbon
9) h) — LPJ-GUESS-G . . .
15) g m? 15 i e;gﬁ;; mass in stand g and one-fifth in stand h.

The three stochastic LPJ-GUESS model runs (using 400,
100 and 25 of replicate patches) in the long term showed
similar results for tree carbon mass development (Bjg.

900 2000 2080 _ 1000 2000 2080 However, it is clearly illustrated, that carbon mass can vary

strongly for decades as well as for centuries (in the case of
Fig. 4. Tree carbon mass development. Tree carbon mass fron25 replicate patches). A high number of replicate patches
spinup time (before 1900) until 2080 with the new GAPPARD minimizes the chances of intensively altering output vari-
method applied to LPJ-GUESS (LPJ-GUESS-G) and for LPJ-ables. However, as can be clearly seen in Bigeven the
GUESS using 400, 100 and 25 replicate patches. results of the 400-replicate and 100-replicate simulations are
quite different. Only for periods with extreme climatic situa-

. tions, all of the three LPJ-GUESS runs were affected equally
both species leads to a good coherence to the NFI data. Sefé.g., in the beginning of the 1920).

ond, the modeled carbon mass@iercus pubescemxceeds

the NFI1 values in stand a, which is reflected in both used in3 3 pevelopment of forest species composition and

dices. Moreover, although there is basicallyTilta cordata carbon mass with the GAPPARD method

andCarpinus betulusippearing in the NFI data, both species

established as minor tree species in lower altitude stands i©ur comparison between LPJ-GUESS results using 400

LPJ-GUESS. replicate patches and LPJ-GUESS with GAPPARD (LPJ-
GUESS-G) shows that the GAPPARD method successfully
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Fig. 5. Single-species carbon mass for statajs(d) and(h) simu- h) . 5 0, 5 10
lated with LPJ-GUESS and LPJ-GUESS-G. LPJ-GUESS: stochas-
tic simulation run using 400 replicate patches, LPJ-GUESS-G: 1) 2 2
GAPPARD applied to LPJ-GUESS. Development of carbon mass ST B S
until 2080. Bars indicate the NFI1 (1985) and NFI3 (2006) data. 5 10 5 height 10
Black bar sections stand for broad-leaved species that were not
modeled. Fig. 6. Simulation results for standg), (d) and(h) for the simula-

tion years 1900 and 2080. Carbon mass per tree species is plotted

against tree height classes for (I) LPJ-GUESS using 400 replicate
reproduces the stochastic LPJ-GUESS simulations. The@atches and (Il) LPJ-GUESS-G (GAPPARD method used on LPJ-
overall development of total forest carbon mass was capGUESS). Height class 1: trees of 2-6 m height; height class 2: trees
tured in most simulation runs (Figs.and6, and Figs.D3  ©f 6-10m height, and so on.
and D4 and TableD6 in the Appendix). The total carbon
mass produced with LPJ-GUESS-G was in the range of LPJ- . . . :
GUESS results for each stand and at any simulation timeunp_roporﬂonally more simulation time than S”.‘a”er trees
(Fig. 4). However, using the GAPPARD method smoothed mainly because of a more complex light calculation.

the results over time so that changes of output variables onl)é For the spinup period, the mean RMSE between LPJ-
occur gradually with the simulation years, which can be seen UESS using 400 replicate patches and LPJ-GUESS-G was

in total carbon mass results and for single species. Also Congpproximately 0.1 (calculated for species that produced at
glesp ' I?ast 0.5kgCm? in one of both models). For the simula-

cerning species composition, LPJ-GUESS-G was successft£Ion period, the mean RMSE between LPJ-GUESS and LPJ-

in reproducing LPJ-GUESS results. Mean root mean Squar%UESS-G was approximately 0.05. Reducing the numbers

gg&;ﬁ”ﬁ?gﬁlégss?;r:n f&% ;ir:ngP%f-g]SErggaSsEMig f replicate patches in a stochastic LPJ-GUESS run down
9 9 %% 25 resulted in a mean RMSE (between the 400- and the

replicate patches. The only case where LPJ-GUESS-G proz : : . ;
. . o . 25-replicate simulation runs) of approximately 0.09 for the
duced a different species composition was in stand g. There, . : k : .
: ; ; . : - 8pinup period and 0.07 for the simulation period, and was
Picea abiesstablished in the middle of the 20th century in . : . :
L ) . roughly four times faster than the 100-replicate simulation
the LPJ-GUESS stochastic simulation run, but arrived Only(TabIe4)
about a century later in the LPJ-GUESS-G run. '
Our comparison of simulation times shows that the
GAPPARD approach performed approximately 11 times4 Discussion
faster than LPJ-GUESS using 100 replicate patches (Ta-
ble 4). The full time simulation without disturbance con- This study identified a novel, efficient method to run
tributed to a great extent to the simulation time of the disturbance-driven models and also yielded an LPJ-GUESS
GAPPARD approach (results not shown) because there tregsarameterization and adaptation, and climate change simula-
can get much older and taller. These taller trees claimtions for a region with specific properties.
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Table 4. Simulation times and mean RMSE. Sum of simulation times of all 8 simulated stands for 800 yr of spinup and simulation from
1900-2100 with LPJ-GUESS using replicate patches and using the new GAPPARD method. RMSE for model spinup of 800 yr (RMSE SPI)
and for the simulation time 1900-2080 (RMSE SIM). The mean RMSE is calculated using all species that produced at Ieast‘(?.ﬁkng

one of both models at any point in time during the simulation. The reference to RMSE calculation is always LPJ-GUESS with 400 replicate
patches. The 400-replicate run was done once, the others shown as means of 10 simulation runs that use the same random number of see
for stochasticity (thereby producing the same output) to account for the different loads of the processor nodes. Simulations were run on one
core of an AMD Opteron 2439 2.8 GHz processor.

400 replicates 100 replicates 25 replicates GAPPARD

Simulation times 7h31lminlls 1h15min33s 17min 58s 6min56s
Mean RMSE SPI - 0.10 0.09 0.10
Mean RMSE SIM - 0.05 0.07 0.05
4.1 Parameterization representative of the overall disturbance regime, so that the

constant probability of disturbance events we use can repro-
For the first time the Alpine mountain forest speciesix duce it. Despite all sources of error, our parameterization re-
decidua Pinus cembrandPinus mugavere parameterized sults show high consistency between NFI data and simulated
for LPJ-GUESS. We were able to include both neimus  values. Furthermore, the simulated carbon mass and forest
species by using only existing model functions. One achievespecies distribution in the different stands at the time of the
ment of the parameterization is the newly added function toNFI dating are plausible to a great extent.
model the leaf phenology dfarix decidua(see Sect2.2.2
and Appendix A2). We used observed forest biomass from4.2 Simulation results
inventory data as the only variable upon which to optimize
the LPJ-GUESS species-level parameters. Although this simUsing the altitude-specific disturbance distribution and the
ple approach does not account for the properties influencingnew parameters, we were able to simulate total forest car-
forest dynamics, such as tree age, height or width, it led tdbon mass and a species composition that largely reflects the
a considerable similarity between the newly parameterized\FI data. We were able to reproduce forest species compo-
LPJ-GUESS results and the NFI data. With the NFI data,sition and tree carbon mass without using a specific distur-
we were able to use a relatively dense sample of plots closéance function like the LPJ-GUESS fire functidrhpnicke
to the modeled stands, which makes the results highly reliet al, 2001). However, to account for feedback effects be-
able. Sources of error mainly concern the estimation of theween fire and forest growth and the spreading of fire, and
biomass from the NFI data on the one hand, and the compatoth especially in the context of climate change, an appro-
ison with LPJ-GUESS allometry-based simulated values orpriate modeling of the fire function could be important for
the other hand. Using the LPJ-GUESS allometry function,area-wide simulations of the modeled region. However, as
trees with identical diameter always have the same heighbur main concern was to present a new modeling technique,
and therefore the same mass. As a consequence, it could lvee accept approximations regarding missing modeling detail
possible that the model results might match the carbon masef disturbance types.
results of the NFI, but not the diameter at breast height. This The few discrepancies between the simulation results and
may particularly be the case in high mountain settings wherghe NFI data may be partly due to uncertainties in the in-
tree allometry is strongly influenced by meteorologically im- terpretation of the data. It is very likely that the situation
posed constraints (e.g., wind), which we did not consider inwith the high carbon mass dfarix deciduaand low one
our models directly. Such an inconsistency, which might varyof Picea abiesin mid-altitudinal stands is to a high de-
for different species, could lead to an unrealistic simulationgree a result of management practices in the Rhone Val-
of the vertical structure of the forest, and thus to further devi-ley (Gimmi et al, 2010. In addition, including specific to-
ations from observations. However, the good agreement betal disturbance years (removal of all living carbon mass of
tween our simulations and the observed biomass data indiall replicate patches in one pre-defined year) did not lead to
cates that differences in allometry are compensated for in tha significant increase in the biomass of early successional
model (e.g., through changes in stand density controlled by arix deciduabecausePicea abiescompletely overgrew it
disturbance). Another source of error may be linked to theafter only 30 yr of succession (results not shown). Although
development of the forests in the used NFI plots. It is notthis suggests that succession may occur too quickly in LPJ-
clear in detail how strong the influence of the managementGUESS, it can be assumed that in the absence of forest man-
in the specific NFI plots is. It is also not exactly known on agement the real forests analyzed here at altitudes between
which stands clear cuts or big disturbance events have takeh200 m and 1800 m would be strongly dominatedRigea
place. We assume that the mean state of all used stands &bies(Frehner et a].2009. For the specie€arpinus betulus
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and Tilia cordata the simulation results exceeded the NFI our simulations with LPJ-GUESS the carbon masPicka
data, which possibly is enhanced by not modeling all exist-abiesincreases at the lowest stand, while the mas®ief
ing broad-leaved summergreen species. Itis generally knowmnus sylvestrislecreases, especially because the latter is more
thatCarpinus betulusloes not exist in this part of the Rhone drought-resistant thaRicea abiesWe assume that the sim-
Valley (Welten and Sutter1982), which is also reflected by ulated decrease Rinus sylvestribiomass is partly because,
the NFI data. In contrasTiilia cordatausually exists in this  using LPJ plant physiological functions, it profits far less
region Welten and Sutterl982 Svejgaard Jensei2003, from increased C®levels in comparison with broad-leaved
but for unknown reasons is found only on very few plots of summergreen tree speci€hgaib et al.2012. Another rea-
the NFI data in the analyzed region. son for the decrease Rinus sylvestribiomass might be that
The increase of tree carbon mass with climate change, alsthe lowest stand is still roughly 150 m above the valley bot-
at the lowest site, can mainly be explained by the 20th centom, so that conditions are still good enoughRicea abies
tury increase in atmospheric G@oncentrationsKischlin This is also reflected in the NFI data where the carbon mass
and Midgley 2007). Test simulations with a constant level of Picea abiest the lowest stand approximately doubled be-
of CO, led to a decrease in tree carbon mass in the 21stween NFI1 and NFI3 (Fig5, upper row). The general in-
century in most plots (results not shown). This decrease caerease from the NFI1 to the NFI3 biomass confirms the in-
be traced back to a drier climate with more pronounced wa-crease of forest biomass, although this change also can be
ter stress so that growth rates might be reduced and respdue to past forest management and the prevention of distur-
ration rates increased. With rising G@vels this effect can bance events.
be compensated, at least to a certain degree, because stomatalt is unclear whether the modeled shift of species to higher
regulation maintains high production rates and prevents planaltitudes as a consequence of climate change happened in a
water loss. In our results, the increase of tree carbon mass igasonable amount of time. In LPJ-GUESS, tree establish-
more pronounced in stands with more frequent disturbancement of new species only depends on the environment and
(close to valley bottom or upper tree line). Two reasons maydoes not consider changes in and feedbacks to the seed pool.
be responsible for that. First, species more adapted to the nelis well known that modeling seed pools and the dispersal
climatic conditions could profit from opening gaps. Second, of seeds have a large potential to change simulation results
species adapted to previous climatic conditions (which sur{Lischke 2005 Lischke et al.2006h Epstein et al.2007,
vive more likely with less disturbances) could be affected Neilson et al.2005. Incorporation of seed dispersal and mi-
negatively by the changing conditions opening space for newgration into LPJ-GUESS remains an open problem for future
species. However, at the lowest stand (ca. 800 m) the increagesearch.
of carbon mass may be unrealistically large. Closer to the
bottom of the Rhone Valley, extreme drought events causingt.3 GAPPARD method
forest diebacks are expected to occur more frequently in the
near future Rebetez and Dobbertig004). But the modeled  With GAPPARD we utilized a modified version of the von
future carbon stock does not show the effect of such extreméoerster equation. Several other approaches also used von
events (compare with the dry year 1921 in Hysuggest- Foerster types but during the simulations for each year and
ing that the downscaled climate data that we used may unwithout using computationally efficient interpolation meth-
derestimate the climate variability, and thus drought eventspds Kohyama 1993 Moorcroft et al, 2001, Falster et al.
or that the CQ effect is too strong. In addition, the north- 2010. Despite the success of our method, there are some lim-
facing aspect of all the sites we simulated means that theytations. With the method presented here, it is currently not
may be relatively less sensitive to interannual climate vari-possible to include any spatial interactions between neigh-
ability than the inner-Alpine region as a whole. However, the boring grid cells or patch-to-patch interactions. Therefore,
carbon mass of LPJ-GUESS results does not continuously inseed dispersal or the spatial mass effect of LPJ-GUESS (es-
crease over time, mainly due to stochastic variances, so thaablishment in a patch depends on carbon mass of other
long-term trends are much more significant than changes ipatches in a stand) cannot be applied yet. The stochastic
carbon mass over decades. This is one reason why a quantitezortality and establishment functions of LPJ-GUESS seem
tive analysis of the carbon mass development between NFIio have a much smaller effect on forest carbon mass and
and NFI3 is not fully reliable. However, the limited sample species composition than do stochastic small-scale distur-
size of the NFI data does not allow the strict quantitative bances. With a more significant impact on demographic
analysis of changes in carbon stocks. stochasticity, LPJ-GUESS might lead to results that could
With climate change, the occurrence Binus sylvestris  not be reproduced with the GAPPARD method as adequately
at stands closer to the Rhone Valley bottom will most prob-as we show here. In this case, the methods used in the for-
ably be reduced and exchanged by broad-leaved droughest models TreeMigLischke et al. 20068 or TreeM-LPJ
resistant species likBuercus pubescer{Rebetez and Dob- (Scherstjanoi et 812013 to model vertical and horizontal
bertin, 2004 Bigler et al, 2009. This is well reflected in  heterogeneity could provide possible solutions. Although it
our modeling results. But it is not entirely clear why in might not have an influence on the stands modeled here, one
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additional limitation of the GAPPARD method could be that that uses a gap model approach and that applies disturbances
the influence of climatic extreme events is not visible in the as stand-replacing events. Our simulations demonstrated that
model output because of the linear interpolation between difthe GAPPARD method can also be used for simulations that
ferent initial undisturbed runs (see Se2tl.2 Eqg.5) and  consider the transient effects of changes in climate and at-
because of the preset node positions. Thus, a central quesiospheric C@ concentrations. Moreover, the principle of
tion for future applications would be the number and setup ofthe method could be applied to implement newly the effect
starting points of simulations without disturbances (SWDs).of stand-replacing disturbances in any dynamic forest or veg-
Especially if a disturbance has happened before an extremetation model.

climatic event (e.g., extreme dry years) the following succes- The GAPPARD method is particularly suitable for simu-
sion may show large differences to the mean calculated witHating a great number of stands in a fast way, and hence is
our new method. Hence, nodes must be set such that longapplicable on larger scales. The results can be used to make
term trends and short-term variabilities are depicted. Herefirst estimations about the development of output variables
we use pre-defined starting points for the SWDs (nodes) chofe.g., species composition) or to identify hot spots of unusual
sen independently from climate data. However, despite of user interesting simulation results, which then can be analyzed
ing this simplification concerning extreme climatic events wein more detail with the original models.

met our goals, also because unresolved spatial heterogene-As a next step, we plan to apply the efficient method
ity (e.g., microhabitats) implies that not all patches responddeveloped here in combination with the optimized species-
in the same way to extreme climate variability and extremelevel parameter set for Swiss tree taxa in Switzerland- and
events. Still, this simplification might be the reason for the Europe-wide simulations on a 1km grid. Furthermore, we
underestimation oPicea abiegrowth in stand (g). Our first  plan to extend the method by implementing effects of demo-
SWD starts in 1950. An additional SWD starting in 1900 graphic stochasticity, non-stand-replacing disturbances and
did not substantially change the model results (not shown)spatial interactions.

Hence, the combination of suitable establishment conditions

in one or more specific years in the beginning of the 20th

century in combination with disturbance events must be theappendix A

reason whyPicea abiesstablishes earlier in LPJ-GUESS.

Furthermore, it remains unclear whether a different in- pagrameterization details
terpolation method (e.g., spline interpolation) between two
nodes could lead to even better results. In addition, errorA1  Adaptation of NFI data
may result from ignoring that some state variables are not set
to 0 after a disturbance event in stochastic LPJ-GUESS simThe selection of the NFI plots is based on the distance to
ulations (e.g., amount of litter, soil water and snow layer) butthe simulated stands, on the stand type, and topographical
with our method we assume they were. Another source oftonsiderations. We used only NFI plots that were classified
error can be explained by the effect of the smaller sampleas accessible forest areas, and that are all located south of
size in our method on the establishment of saplings comthe Rhone, at most 30 km westward or eastward of the sim-
pared to the gap model approach of LPJ-GUESS. Usingulated stands, and at most 30 km southward of the southern-
replicate patches theoretically more combinations of differ-most stand. We also classified the chosen NFI plots accord-
ent light conditions (e.g., very good light conditions after dis- ing to their exposition, but the results were not sensitive to it
turbances) and different climatic conditions can be attained.(results not shown).

It is important to note that at the moment the new method The NFI1 and NFI3 data of all plots are split into two
cannot serve to track output variables in the same way as thparts. One part comprehends trees with diameter at breast
original LPJ-GUESS can. However, the method presentedheight (DBH) higher than 12 cm (older trees), and the other
here is not designed to model carbon or nutrient cycles. Furtrees with DBH lower than 12 cm (young trees). For the older
thermore, the method is best applicable if state variables thatrees, the biomass per area is estimated for each occurring
are typically reset by disturbances do not influence the subspecies. The young trees in the NFI1 are classified into DBH
sequent tree establishment. classes of 0-4 cm, 4-8 cm or 8-12 cm, or are classified as 30—

130cm high. The young trees in the NFI3 are classified into

height classes of 10—40 cm or 40-130 cm, or are classified as
5 Conclusions and outlook having a DBH of 0—12 cm. To estimate their biomass we used

the mean values of the classes, applied it to the LPJ-GUESS
With GAPPARD, we provided a new method of efficiently allometry function and calculated the biomass considering
simulating the dynamics of tree biomass and forest speciesvood density Assmann1962).
composition. It can be used for any output variable that can For the parameter tuning, we utilized a set of simulation
be produced with the deterministic run and that is reset byruns that all used 800 yr of spinup period and simulated forest
disturbance. GAPPARD can further be applied for any modeldevelopments from 1900 up to the years the NFI data were
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estimated. To smooth stochastic variations widely, we used & as a very drought-tolerant speci&an and Shugar2005
number of 400 replicate patches for the final parameter fineused different larch species but also defined them as drought-
tuning simulation runs. tolerant.Matras and Bques(2008 noted that the response
of Larix deciduato drought can vary strongly depending on

A2 New plant physiological functions and parameters  stand conditionsKlimek et al. (2011) discussed the water

. consumption ofLarix deciduaseedlings compared to other
We added three new tree species to LPJ-GUESS that have ngliters, and reported different observations ranging from
been included beford:arix decidug Pinus cembrandPi-  game water uptake rates among all conifers to studies that
nus mugoHence, we had to parameterize them from scratchgy, o\ that arix deciduaconsumes 10 times more than other
Both Pinusspecies were applicable to existing functions of ¢qnifers. I soil conditions allow it, this species can survive
LPJ-GUESS. But first plausibility tests showed that thesedry years better than other species that are more drought-

functions were r_lot suffici_e_nt fdrarix decidua mainly due adapted because its root system is very déeyiddillo et al,
to the tree species’ specific phenology. In LPJ-GUESS, theyggg vialentini et al, 1994. Considering all this, we deter-

foliage of summergreen species is transferred to litter all atnineq| arix deciduato have a high proportion of fine roots
once on one simulation day (typically in autumn) when the, the deeper soil layer and a moderately high drought tol-
maximum number of equivalent days with full leaf cover per o oce (Tabléd3). Based orBugmann(1996 and Lischke
growing season exceeds a certain value. For most specieg; 51 (20061, we also used a rather high drought tolerance
this approximation has no significant negative influence bes,, pinus cembraand Pinus mugo According toValentini

cause photosynthetic efficiency in general is reduced morgy 5 (1994, Pinus cembravith its root system is also able
suddenly. But especially for larches, leaf senescence can use groundwater from deeper layers, which is also in line

a process lasting for months during which photosynthetic,yit, general knowledge. Thus, we determined a high propor-
intensity is reduced stepwise. Based Migliavacca et al.  ion of fine roots in the deeper soil layer for both nBimus
(2008, we included this physiological trait by defining a new species.

phenology type foLarix decidua It will be modeled like a We modified several values of the latest existing LPJ-

summergreen species, but in autumn the phenological statg;egg species parameterizatidtiqkler et al, 2012 (Ta-

of the larches will decrease with an S-shaped curve, dependsie p3). Main changes address the soil water content needed

ing on the number of days since the start of fall of leaves (sd), establishment, which we increased feagus sylvatica

and the number of days with full leaf cover_this year (md) ppies albaandQuercus roburand decreased f@etula pen-
due to the LPJ-GUESS leaf phenology function: dula and Picea abies Furthermore, we introduced a new

phen:—1) . md= 120 shadp tolerance clgss, .particularly.fé:icea gbies(cqlumn
phertr) = 1+peﬁ<§r((9~_1§§53250>> | (A1)  'ns”inTableD1). With this, we contribute t@icea abiede-
1rexp(015(s0- (50+ PE20) ) eise ing less shade-tolerant th&agus sylvaticar Abies albabut
more shade-tolerant than intermediate shade-tolerant species
We determined the other parameterd.afix deciduaori- (Bugmann 1994 Roloff, 2010.

ented on expert knowledge and literature about the species Based on the Switzerland-wide applied forest models
(TableD3). We defined it as a shade-intolerant species with aFORCLIM (Bugmann et a).1997 and TreeMig (ischke
high ratio of leaf area to sapwood cross-sectional adrar{ et al, 2006b, we additionally adapted the allometry param-
et al, 1995. Although it is a boreal species that also grows eters. As a resulBetula PendulaPinus cembraand Pinus
under very cold conditions, it can establish under warmermugohave a higher stem diameter to tree height ratio than the
conditions, too. Furthermore, saplings do not need muclother species. As another importantissue, we changed the pa-
soil water for establishment. The parameters of the Rew rameter of needed growing degree sum required for full leaf
nusspecies are mainly based Binus sylvestriparameters. cover of Betula Pendulaand Larix deciduato account for
However, both newPinus species are more cold-resistant, their comparatively fast budburstiirray et al, 1989.
have seeds that are less drought-resistant and their needlesAnother important change concerns the parameter of max-
have a higher longevity. Moreove®jnus mugowas defined  imum 20yr coldest month mean temperature for establish-
as shade-intolerant. ment (TMAXegsy. This limitis not associated with plant phys-
An important issue was the parameterization of theiological functions, but rather represents a surrogate for func-
drought tolerance (dbl in Table D3) of the three new tions not implemented in LPJ-GUESS that are responsible
species. Referring tBllenberg(1986, Bugmann(1996 de- for outcompeting cold adapted species under warmer cli-
fined Larix deciduaas a rather drought-intolerant species. mates. We removed this limit for all species BRihus cem-
However, he also listed other authors that had defined interbra. In a previous version, the implementation of TMAX
mediate values for itEilmann and Rigling(2012 showed values of—1.5 Miller et al., 2008 Hickler et al, 2012 or
that Larix deciduais, in comparison to, for exampl®jnus —2 (Koca et al, 2009 for Picea abiesand of —1 (Koca
sylvestris strongly affected by drought events. On the other et al, 2006 Miller et al., 2008 Hickler et al, 2012 for Pinus
hand Lischke et al(2006) andShuman et a[2011) defined  sylvestrided to two discontinuities (results not shown). First,
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both species should have been able to establish in the lowe3b be able to compare results of different dimensions, we
of the analyzed elevations (ca. 800 m), which is reflected byscaled the data of each elevation class, giving the highest of
the NFI data. But maintaining the limits led to a prevention all occurring values of one altitudinal height class the value
of establishment of both because the climate is “too warm”.one and normalized the other values to the highest value.
Second, if the climate in a stand was near the limit of the The percentage similarity coefficient

TMAX et @ species did not grow during the spinup (1901—

1930 climate) but established in the slightly colder 1940s. Al-sc— 1 — 2 lxi il (B2)
though it became much warmer afterwards, the cold-adapted >_(xi 4 yi)

species, once established, did not become extinct (€.9., dgas a minimum of zero when the distances of the data points

spite drought stress). This created the inverse picture of col@gqual their sum, and one, if the two datasets are edua{
adapted species that grow better under warmer climates. Ayanpy 1994).

future application of this parameterization in regions with
warmer winters might need further tests and possibly a re-
implementation of TMAXg:for some species. Appendix C

Similarly, the drought tolerance parameter used covers
only a part of plant physiological responses to drought. ThereCalculation of the root mean square error
is a high risk that its values will be defined varying from
realistic values to also cover other plant-related effects that Ne differences in carbon mass of one species between the
are not included in LPJ-GUESS (e.g., plant water storagefwo model outputs to compar€in1, Cm2) are summed up
plant water conduction traits, certain stomata closure effectdor €achy betweenystartandyend (10 yr resolution), and for
or absence caused by dispersal barriers). This complicate@@ch height class (htcl) up to the number of height classes
the parameterization of the drought tolerance. In accordanc€htcl), also considering neighboring height classes (htcin).
with the occurrence of species in the NFI data Bogmann T hese differences
(1996 and Lischke et al.(20068, Picea abiesand Betula . _ Zmin(htc|+1,nhtc) C
pendulaare more drought-resistant than the drought toler- "%>-M"® htcln=maxhtcl—1,1) =M1 htclny
ance values ofickler et al. (2012 might reflect. Conse- —thtggﬁ;;ﬂ{ml,l) Cm2,hiciny (C1)
quently, we increased the drought toleranceéPafea abies
and Betula pendulgdecreased dbl value, TableD3). For
the same reason we decreased the drought toleraidmax
alba, Quercus roburand Fagus sylvatica(increased dol . nhtel min(htcl+1,nhtc)
value, TableD3). We included C3 grass as a plant functional ‘™M = maX(thC'zl htcln=maxthtci-1,2) Cm1hteln ysiare -

are scaled by the maximum carbon mass appearing in that
period:

type into our modeling without changes to the existing LPJ- ZRPtﬂl hmirll(htcl+1,rr]1ht|c) Crma hicin
GUESS functions. We did not use a bole height to calculate o=t ~htcin=maxhtcl-1,1) =& Ysian
. . . . K . nhtcl min(htcl+1,nhtc)
the daily fraction of incoming photosynthetically active ra- > hicl=1 thdn:max(htcl—l, 1) Cm1,hteln ysgare+1+
diation (PAR). In other words, the leaf area of all species nhtel y-min(htcl+Lnhte)
thcl:lthdn:max(htclfl,l) m2,hteln ystartt+-1

and the foliage layers to calculate the PAR are equally dis-
tributed vertically from ground to treetops. This could be
a problem for the modeling of species that produce foliage
high above the ground (e.gRinus sylvestris and by that nhtcl  <—~min(htch+1.nhtcl)

might have an advantage because they are less shaded. How- 2 htcl=1 htcln=max(htcl—1,1) sz'htc'”yend> - (C2)
ever, bole height is parameterized in LPJ-GUESS while in
reality it shall be dependent on stand density and tree ag
and therefore treated as a state variable.

nhtcl min(htcl+1,nhtc) C
2 htcl=1 htcln=max(htcl—1,1) ~m1,htcInyeng>

e Then its square is summed up and divided by the number
of elements to sum up (height classes times years). The root
of it is the root mean square error:

Appendix B ey (o)
htcl=1 £ y=ystart Cmm
rmse= Yend— Ystart ’ (C3)
Used similarity measures for the evaluation of the nhtel =25

parameterization

The Euclidean distance Appendix D

ed=,/ Z(x,- — )2 (B1)  Figures and tables

is proportional to the sum of the squared distances of all data
points. For this reason, a lower value stands for better results.
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Fig. D1. Comparison of the NFI1 data with LPJ-GUESS runs. LPJ-GUESS results were produced using 400 replicate patches and altitude-
specific disturbances (see RID in TaB)e See the lower right chart for descriptions. Note that for some species the two inner quartiles of the

NFI data are located at 0 in all plots.
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at 0 in all plots. See Fid>1 for description.

Geosci. Model Dev., 6, 1517542 2013 www.geosci-model-dev.net/6/1517/2013/



M. Scherstjanoi et al.: GAPPARD 1533

15
kg m™?

10

1900 2000 2080 1900 2000 2080

1900 2000 2080 1900 2000 2080

15

PR

10
5
1900 2000 2080 1900 2000 2080
M Picea abies Carpinus betulus
Pinus sylvestris W Corylus avellana
15 Larix decidua 15 W Fagus sylvatica
) = Pinus cembra h) W Fraxinus excelsior
g M Pinus mugo Quercus robur
I Abies alba I Quercus pubescens
M Betula pendula m Tilia cordata

10 10

||'E

1900 2000 2080 1900 2000 2080

Fig. D3. Single-species carbon mass with LPJ-GUESS using 400 replicate patches. Development of carbon mass until 2080. Bars indicate
the NFI1 (1985) and NFI3 (2006) data. Black bar sections stand for broad-leaved species that were not modeled.

Table D1. Shade tolerance parameters. The affiliations to species are given inDakde shade-tolerant; ns: nearly shade-tolerant; ist:
intermediate shade-tolerant; si: shade-intolerant.

st ns ist Si

Minimum forest-floor PAR

. 1.25 1.625 2 25
for establishment (MJ m? day 1)

Growth efficiency threshold

(kgC m-2yr-1) 0.04 006 008 01

Maximum establishment rate

(saplings T2 yr—1) 005 0075 01 02

Recruitment shape parameter
afterFulton (1991

Annual sapwood to heartwood

1 0.05 0.0575 0.065 0.08
turnover rate (yr+)
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Fig. D4. Single-species carbon mass with LPJ-GUESS applying the GAPPARD method. SB& figdescriptions.

Table D2. Climatic range parameters. The affiliations to species are shown in Dable

Boreal Temperate

Optimal temperature range

for photosynthesis’C) 10-25 15-25

Maximum temperature range

for photosynthesis’C) —4-38 —2-38
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Fig. D5. Simulation results for standa)—(d) for the simulation years 1900, 2000 and 2080. Carbon mass per tree species is plotted against
tree height classes for (I) LPJ-GUESS using 400 replicate patches, and (Il) using the new GAPPARD method against LPJ-GUESS. Height
class 1: trees 2—6 m height, height class 2: 6-10 m, and so on.
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Fig. D5. Simulation results for stande)}~(h) for the simulation years 1900, 2000 and 2080.
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Table D3. Specific tree parameters. b: boreal; t: temperate; st: shade-tolerant; ns: nearly shade-tolerant; ist: intermediate shade-tolerant; si
shade-intolerant; e: evergreen; s: summergreen; d: summergreen with decelerated senescence; phenramp: growing degree sum on 5 degl
base required for full leaf cover; latosa: ratio of leaf area to sapwood cross-sectional area; raotdistl rootdist: proportion of roots

extending into upper and lower soil layer; chill changed chilling parametegykes et al.1996); d_tol: drought tolerance, lower values

show higher tolerance (minimum soil water content needed for establishment, averaged over the growing season and expressed as a fractic
of available water holding capacity, and water uptake efficiency); gdd5min: minimum growing degree day st basg, tcmax and

tcmine: minimum and maximum 20-year coldest month mean temperature for establishmentsten@rimum 20-year coldest month

mean temperature for survival;ddlom2: steepness-influencing parameter in diameter to height relation. longevity and leaf longevity are in
years. Lar dectarix decidua Pic abi:Picea AbiesPin cem:Pinus cembraPin mug:Pinus mugoPin syl: Pinus sylvestrisAbi alb: Abies

Alba; Bet pen:Betula pendulaCar bet:Carpinus betulusCor ave:Corylus avellanaFag syl:Fagus sylvaticaFra exc:Fraxinus excelsiar

Que rob:Quercus robuy Que pubQuercus pubescengil cor: Tilia cordata * newly added species.

Lardec* Picabi Pincentf Pinmug* Pinsyl Abialb Betpen

climatic range b b b b b t t
shade tolerance Si ns ist si ist st si
phenology type d e e e e e S
phenramp 100 - - - - - 100
k_latosa 5000 4000 2000 2000 2000 4000 5000
rootdistu 0.6 0.8 0.6 0.6 0.6 0.8 0.8
rootdistl 0.4 0.2 0.4 0.4 0.4 0.2 0.2
leaf longevity 0.5 4 4 4 2 4 0.5
chill_b 100 100 100 100 100 100 400
longevity 500 500 500 500 500 350 200
d_tol 0.3 0.35 0.3 0.3 0.25 0.4 0.3
gdd5min 300 600 300 400 600 900 700
tcmaxe - - -3 - - - -
tcmine -29 -29 -29 -29 -29 -35 -29
tcmin.s -30 -30 -30 -30 -30 —-4.5 -30
k_allom2 40 40 22 30 40 40 30
Carbet Corave Fag syl Fraexc Querob Quepub  Tilcor
climatic range t t t t t t t
shade tolerance ist Si st ist ist ist ist
phenology type S s S s s s s
phenramp 200 200 200 200 200 200 200
k_latosa 5000 4000 5000 5000 4500 4000 5000
rootdistu 0.7 0.7 0.8 0.8 0.6 0.6 0.8
rootdistl 0.3 0.3 0.2 0.2 0.4 0.4 0.2
leaf longevity 0.5 0.5 0.5 0.5 0.5 0.5 0.5
chill_b 600 400 600 100 100 100 600
longevity 350 300 500 350 500 500 350
d_tol 0.33 0.3 0.5 0.4 0.4 0.2 0.33
gdd5min 1200 800 1300 1100 1100 1900 1000
tcmaxe - - - - - - -
tcmine -7 -10 -25 -15 -15 -5 -17
tcmin.s -8 -11 -35 -16 -16 —6 —18
k_allom2 40 40 40 40 40 40 40
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Table D4. Forest biomass of the NFI1 inventory and LPJ-GUESS results for the simulation year 1985 (alt ¥).tha: Picea abies
T2: Larix decidua T3: Pinus sylvestrisT4: Pinus cembraT5: Pinus mugoT6: Abies alba T7: Quercus specT8: Betula pubescend9:
Fraxinus excelsiarT10: other broad-leaved species; T11: all tree species; SIM: LPJ-GUESS results (400 replicate patches).

Stand T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
a NFI 11.95 1559 63.08 0 0 0 024 3.79 0 8.31 103.19
SIM 12.77 158 74.92 0 261 342 106 6.85 0.68 16 129.44
b NFI 68.62 18.83 29.59 0 6.51 163 0.12 485 255 6.38 139.3
SIM 48.61 3.28 34.43 0 1128 202 3.06 827 174 26.62 139.31
c NFI 91.64 95.99 19.18 0 14.27 0 0.09 3.08 134 1942 245.08
SIM  118.05 5.06 17.44 131 3325 129 378 7.12 2.8 26.1 216.19
d NFI  113.89 63.11 25.49 0.38 19.14 0.24 0 453 0.26 2.93 232.39
SIM  173.49 12.49 5.83 122 2015 111 044 754 0.3 8.74 23131
e NFI 120.49 85 16.15 2.62 345 261 0 101 0 0.84 232.8
SIM 21751 25.56 2.19 0.91 0 0.9 0 181 0 0.29 249.18
f NFI 72.01 106.45 5.01 14.37 0 3.3 0 0.27 0 0 20141
SIM  139.97 35.61 112 2.54 0 194 0 011 0 0 181.29
NFI 18.54 74.72 2.16 31.9 0 6.58 0 0 0 0 133.89
9 siv 15.77 61.06 0.08 56.4 0 5.22 0 0 0 0 138.53
h NFI 0 78.9 0 50.14 0 1.69 0 0 0 0 130.73
SIM 0.69 37.15 0 97.23 0 1.62 0 0 0 0 136.69

Table D5. Forest biomass of the NFI3 inventory and LPJ-GUESS results for the simulation year 2006 (alt #).tBae TableD4 for
descriptions.

Stand T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
a NFI 30.59 0.78 49.87 0 0 0 6.05 12.57 0 8.33 114.86
SIM 14.95 114 7214 0 396 212 1537 859 0.71 1995 138.94
b NFI 63.84 29.21 32.8 0 10.89 0.81 2.82 3.83 531 17.71 167.23
SIM 47.91 2.78 32.56 0 1231 1.583 435 11.54 2.07 31.7 146.76
c NFI 65.56 148.39 20.1 0 2256 112 0.48 4.02 1.06 9.6 273.08
SIM  113.01 587 19.34 0.43 41.06 0.92 4.52 851 288 2736 22391
d NFI 66.83 97.49 26.65 0 28.7 21 0 5.25 0 17.81 247.29
SIM  177.44 17.54 4.85 073 21.12 0.71 0.78 9.26 0.52 8.85 241.79
e NFI  130.08 101.2 20.58 2.3 7.69 0.65 0 0.64 0 1.54 265.2
SIM  227.29 29.93 1.72 0.62 0 0.62 0 2.83 0 0.67 263.67
f NFI 7481 169.62 0 18.58 0 0 0 0.98 0 0 266.23
SIM  147.41 44.55 1.07 2.33 0 1.42 0 1.01 0 0.01 197.82
NFI 28.34 89.99 0 4721 0 4.68 0 0 0 0 170.39
9 siv 23.16 79.06 0.22 59.96 0 4381 0 0 0 0 167.21
h NFI 0 131.13 0 44.18 0 0 0 0 0 0 179.87
SIM 0.54 57.83 0.01 9731 0 1.92 0 0 0 0 157.6
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Table D6.Root mean square error (RMSE) between LPJ-GUESS using 400 replicate patches and LPJ-GUESS with GAPPARD for stands a
to h. All values were calculated with a temporal resolution of 10 yr. spi: RMSE for simulation spinup time (800 yr); sim: RMSE for simulation
years 1900-2100; yr: only actual year difference considered; p: period of 50 yr considered. Numbers in italics indicate that in both models
less than 0.5 kgC fof that species were produced at any one point during the simulation. Bold numbers indicate values less than 0.2.

(1) Larix decidua (2) Picea abies(3) Pinus cembra(4) Pinus mugo(5) Pinus sylvestris(6) Abies alba (7) Betula pendula(8) Carpinus

betulus (9) Corylus avellana(10) Fagus sylvatica(11) Fraxinus excelsiar(12) Quercus robuy(13) Quercus pubescenil4) Tilia cordata

@ (b) © (d) (e) ® (©) )

spi sim spi sim spi sim spi sim spi sim spi sim spi sim spi sim
1) 0.03 0.1 0.03 0.12 0.02 0.14 0.03 0.13 0.03 0.05 0.02 0.05 0.03 0.09 0.04 0.07
)] 0.04 0.08 0.08 0.1 0.04 0.11 0.03 0.14 0.03 0.09 0.03 0.08 - 0.19 - 0.06
3) - - - - - 0.08 - 0.07 0.01 0.08 0.01 0.13 0.06 0.05 0.03 0.07
4) 0.04 0.1 0.04 0.07 0.02 0.08 0.01 0.07 0.01 0.07 0.01 0.09 0.02 0.08 - 0.25
(5) 0.07 0.09 0.18 0.16 0.09 0.23 0.04 0.18 0.03 0.1 0.01 0.06 - 0.07 - 0.08
(6) 0.23 0.15 0.12 0.18 0.11 018 0.05 0.1 0.13 0.07 - 01 - 01 - 011
7 0.04 0.13 0.02 0.07 0.02 0.05 0.03 0.07 0.02 0.05 0.09 0.07 - 0.06 - 01
(8) 0.05 0.09 0.04 0.06 0.03 0.06 - 0.05 - 0.06 - 01 - 01 - 01
9) 0.03 0.11 0.02 0.06 0.03 0.1 0.02 0.08 0.01 0.07 - 0.05 - 0.07 - 01
(10) - 0.09 0.18 0.1 01 021 - 012 - 01 - 011 - 011 - -
(11) 0.25 0.16 0.06 0.09 0.05 0.14 - 012 - 0.03 - 011 - 01 - 01
(12) 0.27 0.14 0.11 0.09 0.06 0.09 - 0.16 - 0.03 - 011 - 01 - 01
(13) - 0.07 - 0.05 - 01 - 01 - 01 - - - - - -
(14) 0.05 0.1 0.03 0.06 0.04 0.08 0.04 0.12 - 0.03 - 0.09 - 01 - 01
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