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Abstract. Mineral dust deposition is suggested to be a sig-
nificant atmospheric supply pathway of bioavailable iron
(Fe) to Fe-depleted surface oceans. In this study, mineral
dust and dissolved Fe (Fed) deposition rates are predicted
for March 2009 to February 2010 using the 3-D chemical
transport model GEOS-Chem implemented with a compre-
hensive dust-Fe dissolution scheme. The model simulates
Fed production during the atmospheric transport of mineral
dust, taking into account inorganic and organic (oxalate)-
promoted Fe dissolution processes, photochemical redox cy-
cling between ferric (Fe(III)) and ferrous (Fe(II)) forms
of Fe, dissolution of three different Fe-containing minerals
(hematite, goethite, and aluminosilicates), and detailed min-
eralogy of wind-blown dust from the major desert regions.
Our calculations suggest that during the year-long simula-
tion ∼ 0.26 Tg (1 Tg= 1012 g) of Fed was deposited to global
oceanic regions. Compared to simulations only taking into
account proton-promoted Fe dissolution, the addition of ox-
alate and Fe(II)/Fe(III) redox cycling to the dust-Fe mobi-
lization scheme increased total annual model-predicted Fed
deposition to global oceanic regions by∼ 75 %. The imple-
mentation of Fe(II)/Fe(III) photochemical redox cycling in
the model also allows for the distinction between different
oxidation states of deposited Fed. Our calculations suggest
that during the daytime, large fractions of Fed deposited to
the global oceans is likely to be in Fe(II) form, while noc-
turnal fluxes of Fed are largely in Fe(III) form. Model sensi-
tivity simulations suggest Fed fluxes to the oceans can range
from ∼ 50 % reduction to∼ 150 % increase associated with
the uncertainty in Fe-containing minerals commonly found

in dust particles. This study indicates that Fed deposition to
the oceans is controlled by total dust-Fe mass concentrations,
mineralogy, the surface area of dust particles, atmospheric
chemical composition, cloud processing, and meteorological
parameters and exhibits complex and spatiotemporally vari-
able patterns. Our study suggests that the explicit model rep-
resentation of individual processes leading to Fed production
within mineral dust are needed to improve the understand-
ing of the atmospheric Fe cycle, and quantify the effect of
dust-Fe on ocean biological productivity, carbon cycle, and
climate.

1 Introduction

Aeolian dust deposition has been suggested to be a critical
source of the micronutrient iron (Fe) to∼ 30 % of the world’s
oceans, known as high nitrate-low-chlorophyll (HNLC) re-
gions where marine primary productivity can be limited by
the supply of Fe (Martin and Fitzwater, 1988; Coale et al.,
1996; Boyd et al., 2000). It is further proposed that the sup-
ply of Fe may also limit nitrogen fixation, exerting an impor-
tant control on the primary productivity in vast areas of the
global oceans (Falkowski, 1997; Mills et al., 2004). There-
fore, the atmospheric supply of Fe to the surface oceans may
play a key role in regulating biological productivity, atmo-
spheric carbon dioxide (CO2) concentrations, and possibly
climate (Martin, 1990; Zhuang et al., 1992; Jickells et al.,
2005).
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The majority of Fe mass found in the atmosphere is con-
tained within mineral dust aerosols emitted from continen-
tal sources. Fe in atmospheric mineral dust particles is pri-
marily in the form of Fe-(oxyhydr)oxides, such as hematite
(α-Fe2O3) and goethite (α-FeO(OH)), and as ferric iron
(Fe(III)) substituted into aluminosilicate minerals (Dedik and
Hoffmann, 1992; Hoffmann et al., 1996; Arimoto et al.,
2002). In order for Fe, in mineral dust, to be utilized by phy-
toplankton (i.e., bioavailable Fe), it must be in an aqueous,
colloidal, or nanoparticulate form (Raiswell and Canfield,
2012). Additionally, several pathways such as thermal dis-
solution, mobilization by organic ligands, photo- and bio-
reduction may also be involved in the acquisition of Fe by
marine organisms, often directly from particulate sources
such as mineral dust (Kraemer et al., 2005; Barbeau, 2006;
Rubin et al., 2011). As the objective of this study is to es-
timate the supply of bioavailable lithogenic aerosol Fe to
different regions of the global oceans through atmospheric
pathways, here we only consider dissolved Fe (Fed) produc-
tion within mineral dust during its atmospheric transport and
do not take into account marine processes leading to the for-
mation of bioavailable Fe. The dissolved iron fraction (DIF)
(DIF(%) =

Fed
total Fe× 100) of Fe-containing minerals com-

monly found in freshly emitted dust particles are typically
small (much less than 1 %); however, in situ measurements
suggest increased (up to 5 %) and spatially variable DIFs
downwind from the dust source regions (e.g., Sholkovitz et
al., 2012). An important goal in present day climate research
is to better understand how physical and chemical processes
affect the formation of Fed in mineral dust during atmo-
spheric transport from the source regions to the oceans.

During the atmospheric transport of mineral dust parti-
cles Fe can be mobilized through three different mecha-
nisms: proton-promoted, ligand-promoted, and reductive dis-
solution (Schwertmann, 1991). Fe dissolution in acidic (low
pH) environments in deliquesced mineral aerosols or cloud
droplets can occur due to high proton concentrations desta-
bilizing Fe-oxygen (Fe-O) bonds in the crystal lattice of
Fe-(oxyhydr)oxides and aluminosilicates (Wiederhold et al.,
2006; Journet et al., 2008). Past modeling studies that fo-
cused on predicting Fe mobilization within mineral dust have
primarily concentrated on acidity/pH-dependent dissolution
processes (e.g., Meskhidze et al., 2003, 2005; Luo et al.,
2005; Mahowald et al., 2009; Solmon et al., 2009; Ito and
Feng, 2010; Ito, 2012). The pH of the aqueous solution sur-
rounding dust aerosols is controlled by the ionic balance be-
tween acidic species (e.g., sulfate (SO2−

4 ), nitrate (NO−

3 ),
chloride (Cl−) anions) and the basic mineral substances con-
tained in dust, i.e., calcite (CaCO3). If the concentration of
acidic species becomes abundant enough to overcome the al-
kalinity of mineral dust, the pH of the aqueous solution sur-
rounding the dust particle will decrease and Fe can be effec-
tively mobilized from the particle through proton-promoted
dissolution processes (Meskhidze et al., 2005). However, due
to the large buffering capacity of CaCO3, on average dust

particles do not easily become acidic. It has been shown that
at pH values typically found in atmospheric aqueous solu-
tions (3< pH< 6), organic ligand-promoted Fe dissolution
is the major mechanism for the production of Fed (Stumm
et al., 1985; Dos Santos Afonso et al., 1990; Cornell and
Schwertmann, 1996). Out of a number of different Fe(III)-
chelating ligands, dicarboxylic acids (e.g., oxalate, malonite,
glutarite) have been widely studied (Cornell and Schindler,
1987; Duckworth and Martin, 2001). Such organic com-
pounds, and in particular oxalate, are commonly found in at-
mospheric waters (Kawamura and Ikushima, 1993; Johansen
et al., 2000). It has been suggested that the presence of ox-
alate in ambient aerosols can lead to more than an order of
magnitude increase in Fe dissolution rates (e.g., Pehkonen et
al., 1993; Xu and Gao, 2008; Cwiertny et al., 2009; Paris et
al., 2011). During ligand-promoted Fe dissolution, organic
compounds are thought to form bidentate surface structures
(mononuclear – with a single Fe atom on hematite surfaces or
binuclear – when two oxygen moieties bridge two Fe atoms)
(Duckworth and Martin, 2001). These ligands, binding as
inner-sphere complexes to the surface groups of Fe-oxides,
increase dissolution rates due to strong electron donation to
surface Fe, weakening the Fe-O bond of the mineral lat-
tice and lowering the energy barrier for dissolution (Cornell
and Schwertmann, 1996). The third process, known as re-
ductive dissolution, involves an electron transfer to Fe(III)
atoms resulting in Fe(II) formation. A possible mechanism
for the reductive dissolution process, in oxalate containing
ambient aerosols, was suggested to start with the photo-
reduction of Fe(III)-oxalate complexes (released into solu-
tion) to Fe(II)-oxalate. The Fe(II)-oxalate complex then ad-
sorbs on Fe-(oxyhydr)oxides where it exchanges an electron
with a surface Fe(III) atom. This sunlight-mediated electron
exchange increases the rate of dissolution due to both the
loss of charge and the increase in size of Fe(II) (Suter et
al., 1991; Cornell and Schwertmann, 1996; Fu et al., 2010).
Laboratory studies have demonstrated that in the presence
of organic Fe-complexing ligands and UV/visible radiation,
higher fractions of Fed can exist in the Fe(II) form (Zuo and
Holgné, 1992; Pehkonen et al., 1993; Cornell and Schwert-
mann, 1996). It is true that Fe(II) released from an aerosol
particle into seawater upon deposition would be rapidly re-
oxidized to Fe(III) with a half-life of a few minutes in warm
(tropical, subtropical) seawater to an hour or more in cold po-
lar waters (Millero et al., 1987; Santana-Casiano et al., 2005;
Roy et al., 2008). Nevertheless, due to the higher solubility
of Fe(II) compared to Fe(III), light-induced photochemical
cycling of Fe in the presence of different levels of hydro-
gen peroxide and organic compounds could strongly influ-
ence Fed levels in atmospheric aerosols and cloud droplets
(Faust and Zepp, 1993; Chen and Siefert, 2003; Fu et al.,
2010). Analysis of rainwater samples also suggested the ex-
istence of Fe(II)-complexing ligands that can stabilize wet-
deposited Fe(II) in seawater (Kieber et al., 2005). Since any
process which controls Fed concentrations in atmospheric
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waters may influence the amount of Fe available to phyto-
plankton, accurate model simulations for photochemical re-
dox cycling of Fe in atmospheric waters is important for ma-
rine biogeochemistry.

In this work Fed deposition rates to the global oceans are
calculated using the 3-D global chemical transport model
(CTM) GEOS-Chem (v8-01-01) implemented with a prog-
nostic dust-Fe dissolution scheme (hereinafter referred to as
GEOS-Chem/Fed). The proton-promoted dissolution mech-
anism (Solmon et al., 2009; Johnson et al., 2010, 2011) was
updated to simulate Fed production during the atmospheric
transport of mineral dust accounting for inorganic and or-
ganic (oxalic) acid-promoted Fe dissolution processes, pho-
tochemical redox cycling between Fe(III) and Fe(II), disso-
lution of three different Fe-containing minerals (hematite,
goethite, and aluminosilicates), and detailed mineralogy of
wind-blown dust from the major desert regions. Model sim-
ulations are carried out from March 2009 to February 2010.

2 Methods

2.1 GEOS-Chem

GEOS-Chem is driven by assimilated meteorological fields
from the Goddard Earth Observing System (GEOS) of
the NASA Global Modeling Assimilation Office (Bey et
al., 2001; Park et al., 2004). During this study the model
uses GEOS-5 meteorological fields at a 2◦

× 2.5◦ (latitude-
longitude) grid resolution and 47 vertical levels. GEOS-
Chem includes H2SO4-HNO3-NH3 aerosol thermodynamics
coupled to an O3-NOx-hydrocarbon-aerosol chemical mech-
anism (Bey et al., 2001; Park et al., 2004). The emissions
and chemical transformation of sulfur compounds, carbona-
ceous aerosols, and sea salt are accounted for and described
by Park et al. (2004), Heald et al. (2006), and Alexander et
al. (2005). To simulate dust mobilization, GEOS-Chem com-
bines the Dust Entrainment and Deposition (DEAD) scheme
(Zender et al., 2003) with the source function used in the
Goddard Chemistry Aerosol Radiation and Transport (GO-
CART) model (Ginoux et al., 2001; Chin et al., 2002). Once
mineral dust is mobilized from the surface, the model uses
four standard dust bins with diameter boundaries of 0.2–
2.0, 2.0–3.6, 3.6–6.0 and 6.0–12.0 µm to simulate global
dust transport and deposition (Fairlie et al., 2007). The re-
moval of mineral dust occurs through dry deposition pro-
cesses such as gravitational settling (Seinfeld and Pandis,
1998) and turbulent dry transfer of particles to the surface
(Zhang et al., 2001). Dust removal by wet deposition pro-
cesses includes both convective updraft scavenging and rain-
out/washout from large-scale precipitation (Liu et al., 2001).
GEOS-Chem emits and deposits, on average,∼ 1500 Tg yr−1

of mineral dust globally (∼ 1600 Tg yr−1 was predicted dur-
ing the simulated time period of this study). This model-
predicted flux is consistent with the average global dust

deposition value of∼ 1900 Tg yr−1 (ranging between∼ 700
to 4400 Tg yr−1) determined from all models used in the AE-
ROCOM phase 1 project (Huneeus et al., 2011).

The prognostic proton-promoted dissolution module
(Meskhidze et al., 2005; Solmon et al., 2009) prescribes
a globally uniform mineralogical composition of wind-
blown dust and uses aqueous phase equilibrium and dis-
solution/precipitation reactions for the following minerals
contained in dust: calcite, albite, microcline, illite, smectite,
gypsum, and hematite (Meskhidze et al., 2005). The disso-
lution/precipitation of each mineral is explicitly estimated
based on solution pH, temperature, dust mineralogy, and the
specific surface area of the individual minerals. An initial Fe
solubility of 0.45 % (for the most reactive and poorly crys-
talline pool of Fe in desert top soils) is prescribed based on
the synthesis of data from the Saharan and Sahel regions
of northern Africa (Shi et al., 2012). GEOS-Chem (imple-
mented with the Fe-dissolution mechanism) predicted fluxes
of mineral dust and Fed to the surface oceans which have
been shown to be in reasonable agreement with available ob-
servational/remotely sensed data and past modeling studies
(Solmon et al., 2009; Johnson et al., 2010, 2011, 2012).

2.2 Model developments

2.2.1 Dust mineralogical composition

The mineralogical composition of dust particles is one of the
key factors influencing Fe mobilization during atmospheric
transport (Spokes et al., 1994; Sedwick et al., 2007; Journet
et al., 2008). In the recent study by Nickovic et al. (2012)
it was shown that top-soil/dust mineralogy is spatially het-
erogeneous and using a globally constant mass fraction for
individual minerals may cause inaccuracies in the predic-
tion of the impact of mineral dust on marine biogeochemical
processes. Therefore, to account for the spatial heterogene-
ity in the mineralogy of the atmospherically transportable
fraction of top soils, the global dust mineralogy database of
Nickovic et al. (2012) was implemented in the model. The
dataset was re-gridded from the original 30 s resolution (ap-
proximately 1 km) to the 2◦ × 2.5◦ grid resolution used by
GEOS-Chem/Fed. The dataset contains percent mass frac-
tions of the following minerals: quartz, illite, kaolinite, smec-
tite, feldspar, calcite, hematite, gypsum, and phosphorus. The
mass fraction of Fe in the mineral database is in a range of 2–
3.6 % with significant geographic variability (Nickovic et al.,
2012, 2013). As the fractional contribution of Fe to different
minerals (such as silicates (kaolinite, illite, smectite, chlorite)
and (oxyhydr)oxides (ferrihydrite, lepidocrocite, goethite,
hematite, magnetite)) involved in the biogeochemical cycling
of Fe can vary substantially (Nickovic et al., 2013), the Fe
content of mineral dust in GEOS-Chem/Fed was set to a
widely accepted value of 3.5 % (e.g., Taylor and McLennan,
1985; Duce and Tindale, 1991). Separate model simulations
were carried out using three different minerals (hematite –
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Table 1.Tracers implemented into GEOS-Chem/Fed and chemical forms allowed for each species.

Tracer Symbol Chemical Forms Allowed for Species

Fe(III) [Fe3+]aq, [Fe(OH)2+]aq, [Fe(OH)+2 ]aq, [Fe(SO4)+]aq, [FeCl2+]aq, [Fe(OH)3]s
Fe(II) [Fe2+]aq
FeO2+ [FeO2+]aq

Fe(III)-oxalate [Fe(C2O4)+]aq, [Fe(C2O4)−2 ]aq, [Fe(C2O4)3−

3 ]aq
Fe(II)-oxalate1 [Fe(C2O4)]aq

Fe(II)-oxalate2 [Fe(C2O4)2−

2 ]aq

Oxalate [H2(C2O4)]aq, [H(C2O4)−]aq, [C2O2−

4 ]aq

for the baseline simulations, and goethite and illite for sensi-
tivity calculations) as the main Fe containing mineral. Such
treatment allowed us to assess the importance of oxalate-
promoted dissolution and the photochemical redox cycling
of Fe implemented in GEOS-Chem/Fed by comparing results
of the current study with the proton-promoted dissolution of
Meskhidze et al. (2005), while still giving an estimate for a
range of uncertainty associated with the incomplete charac-
terization of Fe-mineralogy in desert soils (see Sect. 3.2.5 for
sensitivity calculations).

In order to determine the influence of individual major
global dust source regions on atmospheric fluxes of Fed,
following Prospero et al. (2002) GEOS-Chem/Fed was set
up to treat seven (North Africa, South Africa, North Amer-
ica, Asia, Australia, the Middle East, and South America)
dust source regions separately. In the model each source re-
gion is assigned separate tracers to represent mineralogy as
well as chemistry. Such a treatment allows dust from each
of the seven major source regions to be independently emit-
ted, transported, chemically transformed, and removed from
the atmosphere. This model development increased the num-
ber of additional tracers in GEOS-Chem/Fed (by a factor of
7), causing a considerable increase in computational cost.
Therefore, the selection of different dust source regions is
available as a user-defined option in the updated GEOS-
Chem/Fed model.

2.2.2 Model-predicted oxalate concentrations

To simulate organic ligand-promoted Fe dissolution, a new
tracer – oxalate – was implemented into GEOS-Chem/Fed
(see Table 1). This organic compound was chosen because
of its high affinity to complex with Fe within mineral dust
(Cornell and Schindler, 1987) and the fact that oxalate has
been shown to be one of the most abundant organic con-
stituents detected in tropospheric aerosols (Kawamura and
Ikushima, 1993; Kawamura et al., 2005; Yu et al., 2005). Ox-
alate has been suggested to have both anthropogenic and nat-
ural sources of its precursor gases (Fu et al., 2008; Myrioke-
falitakis et al., 2008; Sinreich et al., 2010; Volkamer et
al., 2010; Rinaldi et al., 2011). The in-cloud oxidation of
organic compounds such as glyoxylic acid, glycolic acid,

glycolaldehyde, glyoxal, and methylglyoxal are suggested
to be the dominant precursors of oxalate (Myriokefalitakis
et al., 2011) with additional sources from aromatic hydro-
carbons, cyclic olefins, and aldehydes in highly polluted re-
gions (Kleindienst et al., 1999; Yu et al., 2005). The explicit
calculations of oxalate formation, as in Myriokefalitakis et
al. (2011), consider a complex system of aqueous and gas
phase reactions and is outside the scope of the current study.
To estimate oxalate concentrations ([C2O2−

4 ] in nmol m−3)

in GEOS-Chem/Fed we apply the method proposed by Yu
et al. (2005), in which oxalate is calculated using model-
predicted sulfate concentrations ([SO2−

4 ] in nmol m−3):[
C2O2−

4

]
= 0.05·

[
SO2−

4

]
− 0.273. (1)

The linear fit shown in Eq. (1) was derived using air-
craft and ground-based measurements of oxalate and sul-
fate concentrations collected during the Aerosol Character-
ization Experiment (ACE)-Asia measurement campaign (Yu
et al., 2005). Measurements of oxalate and sulfate in aerosol
and cloud water from various urban, remote, and coastal re-
gions in Asia also demonstrate high spatial and temporal
correlation (R2

= 0.49–0.93) (Yu et al., 2005) and compara-
ble size distributions (Furukawa and Takahashi, 2011). Such
a strong relationship was suggested to be due to the simi-
lar locations of emitted precursor species and in-cloud for-
mation pathways (Yu et al., 2005; Myriokefalitakis et al.,
2011). Over the North Atlantic Ocean variable correlation
values between non-sea salt SO2−

4 and oxalate were reported
from the cruise measurements of Chen and Siefert (2004).
The linear correlation coefficients ranged between 0.70 to
0.96 and 0.26 to 0.68 for winter and summer seasons, re-
spectively (Chen and Siefert, 2004), suggesting that oceanic
dimethyl sulfide (DMS) (SO2−

4 precursor gas) emissions may
introduce some inaccuracies in our model-predicted oxalate
concentrations. Upon the evaporation of cloud droplets and
aerosol water, both oxalate and sulfate tend to remain in
the particulate phase. To avoid the effect of oxalate not as-
sociated with mineral dust, the amount of oxalate consid-
ered in organic ligand-promoted Fe dissolution is calculated
based on dust-sulfate concentrations predicted by GEOS-
Chem/Fed. Model-predicted dust-sulfate concentrations are
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primarily driven by the uptake of sulfur dioxide (SO2) and
sulfuric acid (H2SO4) from the gas and aqueous phase (in-
cloud sulfate formation).

2.2.3 Mineral dissolution kinetics

In this work oxalate-promoted dissolution of three Fe-
containing minerals (hematite, goethite, and illite) was added
to GEOS-Chem/Fed. Illite was chosen as a proxy for all
Fe-containing aluminosilicate minerals. The temperature-
dependent dissolution rate constantKr

i (mol m−2 s−1) for the
Fe-containing mineral “i” in the presence of oxalate is mod-
eled as the sum of proton-promoted and ligand-promoted dis-
solution rates:

Kr
i = Kpi + Kl i, (2)

where Kpi and Kli are the proton-promoted and the
oxalate-promoted mineral dissolution rate constants, respec-
tively. The Kpi values for hematite and illite dissolution
rates are calculated from the temperature-dependent equa-
tions in Table 8 of Meskhidze et al. (2005) and Kpi ,
the proton-promoted dissolution rate constant for goethite
(mol m−2 s−1), is derived from Cornell et al. (1976) as:

Kpi = 1.4 × 10−11
· exp

[
1.1 × 104

·

(
1

298
−

1

T

)]
. (3)

The Kr
i for each individual mineral is then applied to

Eq. (24) in Meskhidze et al. (2005) in order to calculate the
concentration of mineral Fe dissolved per time step in the
model. The empirical parameter (m), specific surface area of
the mineral (A), weight fraction of the mineral in dust (W ),
and equilibrium constants (Keq) used in the proton-promoted
dissolution of hematite and illite are listed in Meskhidze et
al. (2005). For goethite we use the following values:m = 0.5,
A = 38 m2 g−1, W = 5.7 %, andKeq = 2.3 mol2 kg−2 (Cor-
nell et al., 1976; Cheah et al., 2003). Following the dissolu-
tion/precipitation method of Meskhidze et al. (2005), at every
time step in the model, rate constants for mineral dissolu-
tion/precipitation are derived based on Fed, dissolved chemi-
cal species, solution pH, temperature, and ionic strength. For
any particular mineral (i.e., hematite, goethite, or illite), if
the solution remains undersaturated with respect to Fe(III),
mineral dissolution proceeds. However, when the solution
becomes super-saturated with respect to Fe(III), mineral dis-
solution stops and amorphous Fe(OH)3(s) precipitates. For
all the simulations conducted during this study the solution
remained undersaturated with respect to Fe(II).

The values for Kli for the three different minerals
(hematite, goethite, and illite) are taken from Paris et
al. (2011). The study by Paris et al. (2011) was selected be-
cause it uses oxalate concentrations typically observed in at-
mospheric aerosols, several orders of magnitude lower com-
pared to many Fe-(oxyhydr)oxide dissolution experiments
(e.g., Cornell and Schindler, 1987; Xu and Gao, 2008). The

Table 2. Coefficientsai (mol Fe m−2 s−1 uM−1C2O2−

4 ) and bi

(mol Fe m−2 s−1) for oxalate-promoted Fe dissolution rates of in-
dividual Fe-containing minerals.

Fe-containing mineral ai bi R2

Hematite 3.0× 10−12
−2.0× 10−12 0.997

Goethite 1.0× 10−11 7.0× 10−13 0.987
Illite 3.0× 10−10 6.0× 10−11 0.999

artificial laboratory light used in the Paris et al. (2011) study
does not allow UV-light emissions and therefore may lead
to a factor of 2 to 3 underestimation of Fe dissolution rates
(e.g., Waite et al., 1986). However, Paris et al. (2011) em-
phasized that for their experimental conditions, the light-
induced reductive dissolution was not the principal process
explaining the increase in Fe solubility. For acidic solu-
tions (pH= 4.7) containing various concentrations of ox-
alate, Paris et al. (2011) show a positive linear correlation be-
tween Fed and oxalate concentrations for all of the minerals
considered. Using this data one can then calculate (after sub-
tracting out the amount of Fed produced in the absence of ox-
alate) oxalate-promoted mineral dissolution rates for differ-
ent Fe-containing minerals “i” as Kli = ai [x] +bi . To calcu-
late these Kli rates we applied the total mineral mass (15 mg),
Fe mass percentage of each mineral (3.38 %, 57.48 %, and
62.87 % for illite, hematite, and goethite, respectively) and
the individual mineral specific surface areas (9, 1, 33 m2 g−1

for hematite, goethite, and illite, respectively) used in each
dissolution experiment of Paris et al. (2011). Coefficientsai

andbi (with correspondingR2 values) for the linear best fit
to the Paris et al. (2011) data are given in Table 2, and [x]

represents the aqueous concentration of oxalate (µM).
The proton- and oxalate-promoted dissolution rate con-

stants of the three Fe-containing minerals considered in
GEOS-Chem/Fed are shown in Fig. 1. Calculations suggest
that out of three Fe-containing minerals illite has the fastest
dissolution rate followed by hematite and goethite. Figure 1
shows that at very low pH values oxalate concentrations have
a minor effect on total dissolution rates for all three minerals.
As suggested before, for highly acidic conditions the amount
of Fed produced in ambient aerosols should mainly be deter-
mined by proton-promoted dissolution. On the contrary, for
higher pH values (pH> 3) that are more typical for atmo-
spheric waters, ignoring oxalate-promoted dissolution may
lead to the considerable underestimation of Fed production
for all three Fe-containing minerals (see Fig. 1). Overall, the
rates for oxalate-promoted dissolution shown in Fig. 1 are
consistent with past literature (e.g., Sidhu et al., 1981; Schw-
ertmann, 1991; Duckworth and Martin, 2001; Samson and
Eggleston, 2002; Journet et al., 2008). In Sect. 3.2.4 sensi-
tivity calculations are presented to illustrate the influence of
oxalate on Fed fluxes to the global oceans.
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Fig. 1. Dissolution rates (mol m−2 h−1) for hematite (blue),
goethite (red), and illite (green) in atmospheric waters containing
oxalate concentrations of 0 µM (long-dashed lines), 1 µM (solid
lines) and 8 µM (short-dashed lines) at 298 K.

2.2.4 Kinetic modeling of photochemical/chemical
reactions of Fe in the presence of oxalate

Past studies have shown that photochemical reactions of
Fe(III)-oxalate complexes in atmospheric waters can be an
important source of Fe(II) (Faust and Zepp, 1993; Siefert
et al., 1998; Balmer and Sulzberger, 1999). Photolysis of
Fe(III)-oxalate complexes may also lead to the reduction of
oxygen and formation of superoxide and its conjugate acid,
hydroperoxide radical (HO·2/O−·

2 ), which in turn form hy-
drogen peroxide (H2O2) (Zuo and Holgńe, 1992). Recent
studies further suggest that Fe(II)/Fe(III) cycling in aque-
ous aerosols and cloud droplets can lead to the production of
H2O (Mao et al., 2013). Since Fed and oxalic acid are ubiq-
uitous pollutants in cloud-, fog-, and rainwater, photochemi-
cal/chemical redox cycling of oxalate-complexed Fe species
could have an important effect on tropospheric OH·, H2O2,
ozone, and other species.

The standard GEOS-Chem tropospheric chemical mech-
anism consists of over 100 species and 300 reactions inte-
grated using the stiff ordinary first-order differential equa-
tion solver Sparse Matrix Vectorized GEAR II (SMVGEAR
II) (Jacobson and Turco, 1994; Jacobson, 1995, 1998). The
methods used in SMVGEAR II allow the solver to re-
solve equations quickly and accurately in global 3-D mod-
els. During this study, in order to simulate the photochemi-
cal/chemical cycle of Fe(III) and Fe(II) complexes, oxalate,
H2O2, and radical species OH·,HO·

2,O− ·

2 , additional ki-
netic, photochemical, and aqueous-phase equilibrium reac-
tions listed in Tables 3 and 4 (apart from those described
in Meskhidze et al., 2005) were added into SMVGEAR II.
Aqueous concentrations of oxidant species were calculated
using temperature-dependent Henry’s Law. To account for
species that do not achieve equilibrium due to mass trans-
fer kinetic limitations between phases we calculate the trans-
fer coefficient following the methods of Myriokefalitakis et
al. (2011). The GEOS-Chem model calculates photolysis

frequencies using the Fast-J radiative transfer algorithm
of Wild et al. (2000), with a seven-wavelength quadrature
scheme that calculates photolysis rates throughout the tro-
posphere in the presence of an arbitrary mix of cloud and
aerosol layers (Olsen et al., 1997; Wild et al., 2000). Fe-
species absorption cross-sections used in photolysis calcu-
lations are listed in Table S2. In order to simulate the diur-
nal variations of photochemical processes, photolysis calcu-
lations are performed every hour in the model.

ISORROPIA is an aerosol thermodynamics module used
in GEOS-Chem to calculate the equilibrium solid-, aqueous-
and gas-phase concentrations of the sodium – ammonium
– chloride – sulfate – nitrate – liquid-water content system
of an internally mixed aerosol (Nenes et al., 1998). Previ-
ously, ISORROPIA was modified to include reactions in-
volving gas-phase CO2, aqueous-phase carbonates, and Fe-
species (Meskhidze et al., 2005). This modified version of
ISORROPIA is applied within GEOS-Chem/Fed. Multicom-
ponent activity coefficients for the major inorganic species
were determined using the methods of Bromley (1973). Bi-
nary activity coefficients were calculated for each new ion
pair using the formulation of Kusik and Meissner (1978)
with the q-parameters for each relevant salt listed in Ta-
ble 9 of Meskhidze et al. (2005). Ionic strength and pH
of the solution are calculated using the modified form of
ISORROPIA. Activity coefficients for the following ions
C2O2−

4 ,C2O− ·

4 ,FeO2+,O−·

2 have been neglected. To con-
sider a potential salting out effect for electrically neutral
species (H2O2, HO2, OH, O3, O2) activity coefficients were
calculated as 100.1·I (Fischer and Peters, 1970), whereI

stands for the ionic strength of the solution. Additionally,
the reactions listed in Tables 3 and 4 are calculated for both
aerosol solution and cloud water environments. Aerosol liq-
uid water content is calculated by the thermodynamic module
ISORROPIA. When dust aerosols are predicted to be within
a cloud, the liquid water content is set to the temperature-
dependent cloud water concentration predicted by GEOS-
Chem.

In addition to Fe, oxalate can readily chelate divalent
cations such as calcium (Ca2+), which is commonly en-
riched in mineral dust, forming mostly insoluble complexes
(e.g., Sullivan et al., 2009). Technically, the formation of
these metal-organic ligand complexes may lower the ox-
alate concentrations available for adsorption onto mineral-
Fe. However, the reactions of Ca2+ with oxalate have not
been included in Table 3 or 4 because recent studies of size-
fractionated aerosol samples collected in Tsukuba (a city ap-
proximately 60 km northeast of Tokyo) showed that on aver-
age only 2 to 10 % of oxalate is associated with Ca2+ ions
(Furukawa and Takahashi, 2011).

Table S1 shows that the primary sources of Fe(II) pro-
duction are the photochemical reduction of ferric hydrox-
ide, Fe(OH)2+ and Fe(III)-oxalate species and reactions of
Fe(III)-hydroxy species with HO·2/O− ·

2 radicals. The pri-
mary destruction pathways of Fe(II) (cycling back to Fe(III))
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Table 3.Kinetic and photochemical reactions implemented into SMVGEAR II.

Kinetic Equations Reaction Rates M−n s−1 Source

Photolysis of Fe(III) species

J1 Fe(OH)2+
+ hv → Fe2+

+ OH· 4.51 × 10−3 Benkelberg and Warneck (1995)
J2 Fe(C2O4)−2 + hv → Fe2+

+ C2O2−

4 + C2O−·

4 2.47× 10−2 Faust and Zepp (1993)

J3 Fe(C2O4)3−

3 + hv → Fe2+
+ 2C2O2−

4 + C2O−·

4 1.55 × 10−2 Faust and Zepp (1993)

Fenton reactions

K1 Fe2+
+ H2O2 → Fe3+

+ OH·
+ OH− 5.24 × 101 Kremer (2003)

K2 Fe(C2O4) + H2O2 → Fe(C2O4)+ + OH·+OH− 5.24× 104 Sedlak and Hoigńe (1993)

Fe reduction and oxidation

K3 Fe2+
+ O−·

2 +2H+
→ Fe3+

+ H2O2 1.0× 107 Rush and Bielski (1985)
K4 Fe2+

+ HO·
2 + H+

→ Fe3+
+ H2O2 1.2× 106 Rush and Bielski (1985)

K5 Fe2++NO3 → Fe3++NO−

3 8.0× 106 Pikaev et al. (1974)
K6 Fe2++NO2 + H+

→ Fe3+
+ HNO2 3.1× 104 Epstein et al. (1982)

K7 Fe(OH)2+
+ O−·

2 → Fe2+
+ O2+OH− 1.5× 108 Rush and Bielski (1985)

K8 Fe(OH)2+
+ HO·

2 → Fe2+
+ O2 + H2O 1.3× 105 Ziajka et al. (1994)

K9 Fe2+
+ O3 → FeO2+

+ O2 8.2× 105 Logager et al. (1992)
K10 FeO2+

+ H2O → Fe3+
+ OH·

+ OH− 1.3× 10−2 Jacobsen et al. (1998)
K11 FeO2+

+ OH·
+ H+

→ Fe3+
+ H2O2 1.0× 107 Jacobsen et al. (1998)

K12 FeO2+
+ H2O2 → Fe3+

+ HO·
2 + OH− 1.0× 104 Jacobsen et al. (1998)

K13 FeO2+
+ HO·

2 → Fe3+
+ O2 + OH− 2.0× 106 Jacobsen et al. (1998)

HO·
2/O−·

2 reactions

K14 HO·
2 + HO·

2 → H2O2 + O2 8.3× 105 Bielski et al. (1985)
K15 HO·

2 + O2 + H+
→ H2O2 + O2 9.7× 107 Bielski et al. (1985)

K16 CO−·

2 + O2 → CO2 + O−·

2 2.4× 109 Sedlak and Hoigńe (1993)

Oxalate reactions

K17* Fe(C2O4)3−2n
n + O−·

2 → Fe(C2O4)2−2n
n + O2 1.0× 106 Sedlak and Hoigńe (1993)

K18* Fe(C2O4)3−2n
n + HO·

2 → Fe(C2O4)2−2n
n + O2 + H+ 1.2× 105 Sedlak and Hoigńe (1993)

K19 C2O2−

4 + OH·
→ OH−

+ C2O−·

4 5.3× 106 Getoff et al. (1971)

K20 C2O2−

4 + NO3 → NO−

3 + C2O−·

4 2.2× 108 Raabe (1996)
K21 C2O2-

4 + O2 → 2CO2 + O−·

2 2.0× 109 CAPRAM

* n = 1, 2.

are the reactions with H2O2, ozone (O3), nitrate (NO3), and
superoxide/hydroperoxide radicals. Based on this reaction
mechanism Fe(II) is mainly produced during the day and
is oxidized at night. Since Fe(II) and Fe(III) have very dif-
ferent solubility in ambient aqueous solutions, photochem-
ical/chemical cycling of the two different forms of Fe may
prove to increase the total amount of Fed in mineral aerosols
and have considerable effect on marine ecosystem productiv-
ity.

3 Results

3.1 Atmospheric concentrations of oxalate

Past studies have shown that surface level oxalate concen-
trations range from∼ 10 to 100 ng m−3 in rural and oceanic
locations (Sciare et al., 2009) to greater than 1000 ng m−3 in
urban and highly polluted regions (Kawamura and Ikushima,
1993; Legrand et al., 2007). In order to determine the ac-
curacy of GEOS-Chem/Fed-predicted surface oxalate con-
centrations, model-predicted values are compared to a global
dataset of oxalate concentration measurements (Myriokefal-
itakis et al., 2011). Figure 2 shows that model-predicted
oxalate concentrations compare relatively well to surface
measurements and overall can reproduce the majority of
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Table 4.Aqueous-phase reactions in GEOS-Chem/Fed and their equilibrium constants.

Equilibrium Equilibrium K298 (forward) K298 (back) Source
Reaction Constants* M−n s−1 M−n s−1

E1 Fe(OH)3 (s) + 3H+
↔ Fe3+

+ 3H2O 9.1× 103 Stumm and Morgan (1981)
E2 Fe3+

+ SO2−

4 ↔ FeSO+

4 1.2× 102 3.2× 103 2.7× 101 Jayson et al. (1973)
E3 Fe3+

+ Cl− ↔ FeCl2+ 5.2 4.8 9.2× 10−1 Deguillaume et al. (2005)
E4 Fe3+

+ H2O ↔ Fe(OH)2+
+ H+ 6.0× 10−3 2.6× 106 4.3× 108 Brandt and van Eldik (1995)

E5 Fe(OH)2+
+ H2O ↔ Fe(OH)+2 + H+ 9.8× 10−4 1.2× 105 1.2× 108 Brandt and van Eldik (1995)

E6 HO·
2 ↔ O−·

2 + H+ 1.6× 10−5 8.0× 105 5.0× 1010 Bielski et al. (1985)
E7 H2C2O4 ↔ H+

+ HC2O−

4 6.4× 10−2 3.2× 109 5.0× 1010 Meyerstein (1971)

E8 HC2O−

4 ↔ H+
+ C2O2−

4 5.3× 10−5 2.6× 106 5.0× 1010 Meyerstein (1971)

E9 Fe3+
+ C2O2−

4 ↔ Fe(C2O4)+ 2.5× 109 7.5× 106 3.0× 10−3 Deguillaume et al. (2005)

E10 Fe(C2O4)+ + C2O2−

4 ↔ Fe(C2O4)−2 6.3× 106 3.0× 10−3 1.9× 104 Deguillaume et al. (2005)

E11 Fe(C2O4)−2 + C2O2−

4 ↔ Fe(C2O4)3−

3 1.6× 104 4.8× 101 3.0× 10−3 Deguillaume et al. (2005)

* Equilibrium constants are given in units of mol kg−1.

measured oxalate concentrations within a factor of 2. Note
that only for the purpose of comparison oxalate concentra-
tions in Fig. 2 are calculated using model-predicted total sul-
fate (not only dust-sulfate) concentrations. This figure also
shows that the model tends to over-predict the low concen-
trations of oxalate measured over remote oceanic regions.
Such over-predictions of oxalate concentrations by GEOS-
Chem/Fed are associated with DMS emissions and are not
related to the suggested natural oceanic sources of oxalate
precursor gases (e.g., glyoxal) (e.g., Kawamura et al., 1996;
Myriokefalitakis et al., 2008; Sinreich et al., 2010; Volkamer
et al., 2010). Figures S1 and S2 show the spatial distribution
of the model-predicted seasonally averaged surface level to-
tal oxalate concentrations and oxalate concentrations associ-
ated with mineral dust. When comparing Figs. S1 and S2 it
can be seen that near the dust source regions, a noticeable
fraction of the total oxalate is associated with dust. However,
away from the dust sources the concentration of total oxalate
is considerably higher compared to the amount of oxalate as-
sociated with mineral dust. Therefore, the excessive amounts
of oxalate over remote oceanic regions seen in Fig. 2 is not
likely to be associated with mineral dust and have a minor
effect on Fe dissolution kinetics. Overall, Figs. 2, S1 and S2
show that the mechanism used in the current study to esti-
mate oxalate concentrations is suitable for the prediction of
the effect of organic compounds on Fe dissolution kinetics
within mineral dust.

3.2 Fed deposition

3.2.1 Total Fed deposition

Figure 3 shows the GEOS-Chem/Fed-predicted seasonally
averaged Fed deposition (including proton- and oxalate-
promoted dissolution process and Fe(II)/Fe(III) redox cy-
cling) rates during the year-long simulation. Overall, GEOS-
Chem/Fed predicted that∼ 0.26 Tg (1 Tg= 1012 g) of Fed
was deposited to the global oceans during the simulated time
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Fig. 2. Model-predicted surface level oxalate concentrations rela-
tive to measurements conducted in urban (red dots), rural (green),
and remote oceanic (blue) regions. Observed surface level oxalate
concentrations are taken from Myriokefalitakis et al. (2011) and ref-
erences within. The solid black line illustrates the 1: 1 comparison,
and the two dashed lines are the 1: 2 and 2: 1 comparisons.

period. This magnitude compares well to recent modeling
studies (Luo et al., 2008; Luo and Gao, 2010; Okin et al.,
2011) that predicted total annual Fed deposition to the global
oceans between 0.21 and 0.41 Tg. The magnitude of Fed de-
position to the North Atlantic Ocean is large year-round,
with highest fluxes up to 100 µg m−2 day−1. Figure 3 also
shows that seasonally averaged Fed deposition rates to the
North Pacific Ocean, in close proximity to the Asian con-
tinent, are elevated during the spring and summer months
(> 10 µg m−2 day−1) when model-predicted mineral dust
emissions are at a maximum. According to Fig. 3 the highest
seasonally averaged Fed deposition rates to the HNLC wa-
ters of the subarctic North Pacific Ocean (here considered to
be north of the Subarctic Current (∼ 40◦ N), Peterson et al.,
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Fig. 3. Model-predicted seasonally averaged Fed deposition rates (µg m−2 day−1) for (a) March–May (MAM), (b) June–August (JJA),
(c) September–November (SON), and(d) December–February (DJF).

2005) also occur during the spring and summer months and
could provide an important source of bioavailable Fe to these
Fe-depleted surface waters. Overall, GEOS-Chem/Fed pre-
dicted∼ 5 % of the total annual Fed deposited to the global
oceans was supplied to the HNLC regions of the North Pa-
cific Ocean.

From Fig. 3 it can be seen that in the Southern Hemi-
sphere the highest rates of Fed deposition occur downwind
from the dust source regions of Australia and South Amer-
ica. According to this figure, there is a distinct seasonality in
Fed deposition rates to the Southern Ocean, associated with
South American dust sources (predominately the deserts of
Patagonia), with highest fluxes predicted to occur during the
austral summer and fall months. Fed deposition, associated
with Australian dust, is less seasonal in comparison to South
American sources, with more constant year-round Fed depo-
sition rates. The largest fluxes of bioavailable Fe deposited to
the HNLC regions of the Southern Ocean (considered to be
south of the Antarctic Circumpolar Current (∼ 42◦ S), Boyd
et al., 2007) are predicted to be from Patagonian dust sources
with rates reaching 10 µg m−2 day−1 during the austral sum-
mer and fall. Overall,∼ 7 % of the total annual magnitude of
Fed deposited to the global oceans was supplied to the HNLC
regions of the Southern Ocean.

To quantify the importance of the atmospheric chemi-
cal transformation of mineral-Fe, studies often report either
fluxes of Fed or DIFs at the moment of mineral dust depo-
sition. Figure 4 shows that DIF values, simulated by GEOS-
Chem/Fed, are highly variable both spatially and temporally.
In general, DIF values remain lower near the dust source

regions but increase downwind as acidic trace gases and or-
ganic compounds are expected to enhance Fe mobilization.
The highest DIFs are predicted over the regions character-
ized by low concentrations of dust and high amounts of an-
thropogenic pollution (and oxalate concentration), e.g., dur-
ing the summer months over the North Pacific Ocean, off the
east coast of Asia. On the other hand, Fig. 4 shows that DIFs
remain lower over regions frequently influenced by large
dust outbreaks, e.g., over the North Atlantic Ocean, down-
wind from the source regions of North Africa. Our model-
predicted Fed deposition fluxes and DIF values are highly
dependent on the prescribed initial solubility of mineral Fe at
the source region. This value is particularly important in pris-
tine regions where atmospheric processing is less efficient for
Fe dissolution in mineral dust particles. While DIF values
may vary between dust source regions, our initial DIF values
were prescribed based on the data of Fed from the reactive
and poorly crystalline pool of Fe in dust precursor samples
from the Sahara and Sahel regions of North Africa (Shi et al.,
2012). Due to the importance of prescribed DIFs on Fed de-
position fluxes, and the potential variability of this value be-
tween different dust source regions, it is suggested that future
studies should be conducted to better characterize this value
for the global dust source regions. Overall, Fig. 4 shows that
DIF values can be used as an indication of the overall effect
of atmospheric chemical processing of mineral-Fe. However,
one should not associate high DIFs with large amounts of
Fed. When compared to Fig. 3, Fig. 4 shows that some re-
gions characterized by the highest values of DIF also show
some of the lowest total fluxes of Fed, e.g., the HNLC region
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Fig. 4. Model-predicted seasonally averaged DIF values (%) in deposited mineral dust for(a) March–May (MAM), (b) June–August (JJA),
(c) September–November (SON), and(d) December–February (DJF).
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of the equatorial Pacific. Therefore, DIF alone are poor prox-
ies for the importance of the atmospheric transport pathways
for Fed deposition to the global oceans. When the biogeo-
chemical cycling of dust-Fe is examined, both fluxes of Fed
and DIFs should be presented.

3.2.2 Fe(II) deposition

Figure 5 shows GEOS-Chem/Fed-predicted seasonally av-
eraged (over both day- and nighttime hours) Fe(II) deposi-
tion rates. In the Northern Hemisphere the largest season-
ally averaged deposition rates of Fe(II) (> 1.0 µg m−2 day−1)

occur in the North Atlantic Ocean, associated with mineral
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Table 5.Comparison of model-predicted Fed values to ambient data.

Fe(III) (ng m−3)

Measurement Campaign R Bias RMSE NMBa

MP01 (Atlantic Ocean)b 0.72 −0.06 0.04 −10.70
MP02 (Pacific Ocean)c 0.64 −0.12 0.04 −26.14
MP03 (Atlantic Ocean)b 0.84 1.50 2.53 135.38
MP05 (Pacific Ocean)c 0.58 −0.06 0.01 −49.77
Trapp et al. (2010) (Atlantic Ocean) 0.70−0.52 1.41 −20.64

Fe(II) (ng m−3)

Measurement Campaign R Bias RMSE NMBa

MP01 (Atlantic Ocean)b 0.48 −0.14 0.39 −24.75
MP02 (Pacific Ocean)c 0.61 −0.22 0.87 −17.30
MP03 (Atlantic Ocean)b 0.65 0.31 0.33 83.22
MP05 (Pacific Ocean)c 0.78 −0.12 0.01 −46.56
Trapp et al. (2010) (Atlantic Ocean) 0.62−0.89 1.73 −35.44

DIF (%)

Measurement Campaign R Bias RMSE NMBa

MP01 (Atlantic Ocean)b 0.63 −8.48 14.17 −51.91
MP02 (Pacific Ocean)c 0.46 −0.30 0.26 −18.50
MP03 (Atlantic Ocean)b 0.53 −0.85 1.15 −37.13
MP05 (Pacific Ocean)c 0.41 −2.86 11.24 −32.58

a NMB is in percent.b Chen and Siefert (2004).c Chen (2004).

dust transport from the Sahara. A significant source of Fe(II)
to the North Pacific Ocean is predicted to be dust outflow
from the Asian sources, particularly during spring and sum-
mer months (from 0.1 to 1.0 µg m−2 day−1). In the South-
ern Hemisphere, Fe(II) fluxes are minor compared to the
Northern Hemisphere. This is largely due the combination of
lower dust abundances and the pristine nature of this region.
Fe(II) deposition rates to the Southern Ocean, primarily from
Patagonian dust sources, were predicted to be at a maximum
during the austral summer (from 0.01 to 1.0 µg m−2 day−1)

associated with highest dust emission rates.

3.2.3 Comparison of model results with observations

To assess how well the model can capture the complex
photochemical redox cycling of Fe in atmospheric waters,
daily-averaged model-predicted surface concentrations of
Fe(II) and Fe(III) were compared to ship-based measure-
ments over the regions largely influenced by dust (Chen
and Siefert, 2004). The measurements were chosen based
on the availability of daily Fe(II) and Fe(III) data. The
time series in Fig. 6 show that GEOS-Chem/Fed can gen-
erally capture the temporal pattern of measured surface con-
centrations of Fe(II) and Fe(III) both close to (MP03) and
downwind (MP01) from the Sahara. However, data analy-
sis showed (see Table 5) that compared to the measurements
of Chen and Siefert (2004), GEOS-Chem/Fed over-predicted

Fe(III) (NMB = 135 %) and Fe(II) (NMB= 83 %) concen-
trations just off the coast of northern Africa and slightly
underpredicted Fe(III) (NMB= −10 %) and Fe(II) (NMB=
−25 %) concentrations over the western portion of the North
Atlantic Ocean. Further evaluation revealed that at least
some of the discrepancies between model-predicted and
measured values of Fed were likely associated with inac-
curacies in simulated mineral dust concentrations: GEOS-
Chem over-predicted total Fe concentrations close to the
Sahara (MP03 NMB= 130 %) and underpredicted farther
downwind (MP01 NMB= −25 %). In addition to mineral
dust concentrations, large RMSE values may be caused by
missing physicochemical processes influencing Fed produc-
tion within mineral dust, combustion and biomass burning
sources of Fed not included in GEOS-Chem/Fed, and the
time interval (day vs. night) when the measurements were
collected. GEOS-Chem/Fed-predicted total Fed and its parti-
tioning between Fe(II) and Fe(III) species (not shown) may
vary considerably with the amount of incoming radiation.
Throughout the day up to 90 % of Fed could reside in the
Fe(II) form, while during nighttime conditions Fe(III) is
expected to be the predominant form of Fed (e.g., Zhu et
al., 1997; Siefert et al., 1998). This modeling result indi-
cates that future studies should report the time of day when
Fe(II)/Fe(III) measurements where conducted.
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Fig. 6. Daily averaged baseline model-predicted (red line) and ob-
served (blue open circles) surface level concentrations of(a, c)
Fe(III) (ng m−3) and (b, d) Fe(II) (ng m−3) from 8 January to
19 January 2001 (MP01) – left column – and from 26 June to
5 July 2001 (MP03) – right column. The shaded area illustrates
the range of model-predicted Fe(II)/Fe(III) concentrations when as-
suming illite and goethite as the major Fe-containing mineral within
dust. Model-predicted concentrations are from the first model grid
above the ocean surface.

3.2.4 Oxalate-promoted Fe dissolution

The influence of oxalate on seasonally averaged Fed deposi-
tion rates is shown in Fig. 7 as the percent difference between
the Fe dissolution scheme developed in this study and the
proton-promoted Fe dissolution of Meskhidze et al. (2005).
Our calculations suggest that globally, the implementation of
oxalate-promoted Fe dissolution and the redox cycling be-
tween Fe(II) and Fe(III) led to∼ 75 % increase in the Fed
deposition to the oceans and depict complex spatiotemporal
patterns. Figure 7 shows that over the oceanic regions pre-
dominantly influenced by anthropogenic pollution (e.g., over
the tropical North Atlantic, northern Indian, equatorial Pa-
cific, and North Pacific Oceans) oxalate-promoted Fe disso-
lution had a large effect on Fed deposition rates, while over
the pristine regions (e.g., the Southern Ocean) the effect is
more modest.

3.2.5 Analysis of model sensitivity to Fe-containing
minerals

By prescribing Fe to different minerals (i.e., goethite and il-
lite) here we present sensitivity calculations to assess how
the assumption regarding different Fe-containing minerals
can affect model-predicted Fed fluxes. Figure 8 shows the
percent difference in Fed deposition rates between the base-
line model simulations and the sensitivity studies. Accord-
ing to our calculations, the assumption of goethite to be
the major Fe-containing mineral reduces the total amount
of Fed deposited to the global oceans by 40 % and 50 %,

while the assumption of illite increased Fed fluxes by 110 %
and 150 % for January and July, respectively. To assess how
well the model can predict surface concentrations of Fe(II)
and Fe(III), when assuming goethite and illite as the ma-
jor Fe-containing minerals, daily averaged simulated values
were compared to the ship-based measurements of Chen and
Siefert (2004) (Tables S3 and S4). Such different responses
of Fed concentrations and deposition rates to the assumption
of Fe-containing minerals within dust suggest that the ex-
plicit representation of dust mineralogy and better quantifica-
tion of Fe content within individual Fe-containing minerals
are needed for the improved description of the biogeochemi-
cal cycling of mineral-Fe in global climate models.

3.2.6 Comparison between a priori assumptions and
explicitly calculated Fed deposition rates

Global climate and ocean biogeochemistry models that do
not have explicit treatments of Fed production calculate
fluxes of bioavailable Fe based on a prescribed DIF, often
from 1 to 10 % (e.g., Fung et al., 2000; Aumont et al., 2003;
Gregg et al., 2003; Moore et al., 2004). In this section of the
study, the differences in model-predicted Fed deposition rates
using an a priori assumption of 1 % DIF (“assumed”) and
explicitly calculated Fed values (“calculated”) is examined.
Figure 9 shows considerable spatiotemporal differences be-
tween seasonally averaged Fed deposition rates for assumed
and calculated Fed values. Over the HNLC waters of the sub-
arctic North Pacific Ocean the calculated Fed deposition rates
are noticeably higher in the summer months (over 100 %) and
lower during the winter months. In the HNLC region of the
equatorial Pacific Ocean, the calculated Fed deposition rates
are higher year-round compared to the assumed ones, while
in the HNLC waters of the Southern Ocean, the assumption
of a 1 % DIF can lead to 50–100 % higher Fed fluxes. Further
data analysis shows that daily averaged Fed fluxes in HNLC
oceanic regions for calculated and assumed DIF values often
differ by a factor of 5 or more. As individual dust deposi-
tion events may have a large influence on ocean biological
productivity and the carbon cycle, this result suggests that
in next generation earth system models every effort should
be made for accurate characterization of Fed in episodic dust
plumes.

4 Conclusions

The deposition of mineral dust is an important supply path-
way of Fed to HNLC regions of the global oceans influ-
encing marine ecosystem processes. In this study Fed de-
position rates were calculated using the global 3-D model
GEOS-Chem implemented with the most up-to-date dust-
Fe dissolution scheme. The original inorganic acid/pH de-
pendent dust-Fe dissolution scheme was expanded through
the addition of organic (oxalate)-promoted Fe dissolution
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processes, photochemical redox cycling between Fe(II) and
Fe(III), dissolution of different Fe-containing minerals, and
detailed mineralogy of wind-blown dust from the major
desert regions. The spatiotemporal variability of Fed fluxes

and DIF values were calculated from March 2009 to Febru-
ary 2010.

During the year-long simulation the amount of model-
predicted Fed deposited to the global oceans was∼ 0.26 Tg.
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GEOS-Chem/Fed-predicted fluxes of Fed ranged from
∼ 100 µg m−2 day−1 in the North Atlantic Ocean to
< 1 ng m−2 day−1 in the remote regions of the South Pacific
and Southern Oceans, highlighting the large spatiotemporal
variability in fluxes of bioavailable Fe to the surface oceans.
Model calculations show sizable differences in DIF values
over different parts of the global oceans, indicating that the
chemical processing of mineral dust (and subsequent Fe mo-
bilization) can be a strong function of different chemical and
physical characteristics, such as Fe-laden dust mass concen-
trations, mineralogy, the surface area of dust particles, atmo-
spheric chemical composition, cloud processing, and meteo-
rological variables. In close proximity to large dust emission
source regions the model-predicted DIFs are typically low, as
large dust plumes generally require high amounts of acidic
trace gases to neutralize the buffering capacity of mineral
dust. The regions with lower concentration of mineral dust
and high amounts of pollutants inclined to have higher DIF
values. However, such regions, even with substantial DIFs,
are often characterized by minor fluxes of Fed. For complete-
ness, we suggest that both Fed deposition rates and DIF val-
ues be reported in future model simulations.

GEOS-Chem/Fed predictions of total Fed and
Fe(II)/Fe(III) partitioning were shown to compare rela-
tively well with five measurement campaigns over various
oceanic regions. Overall, the model was shown to capture
the temporal variability and diurnal cycling between Fe(II)
and Fe(III). However, it was revealed that model-predicted
surface concentrations of Fe(III) and Fe(II) had positive

biases close to the dust source regions and much smaller
to even negative biases downwind. The suggested possible
reasons for discrepancies between the model-predicted
and observational data are associated with uncertainties
in GEOS-Chem treatment of mineral dust (i.e., emission,
transport, and deposition), missing sources of Fed associated
with anthropogenic combustion and biomass burning, omit-
ted physicochemical processes potentially involved in the
production of bioavailable Fe within mineral dust, and mea-
surement uncertainties related to the time of day/incoming
solar radiation.

Our calculations suggest that compared to model simula-
tions when only proton-promoted Fe dissolution is consid-
ered, the addition of oxalate and Fe(II)/Fe(III) photochemi-
cal redox cycling increased the annual supply of Fed to the
global oceans by∼ 75 %. The effect of oxalate-promoted Fe
dissolution displayed large spatiotemporal variability. Ma-
rine environments influenced by anthropogenic air masses
tended to show the largest increases in Fed production due
to oxalate-promoted Fe dissolution. In some regions of the
tropical North Atlantic, northern Indian, equatorial Pacific,
and North Pacific Oceans, the presence of oxalate in min-
eral aerosols increased Fed deposition rates up to 200 %.
While past studies have been focused on deriving total Fed
fluxes to different oceanic regions, the implementation of
photochemical Fe(II)/Fe(III) redox cycling highlighted the
important distinction between the daytime fluxes of Fed (in
both Fe(II) and Fe(III) forms) and nighttime fluxes of Fed
(largely in Fe(III) form). Future campaigns may consider the
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separation of daytime and nocturnal measurements of Fed
over the oceans. Model simulations also highlighted the im-
portance of the improved understanding of Fe mineralogy in
desert soils. Calculations suggest that due to the differences
in dissolution rates, assumptions about the major Fe-bearing
minerals (i.e., oxyhydr(oxides) and silicates) can modulate
the total magnitude of Fed deposited to the global oceans by
more than 150 %.

This is the first study in which the global biogeochemical
cycling of mineral-Fe in the atmosphere is explicitly calcu-
lated based on acid-base chemistry, organic-promoted min-
eral dissolution and complexation, Fe(II)/Fe(III) photochem-
ical redox cycling, and accurate dust mineralogy. This com-
plex approach to calculating Fed production in mineral dust
is an improvement from past modeling studies, as it more
comprehensively captures the processes known to affect Fe
dissolution rates and total concentrations of Fed in mineral
dust (i.e., proton- and organic ligand-promoted Fe dissolu-
tion, Fe(II)/Fe(III) redox cycling, dissolution rates of differ-
ing Fe-containing minerals, and accurate dust particle min-
eralogy). This allows the model to better represent the exist-
ing large spatiotemporal variability in Fed deposition rates,
DIF values, and Fe(II)/Fe(III) speciation. Additional chemi-
cal equation also allowed the model to capture the potential
impact of transition metal ions on atmospheric oxidant (e.g.,
HO2, OH) levels (e.g., Mao et al., 2013). Furthermore, cal-
culations suggest that for individual dust events Fed fluxes
using explicit calculations and prescribed 1 % DIF may dif-
fer by more than a factor of 5. Since marine ecosystem pro-
ductivity and the associated carbon uptake is often sensitive
to episodic Fed fluxes, the next generation earth system mod-
els with explicit carbon-climate coupling should consider the
implementation of comprehensive modules for dust-Fe bio-
geochemistry.

Supplementary material related to this article is
available online at:http://www.geosci-model-dev.net/6/
1137/2013/gmd-6-1137-2013-supplement.pdf.
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