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Abstract. FAMOUS fills an important role in the hierarchy
of climate models, both explicitly resolving atmospheric and
oceanic dynamics yet being sufficiently computationally ef-
ficient that either very long simulations or large ensembles
are possible. An improved set of carbon cycle parameters
for this model has been found using a perturbed physics en-
semble technique. This is an important step towards build-
ing the “Earth System” modelling capability of FAMOUS,
which is a reduced resolution, and hence faster running, ver-
sion of the Hadley Centre Climate model, HadCM3. Two
separate 100 member perturbed parameter ensembles were
performed; one for the land surface and one for the ocean.
The land surface scheme was tested against present-day and
past representations of vegetation and the ocean ensemble
was tested against observations of nitrate. An advantage of
using a relatively fast climate model is that a large number of
simulations can be run and hence the model parameter space
(a large source of climate model uncertainty) can be more
thoroughly sampled. This has the associated benefit of be-
ing able to assess the sensitivity of model results to changes
in each parameter. The climatologies of surface and tropo-
spheric air temperature and precipitation are improved rela-
tive to previous versions of FAMOUS. The improved repre-
sentation of upper atmosphere temperatures is driven by im-
proved ozone concentrations near the tropopause and better
upper level winds.

1 Model description and motivation

The climate model used in this work is FAMOUS (Jones
et al., 2005; Smith et al., 2008), which is a lower resolu-
tion version of the HadCM3 climate model (Pope et al.,
2000; Gordon et al., 2000). The atmospheric component of
FAMOUS has a resolution of 5◦ × 7.5◦ (compared to the
2.5◦

×3.75◦ of HadCM3) and has 11 vertical levels, a signif-
icant reduction compared to the 19 in HadCM3. The ocean
has twice the resolution of the atmosphere (i.e. 2.5◦

×3.75◦)
and 20 vertical levels. HadCM3’s ocean resolution is 1.25◦

×

1.25◦ and also has 20 vertical levels. The atmospheric time
step for FAMOUS is 1 h, twice that of HadCM3, whereas
the time step in the ocean is 12 h, compared to just 1 h for
HadCM3. The reduction in model resolution and increase in
model time steps means that FAMOUS runs approximately
10 times faster than its parent model. For example, a 1000 yr,
coupled atmosphere–ocean simulation with HadCM3 takes
approximately 100 days on 8 processors and generates 1 Tb
of model data. An equivalent FAMOUS simulation runs in
one tenth of the time and produces one quarter of the amount
of output data, due to the lower spatial resolution and longer
time steps in the atmosphere and ocean.

While FAMOUS does not match some of the process
fidelity or high resolution of current GCMs, e.g. Collins
et al. (2011), it has been developed explicitly as a coarse
resolution model. Despite belonging to an older generation
of climate models, the atmosphere–ocean component (which
is common to FAMOUS and HadCM3) still performs in
the best handful of models on larger scale climate measures
(Reichler and Kim, 2008; Nishii et al., 2012).
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142 J. H. T. Williams et al.: Optimising the FAMOUS climate model: inclusion of global carbon cycling

All previously published versions of FAMOUS have used
the MOSES (Met Office Surface Exchange Scheme) 1 land
surface model (Cox et al., 1999). However MOSES 1 does
not include carbon cycle processes or interactive vegetation,
which are both important elements of a comprehensive Earth
System model. In order to include these features, the newer
MOSES 2.2 model (Essery et al., 2003) has been incor-
porated into FAMOUS. MOSES2.2 describes the fluxes of
CO2, water, heat and momentum at the interface between the
land and the atmospheric boundary layer, and is capable of
hosting a number of sub-gridscale tiles in each grid box, al-
lowing a degree of heterogeneity in surface characteristics to
be modelled.

MOSES 2.2 can function in two modes, either calculat-
ing surface exchange fluxes for each surface type individu-
ally and then averaging them into a grid-box mean for the
atmosphere model, or by aggregating the characteristics of
the different surface types together before calculating a sin-
gle, common exchange flux for the grid box. The latter mode
is used in this work, as it has been found to produce better
results in early tests of MOSES2.2 in FAMOUS. It is possi-
ble to run MOSES2.2 using static or dynamic vegetation, the
latter using the TRIFFID dynamic vegetation model (Cox,
2001).

Subgrid land surface processes present in the simulations
presented here are due to five different plant functional types
(PFTs) as represented by the TRIFFID dynamic vegetation
model; broadleaf trees (BT), needleleaf trees (NT), C3 and
C4 vegetation and shrubs. In addition to these PFTs, MOSES
2.2 also calculates fluxes due to four non-vegetation surface
types; urban environments, inland water, bare soil and land
ice (which is constrained to a grid-box coverage fraction of
either 0.0 or 1.0 only). Future research with this configuration
of FAMOUS will, in part, aim to examine climates of the past
where human intervention in the structure of the land surface
was negligible or zero. Therefore, the urban fraction is set to
zero throughout this work.

The TRIFFID model dynamically updates the five PFT
distributions (and soil carbon content) using a combination
of “carbon balance” and inter-PFT competition (Cox, 2001).
The carbon balance is itself derived from the MOSES surface
exchange scheme (see above). Other PFT-dependent limiting
factors affecting plant growth within the TRIFFID model in-
clude the presence or absence of light (and its subsequent
effect on photosynthesis) and photosynthetic enzymes (Cox,
2001). The combination of the “2.2” version of MOSES with
TRIFFID had not been used before in FAMOUS and this was
the reason for the perturbed physics ensemble presented here.

In addition to land surface processes, the ocean carbon cy-
cle is also simulated within the model. This sub-model is
known as HadOCC, the Hadley Centre Ocean Carbon Cycle
model (Palmer and Totterdell, 2001). HadOCC is an “ecosys-
tem model” due to its explicit inclusion of phytoplankton
and zooplankton populations. Phytoplankton productivity in
the model is limited by the availability of nitrate (the only

nutrient simulated) and light and therefore primary produc-
tion below the photic zone of the ocean is greatly reduced.
In addition to plankton, total CO2, alkalinity and detrital ma-
terial densities are calculated through a system of coupled
differential equations describing, for example, zooplankton
grazing and detrital sinking due to gravity. The interested
reader is referred to the Appendix of Palmer and Totter-
dell (2001) for a full description of the equation system. The
carbon cycle model is fully coupled to the physical ocean
model and hence all compartments are subject to advective
and diffusive transport. It is important to note that HadOCC
is purely biological in nature, meaning that nitrate (strictly
nitrate plus ammonium) is not lost or gained due to sedi-
mentation or due to addition from rivers for example. The
flux of carbon through the NPZD (nutrient-phytoplankton-
zooplankton-detritus) model is coupled to the prognostic flux
of nitrogen through constant C: N, “Redfield”, ratios (Palmer
and Totterdell, 2001; Redfield, 1958).

Climate models contain many adjustable parameters, each
with an associated uncertainty. This uncertainty comes, for
some parameters, from the inability to measure the value of
an observable to arbitrary accuracy. For exampleNL0 – the
ratio of nitrogen to carbon in a leaf, a model constant repre-
sentative of a given plant functional type (e.g. shrubs) – is a
measurable quantity at the plant leaf scale. The uncertainty
associated with this parameter comes from upscaling site
measurements to a global quantity. There is also some uncer-
tainty from structural parameters in model parameterisations,
which do not have a directly observable equivalent in the
real world. For example, LAImin is a competition parameter
which controls how plants will expand. This is not a directly
observable quantity, instead the plausible uncertainty ranges
are established largely from insight from the model develop-
ers based on how variations in this parameter influence prop-
erties of the simulations that are observable, such as forest
extent. Previous versions of FAMOUS have had their param-
eters tuned through different procedures (Jones et al., 2005;
Smith et al., 2008; Gregoire et al., 2010), but the combination
of a complex land surface scheme coupled to dynamic vege-
tation and an ocean carbon cycle has not been used before in
FAMOUS. The computational efficiency of FAMOUS pro-
vides an opportunity to explore relationships between param-
eters and model response and hence identify the set of struc-
tural parameters in this new model which give the highest
fidelity output when compared to appropriate observations.
To this end, building on the tuning of atmosphere and ocean
parameters by Gregoire et al. (2010), two 100 member per-
turbed physics ensembles were performed: one for the land
surface and one for the ocean carbon cycle variables. The full
coupling of the terrestrial and ocean carbon cycles is ongoing
and will be described in a forthcoming paper.

For both the land surface and the ocean perturbed physics
ensembles, the set up of the control run was the same.
Constant, preindustrial levels of CO2 in the atmosphere
(290 ppmv) were used. For all simulations using dynamic
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Table 1. List of parameters used in the land surface carbon cycle perturbed physics ensemble. The values of the minimum leaf area index
(LAI) for C3, C4 and shrubs are not varied in this work and hence only one value is given. The three different parameters used are (1) the
minimum value used in the Latin hypercube sampling scheme (2) the “standard” value used in the simulation framework before parameter
perturbation and (3) the maximum value. Note that the ranges used in this work are the same as in Booth et al. (2012). The additionalRgrow
parameter in this work is varied by 50 % either side of its standard value.

BT NT C3 C4 Shrub

NL0 0.018, 0.03, 0.1 0.024, 0.03, 0.082 0.028, 0.06, 0.152 0.018, 0.03, 0.188 0.018, 0.03, 0.096
f0 0.7, 0.875, 0.95 0.7, 0.875, 0.95 0.7, 0.9, 0.95 0.65, 0.8, 0.8 0.7, 0.9, 0.95
LAI min 1, 3, 4 1, 3, 4 1 1 1
Q10 1.5, 2, 3.5 1.5, 2, 3.5 1.5, 2, 3.5 1.5, 2, 3.5 1.5, 2, 3.5
Vcrit,α 0, 0.5, 1 0, 0.5, 1 0, 0.5, 1 0, 0.5, 1 0, 0.5, 1
Tupp 31, 36, 41 Tupp, BT− 5.0 Tupp, BT Tupp, BT+ 9.0 Tupp, BT
Rgrow 0.125, 0.25, 0.375 0.125, 0.25, 0.375 0.125, 0.25, 0.375 0.125, 0.25, 0.375 0.125, 0.25, 0.375

vegetation in this study, an accelerated mode was used, which
enables more rapid convergence of the final distribution of
PFTs under constant forcing conditions. This works by cou-
pling the vegetation scheme to the surface exchange scheme
only every 5 yr (although this time period can be altered if
desired) and thereby exchanging the carbon flux output dur-
ing that time with the vegetation. After each iteration of this
coupling, the dynamic vegetation model is then run asyn-
chronously using a large time step of 100 yr. This enables
equilibrated states of even the slowest responding variables
to be approached more rapidly. More information on the
technical details of this coupling can be found in Cox (2001).
For the vegetation distribution, the control and all ensemble
members were initialised at 1860 values and each ensem-
ble member was run for 200 yr of physical-climate time; this
was found to be more than sufficient for equilibrium to be
reached, particularly bearing in mind that the dynamic vege-
tation model is run in an accelerated fashion.

For the ocean ensemble, a run length of 200 yr was also
found to be sufficient for the variables of interest to equili-
brate, even when the ocean tracers were initialised with con-
stant values throughout the ocean. It should be noted that
there is no equivalent accelerated mode for the ocean car-
bon cycle as is used for the land surface. To bring the deep
ocean into thermal and carbon equilibrium with the surface
would take several thousand years and so it is unfeasible to
run a 100 member ensemble where each member is run for
this long. The ocean ensemble is validated using near-surface
observations (5 m depth) where equilibrium is easily reached
in 200 yr. Climatologies were constructed for the last 30 yr of
each ensemble member for both the land surface and ocean
ensembles.

2 Perturbed parameters – land surface

The number of structural parameters present in this version
of FAMOUS is large and since the main departure from pre-
vious versions concerns the carbon cycle (both on land and

in the ocean) it was deemed appropriate to find an optimum
set of parameters which best reflect the present-day status of
the biosphere.

Previous work (Booth et al., 2012) used the Latin hyper-
cube method (e.g. Gregoire et al., 2010) to efficiently sam-
ple parameter space within bounds reflecting the uncertainty
with which these model parameters are known. Booth et al.
were then able to demonstrate that uncertainties in the values
of carbon cycle parameters can give rise to significant uncer-
tainty in projections of future climate. The present study also
uses the Latin hypercube method to vary the same parameters
as Booth et al. (2012) over the same ranges of values (with
the addition ofRgrow) which are described in Table1. Note
that the values for all the plant functional types (PFTs) are
co-varied, i.e. if the value of certain parameter for broadleaf
trees is doubled, the equivalent parameters for the 4 other
PFTs will also be doubled, as in Booth et al. (2012).

The parameters in Table1 are now described in detail.

– NL0 – The “top leaf nitrogen concentration”. This is de-
fined as the amount of nitrogen per amount of carbon
and has the units (kg N)(kg C)−1 (Cox et al., 1999).

– f0 – The ratio of CO2 concentrations inside and outside
leaves at zero humidity deficit (Cox et al., 1999).

– LAI min – Any PFT must achieve this value of the leaf
area index before it starts to contend with other PFTs
for growing area (Cox, 2001).

– Q10 – This parameter describes how the respiration rate
of soil varies with temperature. This is done using a
power law multiplier, the exponent of which rises by 1.0
when the temperature rises by 10◦C (Cox et al., 1999).

– The “KAPS” parameter, which describes the spe-
cific rate of soil respiration at 25◦C and at optimal
soil moisture, is co-varied withQ10 to maintain res-
piration at this temperature at the standard model
rate.

www.geosci-model-dev.net/6/141/2013/ Geosci. Model Dev., 6, 141–160, 2013
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– Vcrit,α – This is a new parameter which has been in-
tegrated into the model code and is defined byVcrit =

Vwilt +Vcrit,α (Vsat− Vwilt ) where,Vcrit, VsatandVwilt are
“by volume” soil moisture concentrations (m3 of water
per m3 of soil). BelowVwilt , leaf stomata close;Vsat is
the soil moisture amount at the point of saturation and
Vcrit is the amount above which PFTs are not water lim-
ited. The fact thatVcrit,α varies between zero and one
means thatVcrit varies betweenVwilt andVsat(Cox et al.,
1999).

– Tupp – This is one of two parameters which affect
how photosynthesis varies with temperature (Cox et al.,
2000), the other beingTlow. As can be seen from Ta-
ble 1, there is actually only one free parameter for
Tupp, because the values for NT, C3, C4 and shrubs
are also co-varied. In addition, the values ofTlow are
as follows:Tlow,BT = Tupp,BT− 36,Tlow,NT = Tupp,BT−

41, Tlow,C3 = Tupp,BT− 36, Tlow,C4 = Tupp,BT− 23, and
Tlow,shrub= Tupp,BT− 36.

– Booth et al. (2012) present a variable transforma-
tion and defineTopt = Tupp− 4.0 here. This is be-
causeTopt is more directly observable. The full def-
initions ofTupp andTlow are retained here for com-
pleteness and to aid the understanding of the model
user.

– Rgrow – The “growth respiration fraction”. The to-
tal respiration, Rp, of plants can be divided into
those amounts required for the maintenance,Rpm, and
growth,Rpg, of the plant, whereRpg is defined asRpg =

Rgrow
(
5G − Rpm

)
, and5G is the “gross canopy photo-

synthesis” (Cox et al., 1999). A corollary of this set of
definitions is thatRpg is also equal to one third of the
net primary productivity,5 = 5G−Rp. More informa-
tion on the precise definition of these parameters can be
found in Cox et al. (1999).

Previous work by Gregoire et al. also used an ensem-
ble approach to identify optimal configurations of FAMOUS
with respect to atmosphere and ocean parameters which are
known to have a significant effect on the climatology (Gre-
goire et al., 2010; Jones et al., 2005; Murphy et al., 2004).
It was therefore desirable that the results of this earlier work
were incorporated into the present optimisation framework
and, to this end, the ten highest scoring models from Gregoire
et al. (2010) were sampled using a further “state parameter”,
β. The incorporation of this extra parameter means that it is
not just the carbon cycle’s uncertainties which are being per-
turbed in the ensemble but also those of the physical atmo-
sphere and ocean which have previously been shown have a
significant impact on model climate (Jones et al., 2005). The
fact that only the 10 highest scoring models from Gregoire
et al. are chosen for examination here means that it is only
the more plausible combinations of values of the physical
parameters which are sampled.

The state parameter,β, was varied continuously between
0 and 1 using the same Latin hypercube sampling technique
as for all the other model parameters. However,β was then
converted to an integer value between one and ten which was
used to discriminate between the ten highest scoring sets of
parameters from Gregoire et al. (2010). Therefore, in total,
eight free parameters were varied and an ensemble of one
hundred members was run. For Latin hypercube sampling, it
is advantageous to have at least ten times as many ensem-
ble members as free parameters; this condition is therefore
easily fulfilled in this case. It would have been statistically
advantageous to vary each parameter independently for each
PFT but this would have increased the necessary size of the
ensemble beyond that which was possible due to computa-
tional constraints.

3 Perturbed parameters – ocean

A further ensemble, perturbing the parameters in the
HadOCC sub-model was also carried out. Table2 shows
the control values of the structural parameters in the ocean
carbon cycle of FAMOUS which are varied in this work
(see Table 2 of Palmer and Totterdell, 2001 for more de-
tailed information). Since there are twenty structural param-
eters listed in Table2, to vary each parameter individually
would require at least two hundred simulations to be per-
formed which is currently impractical. Therefore, the param-
eters were subdivided into five categories by their compart-
mentalisation in the model (the “free parameter index” in
Table2): (1) C: N ratio (2) phytoplankton-specific parame-
ters (3) zooplankton-specific parameters (4) detritus-specific
parameters (5) carbonate precipitation. Each parameter rep-
resented by these five indices was co-varied and therefore
the condition of having at least ten times as many ensem-
ble members as free model parameters (i.e. 5) is met. This
method of co-variation was decided upon after discussions
with the HadOCC code developers (P. Halloran, Met Of-
fice Hadley Centre, personal communication, 2011) and is in
line with the work of Booth et al. (2012) whose co-variation
scheme is used here for the land surface parameter perturba-
tions. All parameters in Table2 were varied by±50 % in the
Latin hypercube-generated ensemble and, as with the land
surface, an ensemble of 100 members was run.

The method of studying uncertainty by varying ocean bio-
geochemical parameters by±50 % has been used before by
Kriest et al. (2012) and was the basis for doing so in this
study. The study of Scott et al. (2011) also uses a perturbed
physics approach to parameter uncertainty in the HadOCC
model, although in a 1-D sense. This reduction in model
dimensionality enables all parameters to be varied indepen-
dently rather than using a co-variation method as used here.
As discussed above, this was not feasible in this study due to
computational (that is, time) constraints.

Geosci. Model Dev., 6, 141–160, 2013 www.geosci-model-dev.net/6/141/2013/
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Table 2.Control structural parameters in the HadOCC ecosystem model.

Model Control Physical interpretation Free
parameter parameter parameter index
name value (units) (see text)

c2n p 6.625 C : N ratio for phytoplankton 1
c2n z 5.625 C : N ratio for zooplankton 1
c2n d 7.5 C : N ratio for detritus 1
psmax 0.6 Maximum rate of photosynthesis 2
alpha 0.02 ((W m−2)−1 day−1) Initial slope of photosynthesis – irradiance 2

curve
Q10H 1.0 Increase in phytoplankton growth rate 2

for a 10 degree temperature increase
mort sat 0.1 (mMol m−3) Half-saturation constant for phytoplankton 2

mortality
resprate 0.02 (day−1) Rate of phytoplankton respiration in fraction 2

of biomass lost per day
pmort max 0.05 (day−1 (mMol m−3)−1) Maximum phytoplankton mortality (expressed 2

as biomass fraction lost per day)
grazemax 1.0 (day−1) Maximum specific rate of zooplankton grazing 3
grazesat 0.75 (mMol m−3) Half-saturation constant for zooplankton 3

grazing
grazethreshold 0.1 (mMol m−3 day−1) Threshold for zooplankton grazing function 3
betap 0.7 Assimilation efficiency of zooplankton 3

feeding of phytoplankton
betadt 0.5 Assimilation efficiency of zooplankton 3

feeding on detritus
z mort 1 0.02 (day−1) Linear zooplankton mortality 3
z mort 2 0.3 (day−1 (mMol m−3)−1) Quadratic zooplankton mortality 3
remin rateshallow 0.1 (day−1) Remineralisation rate, levels 1 to 8 4
remin ratedeep 0.02 (day−1) Remineralisation rate, levels 9 to 20 4
sink ratedt 10.0 (m day−1) Sinking rate for detritus 4
rain ratio 0.007 Carbon export as calcite, as a proportion 5

of primary production

Due to the inclusion of the state parameter,β, in the land
carbon cycle simulations, some ocean parameters differ be-
tween the best land surface and ocean simulations. It has
been shown however that these differences to the ocean dif-
fusivity and viscosity (Gregoire et al., 2010) make no signif-
icant difference to the model climatology.

4 How the perturbed physics ensembles were evaluated

4.1 Land surface

4.1.1 The Amazon now

Evaluation of how well the land surface ensemble members
matched observations was done by comparison with data
adapted from the Advanced Very High Resolution Radiome-
ter (Loveland et al., 2000). This dataset was constructed via
a joint European-American project, coordinated through the
International Geosphere–Biosphere Programme. The con-
struction of this dataset utilised advanced quality-control

techniques and was the first global database of land-surface
cover categories produced from high resolution (1 km) satel-
lite data.

Figure1 shows which of the surface types used in TRIF-
FID has the highest fraction within each grid box and ad-
ditionally what the fractional coverage of the dominant tile
fraction in each grid box is equal to. From this figure it is
clear that there are large areas of the world where the domi-
nant tile fraction is significantly different from 1. The global
average of the quantity given in the right-hand side of Fig.1
is 0.63 and the spatial standard deviation is 0.18. The equiv-
alent value for the ensemble mean is 0.72 with a spatial
standard deviation of 0.12. The combination of these values
(higher mean, lower variability) show that the simulations
tend to favour non-coexisting PFTs in each grid box, com-
pared to observations. In the discussion to follow, Fig.2 is
shown which is the same as Fig.1 but for the ensemble mem-
ber which is identified as having the most suitable set of pa-
rameters. This clearly shows that the dominant tile fraction in
the simulations is significantly higher than observed (Fig.1).

www.geosci-model-dev.net/6/141/2013/ Geosci. Model Dev., 6, 141–160, 2013
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Fig. 1. The left-hand figure shows the observed dominant plant
functional type for the present-day (Loveland et al., 2000) and the
right-hand figure shows the fractional coverage of the dominant
type. BT (broadleaf tree), NT (needleleaf tree), C3 and C4 vege-
tation and S (shrubs) and BS (bare soil).

Fig. 2. The left-hand figure shows the simulated dominant plant
functional type for the best performing land surface ensemble mem-
ber and the right-hand figure shows the fractional coverage of the
dominant type.

For this reason, the dominant PFT in a grid box is used to
evaluate the efficacy of the different ensemble members’ re-
production of vegetation cover. Figure1 shows that the Ama-
zon region is a good one to concentrate on because it is a
large area where the observed fraction of the dominant sur-
face type is close to 1 and also because of the region’s known
effects on global climate (e.g. Werth and Avissar, 2002) and
terrestrial carbon budget (e.g. Cox et al., 2000).

The Amazon region is defined to be 40◦ W–80◦ W, 20◦ S–
10◦ N in this work and is predominantly defined by its BT
coverage (Fig.1). In this region there are 28 land grid boxes
and in the observations 22 are BT, 4 are C4, 1 is bare soil
and 1 is shrub. Figure3 shows a histogram of the fractional
agreement between PFTs in the ensemble and the observa-
tions, i.e. how many of the 28 grid boxes are assigned the
same PFT in the ensemble members and in observations. In
this instance the term “PFTs” is broadened to include bare
soil cover.

Figure 3 shows that the majority (80) of the ensemble
members agree with the observations in less than half of
the grid boxes in the Amazon region. Of the remaining
20 members, 9 have 50 %–60 % agreement, 10 have 60 %–
70 % agreement and 1 does better than 70 %. To reduce the
number of ensemble members for inclusion in the search for
a credible set of carbon cycle parameters, the top 10 scoring
members are chosen for further investigation, this is done by
examining the dominant PFT globally.

Fig. 3. Histogram of the fractional agreement between the 100 en-
semble members and the observations over the Amazon region for
all PFTs. Here, “fractional agreement”, gives the fraction of the 28
grid Amazonian grid boxes which are assigned the same PFT in the
ensemble members and in observations.

Amongst the top 10 scoring simulations, there are some
common biases such as the overestimation of the NT den-
sity over North America and the C3 fraction over Northern
Eurasia. In addition to these, the models do not reproduce
the observed NT distribution over Eurasia and, although the
distribution is promising, the global density of BT is some-
what overestimated. It should be noted that over large parts
of these areas, the fractional coverage of the dominant PFT
is approximately 50 % or less in the observations (Fig.1),
whereas in the 10 best ensemble members, the fractional cov-
erage is often well over 70 % and sometimes over 90 %. This
highlights a characteristic feature of the PFT density calcu-
lations internal to the TRIFFID model; coexisting PFTs are
minimised compared to observations.

Of the top 10 models, a further 3 are discarded due to the
almost complete coverage of northern Eurasia with C3 vege-
tation and so in summary, 7 ensemble members (termed the
α7 simulations) are left for further consideration albeit with
some common biases in their reproduction of contemporary
vegetation cover.

It could be argued that training the perturbed parameter
ensemble specifically on the Amazon region will tend to
“overfit” the ensemble to the observed broadleaf tree distri-
bution in this region. However, it has been found that en-
semble members which give a good reproduction of the ob-
served dominant grid box PFT in the Amazon also tend to
do better globally too. This is illustrated in Fig.4, which
shows the dominant grid box PFT for (a) the observa-
tions, (b) HadCM3, (c–e) the three top performingα7 sim-
ulations and (f–h) three further ensemble members with
decreasing fractional agreement over the Amazon region.
Firstly, considering sub-figures (a–c) in Fig.4, it is appar-
ent that HadCM3 (which is the “parent” model of FAMOUS)
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Fig. 4. Dominant grid-box PFT for(a) observations,(b) HadCM3,
regridded to the FAMOUS resolution(c–e)the three top performing
α7 ensemble members in terms of their fractional agreement with
observations over the Amazon region,(f–h) three ensemble mem-
bers with decreasing Amazon agreement. There is a clear correla-
tion between the agreement over the Amazon region and that over
the whole globe.

performs better than the top performingα7 ensemble mem-
ber. For example, the NT distribution over North America
and the extent of the bare soil region representing the Sahara
Desert are more in line with observations than FAMOUS.
These improvements notwithstanding, there is still notable
disagreement between observations and HadCM3 in several
regions, such as the overestimation of BT in sub-Saharan
Africa and the underestimation of C3 vegetation in western
North America.

The biases common to theα7 ensemble members noted
above are clearly visible in Fig.4c–e (overestimation of NT
in North America and C3 in Northern Eurasia) and the sim-
ilarity of the global dominant PFT distribution in these fig-
ures is striking. This is important because it shows that train-
ing the ensemble on the Amazon region does not lead to
significant differences in PFT distributions in other areas of
the world and hence that the resulting PFT distributions are
robust. The range of each of the parameters varied in this

Fig. 5. The sensitivity of the 100 land surface ensemble members
to individual parameters. Theα7 simulations are shown with filled
symbols and the horizontal lines represent the minimum and maxi-
mum values of each parameter covered by them. In decreasing or-
der, the top three performingα7 simulations (in terms of their frac-
tional agreement with the observed dominant PFT in the Amazon
region) are shown by upward-facing arrows, downward-facing ar-
rows and squares respectively.

ensemble are indicated in Fig.5 for the top threeα7 simu-
lations shown in Fig.4. Figure4f–h show example ensem-
ble members with decreasing observational agreement over
the Amazon region. Crucially, the global agreement also de-
creases markedly so that in the case of Fig.4h, the agreement
between the simulated and observational PFT distribution is
virtually non-existent.

In summary, it has been shown that the agreement between
the dominant PFT in perturbed physics ensemble members
and that in observations is a good indicator of the fidelity of
global PFT reproduction. Globally, notable regional biases
remain in the ensemble members with the leading agreement
in the Amazon region but two aspects of this remaining dis-
agreement should be borne in mind.

1. The initial reason for choosing the Amazon region as
the training area for the ensemble was due to it hav-
ing a dominant-PFT fractional coverage close to unity
(Fig. 1) which is an emergent property of the simula-
tions (Fig.2 for example). The only other area of any
real size with this property is the Sahara, which is by
definition covered with bare soil.

2. It is likely that if the ensemble had been trained to a
different area of the globe that a different resulting PFT
distribution would have resulted. The aim of this study
is notper seto show that if the Amazon region’s plant
biosphere can be reproduced accurately then the rest of
the world’s PFTs will follow suit. It is known however
that the Amazon exerts a significant influence on global
climate (Werth and Avissar, 2002) and so a model which
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Fig. 6. Difference between the combined-PFT LAI of the mid-Holocene andα7 runs(a–g)and the equivalent residual plots for the LGM
andα7 runs(h–n).

can reproduce the gross features of its land surface prop-
erties was deemed crucial, although admittedly some-
what subjective.

4.1.2 Sensitivity of results to perturbed parameters

The 8 individual free parameters all influence different as-
pects of the land surface and hence the wider climate re-
sponse in the model. Selecting the 7 sets of optimal param-
eter combinations (theα7 simulations) tells us something
about how the observed metrics can constrain these parame-
ter ranges. If theα7 simulations all correspond to similar val-
ues of a certain parameter, then this is an indication that only
a relatively small range of the currently considered plausi-
ble parameter space is consistent with observed land surface
coverage. This is illustrated in Fig.5 where the individual
parameter values plotted on the vertical axis are normalised
between 0 and 1, where 0 represents the lowest value of the
parameter chosen by the Latin hypercube sampling, and 1
represents the highest, with all other values being linearly
interpolated between the two. Note that the top three simu-
lations (in terms of their fractional agreement with the ob-
served dominant PFT in the Amazon region) are shown with
different symbols to the otherα7 ensemble members for clar-
ity. The global PFT agreement for these three simulations is
shown in Fig.4.

Figure5 shows that some of the credible parameter ranges
obtained from the ensemble are considerably smaller than
others. For example,Tupp could take essentially any value
sampled in the ensemble, whereas f0 is found to be limited to
higher values andVcrit,α to lower values. The methodology
was not developed to place formal constraints on individual

parameter ranges, nevertheless, Fig.5 does indicate that the
comparison of simulated and observed broadleaf extent could
be used to narrow the plausible range for a number of pa-
rameters. Numerically, the parameters are fractionally con-
strained as follows:f0 (31 %), LAImin (88 %),NL0 (53 %),
Rgrow (62 %), Tupp (92 %), Q10 (78 %), Vcrit,α (30 %) and
β (59 %).

The fact that the largest parameter uncertainty lies with
Tupp poses a challenge for future carbon cycle changes,
where temperature dependence of plant photosynthesis (rep-
resented by this parameter) is the dominant uncertainty in fu-
ture responses (Booth et al., 2012). This result suggests that
contemporary plant distributions do not provide a potential
constraint on the range of plausibleTupp values, and hence
a way to constrain the range of future changes. This anal-
ysis, however, does illustrate that model comparisons with
observed vegetation cover may provide a stronger constraint
on other parameters (f0, NL0 andVcrit,α), which is novel. In-
deed, this approach suggests that observed forest cover may
provide a metric to reduce uncertainty ranges on these pa-
rameters which have important roles in the climate’s hydro-
logical response.

4.1.3 The Amazon in the past

The Amazon rainforest has been part of the landscape of
South America for millions of years. However, its struc-
ture has not remained constant throughout that time (Maslin
et al., 2005). Since the reproduction of the structure of the
Amazon is highly sensitive to model parameters (see Fig.3
for example), it is important to further validate the model
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by perturbing the simulations in another way. This is done
by changing the orbital forcing of theα7 simulations. It is
known that the forest’s structure was similar to today dur-
ing the mid-Holocene (6000 yr ago) and so theα7 simula-
tions were run for an orbital configuration corresponding to
6000 yr ago and compared to the equivalent for the present-
day. The leaf area index (LAI) is a parameterisation of the
area of leaf cover per unit area of ground (Law et al., 2008)
and the differences between the mid-Holocene (and LGM)
and theirα7 equivalents are shown in Fig.6.

It is clear from Fig.6 that the LAI is generally increased
across the Amazon for all of the mid-Holocene simulations
with the exception of that shown in Fig.6a. Maslin et al.
have also shown that at the Last Glacial Maximum (LGM)
21 000 yr ago, the density of the Amazon was reduced, as
represented by a reduction in LAI. Only Fig.6h shows a con-
siderable reduction in LAI at the LGM, as required for agree-
ment with the work of Maslin et al. and this is in agreement
with the result in Fig.6a which also identifies this simula-
tion as containing a suitable set of parameters. Therefore a
combination of present-day observations and paleoclimatic
reconstructions of the Amazon rainforest has been used to
identify a realistic set of terrestrial carbon cycle parameters
suitable for use in further research.

Figure2 shows the dominant PFT in each grid box and its
fractional coverage for the best performing ensemble mem-
ber identified in the preceding discussion; it is analogous to
Fig. 1 which shows the equivalent data for the observations.

The biases common to theα7 ensemble members (dis-
cussed at the end of Sect. 4.1.1) are clearly seen in Fig.2, as
is the tendency for TRIFFID to not have different PFTS co-
habiting in the same grid box. It should be emphasised that
some of these biases may be associated with issues within
MOSES/TRIFFID but other biases may be associated with
problems with the control climate. For instance, FAMOUS
has a tendency to make Australia too wet and hence the Aus-
tralian desert area is underestimated. Unfortunately, TRIF-
FID cannot be run offline and hence it is not possible to ex-
plicitly separate the climate biases from TRIFFID biases.

4.2 Ocean

4.2.1 Identification of suitable parameters

The fidelity of the ocean carbon cycle is considered by com-
paring the concentration of the rate-limiting nutrient in the
system, nitrate, with global observations from the World
Ocean Atlas (Garcia et al., 2006). The annual mean concen-
tration at 5 m depth in the simulations is compared with the
average of the surface and 10 m depth values from the ob-
servations. The quality of the model fit to the data is cal-
culated using the Arcsine Mielke skill (AMS) score which
gives a score of 1 for perfect correlation and−1 for perfect
anti-correlation. If a model field bears no resemblance to the
observations then the score will be zero. Further information

Fig. 7.The AMS for the ocean carbon cycle ensemble’s nitrate con-
centration when compared against World Ocean Atlas data. The en-
semble member giving rise to the highest AMS is marked with a
filled circle.

regarding the AMS can be found in Jones et al. (2005) and
Watterson (1996), for example. The nitrate data in the World
Ocean Atlas data is given on 1◦ resolution and therefore it
must be regridded onto the model grid of 2.5◦

×3.75◦ before
meaningful comparisons can be made.

Of the 100 ensemble members, 4 gave unphysical val-
ues for the nitrate concentration in the climatologies; Fig.7
shows the remaining 96 members’ AMS values.

It is important that when a model parameter is varied to
find an optimum configuration, the range of values of that
parameter give rise to a broad range of model responses. It
is apparent from Fig.7 that this condition is met for nitrate,
where the AMS ranges from 0.040 to 0.72 (mean 0.51) with a
standard deviation of 0.16. On the contrary, if one compares
the sea surface temperature from the model ensemble with
observations from Rayner et al. (2003), the standard devia-
tion is just 0.0017 around a mean of 0.85.

It should be noted here that, in reality, the productivity of
the Southern Ocean is iron limited (Boyd et al., 2000). There-
fore, as a further check of the validity of this method, the
same AMS calculations were performed but excluding ocean
points south of 60◦ S. Even with this restriction on the area
of study, the parameter set identified as the best in Fig.7 still
provides an AMS score of 0.67, compared to a maximum of
0.72 and a minimum of 0.05. The average difference between
the AMS scores for the global and no-Southern-Ocean cases
is +0.02 and the standard deviation of this quantity is 0.04.
Therefore, the+0.05 difference between the value of 0.72
for the global case and 0.67 for the no-Southern-Ocean case
is within this range of variability. It is reassuring that, even
excluding the Southern Ocean from the data analysis, the pa-
rameters found to give the best global nitrate concentration
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still give a high fidelity reproduction compared to the major-
ity of the other ensemble members.

The parameters from the highest scoring member of the
ensemble (as identified in Fig.7) are given in Table3 along
with their relationship to the control value. It is encouraging
that all but one of the 5 free model parameters deviate notice-
ably from the control value as it adds weight to the necessity
of the exercise. Additionally, none of the 5 parameters are at
the extremes of the distribution of parameter space (±50 %)
when compared to the control simulation, which shows that
the postulated range of parameters is plausible.

In addition, Doney et al. (2004) have shown that the back-
ground physical state (e.g. the ocean circulation) is perhaps
more important for the realism of the ocean carbon cycle than
the model parameters themselves. These studies, along with
the comparison to observed ocean nitrate concentration per-
formed here, clearly show that a more coordinated study of
ocean carbon cycle parameter uncertainties is required and
that the work presented here is a step towards achieving the
goal of better constrained parameters affecting the global car-
bon budget.

Although the ensemble member with the highest AMS is
clear from Fig.7, there are several other ensemble members
whose scores are very similar. In light of this, the range of
each parameter (with respect to the control value) for the top
six highest scoring ensemble members are given in the right-
hand column of Table3 and plotted in Fig.8. This figure
shows that the free parameters affecting the value of the zoo-
plankton, detritus and carbonate precipitation parameters are
poorly constrained, with their values representing the top six
scoring ensemble members covering virtually the entire pa-
rameter range. However, the C: N ratios are confined to ap-
proximately the top two-thirds of explored parameter space
and the phytoplankton parameters are constrained to roughly
the top 25 %. This is precisely analogous to the result for the
land surface ensemble which showed that the parameterf0
is constrained to high values within its perturbed range by
fitting to the dominant PFT found in the Amazon region.

The reason for this initial “singling out” of the six top
performing ensemble members is that they were thought to
be essentially indistinguishable in Fig.7. However, for the
avoidance of doubt, this test was increased to encompass the
top ten simulations. Under these less stringent conditions, the
ranges of the C: N ratios and phytoplankton parameters are
essentially unchanged compared to the consideration of the
top six and show that phytoplankton-specific parameters are
well constrained by this work.

As a demonstration of the degree of variability present in
the ensemble’s reproduction of ocean nitrate, Fig.9 shows
the nitrate concentration for the observations, the top scoring
ensemble member and four other ensemble members with
decreasing AMS scores. The resulting five simulated nitrate
distributions vary hugely in their ability to reproduce obser-
vations and the behaviour is not “linear” with Arcsine Mielke
score. For example Fig.9d has an AMS of 0.32 and shows

Fig. 8.The sensitivity of the ocean ensemble members to individual
parameters. The top scoring six (in terms of their AMS) simulations
are shown with filled symbols and the horizontal lines represent the
minimum and maximum values of each parameter covered by them.

a large positive bias globally, whereas Fig.9e (AMS= 0.27)
does a good job over the tropics and extra-tropics but has a
very large negative bias over high latitudes.

4.2.2 Physiological justification of suitable parameters

Now that a set of suitable parameters has been found to repro-
duce the observed surface nitrate concentration, it is impor-
tant to be able to justify their magnitude physiologically. As
previously stated, each free parameter was varied by±50 %
around the control value, i.e. the value “hard-wired” into the
model code and parameters relating specifically to each of
C : N ratios, phytoplankton, zooplankton, detritus and car-
bonate precipitation were co-varied. This latter approach was
designed purely to reduce the number of free parameters in
the model from the original number (20) to a number which
could be sufficiently sampled using a 100 member ensemble
(i.e.. 10).
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Table 3.Parameter values for the highest scoring ocean carbon cycle ensemble member and their relationship to the respective control value.
Also shown is the percentage of the control value which is covered by the top six scoring ensemble members, as shown in Fig.8.

Parameter Values from Percentage of control Range of top 6 scoring
highest scoring value of highest scoring ensemble members

ensemble member ensemble member w.r.t. control

c2n p 6.559 99 % 91 %–145 %
c2n z 5.569
c2n d 7.426

psmax 0.8417 140 % 119 %–145 %
alpha 0.02806
Q10H 1.403
mort sat 0.1403
resprate 0.02806
pmort max 0.07014

grazemax 1.297 130 % 70 %–149 %
grazesat 0.9729
grazethreshold 0.1297
betap 0.908
betadt 0.6486
z mort 1 0.02594
z mort 2 0.3891

remin rateshallow 0.06488 65 % 65 %–139 %
remin ratedeep 0.01298
sink ratedt 6.488

rain ratio 0.009729 139 % 65 %–140 %

As shown above, the only parameters which are notably
constrained by the six top scoring ensemble members are the
parameters relating specifically to phytoplankton which have
been shown to lie in approximately the top 25 % of the sam-
pled range (Table3, Fig.8). However, even in the top six per-
forming ensemble members, the parameters relating to zoo-
plankton, detritus and carbonate precipitation are barely con-
strained at all within their±50 % ranges around the control
value. What this means is that although the resulting nitrate
concentrations for the top six ensemble members are all vir-
tually indistinguishable (from the perspective of their AMS
scores) the individual values of the parameters can vary sig-
nificantly. It should be noted that since all zooplankton and
detritrus variables in Table2 are co-varied, it is likely that the
parameter set found to give the best AMS overall will contain
individual parameters which are outside the plausible range
which would have been found had each parameter been var-
ied individually. Indeed, the goal of this study was to identify
a suitable parameter set for ocean carbon cycle–climate stud-
ies rather than to explicitly elucidate the magnitude of each
constituent parameter. In order to achieve this, every individ-
ual parameter should ideally be varied independently and this
was not computationally feasible within the timescale of this
study. In spite of this, the values of each parameter are now
examined in relation to literature derived values.

As mentioned above Scott et al. (2011) performed a simi-
lar perturbed physics ensemble of HadOCC runs to that car-
ried out here and although they use a considerably larger
parameter set than the present authors (1000 sets of param-
eters), the simulations are run in 1 dimension and for run
lengths of just 9 yr to examine the model’s internal sensitiv-
ity to model parameters, without calling for model-data com-
parison as performed here. However, this study does provide
a useful cross-validation of the validity of the parameter val-
ues identified in this work. Table3 in the Scott paper shows
the ranges of the parameters varied. It is important to note
here that not only do Scott et al. (2011) not vary exactly the
same parameter set as the set perturbed here, they also use
some different nomenclature to the original Palmer and Tot-
terdell (2001) paper. Table4 provides a guide to the names of
the parameters varied in this study in relation to those given
in Palmer and Totterdell (2001) and in Scott et al. (2011).

Of the parameters which are common to both ensemble
approaches (Table4), only two parameter values identified in
this study fall outside the range given by Scott et al. (2011)
(note that the deep detritus remineralisation rate is neglected
here since the range in Scott et al., 2011 is derived from its
shallow equivalent, not from the literature); these are the lin-
ear zooplankton mortality rate,µ1, and the “rain ratio”. The
value of the former derived here is 0.02594 which falls just
outside the literature-derived range of 0.03–0.2, however the

www.geosci-model-dev.net/6/141/2013/ Geosci. Model Dev., 6, 141–160, 2013



152 J. H. T. Williams et al.: Optimising the FAMOUS climate model: inclusion of global carbon cycling

Fig. 9. Annual mean nitrate concentration in mmol per m−3 at 5 m
for (a) World Ocean Atlas observations (Garcia et al., 2006) and
(b–f) 5 ensemble members with AMS scores varying between the
maximum and minimum for the perturbed physics ocean ensemble.

value found here is indistinguishable to the lower bound of
this range when quoted to the same level of precision. The
value of the rain ratio is identified as 0.009729 which lies
just outside the range quoted in Scott et al. (2011), i.e. 0.013–
0.25.

Now that plausible parameters have been identified for the
land and ocean carbon cycles, it is necessary to examine the
climatology of this new version of FAMOUS to ensure that
the results obtained do indeed represent an improvement in
model skill.

5 Climatology and validation

Since the first FAMOUS documentation paper (Jones et al.,
2005), there have been a number of improvements made.
Smith et al. (2008) described advances in the representa-
tion of sea ice and ozone as well as the introduction of
the HadOCC ocean carbon cycle component. Smith (2012)
shows improved upper level winds through the introduction
of a Rayleigh friction term at the top of the atmosphere and
also described other changes relating to, for example, ocean-
solar radiation interactions and the effect of snow at coastal
points due to the fractional land–sea mask in FAMOUS (e.g.
Smith et al., 2008). The climatologies of runs using the newly
identified carbon cycle parameter sets are now described.

Table 4. Comparison of nomenclature used in Scott et al. (2011)
and Palmer and Totterdell (2001) to describe analogous ocean bio-
geochemical parameters.

Model Symbol in Symbol in
parameter Table 2 of Palmer Table 3 of Scott
name and Totterdell (2001) et al. (2011)

c2n p Cp not mentioned
c2n z Cz not mentioned
c2n d Cd not mentioned
psmax Pmax10 P s

max
alpha α α

Q10H Q10 not mentioned
mort sat KN Knit
resprate η η

pmort max m0 m0
grazemax gmax gmax
grazesat KG KF

grazethreshold Fthreshold not mentioned
betap βp βP

betadt βd βD

z mort 1 µ1 µ1
z mort 2 µ2 µ2
remin rateshallow λ Rmshall
remin ratedeep λ Rmdeep
sink ratedt no symbol given vs

rain ratio γc ϒc

5.1 Atmosphere and land surface

5.1.1 Near-surface air temperature

It is important to confirm that the new versions of FAMOUS
described here are compatible with those published previ-
ously (Jones et al., 2005; Smith et al., 2008; Smith, 2012)
and with HadCM3. This is because FAMOUS was originally
calibrated against HadCM3 in order to provide an analogous
climatology but with significantly reduced run times. The
FAMOUS simulations in question (denoted by their unique
5 letter Met Office Unified Model simulation index) are given
below and are denoted a generation number to indicate the
order of their documentation date. The version of the land
surface scheme, MOSES, is also given.

– ADTAN (Jones et al., 2005) – MOSES 1

– Generation 1

– XDBUA (Smith et al., 2008) – MOSES 1

– Generation 2

– XFHCC (Smith, 2012) – MOSES 1

– Generation 3

– XFHCU (optimised carbon cycle parameters) – MOSES
2.2 (fixed vegetation)

– Generation 4a
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Table 5. Regional and seasonal AMS values for different members of the FAMOUS model hierarchy. These are calculated for 1.5 m air
temperature with respect to HadCM3. Generation numbers are given in brackets.

ADTAN (1) XDBUA (2) XFHCC (3) XFHCU (4a) XFHCS (4b)

45–90◦ N DJF 0.60 0.70 0.79 0.82 0.76
JJA 0.79 0.76 0.84 0.77 0.68
Annual 0.66 0.77 0.85 0.84 0.76

Global DJF 0.85 0.86 0.88 0.87 0.87
JJA 0.90 0.88 0.88 0.88 0.88
Annual 0.89 0.89 0.89 0.89 0.89

– XFHCS (optimised carbon cycle parameters) – MOSES
2.2+ TRIFFID (dynamic vegetation)

– Generation 4b

The generation 3 simulation, XFHCC, is the most recently
documented version of FAMOUS prior to this work although
most work currently being undertaken with FAMOUS uses
XDBUA (the generation 2 model) or XFXWB (Smith, 2012).
The only major structural difference between XFXWB and
XFHCC (the generation 3 model used here) is the inclusion
of Rayleigh Friction in the upper 3 atmospheric model levels;
a change which has been shown to improve the climatology.
XFHCC is therefore chosen above XFXWB as the genera-
tion 3 model to enhance traceability in the documentation
of FAMOUS; noteworthy differences between XFXWB and
XFHCC are described in Smith (2012).

All previously documented versions of FAMOUS have
used the MOSES 1 land surface scheme and a fixed vege-
tation distribution and so the newly optimised description of
the model represents a step change in model complexity. Fig-
ure 10 shows the 1.5 m air temperature for the simulations
described above and Table5 shows the corresponding AMS
values.

One particularly apparent aspect of the FAMOUS results
shown in Fig.10 is the persistent cold bias in the Northern
Hemisphere in DJF although this is significantly improved
in more recent versions of the model compared to the 1st
generation. Generations 3, 4a and 4b are strikingly similar
in DJF with a cold bias which is shifted east compared to
generation 2. In addition, the agreement between FAMOUS
and HadCM3 is noticeably better in JJA compared to DJF;
this is evident in all versions of the model.

Another result (not shown) is that the introduction of
MOSES 2.2 (with fixed vegetation cover) whilst maintaining
the un-optimised carbon cycle parameters overcompensates
for the Northern Hemisphere winter cold bias and introduces
a summer warm bias. Using the optimised parameter set does
leave some cold bias in place (Fig.10) but significantly im-
proves this “new” summer warm bias. So in summary, the
introduction of MOSES 2.2 provides an annual mean temper-
ature climatology which is as good as any of the previously
documented versions of FAMOUS. If the vegetation is fixed

Fig. 10.Air temperature at 1.5 m with respect to HadCM3 for pro-
gressively more modern versions of FAMOUS (most recent at the
bottom of the figure) for DJF (left) and JJA (right).
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Fig. 11. Mean temperature profiles for 20◦ S–20◦ N (left) and
90◦ S–60◦ S (right) for HadCM3 (dotted line), generation 1 FA-
MOUS, ADTAN (dashed line), generation 2, XDBUA (dotted-
dashed line), generation 3, XFHCC (squares) and generation 4b,
XFHCS (circles). The generation 4a model, XFHCU is not shown
since its temperature profile is virtually indistinguishable from the
generation 4b version, especially in the stratosphere.

to observations of the contemporary biosphere, the optimi-
sation procedure described above provides not only a good
global AMS score, but also helps to alleviate the persistent
DJF Northern Hemisphere cold bias.

5.1.2 Vertical temperature profile

Having studied the ability of FAMOUS to reproduce
HadCM3’s surface temperature distribution, the air tempera-
ture aloft is now examined with respect to the ECMWF 40 yr
reanalysis (Uppala et al., 2005). The vertical temperature
structure of FAMOUS was last studied in Smith et al. (2008)
(their Fig. 5) and Fig.11shows an updated version of this fig-
ure but with simulation output plotted with respect to ERA-
40 data rather than ERA-15.

The atmospheric resolution of FAMOUS is significantly
reduced compared to HadCM3 (11 vertical levels compared
to 19); indeed there is frequently just a single model layer
at pressures lower than the tropopause (Smith et al., 2008).
Therefore, the ability of the generation 4b version of FA-
MOUS to accurately reproduce the temperature structure of
HadCM3 and ERA-40 up to 10 mbar (the lowest value pres-
sure level available for all the simulations presented here) is
very encouraging.

One reason for the improvement in upper-atmosphere tem-
perature profiles (along with improved upper level winds as
described in Smith, 2012) is due to the different ozone pa-
rameterisations in the separate model versions and these val-
ues are shown in Table6.

Fig. 12.Annual mean total precipitation rate in mm per day for(a)
the CMAP climatology (Xie and Arkin, 1997) and the difference
between the simulated total precipitation and CMAP for(b) the gen-
eration 3 model XFHCC,(c) the generation 4a model XFHCU and
(d) the generation 4b model XFHCS. Missing data areas are set to
white and the AMS scores for the 3 model generations are given in
the subtitles to(b), (c) and(d).

5.1.3 Precipitation

Smith et al. (2008) used the CPC Merged Analysis of Precip-
itation (CMAP) dataset (Xie and Arkin, 1997) to validate the
2nd generation FAMOUS model, XDBUA, and this dataset is
also used here. Figure12shows the annual mean total precip-
itation for the CMAP climatology, the 3rd generation model,
XFHCC and the 4th generation models XFHCU (fixed veg-
etation) and XFHCS (dynamic vegetation). This figure also
shows the respective AMS values.

The land surface scheme of a climate model can be ex-
pected to have a significant effect on precipitation over land.
For example, a significant difference between the land sur-
face schemes of the 4th generation versions of FAMOUS
and those documented previously is the introduction of plant
functional types which can individually affect the fluxes of
water and CO2 at the land–atmosphere interface.

In light of this, it is reassuring that in both 4th generation
versions of FAMOUS the global representation of precipita-
tion is improved compared to the 3rd generation version as
shown by the AMS scores in the subtitles to Fig.12b–d. The
main features to note are the improvement to the (positive
and negative) biases over the equatorial Pacific in Fig.12c
and d and also over the Amazon basin in Fig.12c, where the
vegetation is held constant. The significant improvement to
the positive bias over the Maritime Continent is also rather
striking, particularly given this region’s significant influence
on large-scale heating and atmospheric circulation (Neale
and Slingo, 2003). In tandem with these improvements, there
is a small increase in the positive bias in the equatorial At-
lantic in the 4th generation models but overall the global
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Table 6.Ozone concentrations in kg kg−1 around the tropopause for the different generations of FAMOUS.

Level 1st generation 2nd and 3rd generation 4th generation

Top layer − 1.5× 10−6 6.0× 10−6

Above tropopause 1.5× 10−6 1.0× 10−6 2.0× 10−6

At tropopause 2.0× 10−7 2.0× 10−7 1.0× 10−7

Below tropopause 2.0× 10−8 2.0× 10−8 2.0× 10−8

Table 7.AMS scores for precipitation for the northern and southern
mid-latitudes and the tropics.

XFHCC XFHCU XFHCS

30◦–60◦ 0.59 0.51 0.51
−30◦–+30◦ 0.40 0.47 0.45
−60◦–−30◦ 0.29 0.34 0.36

precipitation is noticeably improved with respect to the ear-
lier version.

Figure12a clearly shows that the areas of highest rainfall
are located in the ITCZ and SPCZ (Inter-Tropical and South
Pacific Convergence Zones). What this means is that the pre-
cipitation anomalies with respect to the CMAP observations
in Fig. 12b–d mainly highlight these areas. Figure13 shows
the same data as Fig.12 but only for the northern and south-
ern mid-latitudes (30◦–60◦) and Table7 gives the respective
AMS scores.

From Figs.12and13as well as Table7 it can be seen that
although the global, tropical and southern mid-latitude AMS
is improved in the generation 4 simulations compared to the
generation 3 version, this is not the case for northern mid-
latitudes. This slight deterioration is due to an increase in the
positive bias over western North America and an increase in
the negative bias over the Northern Pacific.

5.2 Ocean

5.2.1 Surface nitrate

Figure14 shows the annual average surface nitrate concen-
tration for observations from the World Ocean Atlas (Garcia
et al., 2006) and for the generation 3 and 4a simulations.

There are no significant differences between the nitrate
distributions for the two generation 4 models XFHCU –
Fig. 14c – and XFHCS (not shown) which is expected be-
cause these simulations differ only in their representation
of terrestrial vegetation. When comparing Fig.14b and c
however, a marked improvement in FAMOUS’ ability to re-
produce the observed nitrate concentration is seen between
generation 3 and 4, which is clearly manifested in a signifi-
cant increase in the AMS score for XFHCU as shown above
Fig. 14b,c. Clearly this is the expected result because the op-
timised ocean carbon cycle parameters used in XFHCU were

tuned to the nitrate concentration in Fig.14a. However this
does provide a good illustration of the power of the tuning
method employed in this work. For example, the large posi-
tive bias in the equatorial Pacific is significantly reduced and,
although the positive bias in the south Atlantic is increased,
the overall Southern Ocean bias is markedly reduced. As pre-
viously mentioned however, the Southern Ocean bias is of
lesser importance here since the ocean productivity in this
region is, in reality, iron limited (Boyd et al., 2000).

5.2.2 Vertical nitrate profiles

Although the surface nitrate distribution has been improved
by the newly identified set of ocean carbon cycle parameters,
the effect on the same quantity at depth is now investigated,
again with respect to the World Ocean Atlas dataset. Fig-
ure15 shows the observed quantity and the equivalent plots
for the generation 3 and 4 configurations of FAMOUS, re-
spectively. Although there is a deterioration in the negative
bias around 1000 m depth in northern mid-latitudes, there
is a striking improvement in the positive bias at high north-
ern latitudes. The alleviation of the Southern Ocean negative
bias present in the third generation model (shown above in
Fig. 14) is also significantly improved.

In addition to the global results shown in Fig.15, Figs.16
and17 show the results for the Atlantic (70◦ W–20◦ E) and
Pacific (150◦ E–290◦ E) basins, respectively. In the Atlantic,
the agreement at depth in the southern hemisphere is less
good in the fourth generation models (c and d), however the
northern hemisphere agreement is improved at all depths. For
the Pacific Ocean, there is little change in the level of agree-
ment in the southern hemisphere except for a small deterio-
ration in the positive bias around 1000 m depth between the
equator and approximately 45◦ S. The negative bias at depths
below 2000 m is noticeably improved in the northern hemi-
sphere however.

5.2.3 Ocean productivity

Figure 18 shows global and zonally averaged ocean pro-
ductivity data from observations (Behrenfeld and Falkowski,
1997) and the difference between the generation 3 and 4a
configurations of FAMOUS and this observational data. As
for the surface nitrate concentration, the generation 4b model
is not shown since the results are very similar to those of the
generation 4a model. The agreement between simulated and
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Fig. 13.Difference between simulated and observed precipitation in the northern(a–c)and southern(d–f) mid-latitudes as shown globally
in Fig. 12. Note the different contour intervals compared to Fig.12.

Fig. 14. Annual mean nitrate concentration in mmol per m−3 at 5 m for(a) World Ocean Atlas observations (Garcia et al., 2006) and the
difference between the simulated and observed values for(b) the generation 3 model XFHCC and(c) the generation 4a model XFHCU. The
AMS scores for simulations are given above(b) and(c).

Fig. 15. Zonal mean–depth plots for annual mean nitrate concen-
tration in mmol per m−3 for (a) World Ocean Atlas observations
(Garcia et al., 2006) and the difference between the simulated and
observed values for(b) the generation 3 model XFHCC,(c) the gen-
eration 4a model XFHCU,(d) the generation 4b model XFHCS.

observed distributions is degraded in the equatorial oceans
for the generation 4 configuration compared to the 3rd gen-
eration. However, in the extra-tropics, right up to the polar
regions, the agreement between the different generations of

FAMOUS themselves is striking, although the simulated val-
ues are generally less productive than observed. It should be
noted that this inter-model agreement in the extra-tropics is
not seen for the surface nitrate concentration (Fig.14) where
significant differences are visible in the Southern Ocean for
the different model configurations.

The global productivity sum for the observations is
50.8 Pg C yr−1, in contrast to 33.0 and 71.3 Pg C yr−1 for
generations 3 and 4a, respectively. This quantity is an often
quoted metric in the literature (Palmer and Totterdell, 2001;
Behrenfeld and Falkowski, 1997; Cox et al. 2000, for exam-
ple) and so in this regard, the degradation in agreement be-
tween modelled and observed results is only marginal in that
the generation 3 model underestimates the global mean value
by 35 % and the generation 4 model overestimates by 40 %.

6 Discussions, conclusions and future work

The two new versions of FAMOUS presented here represent
an important increase in model complexity compared to pre-
vious versions of the model, with the inclusion of surface
tiling into 9 sub-types and the flexibility to include dynamic
vegetation response to climate forcings. The carbon cycle pa-
rameters of both the land surface and the ocean have been
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Fig. 16.As for Fig.15but for the Atlantic basin (70◦ W–20◦ E).

tuned to observations and reanalysis data and the climatolo-
gies of the new versions of the model have been shown to be
noticeably improved.

Concerning the terrestrial carbon cycle, the use of a large
ensemble of 100 climate simulations has enabled the deter-
mination of sensible ranges of the parameters varied in the
ensemble methodology. It is clear that certain parameters are
significantly better constrained than others by this work. For
example, the 7 ensemble members which are seen to give
the best representation of the Amazon rainforest only ac-
count for 30 % of the variation of the parameter controlling
the critical soil moisture (Vcrit,α), whereas the same 7 simu-
lations encompass 92 % of the parameter range of theTupp
parameter which, in part, controls the response of photosyn-
thesis with temperature. This last result concerningTupp sug-
gests that comparisons with land surface coverage do not pro-
vide a constraint on the future land carbon cycle uncertainty
identified here and in Booth et al. (2012). It does raise the
interesting implication, however, that comparisons of land
surface coverage between observations and simulations may
constrain other land carbon cycle parameters more closely
tied to the hydrological response within the model. For the
ocean ensemble, it has been shown that the phytoplankton
parameters are better constrained than the others with the top
six performing ensemble members accounting for approxi-
mately just the top 25 % of the parameter variation.

Despite including many elements of the carbon cycle, the
work presented here fixes the atmospheric concentration of
CO2 at preindustrial levels. This clearly limits the degree to
which the newly modelled carbon cycle processes can influ-
ence the large-scale climate of the model. Lifting this restric-
tion whilst maintaining a realistic climate simulation, and as-
sessing the climate and sensitivities of this fully interactive
carbon cycle version of FAMOUS is beyond the scope of this
paper, and will be addressed in a forthcoming publication.

This work illustrates that many parameters are under-
constrained or under-determined by the simulation-
observation comparisons presented here. This represents

Fig. 17.As for Fig.15but for the Pacific basin (150◦ E–290◦ E).

one of the key challenges in model development and is
an important factor linked to uncertainty in simulated re-
sponses to future climate scenarios (e.g. Booth et al., 2012).
The use of simulated-observed comparisons to constrain
model parameters is more advanced in the development
of atmospheric components of models (e.g. Murphy et al.,
2004 where simulations are compared against a very large
basket of observational metrics) but even in these cases,
with the larger number of observations, many (often key)
parameters remain under-determined (Sexton et al., 2012).
The development of a comparable set of observational
metrics for carbon cycle processes, is in its infancy in
comparison. It has been illustrated here that land vegetation
cover, specifically Amazon forest extent, and ocean nitrate
can both be used to narrow the range of plausible values
for some but not all carbon cycle parameters. This is a first
step. With the more central role of carbon cycle processes
in current global climate models (CMIP5), we will need
to identify and develop a broader set of biogeochemical
observational metrics as part of the processes of calibrating
parameter sets, while recognising that some parameters will
always remain under-determined and that this will be linked
to an uncertainty in the simulated responses.

The HadOCC model is currently the only biogeochemi-
cal model which can be coupled to the Hadley Centre GCM
ocean. Future work with this modelling framework will fo-
cus on significantly improving the biogeochemical cycling
capabilities of the Hadley Centre model. The first stage of
this biogeochemical cycling improvement work will aim to
include oxygen as a fully prognostic variable and later devel-
opments will aim to increase the number of nutrients simu-
lated in the model, which is currently limited to just one, i.e.
nitrate. More recent versions of the Hadley Centre model (for
example HadGEM2 which is part of the Hadley Centre’s con-
tribution to the forthcoming IPCC Fifth Assessment Report)
use an upgraded version of the HadOCC model known as
diat-HadOCC (Halloran, 2012; Collins et al., 2011), however

www.geosci-model-dev.net/6/141/2013/ Geosci. Model Dev., 6, 141–160, 2013



158 J. H. T. Williams et al.: Optimising the FAMOUS climate model: inclusion of global carbon cycling

Fig. 18. (a)Observed primary production (Behrenfeld and Falkowski, 1997) and(b–c) difference between the generation 3 model XFHCC
and the generation 4a model XFHCU and observational data. Sub-figures(d–f) show the same data but for zonally averaged quantities. The
units of all quantities in this figure are gC per m2 per day.

this configuration of the ocean carbon cycle model has not
yet been applied to the FAMOUS version of the Hadley Cen-
tre model.

Additional future model development work with the FA-
MOUS biogeochemical scheme aims to incorporate further
ocean processes related to long timescale responses of the
ocean carbon cycle (such as weathering); analogous to the
GENIE Earth system model (e.g. Ridgwell and Hargreaves,
2007). This will enable more realistic multi-centennial cli-
mate simulations to be carried out with a view to aiding
a better understanding of ocean acidification under climate
change, for example. Work is also underway to improve
the coupling between FAMOUS and the Glimmer ice sheet
model by including a detailed representation of sub-gridscale
orography and snowpack behaviour.
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