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Abstract. The total alkalinity–pH equation, which relates to-
tal alkalinity and pH for a given set of total concentrations
of the acid–base systems that contribute to total alkalinity
in a given water sample, is reviewed and its mathematical
properties established. We prove that the equation function is
strictly monotone and always has exactly one positive root.
Different commonly used approximations are discussed and
compared. An original method to derive appropriate initial
values for the iterative solution of the cubic polynomial equa-
tion based upon carbonate-borate-alkalinity is presented. We
then review different methods that have been used to solve
the total alkalinity–pH equation, with a main focus on bio-
geochemical models. The shortcomings and limitations of
these methods are made out and discussed. We then present
two variants of a new, robust and universally convergent al-
gorithm to solve the total alkalinity–pH equation. This al-
gorithm does not require any a priori knowledge of the so-
lution. SolveSAPHE (Solver Suite for Alkalinity-PH Equa-
tions) provides reference implementations of several variants
of the new algorithm in Fortran 90, together with new imple-
mentations of other, previously published solvers. The new
iterative procedure is shown to converge from any starting
value to the physical solution. The extra computational cost
for the convergence security is only 10–15 % compared to
the fastest algorithm in our test series.

1 Introduction

Biogeochemical models have become indispensable tools to
improve our understanding of the cycling of the elements in
the Earth system. A central and critical component of almost
all biogeochemical models is the pH calculation routine. In
ocean carbon cycle models, the air–sea exchange of CO2 is
directly linked to the surface ocean [CO2]; the preservation
of biogenic carbonates in the surface sediments at the sea
floor is closely linked to the deep sea [CO2−

3 ] (Broecker and
Peng, 1982). The fractions of CO2, HCO−

3 and CO2−

3 in the
total dissolved inorganic carbon (i.e. the speciation of the car-
bonate system) are controlled by pH. Hence, pH changes in
seawater may directly influence air–sea exchange of CO2 or
the preservation of carbonates in the deep sea. Conversely,
the dissociation of acids, such as carbonic acid, also controls
pH: when the ocean takes up or releases CO2 (e.g. as a re-
sult of a rise or a decline of the abundance of CO2 in the
atmosphere), its pH changes. The currently ongoing ocean
acidification due to the massive release of CO2 into the at-
mosphere by human activity is but one example of such an
induced pH change.

The nitrogen cycle is another important biogeochemical
cycle where pH plays an important role. The speciation of
dissolved ammonium is – as that of any acid–base system –
dependent on pH, NH3 being more abundant than NH−

4 at
high pH, and less abundant at low pH. At pH> 9, the con-
centration of NH3 in seawater may reach toxic levels.
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1368 G. Munhoven: Solving the alkalinity–pH equation: SolveSAPHE

The realistic modelling of biologically mediated fluxes
(e.g. marine primary or export production) requires the co-
limitation or even inhibition by different chemical compo-
nents to be taken into account. The nitrogen and carbon cy-
cles, already mentioned above, strongly interact, both in the
ocean and on land. In the ocean, Fe and other metals act as
micronutrients and once again, pH plays an important role as
the solubility of metals is strongly dependent on pH (Millero
et al., 2009). The resulting coupling of the biogeochemical
cycles of different elements makes biogeochemical models
become more and more complex and pH calculation more
and more difficult.

Biogeochemical models are now increasingly used for set-
tings that are strongly different from present day. Typical ap-
plications include future ocean acidification (e.g.Caldeira
and Wickett, 2003), the Paleocene–Eocene Thermal Max-
imum (e.g.Ridgwell and Schmidt, 2010), Snowball Earth
(e.g. Le Hir et al., 2009), etc. Some commonly used pH
solvers may possibly become unstable and produce unreli-
able results. The convergence properties of currently used so-
lution methods has actually never been systematically tested.

Unfortunately, information on pH solver failures is only
seldom published.Zeebe(2012) reports for his LOSCAR
model that negative H+ concentrations may be obtained
when starting with total alkalinity and dissolved inorganic
carbon concentrations in a very high ratio, requiring the
model run to be restarted with the respective concentrations
in a lower ratio.Hofmann et al.(2010) also indicate that the
standard pH solving routine in their R modelling environ-
ment AquaEnv may fail when trying to calculate the pH for
samples with very low or zero dissolved inorganic carbon
concentrations. In this case, they resort to a general purpose
interval based root finding routine instead, adopting a very
large bracketing interval (seeHofmann et al., 2012), possibly
leading to a considerable performance loss. Andy Ridgwell,
in his editorial comment to the companion discussion paper,
mentions convergence problems encountered with the GE-
NIE model code (Ridgwell et al., 2007) encountered while
studying the effect of an artificial addition of lime (CaO) to
the ocean surface (a particular geoengineering method meant
to accelerate the uptake of carbon dioxide from the atmo-
sphere) once total alkalinity came to exceed the typical sur-
face ocean concentrations of dissolved inorganic carbon by
about a factor of two. As we will show below, the three mod-
els use essentially equivalent pH calculation methods, which
become divergent under those typical conditions.

The speciation of any acid system, i.e. the determination
of the concentrations of each one of the undissociated and
the different dissociated forms of an acid, is an underdeter-
mined problem if only the total concentration and thermody-
namic or stoichiometric constants are known. This underde-
termination can be lifted if pH is known. Being dependent
on temperature and pressure, neither pH nor [H+] are, how-
ever, well suitable for being used in transport equations, and
thus in biogeochemical models. In biogeochemical models,

the common way to resolve this underdetermination is to
consider another conservative quantity: total alkalinity, also
called titration alkalinity. Total alkalinity, which is also an
experimentally measurable quantity, ties all the different acid
systems present in a water sample together and allows us to
solve the speciation problem. In comparison to pH, it has the
advantage of being a conservative quantity: it is only con-
trolled by its sources and sinks, and it is independent on tem-
perature and pressure (Zeebe and Wolf-Gladrow, 2001).

In the following section, we provide a comprehensive in-
troduction to the concept of alkalinity. In our exploration of
the mathematical properties of the equation that relates [H+]
to total alkalinity start with a detailed presentation of various
approximations commonly used for present-day seawater.
The analysis of the mathematical properties of these approx-
imations will provide useful hints for the characteristics of
the general case. In Sect.3 of this paper, we present solution
methods for deriving pH from each of the various approx-
imations to total alkalinity considered. Complications that
might possibly arise from the various pH scales that are in
use in marine chemistry are elucidated in Sect.4. In Sect.5,
we then show that there are intrinsic bounds that bracket the
root of the total alkalinity–pH equation, and that can be di-
rectly derived from the approximation used to represent total
alkalinity. The existence of such bounds makes it possible to
define a new, universal algorithm to solve the alkalinity–pH
equation, which requires no a priori knowledge of the root.
A reference implementation of two variants of the new algo-
rithm is presented in Sect.6. The algorithms are tested for
their efficiency and robustness and their performance com-
pared with that of the most common previously published
general solution methods.

2 Total alkalinity: general definition and
approximations

In the following parts of this section, we review a number of
aspects of total alkalinity in natural waters. The main focus
will be put onto seawater and on the carbonate system, but
all the presented developments can be applied to any natu-
ral water sample, provided the required thermodynamic con-
stants are known. We briefly recall the different approxima-
tions commonly used for calculating pH and the speciation
of acid systems. We will then establish a few basic proper-
ties of the expressions that relate the various types of alka-
linity to total concentrations and pH. Although simple, these
properties do not seem to have been previously explored in
detail, nor exploited for designing methods of solution of the
alkalinity–pH equation.

Although we primarily focus on modelling in the follow-
ing developments, the calculation procedures are obviously
also applicable in experimental set-ups.
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2.1 Total alkalinity

2.1.1 General definition

Total alkalinity, also called titration alkalinity, denoted here
AlkT, reflects the excess of chemical bases of the solution rel-
ative to an arbitrary specified zero level of protons, or equiva-
lence point. Ideally, AlkT represents the amount of bases con-
tained in a sample of seawater that will accept a proton when
the sample is titrated with a strong acid (e.g. hydrochloric
acid) to the carbonic acid endpoint. That endpoint is located
at the pH below which H+ ions get more abundant in solution
than HCO−

3 ions; its value is close to 4.5. H+ added to water
at this pH by adding strong acid will remain as such in solu-
tion. Please notice that, for the sake of a simpler notation, we
follow here the common usage of denoting protons in solu-
tion by H+, although free H+ ions sensu stricto do only exist
in insignificantly small amounts in aqueous solutions. Each
proton is rather bound to a water molecule to form an H3O+

ion, and each of these H3O+ in turn is furthermore generally
hydrogen bonded to three other H2O molecules to form an
H9O+

4 ion (Dickson, 1984).
Rigorously speaking, AlkT is defined as the number of

moles of H+ ions equivalent to the excess of “proton accep-
tors”, i.e. bases formed from acids characterized by apKA ≥

4.5 in a solution of zero ionic strength at 25◦C, over “proton
donors”, i.e. acids withpKA < 4.5 under the same condi-
tions, per kilogram of sample (Dickson, 1981).

With emphasis on the most important contributors, a rather
complete expression for AlkT in a seawater sample is

AlkT = [HCO−

3 ] + 2× [CO2−

3 ] + [B(OH)−4 ] + [OH−
]

+ [HPO2−

4 ] + 2× [PO3−

4 ] + [H3SiO−

4 ]

+ [NH3] + [HS−
] + 2× [S2−

] + . . .

− [H+
]f−[HSO−

4 ]−[HF]−[H3PO4]−. . . , (1)

where the ellipses refer to other potential proton donors and
acceptors generally present at negligible concentrations only.
All of the concentrations are total concentrations (which in-
clude free, hydrated and complexed forms of the individ-
ual species), except for[H+

]f , which only includes the free
and hydrated forms. There are alternative definitions that can
be found in the literature, which lead to similar, although
not necessarily exactly the same, expressions. However, the
above definition is the one that reflects the titration proce-
dure used to measure alkalinity the most accurately. We will
therefore base the following developments upon it.

In other natural water samples (lake, river, or brines) the
constituent list in Eq. (1) needs to be adapted: some con-
stituents may be neglected and bases of other acid sys-
tems have to be included (e.g. bases derived from organic
acids, from dissolved metals, etc.). While total alkalinity
in seawater samples typically ranges between about 2 and
2.6 meqkg−1, acid mine drainage samples may even present
negative alkalinity, representing the fact that a strong base

instead of a strong acid must be added to reach the equiv-
alence pH point of 4.5. Interested readers may refer, e.g. to
Kirby and Cravotta III(2005) and references therein for such
– from a marine chemist’s point of view – exotic samples.

2.1.2 The pH–total alkalinity equation

Total alkalinity as defined above is a conservative quantity
with respect to mixing, changes in temperature and pressure
(Wolf-Gladrow et al., 2007). It is therefore a cornerstone in
biogeochemical cycle models which are most conveniently
formulated on the basis of conservation equations. In such
models, definition/Eq. (1) above, or an adequate variant, is
used to solve the inverse problem for[H+

]. All of the in-
dividual species concentrations appearing in Eq. (1) can be
expressed in terms of the total concentrations of the acid sys-
tems that they respectively belong to and of[H+

]. Given the
evolutions of the total concentrations of all the acid systems
considered (dissociated and non-dissociated forms) and of
AlkT – all of which can be derived from appropriate conser-
vation equations – expression (1) is interpreted as an equa-
tion for [H+

] or, equivalently, pH. We will therefore call that
equation the total alkalinity–pH equation.

We might actually have called our equation simply the pH
equation. AlkT does indeed not play any special or more im-
portant role than any of the total concentrations of the other
acid systems considered. We do, however, feel that this name
would have been too general and thus prefer to include “total
alkalinity” in the name to reflect that the overall structure of
the equation derives from the definition of total alkalinity.

2.1.3 Typical applications in biogeochemical models

In a typical global ocean carbon cycle model, total alkalinity
may commonly be approximated by

AlkT ' [HCO−

3 ] + 2× [CO2−

3 ] + [B(OH)−4 ] + [OH−
]−[H+

], (2)

where[H+
] ' [H+

]f +[HSO−

4 +[HF]. [HCO−

3 ] and [CO2−

3 ]
can be expressed as a function of the total concentration of
dissolved inorganic carbon,CT, and [H+] (see Sect.2.2.1for
details) while [B(OH)−4 ] can be expressed as a function of
the total borate concentration,BT, and [H+] (see Sect.2.2.2
for details); [OH−] is directly linked to [H+] via the equi-
librium constant for the dissociation of water. Accordingly,
Eq. (2) provides a relationship betweenCT, BT, AlkT and
[H+] (i.e. pH). The model provides conservation equations
for CT and AlkT; BT can generally be taken proportional to
salinity, whose evolution either follows a prescribed scenario
or may also derived from a conservation equation. Relation-
ship (2) thus reduces to an equation in [H+]. The solution of
that equation finally provides a means to calculate the com-
plete speciation of the carbonate and the borate systems.

In other biogeochemical studies where other systems than
the carbonate system are of interest (such as ammonium, sul-
phides, etc.), the procedure is entirely analogue. Each one
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of the individual species concentrations that need to be con-
sidered in Eq. (1) for that particular application is expressed
in terms of the total concentration of the acid system that it
belongs to and conservation equations, scenarios or measure-
ments that are used to evaluate all of the total concentrations,
including total alkalinity. These steps again reduce Eq. (1)
into an equation in [H+], whose solution provides a direct
means to calculate the speciations of all the systems consid-
ered.

2.2 Common approximations for total alkalinity
in seawater

Here we first analyse the forward problem for a few spe-
cific approximations used for seawater: for given total con-
centrations of dissolved inorganic carbon, total borate, etc.,
we analyse how the expressions for the different types of al-
kalinity change as a function of[H+

]. This simple analysis
will already provide valuable insight into the overall math-
ematical properties of the total alkalinity–pH equation and
its subcomponents, which we can exploit later for the most
general case.

2.2.1 Carbonate alkalinity

The contribution of the carbonic acid system (or carbonate
system) to total alkalinity is called carbonate alkalinity and
we denote it by AlkC:

AlkC = [HCO−

3 ] + 2[CO2−

3 ].

Upon substitution of the concentrations of the species by
their fractional expressions as a function of[H+

],

[HCO−

3 ] = CT
K1[H+

]

[H+]2 + K1[H+] +K1K2

and

[CO2−

3 ] = CT
K1K2

[H+]2 + K1[H+] +K1K2
,

whereCT is the total concentration of dissolved inorganic
carbon (CT = [CO2] + [HCO−

3 ] + [CO2−

3 ]), K1 andK2 are
the first and second dissociation constant for carbonic acid,
we get

AlkC = CT
K1[H+

] + 2K1K2

[H+]2 + K1[H+] +K1K2
.

For constantCT, the right-hand side is a strictly decreasing
function of[H+

]: its derivative with respect to[H+
] is strictly

negative for positive[H+
]. As a consequence, 0< AlkC <

2CT if CT 6= 0. Both bounds are strict (i.e. they cannot be
reached) and represent the limits of AlkC(CT; [H+

]) for
[H+

] → +∞ (lower bound) and[H+
] → 0 (upper bound),

for CT fixed.

2.2.2 Carbonate and borate alkalinity

The second most important component of natural present-
day seawater alkalinity is borate alkalinity, AlkB. Together
with the carbonate alkalinity we have

AlkCB = AlkC + AlkB = [HCO−

3 ] + 2[CO2−

3 ] + [B(OH)−4 ].

Upon substitution of the individual species concentrations by
their fractional expressions as a function of[H+

], we get

AlkCB = CT
K1[H+

] + 2K1K2

[H+]2 + K1[H+] +K1K2
+ BT

KB

[H+] +KB
,

whereBT is the total concentration of dissolved borates and
KB is the dissociation constant for boric acid. For constant
BT, AlkB is again a strictly decreasing function with[H+

],
similarly to AlkC. Hence, for constantCT and BT, AlkCB
is a strictly decreasing function with[H+

] and, as a conse-
quence, 0< AlkCB < 2CT + BT as long asCT + BT 6= 0.

2.2.3 Carbonate, borate and water self-ionization
alkalinity

In a third stage, we may consider the alkalinity that
arises from the dissociation of the solvent water itself (by
self-ionization) in addition to carbonate and borate alkalin-
ity and get the next important approximation for natural
present-day seawater, calledpractical alkalinity by Zeebe
and Wolf-Gladrow(2001):

AlkCBW

= AlkCB + [OH−
]−[H−

]

= [HCO−

3 ] + 2[CO2−

3 ] + [B(OH)−4 ] + [OH−
]−[H+

].

Upon substitution by the respective speciation relationships,
we get

AlkCBW = CT
K1[H+

] + 2K1K2

[H+]2 + K1[H+] +K1K2

+ BT
KB

[H+] +KB
+

KW

[H+]
− [H+

],

(3)

whereKW is the dissociation constant of water in seawater.
At this stage, we do not want to insist on subtleties related to
pH scales. Normally, the last term[H+

] in the two previous
equations should actually read[H+

]f . We will address the
difference between [H+] and[H+

]f in Sect.4 below.
Since AlkCB is decreasing with[H+

], for constantCT and
BT, the same holds for AlkCBW, becauseKW/[H+

]−[H+
]

is again decreasing with[H+
]. However, unlike AlkCB,

AlkCBW is unbounded and it can take arbitrarily low values
(for [H+

] �) and arbitrarily great values (for[H+
] �).

Geosci. Model Dev., 6, 1367–1388, 2013 www.geosci-model-dev.net/6/1367/2013/
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2.2.4 Contribution of a generic acid system to total
alkalinity

In common seawater, AlkCBW is entirely sufficient even for
applications that require high accuracy. However, in some
cases other systems than the carbonate and borate systems
need to be considered. This is especially the case in suboxic
and anoxic waters, such as semi-closed fjords (e.g. Fram-
varen Fjord in Norway studied byYao and Millero, 1995) or
at a larger scale, the Black Sea (e.g.Dyrssen, 1999), where,
e.g. the contribution from sulphides cannot be neglected.

In order to generalize our analysis of the total alkalinity–
pH equation, let us consider a generic acid, denoted by HnA,
that may potentially lead ton successive dissociation reac-
tions, characterized by stoichiometric dissociation constants
K1,K2, . . .,Kn, respectively:

HnA 
 H+
+ Hn−1A−, K1 =

[H+
][Hn−1A−

]

[HnA]

Hn−1A− 
 H+
+ Hn−2A2−, K2 =

[H+
][Hn−2A2−

]

[Hn−1A−]

...
...

HA(n−1)− 
 H+
+ An−, Kn =

[H+
][An−

]

[HA(n−1)−]
.

For simplicity, we omit the “∗” superscript commonly used
elsewhere to differentiate stoichiometric from thermody-
namic dissociation constants (i.e. elsewhere stoichiometric
constants generally writeK∗

i instead ofKi). Throughout this
paper, the constants used will relate concentrations and not
activities. As such, they include the effect of activity coef-
ficients that differ from unity. The values of such constants
not only depend on temperature and pressure but also on
the ionic strength of the solution. Everything developed here
furthermore applies to all kinds of acids, be they of Arrhe-
nius, Brønsted–Lowry, Lewis or any other type, even if the
adopted notation could possibly suggest that our develop-
ments only apply to Arrhenius-type acids.

If we denote the total concentration of dissolved acid HnA
by [6A]=[HnA] + . . . + [An−

], the fractions of undissoci-
ated acid and of the various dissociated forms Hn−1A−,
Hn−2A2−, . . . , An− are

[HnA]

[6A]
=

[H+
]
n

[H+]n+K1[H+]n−1+K1K2[H+]n−2

+...+K1K2···Kn

=
[H+

]
n

[H+]n +

n∑
j=1

[H+]n−j
j∏

i=1
Ki

,

[Hn−1A−
]

[6A]
=

K1[H+
]
n−1

[H+]n +

n∑
j=1

[H+]n−j
j∏

i=1
Ki

,

...

[Hn−j Aj−
]

[6A]
=

(
j∏

i=1
Ki)[H+

]
n−j

[H+]n +

n∑
k=1

[H+]n−k
k∏

i=1
Ki

,

...

[An−
]

[6A]
=

n∏
i=1

Ki

[H+]n +

n∑
j=1

[H+]n−j
j∏

i=1
Ki

.

The joint contribution of all the different dissociated and non-
dissociated forms of HnA to alkalinity, proton donors and
proton acceptors alike, is then equal to

AlkA =

n∑
j=0

(j − m)[Hn−j Aj−
],

wherem is an integer constant, which is dependant on the so-
called zero proton level of the system under consideration:

– m is such thatpKm < 4.5 < pKm+1 if pK1 < 4.5
andpKn > 4.5

– m = 0 if pK1 > 4.5

– m = n if pKn < 4.5

SincepKm < 4.5, all of the Hn−j Aj− in the HnA - . . . -
An− system forj = 0, . . .,m − 1 are proton donors: the last
one (j = m − 1) has a strength of 1 eqmol−1, the second to
last one (j = m− 2) of 2 eqmol−1, etc. SincepKm+1 > 4.5,
the dissociation products Hn−j Aj− for j = m + 1, . . .,n are
proton acceptors, the first one (j = m + 1) with a strength
of 1 eqmol−1, the second one (j = m + 2) with a strength of
2 eqmol−1, etc. For the carbonic acid system, e.g.n = 2 and
m = 0; for the boric acid system,n = 1 andm = 0; for the
phosphoric acid system,n = 3 andm = 1.

www.geosci-model-dev.net/6/1367/2013/ Geosci. Model Dev., 6, 1367–1388, 2013
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From the previous expressions for the species fractions,
we then find that

AlkA([H+
]) = [6A]

n∑
j=0

(j−m)5j [H+
]
n−j

n∑
j=0

5j [H+]n−j

= [6A]


n∑

j=0
j5j [H+

]
n−j

n∑
j=0

5j [H+]n−j

−m

 , (4)

where we have defined

5j =

j∏
i=1

Ki, j = 1, . . .,n and 50 = 1 (5)

to simplify the notation.
Similar to the carbonate and borate systems above, AlkA is

strictly decreasing with[H+
], for [6A] fixed. A mathemati-

cally rigorous demonstration of this behaviour for the general
case is provided in AppendixA.

There are two corollaries of this monotonic behaviour
worth emphasizing.

1. For any acid system HnA-. . . -An−, AlkA is bounded: it
has a supremum which is equal to(n−m)[6A] (i.e. the
limit for [H+

] → 0, not actually reachable though), and
an infimum, which is equal to−m[6A] (i.e. its limit
for [H+

] → +∞, also not actually reachable); both of
these could, theoretically, be negative ifm is sufficiently
large.

2. For a water sample that contains a set of acids Hni
A[i],

(i = 1, . . .) of respective known total concentrations
[6A[i]] and with zero proton levels respectively char-
acterized bymi , the total alkalinity–pH equation,∑

i

AlkA[i]
([H+

]) +
Kw

[H+]
−[H+

]f−AlkT=0, (6)

has exactly one positive root[H+
], for any given value

of AlkT: the sum of the respective alkalinity contribu-
tions over the set{Hni

A[i]|i=1, . . .} of all the acid sys-
tems active in the sample is a strictly decreasing func-
tion of [H+]; the contribution from the dissociation of
water is also strictly decreasing with [H+], and may the-
oretically take any value between+∞ and−∞.

3 Alkalinity–pH equation in biogeochemical models:
approximations and methods of solution

In this section, we are going to review the most common ap-
proximations used in ocean carbon and biogeochemical cy-
cle models, focusing on how the corresponding equation is
solved.

3.1 Carbonate alkalinity based solutions

The straight approximation AlkT ' AlkC is often used in
textbooks (e.g.Broecker and Peng, 1982). There are only
a few models (e.g.Opdyke and Walker, 1992; Walker and
Opdyke, 1995) that use it directly for their carbonate chem-
istry speciation. For numerical modelling purposes, its us-
age is indeed somewhat problematic. [H+] calculated from
AlkT andCT data, by assuming that AlkC = AlkT are typi-
cally 30–40 % too low (i.e. 0.15–0.2 pH units too high) for
present-day seawater samples. Furthermore, the sensitivity of
theCT-AlkC system to perturbations is stronger than that of
theCT-AlkCBW system: equilibriumpCO2 changes, e.g. are
of the order of 20 % larger (Munhoven, 1997).

The calculation of [H+] from CT-AlkC remains neverthe-
less important, as more advanced methods such as those pro-
posed byBacastow(1981), Peng et al.(1987) or Follows
et al. (2006), where AlkC is iteratively recalculated from
more complete approximations to AlkT (ICAC methods – see
below), rely on it.

3.1.1 Fundamental solution

For given AlkC andCT (CT > 0), the equation to solve for
[H+

] is

RC([H+
]) ≡ CT

K1[H+
] + 2K1K2

[H+]2 + K1[H+] +K1K2
−AlkC=0. (7)

Following our discussion in Sect.2.2.1, Eq. (7) has a positive
root if and only if 0< AlkC < 2CT; if there is a positive root,
it is unique.

Equation (7) can be directly solved after conversion to the
quadratic equation:

PC([H+
]) ≡ [H+

]
2
+ a1[H

+
] + a0=0, (8)

where

a1 = K1

(
1−

CT

AlkC

)
and a0 = K1K2

(
1−

2CT

AlkC

)
.

For valid AlkC values (i.e. for 0< AlkC < 2CT), this
quadratic equation has two real roots, a positive and a nega-
tive one. The positive root is

[H+
]=Q(AlkC,CT) ≡

K1

2

(
CT

AlkC
−1+

√
1C

)
, (9)

where

1C =

(
1−

CT

AlkC

)2

+ 4
K2

K1

(
2CT

AlkC
− 1

)
. (10)

For AlkC values that are out of range Eq. (8) either has two
negative or two complex roots.

Geosci. Model Dev., 6, 1367–1388, 2013 www.geosci-model-dev.net/6/1367/2013/



G. Munhoven: Solving the alkalinity–pH equation: SolveSAPHE 1373

3.1.2 Alternative methods

There are other methods to derive[H+
] from AlkC andCT.

All of them ultimately seem to rely on the formulae ofPark
(1969) for deriving the complete speciation of the carbon-
ate system directly from AlkC andCT, without explicitly us-
ing [H+

]. Antoine and Morel(1995) first calculate [CO2]
from CT and AlkC (which involves the solution of a first
parabolic equation), and then derive [H+] from the relation-
ship[CO2]=AlkC[H+

]
2/(K1[H+

]+2K1K2), which requires
the solution of a second parabolic equation.Ridgwell (2001)
first determines the complete speciation of the carbonate sys-
tem, referring for the adopted procedure toMillero and Sohn
(1992), who actually only report the formulae ofPark(1969).
He then derives two different estimates for [H+], based upon
the definitions of the first and second dissociation constants
of carbonic acid, and finally uses the geometric mean of these
two estimates as a solution for Eq. (7).

There are no obvious advantages for calling upon these
methods instead of the direct quadratic solution above. Even
if carefully implemented, both require a significantly higher
number of operations than the solution outlined above. Those
methods offer a direct access to carbonate speciation (at least
in part), which can, however, also be calculated at little extra
cost from [H+].

3.1.3 Iterative carbonate alkalinity correction methods

In most common natural settings, the difference between
AlkC and AlkT, albeit small, leads to significant errors on
[H+], if Alk T is used in place of AlkC and one of the proce-
dures above is used to calculate it fromCT. To overcome this
problem, AlkC can be estimated from AlkT, and then itera-
tively corrected until stabilization occurs. Such a procedure,
which we call here iterative carbonate alkalinity correction
(ICAC) can a priori be used with arbitrary chemical com-
positions, provided AlkC represents a significant fraction of
AlkT. If Alk C makes up only a small fraction of AlkT, the
method is likely to exhibit unstable behaviour.

In the most straightforward ICAC method, one starts from
a trial valueH0 for [H+], a first estimate AlkC,0 is obtained
by subtracting the concentrations of all non-carbonate com-
ponents from AlkT. That AlkC,0 is then used to calculate
a new (improved) estimateH1 for [H+] from Eqs. (9) and
(10) or one of the alternative methods.H1 is then used to
calculate a new estimate AlkC,1 from AlkT as above and the
procedure is iterated until some predefined convergence cri-
terion is fulfilled. This procedure is a classical fixed-point
iteration:

Hn+1 = Q(AlkC(AlkT,Hn),CT). (11)

In this recurrence, AlkC(AlkT,Hn) is the estimate of AlkC
obtained from AlkT by subtracting all the non-carbonate
components estimated by usingHn. Pure fixed-point itera-
tive schemes may be prone to convergence problems (slow

convergence or no convergence at all). If the procedure is
convergent, the rate of convergence is linear.

This plain fixed-point-iteration ICAC method was recently
made popular again byFollows et al.(2006). These authors
argue that in carbon cycle model simulation experiments,
where there is little change in pH from one time step to the
next, a single iteration may already provide a sufficiently
accurate estimate of[H+

] to derive acceptablepCO2 esti-
mates, for any chosen approximation of total alkalinity.Fol-
lows et al.(2006) suggest, if necessary, to repeat the fixed-
point iteration until a sufficiently accurate estimate is found.

There are a number of models that rely on the ICAC ap-
proach for their pH determination.Peng et al.(1987) con-
sider AlkCBW plus the contributions from silicic and phos-
phoric acid systems in their representation of total alkalin-
ity.1 They use an initial value of 10−8 and stop their iterations
once|(1H)/H | < 0.005%. They report that less than ten it-
erations are generally sufficient.Antoine and Morel(1995)
adopt AlkCBW as an approximation to AlkT. At each step,
they derive [H+] from CT and AlkC by using their special
procedure described above. They iterate until two succes-
sive AlkC estimates differ by less than 10−8 (no units given).
Ridgwell (2001) adopts AlkCB + [OH−

] + 1.1[PO3−

4 ] as an
approximation to total alkalinity. He calculates [H+] at each
step fromCT and AlkC by using his own procedure described
above. GENIE (Ridgwell et al., 2007) initially used the same
procedure asRidgwell (2001); in more recent versions of
GENIE, a complete representation of the phosphoric acid
component is used (A. Ridgwell, personal communication,
2012). Arndt et al. (2011) use AlkCBW + [HS−

] as an ap-
proximation to total alkalinity in GEOCLIMreloaded. They
continue to iterate until|AlkCBW+[HS−

]−AlkT| < 10−6 (no
units given). The method is further used in LOVECLIM
(A. Mouchet, personal communication, 2012) with AlkCBW
as an approximation for total alkalinity (Goosse et al., 2010)
and most probably still in some others that, unfortunately, do
not provide details about the calculation procedures adopted.

Bacastow(1981) proposed a variant to improve the rate
of convergence of fixed-point iterations. That variant only
uses the recurrence described above for the first two iterates.
From the third iteration on,Bacastow(1981) switches to
a secant method to solve the fixed-point equationH −

Q(AlkC(AlkT,H)) = 0.2 Fixed-point iterations are thus only
used to provide starting values for the solution of the fixed-
point equation by the secant method. The rate of convergence
of the method is strongly increased by this approach (and the

1Peng et al.(1987) adopt, however, a slightly different defini-
tion of total alkalinity by systematically weighting species by their
respective charge. This leads to differences with the phosphoric acid
system: e.g. the definition ofPeng et al.(1987) is equivalent to
adoptingm = 0 for the phosphoric acid system.

2Bacastow(1981) actually solves the alkalinity equation for the
scaled inverse of [H+]. We provide codes for the two approaches,
although we only base our discussions on the version with secant
iterations on [H+].
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domain of convergence slightly enlarged – see numerical ex-
periments below). However, for someCT-AlkT combinations
the underlying fixed-point equation may still give rise to con-
vergence problems, even with the secant method. However
as will be shown below, the method ofBacastow(1981) is
strongly preferable over the pure fixed-point scheme.

The Hadley Centre Ocean Carbon Cycle (HadOCC) model
(Palmer and Totterdell, 2001) uses Bacastow’s method for its
carbonate speciation calculation, with the AlkCBW approxi-
mation.

3.2 Carbonate and borate alkalinity based solution

Only a few models appear to use pH calculation rou-
tines based upon AlkCB. MBM-MEDUSA (Munhoven and
François, 1996; Munhoven, 1997, 2007) is one of them, the
model ofMarchal et al.(1998) is another one.

3.2.1 Basic formulation and solution methods

The equation to solve for[H+
] is, for given AlkCB, CT and

BT,

RCB([H+
]) ≡ CT

K1[H+
] + 2K1K2

[H+]2 + K1[H+] +K1K2

+ BT
KB

[H+] +KB
− AlkCB

= 0. (12)

This equation may be converted into the polynomial equa-
tion:

PCB
(
[H+

]
)
≡ [H+

]
3
+ c2[H

+
]
2
+ c1[H

+
] + c0 = 0, (13)

with

c2 = KB

(
1−

BT

AlkCB

)
+ K1

(
1−

CT

AlkCB

)
,

c1 = K1

(
KB

(
1−

BT

AlkCB
−

CT

AlkCB

)
+ K2

(
1−2

CT

AlkCB

))
,

c0 = K1K2KB
(
1−

2CT + BT

AlkCB

)
.

Following our discussion in Sect.2.2.2, Eq. (12) has a pos-
itive root if and only if 0< AlkCB < 2CT + BT; if there is
a positive root, it is unique. The same holds for the cubic
Eq. (13).

The cubic equation could possibly be solved with closed
formulae, such as Cardano’s formulae (which may, however,
suffer from precision problems, require numerically expen-
sive cubic root evaluations or possibly complex arithmetic)
or Viète’s trigonometric formulae (which require a combi-
nation of an arccosine, a cosine and a square root). When
adopted, the cubic Eq. (13) is therefore generally solved nu-
merically with a Newton–Raphson scheme. In this case, de-
termining an adequate starting value is the main problem to
address in order to design a robust and fast solution algo-
rithm.

3.2.2 Efficient starting value for iterative methods

An excellent initial value for the Newton–Raphson scheme
can be found by adopting the following procedure:

1. locate the local minimum closest to the largest root – if
it exists, it is the extremum;

2. developPCB([H+
]) to second order around that mini-

mum; and

3. determine the greatest root of the resulting parabola and
use it as a starting value.

That local minimum, if it exists (i.e. ifc2
2 − 3c1 > 0), is lo-

cated at

Hmin =

−c2 +

√
c2

2 − 3c1

3
=

−c1

c2 +

√
c2

2 − 3c1

.

The Taylor expansion to second order inHmin, thus intersects
theH axis on the right-hand side ofHmin at

H0 = Hmin +

√√√√−
PCB(Hmin)√

c2
2 − 3c1

,

providedPCB(Hmin) < 0. By completing the Taylor expan-
sion to third order, it is straightforward to show thatH0 is
greater than the root.

The so-definedH0 provides an excellent starting value not
only for solving the cubic polynomial equation, but also for
other iterative methods.

3.3 Carbonate, borate and water self-ionization
alkalinity

With AlkCBW, CT andBT given, the equation to solve is

RCBW([H+
])

≡ CT
K1[H+

] + 2K1K2

[H+]2 + K1[H+] +K1K2
+ BT

KB

[H+] +KB

+
KW

[H+]
− [H+

]−AlkCBW=0. (14)

One may either solve this equation in that rational fraction
form with some iterative root-finding method or by one of
the ICAC methods described above, or one may transform it
into a quintic polynomial equation:

PCBW([H+
])

≡ [H+
]
5
+q4[H

+
]
4
+q3[H

+
]
3
+q2[H

+
]
2
+q1[H

+
]+q0

= 0

(15)
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with

q4 = AlkCBW + K1 + KB,

q3 = (AlkCBW − CT + KB)K1

+ (AlkCBW − BT)KB + K1K2 − KW,

q2 = (AlkCBW − 2CT + KB)K1K2

+ (AlkCBW − CT − BT)K1KB − K1KW − KBKW,

q1 = (AlkCBW − 2CT − BT)K1K2KB

− K1K2KW − K1KBKW,

q0 = −K1K2KBKW.

The polynomial equation can then be solved with appropriate
standard root finding techniques, selecting the positive root
found. Equations (15) and (14) have the same unique positive
root: when Eq. (14) is multiplied by the product of all the
denominators of the fractions included – a product that does
not change sign for[H+

] > 0 – to transform it into Eq. (15)
no new sign changes can be obtained for[H+

] > 0.
AlkCBW is probably the most commonly used approxima-

tion for total alkalinity in global carbon cycle models of all
kinds of complexity. It was already adopted byBacastow
and Keeling(1973), who based their pH calculation on the
quintic Eq. (15), which they solve by Newton’s method, with
a stopping criterion|(1H)/H | < 10−10. Hoffert et al.(1979)
adopt the same procedure (for which they refer toKeeling,
1973andBacastow and Keeling, 1973), but with a less strin-
gent stopping criterion|(1H)/H | < 10−6. Keeling (1973)
uses a variant, whereCT is replaced by an equivalent term in
pCO2.

As already mentioned above, LOVECLIM (Goosse et al.,
2010) and HadOCC (Palmer and Totterdell, 2001) use
AlkCBW as an approximation for total alkalinity. AlkCBW is
also used in the PISCES model (Aumont and Bopp, 2006),
following a simplified version of the OCMIP standard proto-
col (see next section). PISCES is included in NEMO and in
some versions of the Bern3D model (Gangstø et al., 2011).
Other models that base their pH calculation on AlkCBW
include the Hamburg Model of the Ocean Carbon Cycle
(HaMOCC) family (Maier-Reimer and Hasselmann, 1987;
Heinze et al., 1991; Maier-Reimer, 1993; Maier-Reimer
et al., 2005), the models ofBolin et al. (1983) andShaffer
et al.(2008). No details regarding the adopted solution algo-
rithms are provided, though.

3.4 More complete approximations: rational function
based solvers

When additional components in total alkalinity need to
be considered besides carbonate, borate and water self-
ionization, converting the resulting rational function equa-
tion to an equivalent polynomial form becomes more and
more tedious and the rational function form becomes the pre-
ferred basis for finding the solution. ICAC methods are the
only ones that we have encountered so far that could pos-

sibly be used to address this problem. However, they bear
some potential pitfalls: despite having a solution, the under-
lying fixed-point equation may be difficult to solve numeri-
cally; intermediate estimates of AlkC may go out of bounds
(remember that AlkC may only take values between 0 and
2CT). ICAC methods can therefore not be guaranteed to find
the solution.

The only commonly used carbonate chemistry routine that
directly solves the rational function form of the equation
is that from the Ocean Carbon Cycle Model Intercompari-
son Project (OCMIP). For the purpose of that project,Orr
et al. (2000) prepared standard carbonate speciation rou-
tines. Total alkalinity is approximated by AlkT ' [HCO−

3 ]+

2×[CO2−

3 ]+[B(OH)−4 ]+[OH−
]+[HPO2−

4 ]+2×[PO3−

4 ]+

[H3SiO−

4 ]−[H+
]f−[HSO−

4 ]−[HF]−[H3PO4]. The different
species concentrations were, as above, expressed as a func-
tion of the total concentrations of their respective acid sys-
tems and of [H+]. The resulting equation was then solved for
pH by a hybrid Newton-bisection method, based upon the
rtsafe solver fromPress et al.(1989). All of the models
that participated in OCMIP had to use the provided routines
for a set of well defined experiments. A number of models
still routinely use these OCMIP routines for their pH calcu-
lations. These include some versions of the Bern3D model
(Müller et al., 2008) and the NCAR global coupled carbon
cycle–climate model CSM1.4-carbon (Doney et al., 2006).
As mentioned above, PISCES (Aumont and Bopp, 2006)
includes a version of the OCMIP solver trimmed down to
AlkCBW only. Other models still offer the OCMIP solvers as
an option.

3.5 Other approaches

Luff et al. (2001) have provided a suite of pH calculation
routines mainly meant to be used in reactive transport mod-
els, but suitable for general speciation calculations as well.
The methods proposed byLuff et al. (2001) solve the com-
plete system of equations that control the chemical equilibria
between the individual species considered in the total alka-
linity approximation. These are required for grid-based re-
active transport models where different species are diffusing
at different diffusivities. For common applications in biogeo-
chemical carbon cycle models, this approach is nevertheless
unnecessarily complex.

There are still some other fine pH solvers, such as
CO2SYS of Lewis and Wallace(1998) and derivatives
(spreadsheet versions, MATLAB versions, etc. – seehttp:
//cdiac.ornl.gov/oceans/co2rprt.htmlfor more information),
the MATLAB routines from Zeebe and Wolf-Gladrow
(2001), or the R packages seacarb (Lavigne and Gattuso,
2012) and AquaEnv (Hofmann et al., 2010, 2012). These
are, however, generally not suitable for inclusion in global
biogeochemical models, as they were developed with special
programming environments in mind. Their focus is more on
data processing or modelling with the special programming
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environment they were designed for. As their names already
suggest, they are mainly aimed at carbonate speciation cal-
culations. They also often offer the possibility to chose any
two among pH, [CO2] (or pCO2), [HCO−

3 ], [CO2−

2 ], CT, or
AlkT to calculate all the others.

4 pH-scale considerations

As shortly mentioned above, there are a few subtleties related
to pH scales that still need to be clarified. The mere existence
of more than one pH scale reflects the difficulties to apply the
fundamental definition of pH (which involves an immeasur-
able quantity – see next section) to the experimental determi-
nation of acidity in seawater. All of our calculations never-
theless rely on the availability of equilibrium constants that
have to be experimentally derived and we therefore have to
care about differences arising from the usage of various pH
scales.

Let us, similarly toBates and Culberson(1977) consider
the equilibrium relationship (the mass action law) for an acid
dissociation reaction. Without loss of generality, we may
write that relationship for the first dissociation reaction of
our generic acid from Sect.2.2.4:

K1 =
[H+

][Hn−1A−
]

[HnA]
.

When the dependency ofK1 on temperature and salinity is
experimentally determined, the fraction[Hn−1A−

]/[HnA] is
measured or calculated for each experiment. [H+] cannot be
directly measured, but gets assigned a value from some pH
measurement via the reverse relationship[H+

]=10−pH. Tak-
ing the negative logarithm (antilogarithm) of the previous
equation and writingpK1 = − logK1, we get

pK1 = pH− log

(
[Hn−1A−

]

[HnA]

)
.

In a given setting (i.e. for given temperature, salinity, pres-
sure, solution chemistry, etc.), the ratio[Hn−1A−

]/[HnA] is
set and different calibrations of the pH-meter used, i.e. dif-
ferent scales chosen for the pH-meter, will thus produce dif-
ferentpK1 values. Any experimentally derived parameteri-
zation forK1 can therefore only be used in conjunction with
a H+ concentration scale that is consistent with the pH scale
that was used to derive it. Before a particular empirical pa-
rameterization forK1 can be used with a different scale of pH
(e.g. due to a different conventional or operational definition
of pH), it must be converted.

Additional conversion may be required because of
the usage of different concentration units: both mo-
lal units (mol/kg-H2O) and mol/kg-seawater are com-
mon. They can be converted according to[mol/kg-SW] =

m(mol/kg-H2O) × (1− 0.001005S) (Dickson et al., 2007,
chapter 5, p. 13), whereS denotes salinity. ForS = 35, the

difference between the values is about±3.5%; in log units,
the values differ by±0.016.

There is abundant literature on pH scales for seawater.
Besides the original fundamental papers by, e.g.Hansson
(1973), Bates and Culberson(1977), Khoo et al. (1977),
Dickson and Riley(1979), Bates(1982) or Dickson(1990),
the classical review papers byDickson(1984, 1993), or stan-
dard textbooks (e.g.Zeebe and Wolf-Gladrow, 2001), there
are also several recent papers on the subject, such as the re-
views byDickson(2010) andMarion et al.(2011) or the re-
search paper byWaters and Millero(2013). In the following
sections, we will therefore only give a comparatively general
overview, which we have nevertheless tried to keep as self-
consistent as possible.

4.1 Fundamental definition of pH and standard
potentiometric determination of pH

While pH as a measure of the acidity of a solution may
appear as a straightforward concept, its experimental deter-
mination and interpretation are not. The fundamental def-
inition of pH recommended by the International Union of
Pure and Applied Chemistry (IUPAC,Buck et al., 2002)
states that pH=− log(aH+), whereaH+ denotes the activity
of the H+ ions in solution.aH+ is related to the concentra-
tion of H+ through the activity coefficientγH+ , such that
aH+ = γH+ [H+

]. The activity coefficient of H+ depends on
the exact chemical composition of the solution. The more
dilute the solution is, the closer the values of activity coeffi-
cients come to one. The activity of an individual ion in so-
lution cannot be measured by any thermodynamically valid
method and the measurement of pH therefore requires an op-
erational convention (Buck et al., 2002). The reasons for the
existence of several pH scales in seawater then also simply
“[. . . ] reflect the gradual gradual refinement of the experi-
mentally convenient potentiometric determination of acidity
in order that the numbers obtained might be usefully inter-
preted as a property of hydrogen ion in solution” (Dickson,
1984).

The potentiometric method mentioned byDickson(1984)
is the classical method used for the quantitative determina-
tion of acidity in an aqueous solution. It is based upon the
use of electrochemical cells and has been used for more than
100 yr. Potentiometric pH measuring devices for practical
use are made up by two electrodes: an H+ sensitive glass-
electrode and a well reproducible second electrode, a so-
called reference electrode. Both electrodes are immersed into
the sample solution to form an electrochemical cell. The po-
tential difference between the two electrodes, i.e. the emf
(electromotive force) of the cell, is linked to the logarithm
of the activity of the H+ ions in solution. The total emf of
the cell,E, can be separated into three major contributions
(Dickson, 1984). The first one, which we denote here as
Egem, is due to the potential difference across the membrane
of the glass electrode, which is assumed to behave following
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Nernst’s law, i.e.

Egem= (RT ln10/F ) log(aH+),

whereR is the universal gas constant,T the absolute tem-
perature andF Faraday’s constant. The second contribution,
EJ, is due to the potential difference across the liquid junc-
tion that is required to bring the filling solution of the ref-
erence electrode into contact with the sample solution. The
third one,E◦′, takes into account all of the other potential dif-
ferences arising from the characteristics of the internal elec-
trolytes and the design of the two cells, and it can be assumed
that this is an invariant of the instrument. The measured emf
is thus such that

E = RT ln10/F log(aH+) + EJ+ E◦′.

By using this cell for sequentially measuring the emf of the
standard buffer solution S,ES, and of the sample solution X,
EX , (both at the same temperatureT ) we have

log(aH+(X))=log(aH+(S)) +
ES−EX

RT ln10/F
+

EJX−EJS

RT ln10/F
.

This property is used (Buck et al., 2002) to operationally
define the pH of the sample X from its deviation from the
known or assigned pH of the standard buffer solution S, as

pH(X)=pH(S) +
ES−EX

RT ln10/F
, (16)

thus implicitly assuming that the residual liquid junction po-
tential EJX − EJS can be neglected.Buck et al.(2002) pro-
pose a number of primary standards (buffer solutions) that
have to meet some fundamental metrological qualities. These
primary standards are commonly known as NBS buffers
(where NBS stands for the US National Bureau of Standards,
now National Institute of Standards and Technology, NIST).
One of the constraints imposed upon these standards is that
their ionic strengths must not exceed 0.1 molal: the calibra-
tion procedure of the standards rests to some extent on the
Debye–Ḧuckel theory for ionic interactions, which is appli-
cable only for ionic strengths< 0.1 molal (Buck et al., 2002).

4.2 Complications and simplifications for seawater pH

Seawater has a much higher ionic strength of 0.7 molal (for
S = 35) than the standard NBS buffers. The use of such di-
lute buffers for the determination of pH in seawater sam-
ples is therefore problematic: the concentration gradients
across the reference electrode’s liquid junction will be signif-
icantly different between any seawater sample and the stan-
dard buffers.

Hansson(1973) therefore developed and calibrated buffers
on the basis of artificial seawater. In addition to this,Hans-
son (1973) also devised new pH scales for seawater. His
scales are based upon the peculiar composition of natural

seawater. Of all the solutes present, six alone make up 99.3%
of the total dissolved salts: Cl− 55.0%, Na+ 30.7%, SO2−

4
7.7%, Mg2+ 3.6%, Ca2+ 1.2% and K+ 1.1% (Millero et al.,
2008); and their respective ratios remain essentially constant
throughout the oceans. All of the minor constituents, which
include carbonate, bicarbonate, all the nutrient salts, H+ it-
self, etc., make up less than 0.7%. Basically, natural seawa-
ter can thus be seen as a dilute solution of the minor con-
stituents in a solvent that is an ionic medium of rather high
ionic strength, but of constant composition for a given salin-
ity, instead of a concentrated solution of all the solutes in the
pure water solvent.

As a result, the activity coefficient of H+ remains fairly
constant over a large concentration range (and even close to
one, since the solution is dilute with the ionic medium as
the solvent,Hansson, 1973). Accordingly, the concentrations
and activities of H+ become equivalent and it is possible to
define special pH scales for seawater that are directly ex-
pressed in terms of concentrations. Solutions of well-known
concentrations of H+ can then easily be used as standard
buffer solutions.

4.3 Towards the definition of seawater pH scales

Similarly to dilute aqueous solutions, where it is impossi-
ble to distinguish between the free and the different hydrated
forms of dissolved H+ since water activity is not noticeably
changed during experiments, in ionic solutions where the
activities of medium ions are constant, it is not possible to
distinguish between the free or hydrated H+ ions and those
formed by protonation of medium ions (Hansson, 1973). In
the seawater, H+ ions may interact with SO2−

4 and, to a lesser
extent, F− ions, both of which are present in the solvent ionic
medium:

H+
+ SO2−

4 
 HSO−

4 ,

H+
+ F− 
 HF.

Accordingly, Hansson(1973) defined his pH scales for
seawater on the basis of the total analytical concentra-
tion of H+ in the synthetic seawater buffer solutions, with
pHs=− log([H+

]SWS(Hansson)) where[H+
]SWS(Hansson) is set

equal to[H+
]f + [HSO−

4 ] + [HF] or to [H+
]f + [HSO−

4 ], de-
pending on whether the artificial seawater recipe used to pre-
pare the buffer solution includes fluoride or not.

If we denote by

KHSO4(f) =
[H+

]f[SO2−

4 ]

[HSO−

4 ]

and

KHF(f) =
[H+

]f[F−
]

[HF]

the dissociation constants of HSO−

4 and HF on the free hy-
drogen ion concentration scale, and furthermore byST and
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FT the total sulphate and fluoride concentrations (which are
constant for a given salinity), then we find that

[H+
]SWS(Hansson)

= [H+
]f

(
1+

ST

KHSO4(f) + [H+]f
+

FT

KHF(f) + [H+]f

)
.

(17)

In order to make[H+
]SWS strictly proportional to[H+

]f ,
Dickson and Riley (1979) slightly modified Hansson’s
(1973) original definition, thereby simplifying the conver-
sions between different scales and leading to the currently
adopted definitions of the three most important pH scales
in seawater (given here with their current common denom-
inations and notations): the free scale (pHf=− log([H+

]f)),
the total scale (pHT=− log([H+

]T)) and the seawater scale
(pHSWS=− log([H+

]SWS)), where

[H+
]T=[H+

]f
(
1+ ST/KHSO4(f)

)
, (18)

[H+
]SWS=[H+

]f
(
1+ ST/KHSO4(f) + FT/KHF(f)

)
. (19)

While the differences between [H+
]SWS and

[H+
]SWS(Hansson) are negligible in common present-day

seawater (Munhoven, 1997; Dickson, 2010), those between
pHf and pHT or pHSWSare not. AtS = 35 andT = 298.15K
pHT and pHSWS are respectively about 0.11 and 0.12 lower
than pHf (Zeebe and Wolf-Gladrow, 2001), leading to
differences of the order of 30% between the corresponding
concentrations of H+.

4.4 Implications for the alkalinity–pH equations

In all of the alkalinity–pH equations and equilibrium rela-
tionships from Sects.2 and3, as well as in the general form
of the total alkalinity–pH below, Eq. (21), [H+

] may be ex-
pressed on any chosen pH scale (free, total, seawater) as long
as all of the stoichiometric constantsKA[i]1, . . .,KA[i]ni

for all
of the acid systems are expressed on this same pH scale. The
same holds for[H+

]f , the free concentration of H+, which
must also be expressed on (or converted to) this same scale.
According to Eqs. (18) and (19) [H+

]f can be expressed as
a simple function of the adequate[H+

]:

[H+
]f =

[H+
]

s
, (20)

where[H+
] is one of[H+

]T or [H+
]SWS ands is the corre-

sponding scale conversion factor derived from either Eq. (18)
or (19). Notice thats ≥ 1 and thats is independent of[H+

].
Although the differences between[H+

]SWS and
[H+

]SWS(Hansson) are negligible in present-day seawater (and
even in acidified seawater as long as pHSWS> 5), we are not
adopting the approximation[H+

]SWS=[H+
]SWS(Hansson)

a priori (which would allow us to replace the sum
[H+

]f + [HSO−

4 ] + [HF] in Eq. (1) by [H+
]), since our

aim here is to set up a generally valid algorithm. Instead, we
consider for the time being that the effects of HSO−

4 and of

HF on total alkalinity are taken into account together with
the components of all the other acid systems in the sample,
with KHSO4 andKHF being expressed on the same pH scale
as the constants for those components.

5 Development of a universal and robust algorithm

Our ultimate goal here is to develop a universal algorithm to
solve the equation

RT([H+
]) ≡ AlknW([H+

])+
KW

[H+]
−

[H+
]

s
−AlkT = 0, (21)

where

AlknW([H+
]) =

∑
i

AlkA[i]
([H+

])

collects the contributions from all the acid systems to total al-
kalinity, system by system, proton donors and acceptors com-
bined for each one – except for the contribution that results
from the self-ionization of water which we keep explicit in
Eq. (21) – and where AlkT and all the total concentrations
[6A[i]] are given.

We will use a hybrid method that combines the speed of
convergence of super-linear and higher-order methods (such
as the secant or the Newton–Raphson methods) with the
global convergence security of the bisection or the regula
falsi method. A similar method is used by the OCMIP car-
bonate speciation routine. Such methods are standard in root
finding for non-linear equations (e.g.Dowell and Jarrett,
1971; Anderson and Bj̈ork, 1973; Bus and Dekker, 1975).
They are particularly suitable for our problem with its ad-
vantageous mathematical characteristics, the more so since
that problem also has intrinsic a priori root bracketing, as we
will show in the next section. Because of the strict mono-
tonicity of the rational function it is sufficient to make sure
that iterates remain within bounds. As long as iterates remain
within bounds, they will unconditionally improve either one
of the two bounds, thus allowing us to tighten the bracket-
ing interval at each step. We can therefore use a high-order
numerical root-finding method, such as Newton–Raphson or
the secant method as the main iterative scheme. In case the
main scheme yields an out-of-bounds iterate at some step,
that iterate is rejected and a bisection iterate is used instead.
Similarly, if an iteration with the main scheme does not make
the absolute value of the equation decrease faster than ex-
pected for a bisection step (i.e. by a factor of two) it is re-
placed by a bisection step. This helps to prevent cyclic itera-
tions.

A bisection step may temporarily slow down the rate of
convergence, but it will secure convergence and again uncon-
ditionally improve the bracketing. A regula falsi step could
be used instead of bisection; bisection has proven to be more
economic though.
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5.1 Intrinsic bracketing bounds for the root

Our first aim is now to determineHinf > 0 such that
RT(Hinf) > 0 andHsup> 0 such thatRT(Hsup) < 0. We have
previously established that AlknW([H+

]) is a strictly decreas-
ing rational function for[H+

] > 0 and that it has the infimum
AlknWinf = −

∑
i mi[6A[i]]. It is therefore sufficient to have

Hinf such that

KW

Hinf
−

Hinf

s
= AlkT − AlknWinf,

as in this caseRT(Hinf) = AlknW(Hinf) − AlknWinf > 0.

Equivalently, we require thatH 2
inf +s(AlkT−AlknWinf)Hinf −

sKW = 0, andHinf > 0. This problem has the unique solu-
tion

Hinf =
−s(AlkT − AlknWinf) +

√
1inf

2
, (22)

where1inf = s2(AlkT − AlknWinf)
2
+ 4sKW > 0 is the dis-

criminant of the quadratic.
Similarly, because AlknW([H+

]) has the supremum
AlknWsup=

∑
i(ni−mi)[6A[i]], it is sufficient to choseHsup

such that

KW

Hsup
−

Hsup

s
= AlkT − AlknWsup,

which would lead toRT(Hsup) = AlknW(Hsup)−AlknWsup<

0 as requested. Equivalently, we require thatH 2
sup+s(AlkT−

AlknWsup)Hsup− sKW = 0 andHsup> 0. We finally obtain

Hsup=
−s(AlkT − AlknWsup) +

√
1sup

2
, (23)

where1sup= s2(AlkT − AlknWsup)
2
+ 4sKW > 0.

Hinf andHsupdefine a universal bracketing interval for the
root of Eq. (21). They only require information that can be
directly derived from the nature of the acid systems consid-
ered for AlkT, and they can theoretically be used with any
numerical scheme to keep iterations bracketed right from the
start of the scheme, without any need for manually prescrib-
ing them.

5.2 Outline of the algorithm

The proposed algorithm is formally set up in the pH-AlkT
space. There are several advantages for rooting the algorithm
in the pH-AlkT space: (1) the equation’s overall appearance
is closer to linear in the pH-AlkT space than in the more
commonly used [H+]-Alk T space; (2) physically meaning-
less negative [H+] values cannot be produced by the iterative
scheme; this is not warranted with methods that are rooted
in the [H+]-Alk T space. There is nevertheless also a poten-
tial disadvantage: passing between the two spaces a priori
requires costly power and logarithm evaluations at each step.
As shown below, these operations can, however, be avoided

to a large extent by transposing the actual calculations into
the [H+]-Alk T space and carrying them out there.

The algorithm comes in two variants: one based upon the
Newton–Raphson and bisection methods, and one that is
based upon the secant and bisection methods. We will first
describe the Newton–Raphson/bisection variant.

Let R = R(H) denote the rational function chosen to ap-
proximate AlkT. Before starting we determine the intrinsic
lower and upper boundsHinf andHsup, and constrain the ini-
tial valueH0 to be within bounds.

Then, at each stepk + 1,k = 0, . . .:

1. prepare to carry out a Newton–Raphson
step where pHk+1=pHk + 1pH, with
1pH=−R|pHk

/(dR/dpH)|pHk
: (dR/dpH)|pHk

can
be calculated fromR(Hk) and dR/dH |Hk

, noticing that
(dR/dpH)|pHk

=−(dR/dH)|Hk
× Hk × ln(10);

2. adapt the bracketing interval: ifR|pHk
> 0 then adjust

Hinf := Hk, if R|pHk
< 0 then adjustHsup := Hk;

3. require|R(Hk)| to decrease faster than one would typi-
cally expect from bisection under the same conditions:
compare it with min(|R(Hj )|,∀j < k) and if greater
than half that value (bisection halves the bracketing in-
terval at each step and is linearly convergent), do not
complete the Newton–Raphson step, but adopt a bisec-
tion iterate between the current pHinf and pHsup (up-
dated just before) and return to stage 1 for the next step;

4. provisionally set Hk+1 = 10−pHk+1 = Hk ×

exp(−R(Hk)/(Hk dR/dH |Hk
)) to complete the

Newton–Raphson step;

5. constrainHk+1 to remain within the current bracket-
ing interval: if Hk+1 > Hsup or Hk+1 < Hinf , reject the
Newton–Raphson iterate, replace it by the bisection it-
erate as in stage 4 and return to stage 1 for the next step;

6. stop the iterations if either the maximum permissi-
ble number of iterations is exceeded or if|(Hk+1 −

Hk)/Hk| < ε (ε being a pre-set tolerance), else return
to stage 1 for another step.

At most, one exponential has to be evaluated per
step (at stage 4). This is, computationally speaking, the
most expensive operation in each step. It can, however,
often be avoided: when|RT(Hk)/(Hk dR/dH |Hk

)| �,
then Hk × exp(−RT(Hk)/(Hk dR/dH)|Hk

)) '

Hk − RT(Hk)/(dR/dH |Hk
) and the iterate can be as-

similated to a plain [H+]-Alk T space Newton–Raphson
iterate. Once the argument of the exponential becomes
sufficiently small (a threshold value of 1 in absolute value
has proven efficient) we may switch to the linear approx-
imation, thereby saving the exponential operation. The
relative error|(Hk+1 − Hk)/Hk| from the stopping criterion
can be approximated by|R(Hk)/(Hk dR/dH |Hk

)|, i.e. we
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can reuse the argument of the exponential above (no extra
operations required). At any stage, bisection between pHinf
and pHsup translates to calculatingHk+1 as the geometric
mean ofHinf andHsup: Hk+1 =

√
HinfHsup. By construction,

any accepted iterate will thus be strictly between the current
Hinf andHsup, and, because of the strictly decreasing nature
of R(H), will always lead to contribute to improve either the
lower or the upper bound.

In a variant of the above we replace the Newton–Raphson
scheme by a secant scheme. However, rooting a secant
scheme in the pH-AlkT space while carrying out operations
in the [H+]-Alk T space will require non-integer power oper-
ations at each step which are even more costly than exponen-
tials. It is therefore preferable to completely root the calcu-
lations in the [H+]-Alk T space with the secant method, de-
spite the potential trade-offs for the convergence efficiency.
Secant iterations have the advantage of requiring only one
evaluation of the equation at each iteration; in addition to the
equation evaluation, Newton–Raphson iterations also require
the evaluation of the derivative of the equation. The cheaper
iterations of the secant method possibly outweigh its lower
order of convergence, which is'1.62, compared to 2 for the
Newton–Raphson method.

5.3 Discussion: comparison with the OCMIP solver

A similar technique was also used in thedrtsafe routine
in the OCMIP suite (Orr et al., 2000), which is fundamen-
tally the rtsafe routine ofPress et al.(1989) with some
essential error trapping removed. That routine also combines
the global convergence properties of the bisection with the
speed of convergence of the Newton–Raphson method.

The algorithm presented here differs from that used in
drtsafe in several significant ways. (1)drtsafe itera-
tions are rooted in the [H+]-Alk T space. (2)drtsafe re-
quires brackets to be explicitly provided at the subroutine
call. In case these are inappropriate (e.g. no sign change of
the equation function over the defined bracketing interval),
it would simply iterate to the maximum number of iterations
allowed because of the absence of validity checks and return
some meaningless result (in general one of the two bounds
provided). (3)drtsafe always starts its iterations from the
midpoint of the provided bracketing interval. It is thus crit-
ically dependent on a valid interval (no validity checks per-
formed though) and, because of the rooting in the [H+]-Alk T
space, on a tight bracketing interval for efficiency. The algo-
rithms proposed here only use the bracketing values to se-
cure convergence in case Newton–Raphson iterates are not
decreasing fast enough or would go out of bounds, and they
use an independent initial value. Because we root our iter-
ations in the pH-AlkT space, even bisection steps may ac-
commodate [H+] changes over several orders of magnitude
during the initial steps in case a far off starting value is used.

6 Sample implementation of the new algorithms in
Fortran 90

A sample implementation of the algorithms realized in stan-
dard Fortran 90 is provided in the Supplement to this pa-
per. Together with the drivers that were used to carry out
the experiments described below they make up the Solver
Suite for Alkalinity-PH Equations (SolveSAPHE). Parts of
the code contain C-preprocessor directives for enabling or
disabling specific parts (debugging messages, optional code
parts, etc.), and to select among the cases treated below. After
pre-processing, the source files are strictly standard conform-
ing Fortran 90. The codes are made available under the GNU
Lesser Public Licence, version 3.

A complete user manual that covers the technical details
of SolveSAPHE is included in the archive provided in the
Supplement. Here we only give a short overview of the two
central modules.

6.1 Summary description

The modulemod chemconst provides parametric expres-
sions for the stoichiometric constants of the acid systems
taken into account (carbonates, borates, hydrogen sulphate,
sulphides, phosphates, etc.). The module also hosts the5j

values (Eq.5) for the various acid systems.
The module mod phsolvers provides six different

solvers:

1. the functionsolve at general : the new algorithm
described above;

2. the functionsolve at icacfp : a fixed-point only
ICAC method;

3. the function solve at bacastow : Bacastow’s
method, an ICAC method with secant iterations (with
secant iterations either on [H+] or on its scaled inverse);

4. the function solve at general sec : the variant
of solve at general that uses secant instead of
Newton–Raphson iterations;

5. the functionsolve at ocmip : a re-implementation
of the OCMIP solver with Newton–Raphson/bisection
iterations, completed with a bare minimum of error trap-
ping and fitted with the optional initialization scheme
common to all of the solvers (the latter was only adapted
to use an interval of±0.5 pH unit interval around an op-
tional initial value to emulate the recommended OCMIP
set-up after start-up);

6. the functionsolve at fast : a simplified version of
solve at general without the bracketing control
(may not always converge).

Each one of the six solvers takes into account all of
the constituents that explicitly appear in Eq. (1), except
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for S2− whose concentration is negligible even at high
pH values. mod phsolvers logging.F90 is a spe-
cial version of mod phsolvers.F90 that includes ex-
tra bookkeeping regarding the number of iterations re-
quired for convergence, the numbers of bisection itera-
tions due to limiting, the initial values adopted, the ini-
tial bracketing values (if relevant), the intermediate iterates,
etc. mod phsolvers logging.F90 does not include
solve at fast though. For more technical details, please
refer to the manual that goes with the source codes.

The modules mod acb solvers and
mod acbw solvers provide simpler and more stream-
lined solvers, based upon the AlkCB and AlkCBW ap-
proximations, respectively. In these, we assume, e.g. that
[H+

]f + [HSO−

4 ] + [HF]=[H+
]SWS.

6.2 Test case definitions

The list of species considered in the approximation of AlkT
adopted in the six solvers presented here are much more com-
plete than absolutely necessary in global biogeochemical cy-
cle models. Most of these call upon the AlkCBW approxima-
tion for AlkT, which requires only AlkCBW, CT andBT to
be known, the two former being generally controlled by con-
servation equations, the latter taken proportional to salinity.
A few models, essentially those using the complete OCMIP
solver, also take into account the small contributions of phos-
phate alkalinity (AlkP = [HPO2−

4 ] + 2× [PO3−

4 ]−[H3PO4])
and silicate alkalinity (AlkSi = [H3SiO−

4 ]). They therefore
either include conservation equations or prescribed distribu-
tions for total dissolved phosphate and total dissolved sili-
cate.

For our test cases, we focus on the influence of various
combinations ofCT and AlkT on the convergence properties
of the six solvers. For all the other acid dissociation systems
that are taken into account in the solver routines, we adopt
constant total concentrations (see below).

The pHSWS scale was adopted for all of the calculations.
With each method, iterations were stopped once the relative
change of an iterate compared to its predecessor fell below
10−8; the maximum number of iterations was set to 50. For
all of the three cases, we adopt a temperature of 275.15 K,
a salinity of 35 and an applied pressure of 0 bar. Additional
results for a temperature of 298.15 K or a pressure of 300 bar
can be found in the Supplement.

The convergence properties for each one of the pH solvers
are explored for three different (nested) subsets of the
CT-AlkT space:

SW1 – for CT ranging between 1.85 mmolkg−1 and
2.45 mmolkg−1, and AlkT between 2.20 meqkg−1 and
2.50 meqkg−1, on a regular 600× 300 cell centred grid;

SW2 – for CT ranging between 1.85 mmolkg−1 and
3.35 mmolkg−1, and AlkT between 2.20 meqkg−1 and
3.50 meqkg−1, on a regular 1500× 1300 cell centred grid;3

SW3 – for CT ranging between 0 mmolkg−1 and
6 mmolkg−1, and AlkT between −1 meqkg−1 and
5 meqkg−1, on a regular 600× 600 cell centred grid.

The other concentrations are set as follows:PT =

0.5µmolkg−1, SiT = 5µmolkg−1, [NH4]T = 0µmolkg−1

and[H2S]T = 0µmolkg−1. With each test case, three differ-
ent schemes are considered to start the iterations: (cub) start-
ing values are derived from the scheme designed for the cu-
bic polynomial in Sect.3.2.2; (pH8) a constant starting value
[H+

]=10−8 molkg−1 is used, except forsolve at ocmip ,
for which the recommended “cold-start” brackets corre-
sponding to pH= 6 and pH= 9 are used; (safe) the mid-
point of the pH interval defined by the intrinsic brackets
Hinf and Hsup (from Sect.5.1) is used as a starting value,
except for solve at ocmip , for which Hinf and Hsup
are used as initial brackets. Timing information is based
upon driver at general.F90 , all other information
(numbers of iterations, of divergences, errors, etc.) upon
driver at logging.F90 .

SW1 covers the typical range of present-day seawater sam-
ples. Every solver should be able to determine the root of
the equation without a single failure. SW2 covers the ex-
pected range of sea-water samples under the S750 stabiliza-
tion scenario over the next 50 000 yr (derived from simula-
tion experiments with the coupled carbon cycle–sediment
model MBM-MEDUSA, Munhoven, 2007, 2009). SW3 is
of more theoretical nature and is meant to analyse the per-
formance of the solvers with extremely low alkalinity orCT
values. It will nevertheless also provide important informa-
tion about the convergence domains ofsolve at icacfp
andsolve at bacastow , as we will see below.

6.3 Results

We here only present results obtained with the
solvers from mod phsolvers (for the timings) and
mod phsolvers logging . To simplify the presentation,
we leave out the prefix “solve at ” when referring to the
different solver functions below. The testing platform had
a Debian 6.0.6 operating system (32 bit kernel 2.6.32-5-686-
bigmem) running on a 2.53 GHz Intel Core2Duo T9400
CPU; all of the source codes were compiled with gfortran
4.4.5, without any optimization flags set.

3For the graphs shown below, a 150× 130 cell centred grid was
used.
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Table 1.Execution times for the SW1, SW2 and SW3 tests, each one with the three initialization types (see text). Crosses (×) indicate test
series that were affected by divergences and could not be considered for time measurements (notice one exception); dashes (–) indicate that
the experiment was not carried out. Within each one of the groups SW1, SW2 and SW3, figures were normalized to the execution time of the
respective “cub” run withgeneral sec and rounded to the nearest multiple of 0.05 (i.e. the order of the the largest standard deviation).
“cub” results forgeneral sec are reported in italics as they have been implicitly set to exactly 1 by the normalization procedure and are
not affected by the rounding procedure.

Routine SW1 SW2 SW3

cub pH8 safe cub pH8 safe cub pH8 safe

general 1.05 1.55 1.65 1.05 1.60 1.65 1.10 1.65 1.75
general sec 1.00 1.45 1.60 1.00 1.60 1.55 1.00 1.55 1.55
fast 0.95 1.50 1.70 1.00 1.65 1.90∗

× × ×

icacfp 2.35 2.90 – 1.75 2.10 – × × –
bacastow 0.90 1.15 – 0.85 1.10 – × × –
ocmip 1.85 3.15 5.70 1.75 × 5.60 × × 3.70

∗ Note: includes one divergent case on 1 950 000 calls.

6.3.1 Comparison of the six solvers

Figure1 shows the distributions of pH for test cases SW1,
SW2 and SW3, as calculated by the new algorithm with
Newton–Raphson iterations. Also shown is the equation
residual for SW3 (which encompasses the two others).
Residual values smaller than 10−21 molkg−1 in absolute
value are shown as 10−21 molkg−1. The residual is at least
five orders of magnitude smaller than the actual H+ con-
centrations, emphasizing that convergence was significantly
reached.

Execution times for the SW1, SW2 and SW3 test series
are reported in Table1. The times for each of the three test
series have been normalized to the execution time of the
general sec routine with cubic initialization (shown in
italics). general sec was the fastest of the routines that
successfully passed the complete test series.

For test cases SW1 and SW2, Bacastow’s method is
clearly the fastest. It is about 20 % faster than thegeneral
and general sec routines developed here, and twice
or two and a half times as fast as its closest relative
icacfp . general sec is generally about 5–10 % faster
than general . The results obtained withfast indicate
that the overhead required by the safeguard bracketing re-
quires about 5–10 % extra computing time, if everything
works fine. However, the comparison of the SW2-pH8 re-
sults forgeneral andfast shows that replacing unaccept-
able Newton–Raphson steps by safe but inherently slower
bisection steps may overall even lead to a gain of time in
more critical situations. Neitherfast , norbacastow , nor
icacfp were able to complete test case SW3;ocmip was
furthermore not able to complete the SW2-pH8 test, because
of invalid initial bracketing over parts of the domain. Con-
vergence failures withocmip can be avoided if we use the
intrinsic bracketing bounds obtained in Sect.5.1, as can be
seen from the “safe” initialization procedure. However, with
this safe initialization procedure, the execution forocmip

exceed those ofgeneral sec with the cubic initialization
by a factor of 5.6–5.7 in test case SW1 and SW2, and by
a factor of 3.7 for case SW3. As can be seen in Fig.1, SW3
includes a large number ofCT-AlkT combinations that lead
to extreme pH values (either lower than 4 or higher than 10),
where the intrinsic bounds are comparatively restrictive.

In each test, and with every method used, the initialization
procedure developed above for the cubic polynomial leads
to 30–60 % shorter execution times than the constant ini-
tialization (“pH8”) which may even lead to divergence (e.g.
ocmip ).

The reasons for the strong performance loss oficacfp in
SW1 become obvious in Fig.2. The figure shows the number
of iterations required to trigger the stopping criterion for the
SW2 test. The SW1 domain is included at the lower left of the
SW2 domain: it ends atCT = 2.45mmolkg−1 and AlkT =

2.50meqkg−1. In that area,general andbacastow re-
quire at most four iterations,ocmip generally six or seven,
but icacfp often fifteen and more.

6.3.2 Shortcomings of ICAC methods

As we have seen, ICAC methods have divergence problems
on the SW3 grid. These problems are inherent to the method
and can only be alleviated to a limited extent. It should be
noticed that the fixed-point equationH = Q(H) (see Eq.11)
has a solution, i.e. thatQ(H) has a fixed-point, for any
CT − AlkT pair, since the total alkalinity–pH equation has
a solution.

The divergence pattern of the ICAC methods can easily
be explained from the derivative of the underlying function
Q with respect toH , shown for SW3 in Fig.3. The values
were calculated from the H+ concentrations shown in Fig.1.
The derivative values are negative over the whole domain and
fixed-point iterations thus oscillate around the solution (i.e.
the fixed point ofQ). Fixed-point iterations can only con-
verge to the fixed point ofQ where the derivative is strictly
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Fig. 1. pHSWS values obtained with the new universal algorithm (general ) for test cases(a) SW1,(c) SW2 and(b) SW3 – please notice
the extended colour scale.(d) Absolute value of the equation residual at the adopted root value, derived with that same algorithm started with
the cubic-based initialization to solve test case SW3. Applied convergence criterion:|Hn+1 − Hn|/Hn < 10−8.
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Fig. 2. Number of iterations required by(a) general , (b) icacfp , (c) bacastow with secant iterations on [H+] and (d) ocmip , each
one using the cubic-based initialization procedure to solve test case SW2. Applied convergence criterion:|Hn+1 − Hn|/Hn < 10−8.
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Fig. 3. (a)Derivative with respect toH of the function underlying the ICAC methods, i.e. of the functionQ given by Eqs. (9) and (10) that
defines the recurrenceHn+1 = Q(AlkC(AlkT,Hn),CT). The white line indicates where the derivative is equal to−1; in the stippled area, the
derivative is strictly lower than−1. Also shown are the numbers of iterations required to meet the convergence criterion for(b) general ,
(c) icacfp and(d) bacastow with secant iterations on [H+]. White areas indicate no convergence or an excessive number of iterations
(n > 50).

smaller than 1 in absolute value, i.e. is strictly greater than
−1 here. The thick white line indicates where the derivative
of Q is equal to−1. The white areas on the other graphs in-
dicate where the methods did not converge. The white areas
for icacfp clearly match the areas where the derivative of
Q is lower than−1, and they are even somewhat larger.

When the derivative ofQ is just slightly greater than−1,
iterations may become “operationally divergent”: the pre-set
maximum number of iterations is insufficient to meet the
stopping criterion as the generated suite converges too slowly
there. Bacastow’s method, on the other hand, has a slightly
larger convergence domain than delimited by the thick white
line in the graph of the derivative. The fixed-point equation
can indeed be solved by the secant method in some instances
where straight fixed-point iterations would produce slowly
divergent iteration suites. As the derivative ofQ is negative,
fixed-point iterations oscillate around the root as long as they
can be evaluated, i.e. as long as the AlkC estimates obtained
from AlkT with theH iterates range between 0 and 2CT. If
they can be successfully calculated, the two first iterates used
to initialize the secant iterations in Bacastow’s method thus
bracket the root and we may expect that the first application
of the secant method provides an excellent estimate for the
root, even if the two first iterates would generate a fixed-point

suite that slowly diverges. This is especially obvious inside
the white bulge in Fig.3c at lowCT values and AlkT values
greater thanCT.

6.3.3 Quality of the cubic equation based initialization

As shown above, the initialization scheme especially de-
signed for the iterative solution of the cubic Eq. (13) by the
Newton–Raphson method is highly attractive even for more
complex approximations to total alkalinity than AlkCB. This
is quantified in Fig.4, exemplified by SW2 results. The rel-
ative error ofH0, determined as outlined in Sect.3.2.2, on
the actual H+ concentration (as calculated withgeneral )
is less than 7 % over the SW2 domain. In comparison, over
that same domain, the approximation AlkC ' AlkT and us-
age of Eq. (8) gives rise to errors that are about ten times as
large.

7 Conclusions

We have explored the mathematical properties of the total
alkalinity–pH equation, i.e. the equation that relates[H+

] (or
equivalently pH) to total alkalinity and the total concentra-
tions of all the acid systems contributing to total alkalinity.
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Fig. 4. (a) Relative deviation (in %) of the solution of the quadratic Eq. (8), calculated by setting AlkC = AlkT, from the actual root of
the complete system;(b) idem for the cubic polynomial based initial [H+], calculated by setting AlkCB = AlkT. Please notice the strongly
different colour scales (underlying data come from test case SW2).

We have demonstrated that the rational function expression
of that equation is strictly monotone. If water self-ionization
is considered, the total alkalinity–pH equation has one and
only one positive root, for any given value of total alkalinity
and for any given non-negative values for the total concen-
trations of the acid system components of total alkalinity. All
other roots of the equation are either negative or complex
with non-zero imaginary parts. We have shown that there are
intrinsic upper and lower bounds for the positive root of the
equation that only depend on information from the list of in-
cluded acid systems. These seemingly straightforward math-
ematical properties have apparently not been published be-
fore and currently available solvers do not take advantage of
them. They actually enabled us to design a universal and fail-
safe algorithm to solve the total alkalinity–pH equation. We
propose two variants, one using the Newton–Raphson, the
other the secant scheme.

The performances of the two algorithms (plus one simpli-
fied version without safe-guarded iterations) were compared
with some common existing ones: (1) the fixed-point itera-
tive carbonate alkalinity correction method (ICAC), a clas-
sical method recently made popular again byFollows et al.
(2006); (2) the method ofBacastow(1981), which is a variant
of the previous one using secant instead of fixed-point iter-
ations and (3) the OCMIP-2 standard protocol routines (Orr
et al., 2000), re-implemented here. Source code with a ref-
erence implementation of the six algorithms discussed in the
text is provided in the Solver Suite for Alkalinity-PH Equa-
tions (SolveSAPHE) in the Supplement for use under the
GNU Lesser General Public Licence version 3 (LGPLv3).

We have defined three test cases for a comparative analysis
of the six methods: one for the typical open-ocean concentra-
tions of total dissolved inorganic carbon and total alkalinity
of the present-day ocean; another one covering the expected
future distributions of these concentrations under progress-
ing ocean acidification and subsequent dissolution of deep-
sea surface sedimentary carbonates; and a third one covering

extremely low concentrations of dissolved inorganic carbon
and total alkalinity, and even negative values for total alka-
linity. Different approaches for starting iterative root-finding
methods have been tested as well for their efficiency.

The two new algorithms are the only ones that success-
fully complete all of the tests. The same convergence secu-
rity could be achieved with the OCMIP solver as well after
a modification of its initialization scheme, though at the price
of much longer execution times (typically by a factor of three
to six). Bacastow’s method is the fastest of all the tested gen-
eral methods overall in the common regions of convergence.
The two new algorithms are only 10–20 % slower than Ba-
castow’s method and more than 50 % faster than the next
best performant ones. The secant variant of our algorithm is
about 5–10 % faster than the Newton–Raphson variant. We
have developed an original starting scheme for solving the
cubic polynomial equation that is to be solved to determine
pH from carbonate and borate alkalinity alone. That start-
ing scheme can easily be completed for usage with general
total alkalinity–pH equation solvers and we show here that
it typically allows one to save 30–60 % of calculation time
compared to the standard pH= 8 initialization.

The two proposed algorithms are furthermore extremely
robust. As documented in the Supplement, the sample im-
plementation has been successfully used with random values
(covering up to six orders of magnitude) for the total con-
centrations of the acid system components to total alkalinity
and of total alkalinity itself, with random pH starting values
between 1 and 14, and still ensured convergence in 100 % of
the cases.

The two new algorithms proposed thus practically offer
convergence security over an extremely wide range of total
concentrations for the contributions of the various acid sys-
tems to total alkalinity, while only at a marginal additional
computational cost.
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Appendix A

Alkalinity components are strictly decreasing with [H+]:
demonstration

We are now going to show that

dAlkA

d[H+]
< 0,

for any given acid system HnA - Hn−1A− - . . . - An−, i.e. for
constant[6A], at equilibrium.

For notational convenience, we write

AlkA = [6A]

(
D1

D
−m

)
,

with

D =

n∑
j=0

5j [H
+
]
n−j and D1=

n∑
j=0

j5j [H
+
]
n−j .

Since5j > 0 for anyj ≥ 0, we know thatD > 0 andD1 >

0. We may then write

dAlkA

d[H+]
= [6A]

d

d[H+]

(
D1

D

)
=[6A]

D
dD1

d[H+]
−D1

dD
d[H+]

D2
.

It is straightforward to show that

dD

d[H+]
=

1

[H+]
(nD − D1)

and

dD1

d[H+]
=

1

[H+]
(nD1 − D2),

where we have further defined

D2 =

n∑
j=0

j25j [H
+
]
n−j ,

which is positive, similarly toD andD1. We hence find that

dAlkA

d[H+]
= [6A]

D(nD1−D2)−D1(nD−D1)

[H+]D2

= −[6A]
DD2−D2

1

[H+]D2
.

The result now follows from Lagrange’s identity:(
n∑

j=0

x2
j

)(
n∑

j=0

y2
j

)
−

(
n∑

j=0

xjyj

)2

=
1

2

n∑
j=0

n∑
i=0

(xiyj − xjyi)
2.

With

xj =

√
5j [H+]n−j ,

yj = j

√
5j [H+]n−j ,

we have

n∑
j=0

x2
j = D,

n∑
j=0

y2
j = D2 and

n∑
j=0

xjyj = D1.

To conclude, it is then sufficient to notice that

n∑
j=0

n∑
i=0

(xiyj − xjyi)
2
=

n∑
j=0

n∑
i=0

5i5j (i − j)2
[H+

]
2n−i−j ,

which is strictly positive ifn > 0. Alternatively, the result
also follows from the Cauchy–Schwarz inequality inn + 1
dimensions, noticing that the conditions for equality are not
met.

Accordingly, AlkA([H+
]) is strictly decreasing as a func-

tion of [H+].

Supplementary material related to this article is
available online at:http://www.geosci-model-dev.net/6/
1367/2013/gmd-6-1367-2013-supplement.zip.
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