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Abstract. A method for incorporating multi-resolution capa- Lowman et al.2004 King, 2009 Lee and King2009 Hunt
bilities within pre-existing global 3-D spherical mantle con- etal, 2012, 3-D spherical geometry is implicitly required to
vection codes is presented. The method, which we term “gesimulate global mantle dynamics (eTackley et al. 1993
ometric multigrid refinement”, is based upon the applicationBunge et al. 1996 1997 Zhong et al. 200Q Oldham and
of a multigrid solver on non-uniform, structured grids and Davies 2004 McNamara and Zhong005 Davies 2005
allows for the incorporation of local high-resolution grids Nakagawa and Tackleg008 Schuberth et 82009 Davies
within global models. Validation tests demonstrate that theand Davies2009 Wolstencroft et a].2009 Tan et al, 2011,
method is accurate and robust, with highly efficient solu- Styles et al.2011 Davies et al.2012. However, large-scale
tions to large-scale non-uniform problems obtained. Signif-global mantle convection models of this nature place ex-
icantly, the scheme is conceptually simple and straightfor-treme demands on computational resources. This is particu-
ward to implement, negating the need to reformulate andarly true with pre-existing 3-D spherical mantle convection
restructure large sections of code. Consequently, althouglkodes, such as TERRMB&umgardnerl985 Bunge et al.
more advanced techniques are under development at the frod996 Yang and Baumgardnef000, CITCOMs (Moresi
tiers of mesh refinement and solver technology research, thand Solomatoy1995 Zhong et al. 200Q 2008, STAG3D
technique presented is capable of extending the lifetime andTackley, 1996 2008 and OEDIPUS Choblet et al.2007),
applicability of pre-existing global mantle convection codes. which are based upon structured, uniform (or quasi-uniform)
discretizations and closely coupled solution algorithms.
Whilst the uniform discretizations and algorithms used in
such codes have their advantages in terms of storage, data
1 Introduction structure and parallelization, they do not exploit computer
power to its full potential, since local variations in resolution
Mantle convection is the “engine” that drives our dynamic gre not possible. Consequently, despite the large supercom-
Earth. Quantitative modelling of this process is therefore es uting clusters available today, these codes have difficulty
sential for understanding Earth’s dynamics, structure, am}?q resolving the important fine-scale physics (i.e. thermal
evolution, from earthquakes and volcanoes to the forces th%oundary-layers, upwelling plumes and downwelling slabs)
build mountains and break continents apart. Whilst 2- andithin a high Rayleigh number global mantle convection
3-D Cartesian models have provided important insights into &jmylation. The development of efficient multi-resolution nu-

range of mantle processes (eMgKenzie etal. 1974 Gurnis  merical methods for such problems has become a major goal
and Davies1986 Davies and Stevensph992 Moresi and  of cyrrent research.

Solomatoy 1995 Labrosse 2002 van Keken et a).2002
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In computational engineering, non-uniform resolution is 2 Methodology
usually attained via unstructured grids, with solution accu-
racy and computational efficiency improved through error-2.1  Geometric multigrid refinement
guided grid adaptivity (e.dPeraire et a]. 1987 Hassan et al.

1995 Nithiarasu and Zienkiewic22000. Such techniques Geometric multigrid (e.gBrandt 1984 Briggs et al, 2000

(and similar adaptive techniques that are based upon hierars an amalgamation of ideas and techniques, combining iter-
chical mesh refinement) have recently been applied withinative solution strategies and a hierarchy of grids, to form a
the mantle dynamics community (e.Davies et al. 2007, powerful tool for the numerical solution of differential equa-
2008 Stadler et al.201Q Leng and Zhong201l), lead- tions. The basic idea behind the technique is to work not
ing to the development of several state-of-the-art computawith a single grid, but with a sequence of grids (“levels”)
tional frameworks for simulating global mantle convection. of increasing coarseness, to improve the slow convergence
The most notable examples are: (i) Fluidipavies et al. of classical iterative/relaxation methods (see, for example,
2011, Kramer et al.20132); (ii) ASPECT (Kronbichler et al, Brandt 1984 for further details). Multigrid schemes can
2012; and (iii) RHEA (Stadler et al.201Q Burstedde etal.  be applied in combination with any of the common nu-
2013. Such codes, which employ cutting-edge methods inmerical discretization techniques and, consequently, have
mesh refinement, solver technology and parallelisation, opeteen widely used within the geodynamical community (e.g.
up a whole new class of problems for mantle dynamics re-Baumgardner 1985 Tackley, 1996 2008 Bunge et al.
search, as demonstrated Byadler et al(2010. However, 1997 Zhong et al. 2000 2008 Kameyama et al.2005
although perhaps more limited in their applicability, more es- Choblet et al.2007).

tablished codes, which are based upon older numerical me- Excluding the recent examples cited above, the man-
thods, remain heavily utilised within the community (e.g. tle convection modelling community has generally applied
Nakagawa and Tackleg008 Schuberth et 82009 Davies = multigrid to programs with uniform discretizations at each
and Davies2009 Nakagawa et al2009 Zhang et al.2010Q grid level (Fig.1a). This makes programming more straight-
Wolstencroft and Davie2011 Tan et al, 2011, Daviesetal.  forward and avoids the computational overhead of dealing
2012 Miller and Becker2012 Bower et al,2013. Ameans  with varying mesh spacing. However, as outlined above, in
to extend the lifetime and applicability of such codes is there-global mantle convection simulations, uniform grids lead to
fore highly desirable. an excessive problem size and, hence, models that are com-

In this paper we introduce a method, which we term “ge- putationally inefficient. Grid—refinement is needed, predomi-
ometric multigrid refinement” (e.ddrandt 1977 Thompson  nantly in the system’s boundary layers, whilst coarser resolu-
et al, 1992 Albers 2000, that offers a practical solution tion is often sufficient away from the boundary layers, where
to the limitations of current codes. The approach maintainghe solution is smoother. Fortunately, geometric multigrid al-
the key benefits of the current uniform discretizations, butgorithms are not restricted to truly uniform discretizations.
allows for local variations in resolution. It is conceptually = The approach described here recovers the flexibility of
simple and, perhaps most importantly, straightforward to im-non-uniform grids by exploiting the fact that the various
plement. In addition, it is suitable for finite element, finite grids used in the usual multigrid cycles need not extend
difference and finite volume schemes and, thus, is applicablever the whole domain (e.@randt 1977 Bai and Brandt
to several codes within the community. 1987 Thompson et al1992 Lopez and Casciard 997, Al-

The paper begins with a general introduction to the under-bers 2000. The finest levels may be confined to progres-
lying methodology. The numerical issues involved in imple- sively smaller subdomains, thereby providing higher resolu-
menting the scheme are then outlined. The technique is sultion where required. These “local patches” are treated identi-
sequently validated, using the well-established 3-D sphericatally to “global” grids in the multigrid algorithm, only that
mantle convection code TERRA as a basis: model predictheir boundary values are obtained via interpolation from
tions are compared with analytical and benchmark solutionsoarser grids, where needed. In such a structure, the effec-
(e.g.Hager and O’Connelll981; Richards and Haget 984 tive mesh-size in each region will be that of the finest grid
Bercovici et al, 1989 Stemmer et a).2006 Choblet et al. covering it.It is the limited extent of the fine-grid that pro-
2007 Tackley, 2008 Zhong et al. 2008. Results indicate  vides the benefits to the method.
that the proposed methodology is highly successful, generat- To illustrate this concept, consider a simple domain, con-
ing accurate solutions at a reduced computational cost. Alsisting of four grid levels that are discretized by quadrilateral
though a thorough validation of TERRA is beyond the scopeelements (Figlb). Suppose grid level one and two extend
of this study, results also demonstrate that TERRA is robusbver the entire domain, as is standard practice for multigrid
and accurate for the class of problems examined herein.  programs. However, grid level three is confined to a smaller

region, in the domains lower-right-hand quadrant. Grid four
complements grid three, with further localized element sub-
division. Thus, the final non-uniform grid is made up of four
distinctive grid levels.
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Uniform Non-uniform 2.2 |mp|ementation

The key aspects involved with implementing the multigrid
refinement technique within a pre-existing 3-D spherical
mantle convection code are covered in this section. The well-
established code TERRA is utilized to illustrate and validate
the key ideas, although, as noted previously, the methodology
is equally applicable to other codes and, hence, the findings
of this study will be of benefit to the wider geodynamical
community. For completeness, a brief overview of TERRA is
first presented. This is intended to: (i) provide the reader with
a background to the code’s fundamental building blocks; and
(i) summarize recent developments to the code.

2.2.1 TERRA

TERRA is a well-established finite element mantle convec-
tion code that was first developed Baumgardne 1985

and has been further modified Bunge et al(1996 1997

Fig. 1. (a) An example of the hierarchy of uniform grids used in and Yang and Baumgardngi2000. The code solves the
regular geometric multigrid cycles. A standard bisection refinementequations governing mantle convection inside a 3-D sphe-
rule is employed; each quadrilateral element is split into four ele-rical shell with appropriate boundary conditions. Assuming
ments at the next grid levelh) a non-uniform grid and the uniform incompressibility and the Boussinesq approximation (e.g.

e sy Howeves e o sone i e, MCKENZE e ol 1979 these equatons, expressed n ther
grias. ' 9 non-dimensional form, are:

a multigrid, the sub-grids do not necessarily extended over the same

(@) (b)

domain. V.u=0, (1)
uV2u —Vp+Rak AT =0, (2)

. . _ _ . aT )
This structure is highly flexible, since local grid refine- — +V - (Tu) =« VT, (©)

ment (or coarsening) is done by extending (or contracting) f
uniform grids, which is relatively easy and inexpensive to whereu is the fluid velocity vectorp denotes dynamic pres-
implement. Recurrent operators can be used for both relaxasure,T temperature; time, « thermal diffusivity,¢ gravita-
tion and transfer procedures and a simple data structure cational accelerationy dynamic viscosity and the unit ra-
be employed. Furthermore, the use of partial grids leads to dial vector. Note that the above non-dimensional equations
considerable saving in both computational memory and op-are obtained from the following characteristic scales: mantle
erations, especially when only a small region of the domaindepthd; time d2/«; and temperaturaT.
requires grid refinement (such as the boundary layers). There The spherical shell is discretized by an icosahedral grid
does, however, appear to be a certain waste in the proposd@aumgardner and Fredericksat985. By projecting the
system, as one function value may be stored several timesgegular icosahedron onto a sphere, the spherical surface can
when its grid point belongs to several levels. This is not thebe divided into twenty identical spherical triangles, or ten
case. Firstly, the amount of such extra storage is small, beingdentical diamonds, each of which contains one of the ten tri-
less than 2¢ of the total storage, for d-dimensional prob-  angles surrounding each pole. Triangles can subsequently be
lem Brandt 1977). Moreover, the stored values are exactly subdivided into four triangles by construction of great circle
those needed for the multigrid solution process. arcs between triangle side mid-points. This refinement pro-
This method of local refinements is based upon the Fullcess can be repeated to yield an almost uniform triangulation
Approximation Storage (FAS) mode of multigrid processing, of the sphere at any desired resolution. Refinements to the
where the full approximation is stored at all grid levels (seegrid and, hence, lateral resolution, are referenced by mt —
Brandt 1977, 1984); in parts of the domain not covered by the number of grid intervals along an icosahedral diamond
the finer grid, the coarser grid must show the full solution, edge. The number of nodes on a spherical surface is given by
not just a correction, as occurs with the correction schemelOmf + 2 (there are ten icosahedral diamonds on each sur-
(CS) mode of multigrid processing. face and two polar nodes). The grid is extended radially by

www.geosci-model-dev.net/6/1095/2013/ Geosci. Model Dev., 6, 109%7, 2013
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placing several of these spherical shells above one another, requires~ 8-times more RAM andx 16-times more

generating a mesh of triangular prisms (layers) with spheri- CPU-time at the next level of refinement, the increased
cal ends. The number of radial layers, nr, is flexible, but is factor in CPU-time resulting from the need to decrease
usually set to m2. The total number of nodes in the sphe- the time-step, due to the CFL constraint. A local in-
rical shell (with the standard uniform grid) is thus given by crease in resolution is not possible.

(nr+1)(10mt + 2).

TERRA utilizes the Galerkin finite element formulation. 2. Element sizes and inter-nodal distances are dependent
Excluding pressure, which is piecewise constant and discon-  upon radius, with the grid points denser at the inner
tinuous, all dynamic variables use local linear basis func- boundary than at the surface. As a consequence, the
tions. The discretised form of Eqsl)(and @) are solved lower boundary layer is often better resolved than its
with a Uzawa type pressure correction approach, coupledto  surface counterpart, whilst the dynamically controlled
a conjugate gradient algorithm. The basis of this approach  time-step is restricted.
is that the velocity and pressure, determined by solving Eq. _ _ o )

(2) alone, should be corrected until EG) (s satisfied Yang 1€ non-uniform discretization presented in Fig over-

and BaumgardneR000. The algorithm was originally pro- €OmMes these shortcomings. Uppgr .mantle resolution is en-
posed byVerfuerth (1984 and is outlined in detail by both hanced when compared to the original scheme and, hence,
Atanga and Silvestdf.992 andRamage and Wath&@994). e_Iement sizes and mf[er—nodal_dlstances show greater con-
The algorithm exploits a multigrid inner-solver and, hence, SiStency over the entire domain. Thermal boundary layers
TERRA is ideal for investigating and validating the geomet- ¢an th(_arefore be Slmula_ted at similar resolutions a_nd the
ric multigrid refinement methodology. The discretised form dynamically controlled time-step becomes better-suited to
of Eq. ) is solved by means of a flux-form finite diffe- theT problem under examination (it is not unnecessarily re-
rence method (seBaumgardner1985 for further details), stricted by smaller elements at the base of the shell). Perhaps

while time-stepping is accomplished through a fourth-ordermost importantly, resolution can be increased locally, which

Runge-Kutta scheméfvies and Davie009. offers greater flexibility. - _ _ _ _
There are also significant benefits to this configuration
2.2.2 Reference non-uniform discretization from a geophysical perspective. The viscosity of Earth’s

mantle increases significantly with depth (etpger et al.

A reference discretization is now introduced, which will be 1985 Mitrovica and Forte2004. As a consequence, fine-
used to illustrate (and validate) the key implementation pro-scale features will likely dominate the upper mantle convec-
cedures. For simplicity, fine and coarse-grid regions are setive planform, with longer wavelength features more preva-
lected a priori (i.e. the procedure is non-adaptive). Additiona-lent at depth. The reference discretization presented, with
Illy, whilst refinement is performed radially and laterally, it higher resolution in the upper mantle, is ideally suited to such
is done as a function of radius only (i.e. lateral resolution g scenario.
is constant for each individual radial layer, but can vary be-
tween layers). It should be noted however that the strategie®.2.3 Numerical issues
employed are equally valid for full lateral refinement (i.e.
variations in lateral spacing, within individual radial layers). Two key numerical issues must be addressed when imple-

The following discussion will focus on the discretisation menting the multigrid refinement scheme:
displayed in Fig2a. The spherical shell is separated into two i . . i
distinct regions (fine and coarse): the upper half (fine) is dis- 1- Non-conforming grids (i.e. the presence of irregular
cretized by one additional refinement level (i.e. the number ~ POINts, or “hanging nodes”, at grid interfaces).
of nodes in each radial layer increases by a factor of 4 and
there are twice as many radial layers: note that the interface

between fine ?‘”d coarse regions can b_e plaf:ed at an arbﬁgure?.a illustrates the radial location of all genuine solu-
trary, user-defined radius). Such a configuration allows thetion nodes { nodes) at the grid interface, along line A-B of
multi-level processes to be illustrated via one-dimensionalgis 55 A hanging node arises at this interface, where two
diagrams. Nonetheless, in spite of its simplicity, it Over- fn 14 elements connect with one coarse-grid element. At
comes many disadvantages 9f TERRAS convenUonaI qUaSlihis node, the usual nodal solution stencil is no longer appli-
uniform st_ructure (j[e_rmed u_nlform for the remainder of this cable; it should be modified to involve both fine- and coarse-
paper). With the original uniform scheme: grid components, as is done in, for examarstedde et al.

1. Grid resolution can only be increased in fixed step sizes(2013. However, within the context of pre-existing codes,
with successive refinements requiring a8-fold in- such topological and mathematical complexity would be in-
crease in the number of nodes (the number of nodes ineonvenient, requiring coding of new operators and subse-
creases by a factor of 4 and 2, laterally and radially, re-quently, major changes in code structure. As a result, a dif-
spectively). The solution to a given problem therefore ferent route is taken here. For computational convenience,

2. Solution continuity during inter-grid transfers.

Geosci. Model Dev., 6, 10953407, 2013 www.geosci-model-dev.net/6/1095/2013/



D. R. Davies et al.: Geometric multigrid refinement techniques for mantle convection 1099
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Fig. 2. (a) The reference grid configuration implemented in this study. The final solution is derived from distinctive local grids, with high
resolution in the upper half of the spherical shell and coarser resolution in the lowgbh@fradial section, drawn along A-B, illustrating

the final non-uniform solution gridc) The multigrid solution process, illustrated for a four level cycle (grids8h). Grid levelh is a local
fine-grid that spans the upper half of the mantle. Nodes shaded in red are those intrinsic to the final sohatites)» ands nodes are
utilized during fine-grid calculations. They ensure solution accuracy on the fine-grid and solution continuity during inter-grid prajection.
nodes would occur in the regular multigrid formulation, but do not exist in the modified formulation. Grid leishylobal grid, covering

the whole mantle. As with grid levél, nodes shaded in red are part of the final solutiamodes). Conversely, nodes shaded in geayodes)

are only utilized during the multigrid process; they do not explicitly contribute to the final solution. Griaisd8: are further global grids,
which are involved in the multigrid solver but do not explicitly contribute to the final solution. Black arrows denote inter-grid projection.
These are reversed for coarse-to-fine grid interpolation, whilst dashed orange arrows are also applicable. Note, grid resolution is decimatec
for illustrative purposes.

A (a) (b) (c)
solution-grid fine-grid coarse-grid solution-grid fine-grid coarse-grid solution-grid fine-grid coarse-grid
9
~J
Hanging Grid ® ® ] ® e ® ° o e ° °
Node Interface
o ° ° e
® s-nodes
® r-nodes ® t-nodes
B

Fig. 3. (@) The problem: one coarse-grid element interfacing with two fine-grid elements. The location of genuine unknowns (i.e. unknowns
that are associated with an approximation to the governing differential equatioodles, is shown for both fine and coarse gr{#3.The
problem, modified to show thenodes which are introduced for computational convenience. These nodes are not unknowns in our system
of equations, but dummy nodes that are introduced to allow consistent solution derivation at all genuine nodes. With just one boundary
layer (ther nodes), fine-grid solution continuity will not be satisfied during inter-grid projection: thedes would act as boundary values
during fine-grid calculations and would not be updated. Consequently, the values projected from the fine-grid to the enoulelecoarse

grid nodes utilized during the multigrid process that do not explicitly contribute to the final solution), during the multigrid solution process,
would be derived from nodal solutions with both fine and coarse-grid accuracy. Accordingly, a second layer of dummy nodedethare
introduced, as illustrated in pa(t). Their inclusion and the subsequent updating abdes during fine-grid calculations, ensures solution
continuity during inter-grid projection. In summasynodes are the genuine nodes, intrinsic to the final soluti@mds nodes are utilized

during fine-grid calculations and inter-grid projection, whilstodes represent coarse-grid nodes, that are integral to the overall multigrid
process, but do not explicitly contribute to the final solution.
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a boundary band of virtual nodes is introduced in the coarsevalid (i.e. it does not degrade results in comparison to the
grid region to regularize the structure of unknowns (follow- uniform discretization/solution algorithms). Note that for all
ing Thompson et al.1992. This band contains two layers simulations presented in this paper, the interface between
of nodes:r andt nodes (relaxation and transfer), which are fine and coarse regions of the domain is placed @60 km
displayed in Fig3b and c respectively. These are initialized depth, with refinement restricted to one level only. In ad-
via interpolation from the coarse-grid solutiomodes actas dition, we focus solely on isoviscous convection. Whilst
boundary values during fine-grid calculations and remain un-TERRA's robustness at simulating variable viscosity convec-
modified, whilsts andr nodes, now separated from the inter- tion has recently been improved (d¢eestler 2017, for fur-
face, are updated.nodes thus ensure that fine-grid accuracy ther details), these developments have not yet been combined
is transferred to the coarse-grid during inter-grid projectionwith the geometric multigrid refinement technology.
(see Fig3b).

By utilizing uniform grids at each level of refinement, 3.1 Stokes flow
TERRA's standard operators can be used for both relaxa- i ) )
tion and inter-grid transfer procedures. In addition, the radiall € first set of problems examined exclusively test the so-
refinement structure fits in perfectly with TERRA's existing Ution of Egs. () and @). Comparisons are made with
parallelization and domain decomposition configuration, re-duasi-analytical solutions, derived via propagator matrix me-
taining the equal load-balance of the original scheme (sedn0ds (e.gHager and O'Connelll981 Richards and Hager
Sect.4 for further details). This is of utmost importance for 1984. We specifically examine the response of: (i) normali-
computational efficiency. The major benefit to this techniqueZ€d poloidal velocity coefficients at the surface and CMB; (ii)
however, is the ease at which it can be implemented, which i$urface and CMB topography; and (iii) the predicted geoid;
of great practical importance. No significant revisions were!© & Spherical harmonic temperature perturbation at a speci-

made to TERRA. Only minor modifications were necessary,ﬁed depth.in the spherical shell. Such analytical comparisons
which are listed below: have previously been used to validate numerous global man-

tle convection codes (e.@hoblet et al.2007 Zhong et al.
1. The multigrid was converted from the CS to the FAS 2008 Burstedde et al2013.
mode of multigrid processing. For linear problems, the The problem is set up as follows. The inner radius is set to
CS and FAS modes are directly equivaleBrgndt mimic that of Earth’s core mantle boundary,= 3480 km,
1984. Conversion to the FAS mode was simply a casewhile the outer radius is set to equal that of Earth’s surface,
of storing the full current approximation, which is the r; =6370km. Free-slip mechanical boundary conditions are
sum of the correction and its base approximation, atspecified at both surfaces (note that we have modified the
each grid level, as opposed to the correction alone.  treatment of free-slip boundary conditions from the original
version of TERRA, to more accurately account for surface
' curvature). The driving force is a delta function temperature
" perturbation in radius, defined as:

2. Inter-grid transfer routines, to and from the fine-grid
were localized: projection from the fine-grid was mod
ified to involve only fine-grids andr nodes. Interpola-
tion to the fine-grid was modified to initialize » and
t nodes. Pre-existing inter-grid transfer operators were
utilized.

rp+rt

T=5(r— )Yin (. 6) )
_ _ _ _ _ _ Here,Y},, is the spherical harmonic function of degregnd
3. Fine-grid solution routines were localized, withodes  orderm. Cases are investigated at a range of spherical har-
acting as boundary values during calculations. monic degrees (2, 4, 8, 16) and grid resolutions, for both uni-

The whole multigrid transfer process for the modified multi- form and non-uniform grids.

. . Results are presented in Fig.These demonstrate that, in
level scheme, in the context of a four level cycle, is presented | both unif d it fi :
in Fig. 2c. general, both uniform and non-uniform configurations agree

well with analytical solutions. Furthermore, although there
are exceptions, non-uniform configurations generally yield
3 Methodology validation a better accuracy for a given number of nodal points (i.e.

they generally plot on, or below, the uniform cases). For all
The accuracy of the multigrid refinement algorithm, in ad- diagnostics, results are convergent, with approximately se-
dition to TERRA, is examined by comparing results from cond order convergence observed in the errors for poloidal
the modified code with analytical solutions and previ- velocity coefficients, as would be expected. The agreement
ously published numerical predictions. It should be empha-between model predictions and analytical solutions does di-
sized that the goal of this paper is not a thorough benchminish as one goes to higher and higher harmonic degrees.
mark of TERRA. While we realize that further benchmark However, this is to be expected and is consistent with the pre-
tests/comparisons are possible, our aim here is to demordictions of previous studies (e.Ghoblet et al.2007 Zhong
strate that the geometric multigrid refinement technique iset al, 2008 Burstedde et al2013.

Geosci. Model Dev., 6, 10953407, 2013 www.geosci-model-dev.net/6/1095/2013/
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Fig. 4. Relative errors in numerical predictions with respect to semi-analytical solutionsHaggr and O’Connell1981; Richards and

Hager 1984 for: (a) normalized harmonic coefficients for poloidal velocity at the surface and CMB (combifi®@durface and CMB

topography (combined); an(@) total geoid; for a range of uniform (circles) and non-uniform (stars) grids, at spherical harmonic degrees 2,

4, 8, and 16. Note that continuous lines connect the results from uniform cases.
(c)
etal, 2006 Choblet et al.2007 Tackley, 2008 Zhong et al, \,i
2008 test our solution strategy for all three governing equa- _ _ . _
tions. The first class of cases are for tetrahedral symmetr{'g' 5. Representative temperature anomalies from thermal ampli-

atRa= 7 x 10%, while the second and third set of cases are ude convection tests fofa) tetrahedral symmetry ®a= 7 x 10

. a - (b) cubic symmetry aRa= 3.5 x 10°; and(c) cubic symmetry at
for culb|c symmetry aRa= 35 x 10° gnd Ra=1x 10° !'e- _ Ra= 1x10° respectively. Yellow and blue isosurfaces represent ra-
spectively. Results are compared with those of previous in<a| temperature anomalies of 250 and —250K respectively. These

vestigations. We specifically examine Nusselt numbers at th@esyits are from the highest resolution non-uniform cases of Table
surface Nw) and baseNuy) of the shell, and the mean global
non-dimensionalized RMS velocityWrms)):

3.2 Low Rayleigh number convection (a) {

We next examine three cases of low Rayleigh number, sym-
metric, 3-D flows. These cases, which have also been exam
ined by a range of other codes (eRprcovici et al, 1989

Ratcliff et al, 1996 Yoshida and Kageyama004 Stemmer ‘

|

v

’
Nu = Ot i, (5) When examining the results of fully uniform cases, we ob-
serve an excellent agreement with a range of other studies,
demonstrating that TERRA is robust and accurate for this
Nu, = Qb r_b, (6) particular class of problem. Results for non-uniform cases
t are also consistent with previous studies, indicating that the
revised methodology is valid. A comforting observation is
3 1/2 the small difference between upper and lower boundary Nus-
(VRmS) = [ﬁ / uzdsz} . @ selt numbers, indicating that the modified scheme is globally
4r (r; —rp conservative. These results, along with those presented in

) Sect.3.1, demonstrate that the code and, hence, the new tech-
In the above equations;, rp, Ot and Qp are the upper and  pjques, are valid for this class of problem.
lower radii and non-dimensional heat fluxes, respectively.

Q is non-dimensionalized bWAT /d, wherek and AT are

the thermal conductivity and temperature contrast across thg Parallel efficiency and computational cost

mantle depthd = ri — rp. u is the non-dimensionalized ve-

locity, non-dimensionalized via' = ud/«, with « denoting  The parallel performance and strong scaling of TERRA and
the thermal diffusivity. Nusselt numbers are determined bythe non-uniform extension is next examined. TERRA's pa-
solving the time-dependent energy equation until the relatallel implementation is enabled by MPI (s&unge and
tive variation in the Nusselt number between five consecuBaumgardner 1996 for a full description). In brief, the
tive time-steps isc 10-°. RMS velocities are calculated once spherical shell is decomposed into smaller subdomains and
Nusselt numbers have converged. Results are presented gpread across a number of processes. The first step is to
Table 1, with representative plots of the thermal fields in divide each icosahedral diamond into a series of subdia-
Fig.5. monds/subdomains. As noted in SezR.1, the number of

)
Q
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Table 1. Thermal amplitude benchmark comparisons for an isoviscous fluid. Abbreviations in the first column refer to the studies used for
comparison: B89HKercovici et al, 1989, R96 Ratcliff et al, 1996, Y04 (Yoshida and Kageyama004, S06 Stemmer et al2006, CO7

(Choblet et al.2007), TO8 (Tackley, 2008, Z08 Zhong et al.2008. D13 is the present study./MU represents the grid configuration, with

U being uniform and NU non-uniform. # Nodes denotes the total number of nodes, with a resolutien®fx ¢) in radial (and lateral)

direction. For non-uniform cases, fine and [coarse] nodal resolutions are separated, using square brackets. The respective discretizatio
method (DM) is listed, where SP indicates spectral, FE finite element, FD finite differences and FV finite dge. denotes the mean
non-dimensionalized RMS velocity, whilslu: andNu, represent the upper and lower boundary Nusselt numbers, respectively. Note that,
theoreticallyNu andNu, should be equal.

Study # Nodes rx (6 x¢) U/NU DM (VrRms) Nut Nup
B89 2400 12« (10x 20 U SP - 3.4657 3.5293

- R96 65536 3% (32x 64) U FV 32.19 3.4423 -

5 Y04 2122416 10X (102x 204) u FD  32.05 3.4430 -

E % S06 663552 4& (6 x 48 x 48) U FVvV 32.59 3.4864 3.4864

5)\ ;‘ co7 196 608 3% (6x32x 32 U FV 32.74 3.4814 3.4717

< ~ T08 196 608 3% (2x 32x 96) U FVv 32.57 3.48 -

g c|[|s 208 393216 3% (12x 32x 32) U FE 32.66 3.5126 3.4919

4

E = D13(1) 174114 1% (10x 32x 32) u FE 32.03 3478 3.479

2 D13(2) 1351746 3% (10 x 64 x 64) U FE 32.22 3.512 3.512
D13(3) 10649730 6% (10x 128x 128 U FE 32.24 3.513 3.513
D13(4) 491562 PL2] x (10 x 64[32] x 64[32]) NU FE 32.17 3.508 3.504
D13(5) 3768402 1[24] x (10x 12864] x 12864]) NU FE 32.23 3.516 3.514
B89 2400 12« (10x 20) U SP - 2.7954 -

2 o R96 262144 3% (64x 128 U FVvV 18.86 2.8306 -

GE) — Y04 2122416 10X (102x 204 U FD 18.48 2.8830 -

; Lé Cco7 196 608 3% (6x32x 32 U FV 19.55 2.8640 2.8948

]

2 I D13(1) 174114 1% (10x 32x 32) U FE 18.73 2.837 2.837

< &5 D13(2) 1351746 3% (10x 64 x 64) U FE 18.79 2.855 2.855

O © D13(3) 10649730 65 (10x 128x 128 U FE 18.80 2.857  2.856
D13(4) 491562 BL2] x (10 x 64[32] x 64[32]) NU FE 18.79 2.854 2.851
D13(5) 3768402 124] x (10x 12864] x 12864]) NU FE 18.80 2.856 2.855

- R96 262144 3% (64x 128 U FV 157.5 7.5669 -

g v, TO8 196 608 3% (2 x 32x 96) U FV 160.2 7.27 -

E ‘;‘ 208 1327104 4& (12x 48 x 48) U FE 154.8 7.8495 7.7701

(%’ ]‘ D13(1) 1351746 3% (10 x 64 x 64) U FE 153.32 7.802 7.804

g 5:5 D13(2) 10649730 6% (10x 128x 128 U FE 153.75 7.862 7.862

8 = DI13(3) 84541698 129 (10 x 256 x 256) U FE 153.90 7.890 7.891
D13(4) 3768402 1[24] x (10x 12864] x 12864]) NU FE 153.60 7.822 7.824
D13(5) 29491362 338] x (10x 256128 x 256128]) NU FE 153.78 7.873 7.874

grid intervals along an icosahedral diamond edge is referre@monds are mapped onto the first half of the processes and
to as mt. A second parameter is used to define the size of th8outhern Hemisphere diamonds to the second half. If nd =10
subdomains: nt — the number of grid intervals along the edgesach process owns one subdomain from each of the ten dia-
of a local subdomain. The values of mt and nt must be suchmonds (see Fig6). To finalize the domain decomposition,
that mt is a power of 2 and nt is also a power of two less thansubdomains are extended throughout the radial dimension,
or equal to mt. from Earth’s surface to the Core-Mantle-Boundary (CMB).
The next step in the decomposition is to select the numbeiThis procedure is identical for all grid configurations (i.e.
of subdomains to distribute to each process. This is definediniform and non-uniform). The number of processes is thus
by the parameter nd — the number of diamonds from whichgiven by (mynt)?x (10/nd).
subdomains will be mapped onto the processes. nd can have For parallel efficiency calculations we consider a symmet-
a value of 5 or 10; if nd=5 only Northern Hemisphere di- ric, cubic flow, atRa= 1 x 1(°, identical to the final case
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examined in Sectio.2 We compute the problem for 100

time steps. Calculations are carried out at a variety of prob-

lem sizes (i.e. resolutions), using between 4 and 4096 cores

(i.e. processes/CPU’s) on HECTOR, the UK national super-

computing service. Figuréa illustrates the results, showing, (a) nd=10

as expected, faster execution with a larger number of CPUs.
Areduction in elapsed time and, thus, a good improvement in
speed (“speedup”) is observed for all configurations. In addi-
tion, all configurations follow a similar pattern, thus demon-

strating that the non-uniform configuration integrates well

with TERRA's domain decomposition strategy, maintaining

the equal load balance properties of the original scheme. A  (b) nd=5
selection of results summarizing speedup and efficiency are
displayed in Table. Note that results are generally consis-

tent between different problem sizes (i.e. mt — see Fy.

and, hence, only one set of results is presented fully. Fig. 6. Subdomain process mapping in TERRA for a case where

- L. . . . _ mt/nt=2. In(a) nd=10, while in(b) nd=5. The diamonds have
The efficiency of the original, uniformly discretized con been projected on to a flat surface and solid black lines define their

figuration is first examined. If TERRA ;caled perfectly, e,aCh boundaries, while dashed lines represent subdomain boundaries.
case WOUI.d show 10(_)% parallel efficiency (i.e. for a given The number within each subdomain denotes the MPI rank of the
problem size, increasing the number of processes by a factq§rgcess to which the subdomain is mapped.

of n would speed up the calculation by a factomdf How-

ever, as expected, that is not the case. Assuming an efficiency

of 100% on 8 CPU's (this problem is too large to run on a | one neglects the aforementioned differences in parallel
single CPU), efficiency decreases to 58.76 % on 512 CPU'sfficiency, it is possible to estimate a maximum theoretical
(Table 2). Such an observation is easily understood: for aspeedup for non-uniform configurations, based on the ratio
given problem size, as the number of cores increases, thefigetween the number of nodes involved in non-uniform and
is a tendency for the number of pressure solve iterations tqiniform calculations. The performance of the non-uniform
increase, leading to a reduction in computational efficiency.grid configuration is displayed in Figh. Although results

In addition, individual process subdomains extend thrOUgh‘fa” short of the maximum theoretical speedup1 performance
out the radial dimension —they are long and thin, with a largeimproves as the problem size increases. Such behaviour is
surface area. As the number of CPU's increases, the ratio ofp be expected: the implementation involves interpolation of
surface area to subdomain size increases, leading to great@slues to and from ghost nodes and calculations across these
message passing, which, ultimately, restricts the performancghost nodes. Consequently, computational overheads arise.
and speedup of the codBynge and Baumgardnet999.  However, as grid resolution increases, the boundary band of
We consistently observe that cases at nd =5 are more efficierfhost layers makes up a smaller percentage of the computa-
than those at nd = 10, since less inter-process communicatiofional domain (the number of radial layers in the calculation
is required (see Figh). A reassuring point to note is that as increases, but the number of ghost layers remains fixed) and,

the problem size increases, the amount of work per node &ence, the computational overhead decreases (se&cffig.
each time step remains reasonably consistent (se€/&ig.

for example, moving from a uniform mesh simulation on 4
CPU's at mt=32, to a simulation on 32 CPU's at mt=64,t0 5 Memory
a simulation on 256 CPU’s at mt=128). This demonstrates
that the multigrid achieves its goal of attaining a convergenceT he total memory requirements for uniform and non-uniform
rate that is independent of the number of grid points. grid configurations are presented in TalBleFor uniform
Focussing now on the modified, non-uniform, discretiza- cases, as noted previously, the memory addressed should the-
tions, we see that the expended CPU-time decreases in conoretically increase by a factor of 8 with successive re-
parison to uniform cases. This is despite the fact that thdinements. However, the practical memory requirements vary
number of pressure solve iterations increases by, on averagépm this idealized value. In moving from mt =32 to mt=64,
25%. The observed speedup is therefore largely due to a rehe amount of memory addressed increases by a factor of
duction in the number of nodes (or degrees of freedom) andx 6. Moving from mt=64 to mt=128, from mt=128 to
hence, the number of calculations. In addition, there is an in-mt =256 and from mt =256 to mt=512 requires/.2,~ 7.6
crease in parallel efficiency to 67.56 % on 512 CPU's with and~ 7.9 times more RAM, respectively. These variations
non-uniform cases, implying a better balance between comare caused by fixed static memory allocation in a number of
munication and processing, when compared to uniform gridsSTERRA's arrays, which leads to larger overhead at coarser
(see Table). resolutions.
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Table 2. CPU-time for different grid configurations across a range of cores, with the domain decomposed according to nt — the number
of grid intervals along the edge of a local subdomain, and nd — the number of diamonds mapped to a local process. The speedup factor is
calculated relative to the 8-core simulation (the problem was too large to run on a single core), whilst the efficiency is calculated from the
following formula: speedup factpf# coreg8). Note that whilst we only present the results for cases at h28, the observed trends are

consistent across different problem sizes.

# Cores rx (6 x¢) # Nodes nt nd UYNU CPU-time Speedup Factor Efficiency
(s) (%)
8 65x (10x 128x 128 10649730 64 5 U 11187.75 / 100
16 65x (10x 128x 128 10649730 32 10 U 7293.45 1.53 76.70
32 65x (10x 128x 128 10649730 32 5 ) 3131.09 3.57 89.33
64 65x (10x 128x 128 10649730 16 10 U 1939.18 5.77 72.12
128 65x (10x 128x 128 10649730 16 5 U 906.46 12.34 77.14
256 65x (10x 128x 128 10649730 8 10 U 623.46 17.94 56.08
512 65x (10x 128x 128 10649730 8 5 U 297.50 37.61 58.76
8 17(24) x (10x 128(64) x 128(64)) 3768402 64 (32) 5 NU 6983.42 / 100
16 1724) x (10x 128(64) x 128(64)) 3768402 32(16) 10 NU 3891.81 1.79 89.72
32 1724) x (10x 128(64) x 12864)) 3768402 32(16) 5 NU 1807.62 3.86 96.58
64 1724) x (10x 128(64) x 128(64)) 3768402 16(8) 10 NU 1055.99 6.61 82.66
128 1724) x (10 x 128(64) x 128(64)) 3768402 16 (8) 5 NU 489.35 14.27 89.19
256 1724) x (10x 128(64) x 128(64)) 3768402 8(4) 10 NU 326.27 21.40 66.89
512 1724) x (10x 128(64) x 128(64)) 3768402 8(4) 5 NU 161.50 43.24 67.56
(a) (b) (c)
10° E 35 100
— niform e—e Observed mt64

g o . N ’\—\Non—Unlfurm 30 _ -_._-. _ Thforeticul §/ © \
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Fig. 7. (a) Parallel performance of TERRA; the elapsed computational time as a function of the number of CPU’s, at a range of different
scales, utilizing different grid configurations — red and blue lines denote uniform and non-uniform configurations respectively. For non-
uniform cases, mt denotes the lateral resolution in fine regions of the domain. We observe faster execution using a larger number of CPUs,
as expected. Interestingly, variations are observed between different domain decompositions, with nd =5 cases (circles) being more efficient
than nd =10 (stars). Due to a reduction in the number of nodes, the expended CPU-time decreases in moving from uniform to non-uniform
configurations. Results for all configurations follow a similar pattern, illustrating that the non-uniform configurations integrate well with
TERRA's parallel domain decomposition stratedly) the speedup attained when utilizing a non-uniform grid configuration, compared to

an estimate of the maximum theoretical speedup, based purely upon a ratio between the number of nodes in each case. As grid resolutio
increases, a greater speedup is observed, converging towards the theoretical més)mmgmpmputational overhead of using a non-uniform

grid configuration — the overhead decreases as the problem size increases.

To test the numerical implementation of the non-uniform tor of & 3 greater than a uniform mt =256 case). The practi-
cases, we compare the actual memory requirements witleal memory requirement ot 197.45 Gb is therefore excep-
those predicted by simple scaling relationships. One can egional, demonstrating that the scheme has been implemented
timate that a non-uniform, mt=512/256 case, incorporatingefficiently. The minor overheads are caused by ghost nodes
lateral and radial refinement in the upper 25 % of the shell,at the fine/coarse interface. As discussed in the previous sec-
should theoretically requirer 18163 Gb of RAM (i.e. afac-  tion, these overheads decrease with increasing problem size.
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Table 3. Memory requirements for different grid configurations. global 3-D spherical mantle convection simulations, at Earth-
Non-uniform cases incorporate refinement in the upper 750 km (olike convective vigour, will no longer be restricted to individ-

~ 25 %) of the spherical shell. Note that the theoretical RAM is yals / institutions with the largest and most advanced compu-
calculated via the following formula, using the NU 64/32 case as angational facilities, as has previously been the case.
example: (nodes mt64/32odes mt32x RAM mt32.

mt nr U/NU Nodes RAM  Theoretical Overhead
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