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Abstract. Data assimilation is the process of combining real- observation errors yielded a better balance between the ob-
world observations with a modelled geophysical field. The served increments and the prescribed error covariances, with
increasing abundance of satellite retrievals of atmospheri®o appreciable degradation in the surface concentrations due
trace gases makes chemical data assimilation an increasingtp the observation thinning. Forecasts were also considered
viable method for deriving more accurate analysed fields ancand these showed rather limited influence from the initial

initial conditions for air quality forecasts. conditions once the effects of the diurnal cycle are accounted
We implemented a three-dimensional optimal interpola-for.
tion (Ol) scheme to assimilate retrievals of N@opo- The simple Ol scheme was effective and computationally

spheric columns from the Ozone Monitoring Instrument feasible in this context, where only a single species was as-
into the Danish Eulerian Hemispheric Model (DEHM, ver- similated, adjusting the three-dimensional field for this com-
sion V2009.0), a three-dimensional, regional-scale, offlinepound. Limitations of the assimilation scheme are discussed.
chemistry-transport model. The background error covariance
matrix, B, was estimated based on differences in the;NO
concentration field between paired simulations using dif-1  |ntroduction
ferent meteorological inputs. Background error correlations
were modelled as non-separable, horizontally homogeneougshemistry-transport models (CTMs) are widely used for
and isotropic. Parameters were estimated for each month anfdrecasting air pollution, evaluating proposed emission re-
for each hour to allow for seasonal and diurnal patterns inductions, studying chemical or physical processes, and as-
NO; concentrations. sessing climate-scale effects and forcings related to atmo-
Three experiments were run to compare the effects ofspheric componentslgcobson2005. Modelled concentra-
observation thinning and the choice of observation errorstions are often highly uncertain, and can be improved in sev-
Model performance was assessed by comparing the anakral ways, such as better parameterisation of sub-grid scale
ysed fields to an independent set of observations: groundprocesses, more accurate estimates of forcings at the lat-
based measurements from European air-quality monitoringral and lower boundary conditions, higher spatial resolution,
stations. The analysed NGCand G concentrations were higher order numerical methods, and more accurate initial
more accurate than those from a reference simulation withconditions. Data assimilation (DA) involves estimating ini-
out assimilation, with increased temporal correlation for bothtial conditions by combining previous forecasts with recent
species. Thinning of satellite data and the use of constangbservationsKalnay, 2003.
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2 J. D. Silver et al.: Assimilation of OMI NO3 retrievals into a CTM

In recent decades, satellite retrievals of atmospheric conto days at the surface to a couple of weeks in the upper tro-
stituents have complemented observations from groundposphere $einfeld and Pandi®006 p. 224). There is also
based monitoring stationMartin, 2009. Satellite retrievals  substantial seasonal variatid@dghaub et ak2007) estimated
provide concentration estimates for the total vertical column,the lifetime of NQ to be around 3 h during summer and 13 h
for a partial column (e.g. the troposphere) or at a range of verduring winter. Thus N@ is a relatively “local” pollutant. It
tical levels, and they cover a far greater geographical rangés also of interest from a human health perspective; for ex-
across the planet compared to ground-based measuremerample, exposure to NfOhas been linked to reduced lung
of surface concentrations. They therefore present great pdfunction, asthma and increased mortality (reviewe®bgr|
tential for use in “chemical DA’ (i.e. DA for CTMs). For a 2004.
comprehensive review of chemical DA, Searmichael et al. In this study we make use of tropospheric NElumn
(2008. concentrations, derived from measurements by the Ozone

Optimal interpolation (Ol) is the one of simplest DA al- Monitoring Instrument (OMI) aboard the NASA satellite
gorithms currently applied to CTMs; it is based on a least-AURA (see Sect2.1). These NQ retrievals have been stud-
squares formulation of the DA problem. While the assump-ied in a number of contexts. They have been used to re-
tions underpinning Ol are relatively crude, this algorithm is estimate NQ emission ratesZhao and Wang2009. They
simple to implement and may be computationally cheapethave been validated against ground-based measurements
than other more sophisticated DA methods, provided thatfLamsal et al.2008, spectrometerddgnov et al, 2006, air-
neither the number of observations nor the number of modetraft campaignsBoersma et a.2008. They are a resource
variables is too large. In meteorology, Ol has long been surfor validation of air quality modelsHuijnen et al, 2010
passed by variational or Kalman filtering methodslfay, or comparison with retrievals from other satellit@oérsma
2003, however it is still in use with chemistry-transport et al, 2008. Furthermore, they have be used to study par-
models. For exampléfok et al.(2008 used Ol with a Gaus- ticular pollution or emission reduction eveni#/gng et al.
sian puff model for sulfur dioxide over Lisbon, Portugad- 2007).
hikary et al.(2008 and Matsui et al.(2004) applied Ol to In this article, we assimilated retrieved troposphericoNO
assimilate satellite retrievals of aerosol optical depth whencolumns from OMI into a limited-area CTM with a three-
modelling aerosol concentrations over Southeast Asia andimensional Ol scheme. We describe how the background
the eastern United States, respectively. error covariance matrix was parameterised based using the

In the case of off-line CTMs, a small perturbation in the difference between paired simulations (the “NMC method”
initial conditions will typically decay as the simulation pro- of Parrish and Derbei1992. We ran a number of simula-
ceeds, mainly due to forcing from sources and sinks such atons relating to different treatment of the observation error
chemistry and emission€armichael et al|2008 Wu et al, statistics. The analysed concentration fields are compared
2008. Thus the quality of the initial conditions is less critical to ground-based observations of pl@oncentrations (see
in air quality modelling than for numerical weather predic- Sect.3.2). In Sect.4, we discuss these results in the broader
tion (NWP) models, where perturbations tend to grow with context of forecasting and chemical DA.
time. In the case of short-lived chemical species, the dura-
tion of the initial perturbation may be quite brief (e.g. one
day) and this limits the extent to which better initial condi- 2 Assimilation and modelling framework
tions can improve forecasts. Chemical DA can, nonetheless,
be used for historical re-analysis. 2.1 OMl retrievals

The conceptual and practical simplicity of Ol makes the
algorithm a reasonable starting point for use of DA in CTMs. Tropospheric N@ concentrations were retrieved from radi-
Wu et al.(2008 compared four different DA methods (Ol, ances measured by the Dutch—Finnish Ozone Monitoring In-
two types of Kalman filter, and four-dimensional variational strument (OMI) aboard the NASA satellite Aura. Aura’s or-
assimilation) applied to ozone forecasting. They demon-bit is sun-synchronous, crossing the equator between 13:30
strated that Ol, although a relatively simple method, wasand 14:00 local time, passing over Europe shortly after. The
comparable in performance to the more advanced and conretrieval scheme is describedBoersma et al2002 2007).
putationally intensive variational and Kalman filter methods. Retrievals from pixels with a cloud radiance fraction in ex-

This study concerns the assimilation of satellite-derivedcess of 50 % were excluded or with a surface albedo greater
estimates of tropospheric concentrations of nitrogen dioxideghan 0.3, as recommended Bpersma et al(2011). We
(NO2). NO; plays an important role in atmospheric chem- used the DOMINO version 2.0 (produced September 2010)
istry. In the stratosphere, itis involved in catalytic cycles that of the level 2 retrieved tropospheric column p©oncen-
destroy ozone (§); in the troposphere NQis a key G pre-  trations. The retrieval process yielded a measure of the esti-
cursor, especially in polluted urban environmer8gififeld  mate’s uncertainty. The retrieved total column was found to
and Pandis2006 Chapters 5 and 6). NO and NGnter- be highly correlated with the associated uncertainty measure
convert and atmospheric lifetime of N@aries from hours  (R? = 0.83 for the year 2005 for retrievals within the DEHM
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domain). Around 20 % of total column estimates were neg-
ative, and these were also included despite the non-physicq @
nature of the quantity; excluding them would lead to a posi-
tive bias over regions with low NQconcentrations, and also
because they represent uncertainty intrinsic in the retrieva
process. L e :
The OMI data represent a different temporal and spa- 1 :
tial resolution compared to that of the CTM used in this
study (see SecR.2). The model domain covered Europe, and
satellite readings in this area were available several times |
day, usually few hours before and after 12:00 UTC. Multi-
ple images are produced per satellite overpass. The spatig. 1. Left panel: simulations with MM5 meteorology were run
resolution of the CTM used in this study is approximately with a hemispheric domain (in the region shown), with a nested
50 kmx 50 km across the model domain. Resolution of the European domain (indicated by a black dashed box). Simulations
OMI images varies across the camera’s swath. Nadir pix-With Eta meteorology used only a single nest (indicated by a green

els are 13kmx 24 km, while pixels furthest from nadir are dashed box). Right panel: Locations of the Nand & EMEP
13kmx 128 km. monitoring stations are indicated within the Eta domain, and the

terrain height used by DEHM is given by the density of the shad-
ing. The coloured boxes outline the four sub-regions examined sep-
arately within this article.

Finally, OMI data from the outermost (i.e. first and last)
row and column of the CTM’s 9& 96 grid were not assim-
ilated, thus providing a buffer for potential boundary effects
(e.g. see Figl3).

. simulations with Eta meteorology did not include nesting,

2.2 Chemistry-transport model: DEHM and the domain was rotated with respect to the European

. . _ _ _ MMS5 nest. The horizontal grid-spacing for the Eta-based
The Danish Eulerian Hemispheric Model (DEHM) is an off- gjmulations was also 50 km at N.
line, Eulerian, three-dimensional, long-range CT®h(is- Over Europe anthropogenic emissions were based on the
tensen 1997 Frohn et al. 2002 Brandt et al. 2019. The  EMEP emission inventoryMestreng and Klein2002, and
model simulates atmospheric transport and diffusion, chemg|sewhere RCP2.6 emissiorsafarque et al.2010 were
ical transformations, wet and dry deposition, and emissiongssumed. Natural emissions were based on the GEIA in-
from a range of biogenic and anthropogenic sources.  ventory @enkovitz et al, 1996, including NG, emissions
~ Version V2009.0 of DEHM was used in this study: this from lightning and soil. For wildfire emissions, the RETRO
is the version developed for the 2009 annual report forgatabase was use8dhultz et al.2007). Aircraft emissions
the Danish Air Quality Monitoring Programme (NOVANA; gre not accounted for in DEHM.
Ellermann et al.2010. In the present configuration of the  The extended continuity equation is split into several sub-
model, the horizontal domain was spatially discretised Wlthequations, which are in turn solved sequentialigr{ser and
a 96x 96 grid using a polar stereographic projection. In the erwer, 1999. Horizontal advection is solved via “accu-
vertical, the model extends from the surface to 100 hPa inate space derivatives’Dardub and Seinfeld1994, and
20 vgrtical layers using terrz_ain-following-coordinates. This by applying Forester and Bartnicki filters to resolve, re-
version of the model describes a total of 58 gaseous Chem'spectively, spurious oscillations and negative m&ssestey
cal species and 9 classes of particulate matter. The chemistryg77 Bartnicki, 1989. Finite elements with linear shape
scheme is similar to that used in the European Monitoringfynctions are applied to vertical advection. Time integration
and Evaluation Programme (EMEP) mod8iripson et al.  for the advection is solved using a third-order Taylor series
2003. expansion. Diffusion is solved using a combination of the

For all but one of the CTM simulations presented here, me+inite elements method and tiemethod (e.gMorton and
teorological parameters (e.g. wind speed, temperature, presyiayers 2005 Sect. 2.10). The chemistry solver involved a
sure) were calculated by the Eta mesoscale NWP mdeel(  combination of a second-order, two-step, variable step-size
jic, 1994. In the remaining simulation, the MM5 (V3.7) hackwards differentiation formula/érwer et al, 1996 and
NWP model Grell et al, 1995 was run to provide meteoro- the Euler backward iterative methotidrtel et al, 1993.

logical inputs. In both cases, the meteorological initial con-|_ateral boundary conditions are either free or fixed, depend-
ditions were taken from the NCEP FNL (Final) Operational jng on the wind direction at the boundaries — Eeehn et al.

Global Analysis dataset (availabletdtp://dss.ucar.equThe (2002 for further references and details.
simulations with MM5 meteorology involved a hemispheric

domain, with two-way nesting over Europe; the horizon-

tal grid-spacing for the hemispheric and European domains

were 150 km and 50 km, respectively, af 60(Fig. 1a). The
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Theoretical a sparse matrix, and multiplication by exploited this. As
Exp. 1 described below involved interpolation to the nearest grid
Eizj § point, and this increased the sparsity the matrix (compared to
bi-linear interpolation, for example). Thir® was treated as
diagonal, and thus it was only necessary to add to the diago-
nal elements oHBH ". Fourth, the systerilBH " + R was
symmetric positive definite, thus the Cholesky decomposi-
tion could be used. Fifth, the analysis incremery - xp)

was calculated by multiplying each term by the correspond-
ing vector on the right. In other words:
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The most computationally demanding step was B, (
which would requirgnnyn;)(n;nons) operations if we only
exploited the sparsity af;. The productBr, was approxi-

Fig. 2. Box-plots for thex? statistic for Exp. 1-3, separated by Matéd by truncating covariances to zero if the corresponding
each month, as well as for the distribution. The lower and upper correlation was below a threshold of 19 which greatly re-
whiskers show the 0.05 and 0.95 quantiles, respectively. The loweduced the work required for this calculation. A final approx-
bound, centre line and upper bound of the box correspond to thémation was to process observations in batches of no more
0.25, 0.5 and 0.75 quantiles, respectively. The dot within each boxhan 1000 at a time, and the analysis from assimilating one
denotes the mean of the sample. batch of observations was used as the background for the
next batch (as irHoutekamer and Mitchel2007). This is

an approximation since sequential assimilation of observa-
tions is only strictly valid when data with correlated observa-
tion errors are processed in the same battdufekamer and
Mitchell, 2001) — this point is discussed further in Seét.
Each step of the assimilation scheme was parallelised where
possible, and a year-long simulation with assimilation and
observation thinning (discussed later) took about 8 % longer
than the corresponding reference run without assimilation.
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2.3 Assimilation scheme

The algorithm presented here will be referred to as V1.0 of
the three-dimensional Ol scheme for DEHM (as distinct from
the two-dimensional scheme describedRnydendall et al.
2009.

The assimilation was performed once an hour, if any re-
trievals were available in the model domain in the previous S ; L
hour. No special treatment was used to account for the time The assimilation step involves an additive increment to the

discrepancy between the model and OMI data, due to Shortl:oncentration field, and in a large fraction of assimilation cy-
interval between assimilation cycles ' cles, negative values were present in the analysis. Such val-

Let xp be the NQ concentration field (expressed in units ues are not only unphysical (representing negative concentra-
of 10'5 molecules per cfper model level) and be the tions), but may cause further problems in.ot.her. components
retrieved OMI NG tropospheric column concentrations (ex- of the_ CTM. Copseqqently, after the assimilation stgp any
pressed in units of 28 molecules per cA). LetB andR be negative values in a given layer were (somewhat arbitrarily)
the error covariance matrices fef and y, respectively. Let set to the lowest non-zero concentration present in the back-

H be the linear transformation from the model space to theground field at this layer. This problem is distinct from the

observation space. Then the analysed fields estimated Egghatlve gonczntratt_lons drl:e to nunr]]erlcal artifacts of cetr_tam_
(Kalnay, 2003 pp.150—156) by igher-order advection schemes, where mass-conservation is

required Bartnicki, 1989.
The background error covariance matrix is parameterised

-1
Xa=xp+BHT (HBHT+R) (y — Hxp). M

Given available computational resources it was not possiBi
ble to solve Eq.1) as posed. Indeed, the background covari-
anceB has dimensionnyn, = 184 320, and would thus re- where subscriptsandj refer to two grid points in the three-
quire 126 GB of memory at single precision. The following dimensional model domain, and subscript&ind . are the
steps were taken to obtain analysis increments. Frstas  indices for the hour of day and month of the year. All pa-
implemented algorithmically (i.e. calculating only values re- rameters were estimated separately for each month of the
quired for a given operation). Secortd,was represented as year and hour of the day, to allow for diurnal and seasonal

Jimoh = Oism hG jm w7l Lym h W (i s Ll 15:m ) (%)
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patterns in the concentration field, and the associated erro
statistics. The background error standard deviation for grid
pointi is termedo;.,, ,. The subscript; denotes the model
level of grid point, andr; ;-.,, 5, the correlation between pairs
of grid points at levels!/, ") with zero horizontal separation.
The termys (d; ;, Ly, 1;:m.n) represents the horizontal correla-
tion between two grid points, and is modelled based on the
assumption of horizontally homogeneous and isotropic cor-
relations. This models correlations with a second-order auto-
regressive functionBalgovind et al, 1983,

Layer 15, July, 12:00 UTC

=di j/Li; 1 :m.h
V(dij, Li;i;:mn) = 1+di j/Li 1;:m.n)e illitgmn ()

whered; ; is the horizontal separation between pointnd
j.andL; ., , is the correlation length scale for pairs of
grid points at levelsi( I’). The estimation of the parame-
tersoj.m.ny ri;.1;im.h andL,,.Jj;m,h is presented in Seck.4. :
For the decomposition d into its variance and correlation N
components, seé€alnay (2003 p. 151). ‘
The linear observation operatét, calculates the model-

equivalent of the OMI tropospheric retrievals. For simplic- Fig. 3. Top row: sample correlations between a selected point (high-
ity only the DEHM column closest to the OMI pixel was lighted with a green circle) and all other grid points, shown for the
used, thus each column &f is non-zero for at most, = surface layer. Bottom panel: An example of background error cor-
20 values. The DOMINO product includes averaging ker- rélations as a function of horizontal separation between pairs of grid
nels, which provide the estimated sensitivity of the retrieval POInts on the same vertical layer. The fitted Balgovind correlation
to NO, at different layers of the atmospherEskes and function (Eq.6) is shown, as well as the moving average value (av-

. . ... eraged over 50 km windows). The colour scale shows the number
Boersma2003. The averaging kernels tend to increase with of points inside each of the cells.
altitude; thus while N@ concentrations are highest at the
surface (over populated regions, at least), the tropospheric
retrievals are far more informative for the free troposphere.s,om the two simulations a€ and¢. Estimation of parame-
The ratio of the tropospheric and total-column air-mass fac-grs was handled separately for each month and each hour of
tors was used to convert from total-column to tropospherici,q day, due to the large annual and diurnal cycles in atmo-
averaging kernelsBoersma et a]2011). The DOMINO av- spheric concentrations and lifetimes of MO
eraging kernels are valiq_at model levels of the chgmistry— For each time point, differences between the paired sim-
transport model TM4Nfeirink et al, 2009, which provides  jations, were centred at zero and used to calculate the stan-
the a priori profiles for the retrieval, and thus it was neces-yaq deviations (EqF-9). The(-) denotes the averaging op-
sary to calculate a weighted average, for each DEHM levelgraior, andr(r) the set of time points in for the same month
of the averqging kernels (weighted .by the proportion of the 5,4 hour as time point(i.e. the number of elements f(7)
corresponding TM4 layers overlapping the DEHM level). s equal to the number of days in the month). The correlation

The observation matrixR, was treated as a diagonal panveen points and j can then be calculated by ELp.
(i.e. assuming that observation errors are uncorrelated).

Distance (an)

The choice of observation error variances is discussed in ¢, ;, = C;; — C;; ©)
Sect.3.1 éir =eir—eirern (8)
R 1/2

2.4 Parameter estimation oismpn = ((ii)rer) / 9

_ _ A (i€ et
Parameters for the background error covariance matrix werdi.jimh = —————. (10)

. . . . . . Oi;m,hOj;m,h

estimated using differences between paired simulations, also
known as the NMC methodP@rrish and Derbel992. Two The above is based on part of the error covariance estima-
DEHM simulations were run, forced with meteorology from tion procedure described Kahnert(2008.
the Eta {anjic 1994 and MM5 Grell et al, 1995, respec- Estimation of the remaining parameters required in BY. (

tively; these two simulations will be respectively referred (the horizontal length scale and inter-level correlation) was
to as Ref. Eta and Ref. MM5. The simulation ran for 2005 based on a sample of 5000 randomly chosen pairs of grid
and the three-dimensional modelled pl€dncentration field  points in the horizontal domain with separation distance
was stored each hour. We will denote the concentration fieldsange from 0 km to 2500 km. Pairs of grid points were chosen
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to ensure a roughly even distribution of horizontal separation
distances. For each pair of points, sample correlations were -
calculated for each pair of vertical levels {'). The inter-
level correlationr; ., , Was estimated as the mean corre-
lation between the points with zero separation distance; we
note thatr ., , = 1 by definition ifl =1'. :

For each pair of vertical level$,(’), the length scale was
estimated by fitting Eq.6) to the sample of the estimated
correlations. The fitting involved minimising the objective
function

g(Ll,l/;m,h) = (11)
K 1
= Wi i + 1)2

() (b)

Model level

Model I

A 2
(wik,jk;m,h - rl,l’;m,hw(dik,jk s Lm,h))

where subscript refers to thek-th the pair of grid pointgy, 5 NIEE
Jjir (with pointsig, ji positioned at levels, I, respectively),
andK = 5000 is the total number of sample correlations (il-
lustrated in Fig3c). In many cases, the apparent correlation
decay length scale was quite short (e.g. less than 100 km),
due to the short life-time and consequent high-resolution spa-
tial heterogeneity in N@concentrations. In these cases, cor- Fig. 4. Correlations between model variables with zero separation
relations corresponding to short length scales were of mostistancer; ;. ,, ;. at different vertical layers (upper row), and diur-
interest, and hence pairs were down-weighted by distanceal variation in correlation between level 1 and other levels (lower
(using the(d;,  ;, + 1)2 normalisation factor). row). The left and right columns present results for July and De-
In most cases (i.e. different months, hours, pairs of levels) cember, respectively.
the correlation model fitted the available data well and the
estimation procedure yielded consistent results, in the sense
that realistic patterns were observed in the parameter valuesind all other grid points (Figa and b). More sophisticated
These patterns are discussed below and illustrated in4+gs. covariance modelling or use of a stochastic assimilation tech-
6. nigue, such as the ensemble Kalman filter, would be required
However in some cases, the parameter estimation gave ape properly account for this.
parently unrealistic results. In particular, it was difficult to ~ The use of time-varying length scales and background co-
estimate correlation decay length scales for pairs of levels ifvariances appears to be further justified by evidence of diur-
there was also very low vertical correlation between the lay-nal and seasonal variation in these parameters. Figjuire
ers. Also, the upper-most model layer (and to some extentlustrates variation in the parameigy.,, ;. Vertical correla-
the layer below this) appeared to show artificially low stan- tions are strongest in the lowest model layers (i.e. within the
dard deviations and negative correlations with other layerspoundary layer). During the summer, the diurnal cycle is far
which was due to strong damping from the upper boundarymore prominent, due to strong daytime vertical mixing from
condition. Three steps were taken to correct for such arti-surface convection and to the effects of the photochemistry.
facts. First, background standard deviations for the upperin winter, the boundary layer is more often stably stratified,
most layer were replaced with a copy of those from the layerresulting in weaker correlations with the upper model levels
below. Second, if; .,y < 0 andl <!’ then setr; jr.p, j := and stronger vertical correlations between the lower model
ri—1.r.m.n- Third, correlation length scales between two lev- levels.
els (which showed the highest number of unrealistic artifacts) In general, estimated correlation length scalkeg;(,, )
were modelled as a weighted sum of the original estimatedend to increase with altitude and also with the separation
length scale and the sum of the length scales for the individbetween vertical layers (Fi¢); while this latter point was
ual levels, weighted by the square of the inter-level correla-to some extent enforced by the correction to the estimated
tion. length scales, the trend was also seen in the uncorrected es-
While the fitted correlation captures the overall behaviourtimates. This increase in length scale with height reflects
of the sample correlations, there is evidence that the covarithe longer atmospheric lifetime of NGand the increase in
ance model described by EgS) &nd @) was not optimal. In wind speed. During the summer months, horizontal length
particular, the sample correlations showed evidence of horscales can be seen to decrease somewhat around layer 10,
izontal heterogeneity and anisotropy. These features can beue to substantial diurnal variation in the boundary layer
seen in sample correlations between a particular grid poinheight, which is diagnosed differently by the Eta and MM5
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““““““““““““““ Fig. 6. Background error standard deviations,,,, , in July and
December at the lowest model layer (top row), and for layers 5 and
15 in July (bottom row). Note that the colour scale denotes is loga-
rithmic.

Fig. 5. The estimated correlation length scalg,.,, ,, as a func-
tion of month, hour of the day and vertical levéd) shows diurnal
and seasonal variation in the lowest model level, wtblepresents
seasonal variation ih; ;.,,, 5, (i.e. length scales valid for two points

on the same v_ertlca_l level) at different vertical Iayer_s for 12:0'0 uTC of the model layer (levels are thinnest at the surface and in-
only. The relationship between length scale and pairs of vertical lay-

ers in July and December are shown(@) and(d). Note that dif- crease). . _ .
ferent colour scales were used for each panel to highlight variation 1N€ €stimated background errors exhibit artifacts (appear-

within each graph. ing as ripples in Fig6a, ¢ and d) from the interpolation from
the MM5 grid to the Eta grid (Figla). These are most clearly
visible when shown on a logarithmic scale (very little spatial

) _ structure is visible when the same data are plotted with a lin-
models (discussed n Sed.?). .Longer length sc_ales atthe g scale). No filtering was applied to correct for this.
surface are seen during the winter months. A diurnal pattern

in L1 1.4 iS most pronounced during the summer months,

as NG can accumulate at night whereas it is dissipated dur3 Verification

ing the daylight hours due tof3ormation and an increasing

boundary layer. 3.1 Experiments
The background error standard deviations.,( ;) are

partly determined by the magnitude of the concentrations obAlONg with the two simulations used for the background
served in each grid-cell (Fig). This can be seen in higher covariance estimation, which are denoted Ref. Eta and

estimated error variances in areas of highyN@nission den- Ref. MM5, three simulations were run using the assimilation
sity (e.g. the Benelux region). During the winter months, Procedure described above (summarised in Tahlérhey
NO; concentrations exhibit substantial temporal variation Were designed to explore the treatment of observation errors

(Fig.7), and this is reflected in the background errors (as they?d the problem of correlated observation errors.

were estimated by the standard deviation of a time series of Satéllite data can be classified as level-1 products (cali-
values with one value per day). The vertical profilespf, ;. brated and collocated radiances) and level-2 products (de-

tends to increase over the first 6-10 model levels and then ddived geophysical quantities, such as temperature, humid-
cay, following the trend seen in the modelled concentrationd®» concentration of trace gases). The process of retrieving

(in terms of mass N@per model level) at each level: this is level-2 information from level-1 data involves an inverse-
in spite of the general decay of modelled N@ixing ratio modelling framework similar to that used in data assimila-

with altitude (Fig.12a). This is due to the fact that the mass 10N, requiring an a priori estimate of the state of the atmo-
of NO per unit area per model level is the product of the sphere. This results in correlations between observation er-

mixing ratio (which decays with height), the density of air "OrS: the assumption of independent errors in level-1 data fits
(which decays exponentially with altitude) and the thicknessMUch better than for level-2 productsunzi et al, 2011).
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Mean over stations Table 1. A summary of the differences between the experiments.
Abbreviations used: DA — whether data assimilation was applied,
Thin — thin satellite data to a given resolution, CorRt— use

constant observation errors for each month, NWP — the numerical
weather prediction model used to provide the meteorological inputs.

— Obs. i -
— - Ref Eta Region = CE

© Ref. MM5
S Bl

SR

REyn n‘V*A""}\wmwwmwwM {‘M

T T

Region = SB Name DA Thin ConstR;; NWP  Outer nest

Ref. Eta No - - Eta No
1 Ref. MM5  No — - MM5 Yes

. Exp. 1 Yes No No Eta No
/‘W,\AM‘JAyVA “,’f”\\,""‘,,*\»‘.,’!vMuMA\;' N

k! Exp. 2 Yes Yes No Eta No
: : Exp. 3 Yes Yes Yes Eta No

80

6
!

as 13 kmx 24 km. Thus model and observations are repre-
sentative on different scales, which contributes to the rep-
resentativity component of the observation errors. In experi-
ments Exp. 2 and Exp. 3 this issue was addressed by thinning
! I\ A observations so that they were at least 50 km apart, thereby
‘W M,R { , h § in principle reducing the observation error correlation. In
o AM vy b VWWM '“ v W Exp. 1, all available observations were used that passed the
° — — quality-control criteria described in Se@tl
Region = all Figure 13 illustrates the spatial distribution of the total
column concentration, as well as the effect of the assimi-
< lation. Panels a and b present, respectively, the background
“‘A/'V‘I'I\/V‘M AU and analysis (for simulation Exp. 2) projected into obser-
NI\/\IW e ”W o vation space, while panel ¢ shows the OMI retrievals. The
i Sp Oa N Dec grid-averages of these data were calculated for the month of
2005 July 2005, averaging over all assimilation cycles in this pe-
Fig. 7. Time series of daily-averaged N@oncentrations for the ~ fiod. Only observations used in the assimilation (i.e. passing
different regions indicated in Figh. Each time series, for observa- the quality control and thinning) were included in the aver-
tions and the modelled values from the five simulations, is shownages presented, thus no data are available over areas of per-
with a distinct colour and line type. sistent ice cover or in the outermost rows and columns of the
model domain.
The OMI field shows a greater contrast between “clean”
The best treatment of correlated observation errors for datand “polluted” regions (n.b. retrievals in some remote re-
assimilation is still an open research question. The most comgions, such as over oceans, may be negative even after av-
mon approaches used in operational meteorology are the agraging). The grid-averaged retrievals also show greater spa-
sumption of uncorrelated errors in conjunction with “thin- tial heterogeneity than either the averagrbd, or Hx 5 fields.
ning” (discarding observations to reduce the data density) As we would expect, the analysis appears as a merger of the
“superobbing” (assimilating the average of a group of nearbybackground and the observations. However one can also see
observations) or observation error variance inflatidteart  the results of the ripple-like interpolation artifacts from the
et al, 2008. If observation errors are indeed correlated but background error correlations (see S@c); these are most
are treated as independent in the assimilation scheme, theapparent in relatively unpolluted areas.
to achieve an appropriate balance between observation and The observation errors used in the assimilation experi-
background errors the observation error variances must be aments were based on the reported errors in the DOMINO
tificially inflated. A final and promising approach is to model product. As stated in Sec®.1, the retrieved tropospheric
the observation error correlations explicitigtéwart et al.  column concentration was highly correlated with the asso-
2008, however this is beyond the scope of the present studyciated error. This is may be an appropriate description from
The assimilation experiments addressed two different asa measurement perspective, however it may be problematic
pects of the problem of correlated errors. First, the OMI ob-in an assimilation context. If the higher retrieved values are
servations were at a much higher spatial resolution than thassigned higher observation errors, then these data will have
model’s resolution: a DEHM grid-cell represents a roughly less influence on the analysis, resulting in negatively biased
50 kmx 50 km region, whereas the OMI pixels were as small analysis increments. In simulations Exp. 1 and Exp. 2, the

2
L

80

NO, concentration (g N/m®)
4
)
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Mean over stations Mean over stations
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Fig. 8. Time series of daily-averageds@oncentrations for the dif-  Fig. 9. Time series of daily-maximum £concentrations for the
ferent regions indicated in Figb. different regions indicated in Figb.

product, whereas in Exp. 3, the observation error standard dE‘each month, and are shown alongside the theoretlcal distri-
viation was fixed at a constant value, chosen to be the mediagtjon statistic (Fig2). The background errors were deter-
of the tropospheric column errors reported in the DOMINO mined, as described above, by the difference between paired

product for the given month. forecasts. Assuming that these have been appropriately spec-
To assess the balance of the background and observatigfied, then thej?2 results reflect on the observation errors.

errors, we conducted an a posteriori validation of the asExp. 1 and 2 yield; 2 values consistently less than 1.0, indi-
similation using thez® metric Ménard and Chan@®000,  cating that the magnitude of observed residuals was smaller
defined in Eq. 12), wherep is the number of observations nan that prescribed by the error variances. The observation
available at the assimilation step. errors would need to be inflated substantially (as to compen-
1 sate for correlated observation errors) to correct this. The
= (y—Hxp)" (HBHT + R) (y —Hxp)/p (12) 22 values for Exp. 1 were lower than for Exp. 2, suggest-
ing that the impact of observation error correlations was less
If the standard assumptions hold (unbiased backgroundevere for the Exp. 2, where observations were thinned. For
and observations, Gaussian errors) and if the background angyp. 3, which used fixed observation error variances as well
observation error covariances adequately descnbe the resig thmned observations, th& values show a much closer
uals (i.e. the differencg —Huxp), then the statisti? should it o the x2 distribution compared to Exp. 1 and 2. This is
follow a x distribution with 1 degree of freedom. Itthen fol- partly attributable to the fact that none of the prescribed ob-
lows from the properties of thg? distribution that(3%) ~  servation errors for this experiment were relatively small (i.e.

1.0. This provides an a posteriori check of whether the ob-from the lower tail of the reported DOMINO errors).
servation and background errors are appropriately specified.
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Table 2. The number of monitoring stations satisfying the inclusion

085
086
L

@ ®) criteria in each of the regions considered (Fifg).
g ® . g %,
S . : g . Name Acronym #N@  #03
- “ 2 27 ‘ stations  stations
; *1 7 Eta European domain - 53 99
g £ Central Europe CE 12 36
z < Scandinavian and Baltic region SB 22 31
gl - ‘ ’ Iberian Peninsula IP 9 10
T i i T omemoimy * British Isles BI 9 18
Nk ©
s e daily-average N@ data were provided for all stations, with

25 of those passing the quality-control criteria also reporting
NO; at hourly frequency.
The in situ NQ data were measured with either chemi-
. luminescence or aqueous phase techniques (variants on the
W oo Griess-Saltzman reaction). The molybdenum oxide catalysts
T N : used in chemiluminescence monitors have been shown to re-
e duce a range of nitrates, and thus the resulting measurements
Fig. 10. Verification statistics for daily-averaged Na), daily- are subject to interference from such speci@snea et al.
averaged @ (b) and daily-maximum @ concentrationgc). These ~ 2007). It was thus necessary to compare such measurements
were based on the time series of the mean over stations, averaggglith NO, plus the sum of modelled nitrates (20 + HNO3
over dif_ferent region_s (Figsz, 8 and9). Resglts for the_ different 4 HO,NO; + CHsCOOONG + NO3). For stations that used
simulations and regions are denoted by different .pomt types andan aqueous-phase measurement, it was possible to compare
colours. Note that the ranges of the x- and y-axes differ between th<=directly to the modelled N@ In both cases, modelled and
three panels. measured values are expressed in units of ugR he de-
tails of which measurement technique was used at the indi-
Thinning observations clearly results in a loss of informa- vidual monitoring sites was obtained from AirBase station

tion, which is not the aim of this exercise. In order to asses<configuration filesKlol and de Leeuw2003.
the impact of the loss of information, we now turn our atten- _1"€ EMEP monitoring sites are located to measure re-

tion to verification with ground-based monitoring data. gional background concentrations in Europe. Yet the con-
centrations measured at these sites are necessarily subject to

3.2 \Verification with EMEP data local factors, and the sites differ in their proximity to emis-
sion sources. The model's 50 ka50 km grid resolution will
The DEHM describes a total of 67 atmospheric componentsnot capture such local variation, yet by averaging geograph-
however we examine results for only two: N@nd G. Our ically, the influence of these sub-grid scale effects is dimin-
main interest is in how the accuracy of N@stimates varies ished. Thus for each day, the average over all station (in the
when assimilating this species. We also chose to examine O Eta domain as well for the four sub-regions) was calculated
as it has a close chemical relationship with N&ahd has im-  for the observed and calculated concentrations (FigS).
portant consequences for human health. Given the availability of hourly @measurements, it was also
Observations of N@and G concentrations for the year possible to assess how well the model captures diurnal vari-
2005 were obtained for European air-quality monitoring sta-ation as expressed in the daily maximum €ncentration
tions in the EMEP networkAas 2008. Stations were se- (Fig.9). Based on the observed and calculated time series, we
lected for inclusion based on four quality-control criteria: at computed the correlation coefficiert?) and bias (modelled
most 50 % data were missing, the station altitude was belowninus observed). FigurE) presents the verification statistics
2500 m above sea level, the difference between the station afer the 5 simulations.
titude and the land-surface height represented by DEHM dif- These time series show only very small differences be-
fered was below 200 m, and (for N@nly) the measurement tween the five simulations. The largest differences being due
technique was reported. Four areas within the Eta domairio the choice of meteorological input, and Ref. MM5 was
were defined: Scandinavia and the Baltic region (SB), centratlearly distinct from the other simulations (which used mete-
Europe (CE), the Iberian Peninsula (IP) and the British Islesorology from the Eta NWP model). For NQFig. 7), the
(BI), as shown in Figlb. The numbers of monitoring sta- differences were most apparent during the winter months,
tions for each species in each region are reported in Table which may be related to differences in the mixing heights
Hourly O3 measurements were available for all stations, anddiagnosed from the two meteorological datasets. The Eta

085

080
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Exp. 2, which was used to provide the initial conditions, and to (.F'Q- 1b), for July and December and for each of the five simula-
Ref . Eta) in terms of correlatioga) and bias(b). The line colour ~ tions.
indicates the simulation, the line type denotes the month in ques-
tion.
relatively more important, and the coarseness of the DEHM

grid-cells poorly describe local emission patterns.
model uses the (step-mountain) vertical coordinate and was  The verification statistics for NO(Fig. 10a) show that for
configured with 32 vertical levels, whereas both MM5 and all regions considered, simulations Exp. 1-3 had a higher
DEHM use the same terrain-followingvertical coordinates  correlation with observations than Ref. Eta, although there
with 20 vertical levels. The vertical coordinate allows for  was little change to the bias. The Ref. MM5 simulation had
a higher vertical resolution in the planetary boundary layerthe highest correlation of the five simulations for regions BI,
(PBL), yet then vertical coordinate places a limit to the ver- SB and the entire Eta domain, and the lowest correlation for
tical resolution in the PBL and thus on the minimum height the other regions. In region BI, the Ref. MM5 run was also
of the mixed-layer height that can be resolved. far more biased than the other simulations.

During the winter months, the height of the mixed layer For O3, the Ref. MM5 simulation again has the most dis-
can be quite low, leading to higher concentrations of directlytinct results (Fig8). Ozone has a much longer atmospheric
emitted compounds (such as NOparticularly in cases of lifetime than NGQ and thus the nesting within the hemi-
nocturnal inversion layers. This results in higher variability spheric domain (Figla) ensures that the European nest is
in the observed N@concentrations, and the wintertime vari- affected by episodes of long-range transport (unlike for the
ability is resolved better by Ref. MM5 than the Eta-driven Eta domain, which uses fixed inflow concentrations based on
simulations. This is most apparent in region CE, which has anonthly averages from hemispheric simulations). The dif-
high density of NQ emissions and is subject to low inversion ferent meteorological inputs will also influence the photo-
layers during the winter months. Low mixed layers heights chemistry (e.g. due to cloud cover), affecting @roduction
are also common in the region SB, especially in northern arduring the summer months. Differences between Ref. Eta
eas, but there is much lower wintertime variability in NO and Exp. 1-3 are most prominent during the summer months
due to the lower NQemission density. (e.g. during peak episodes in regions CE and SB in June and

The region Bl showed high-amplitude temporal fluctua- July) due to the higher photochemical production and to the
tions in NG concentrations, partly due to the small number changes to @ precursors by the assimilation procedure. In
of monitoring stations to average over. Differences betweerthe region IP, the model tends to underestimagec@ncen-
Ref. Eta and Exp. 1-3 can be seen for this region during therations during the summer months. This may be partly due
highly variable concentrations in November and Decembeito the general underestimation of N this region (Fig.7),
of the study period. In region BI, the model does not captureand possibly related to poor specification of emissions of bio-
seasonal variation very well, tending to under-predictaNO genic volatile organic compound&dre et al, 2012).
concentrations during the winter months and over-predict Verification statistics for daily averages@op-right panel
during the summer months (leading to a relatively low over-of Fig. 10b) show little change in bias in the simulations us-
all bias). ing assimilation (with respect to Ref. Eta), but an increase in

Of all the areas considered, the DEHM shows least skill forcorrelation for these simulations in all regions except IP. The
the region IP, where N@levels are underestimated through- performance of Ref. MM5 stands out, and has the highest
out the year and the model does not appear to capture theorrelation of the five simulations for region SB, Bl and CE,
observed temporal fluctuations; these comments apply botland the lowest for regions IP and for the Eta domain.
to the MM5- and Eta-driven simulations. Theregion IPisata Many of the same comments apply to the daily maxi-
lower latitude to the other regions considered, thus receivingnum O; concentration (Fig9) as for daily average € Peak
more solar radiation and a shorter atmospheric lifetime ofO3 concentrations typically occur around 14:00-15:00 local
NOy (due to photolysis). Hence local emission sources ardime, thus shortly after any OMI overpass. Thus the extra
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Mean background, July

smooth out diurnal effects (which dominate the results other-
wise). Hourly NG observations were available at 25 EMEP
stations. For these stations, for each hour of the 48-h fore-
cast outlook we calculated the bias and correlation between
modelled and observed values. The bias and correlation were
calculated separately for each station and these were sum-
marised as a weighted average over the per-station values,
with weights based on the number of non-missing observa-
tions for the station in the period considered. For comparison,
the time-matched verification scores for simulations Ref. Eta
F and Exp. 2 are shown together with the results of the fore-

0
onc. (10'° molecules per cm’)
0
onc. (10'* molecules per cm’)

s

Trop. column NO; cx
s

Trop. column NO; cx

casts. The first 24 h are shown in Fid.. The forecasts were
run with the same meteorological inputs as for the other Eta-
driven simulations.

The bias in NQ shows a rapid adjustment in July (over
3—-4h), and somewhat slower in December (over 10-15h),
reflecting the seasonal variation in N@fetimes. While in
July the forecasts adjust towards the Ref. Eta as expected,
the December forecasts tend away from the corresponding
results from the free run. The reasons for this are unclear,
Fig. 13. Tropospheric column concentration averaged over all as-and it may suggest that either the free run (Ref. Eta) is not
similation cycles for a montt{a) and(b) show grid-averaged fields  the only equilibrium solution when the assimilation is turned
of Hxp and Hxj, respectively, for Exp. 2(c) presents the grid-  off or that other factors in the initial conditions (influenced
averaged OMI retrievals. Grid cells with no observations are showry i iy by the changes from the assimilation of §@ave
in grey. Only observations passing the quality-control criteria de'a longer relaxation time. In July, the correlation was rela-
scribed in Sec.1were considered, and this is reflected in the grey . ’ .
areas shown. tively constant over the forecast outlook considered, whereas

in December the improvement in correlation appears to de-
cay after around 15h.

information provided by the assimilation of tropospheric )
NO; retrievals should be most prominent around this time of 34 Modelled profiles

day. However, ther.e were only s_mall differences in the verifi- Due to vertical variation in bothl (due to the averaging ker-
cation scores for simulations using Eta meteorology. Exp. 1—

. . .- nels) andB, the increment is not expected to be evenly dis-
3 were slightly more biased than Ref. Eta, and there was IIttIetributed throughout the vertical profile. When averaged tem-

difference in the correlation (apart from region SB, where orallv over the months of Julv and December and spatiall
Exp. 1-3 had slightly higher correlation). The Ref. MM5 b y : . y and P y
. . . . over the region CE (Figlb), the differences between the
simulation showed much lower correlations with observed : . i
modelled NQ profiles for the different experiments are very

daily maximum Q concentrations in regions IP, SB and the . .

P small and only discernable in the free troposphere and lower
Eta domain. Finally, we note that on average the model tend‘cétratos here (FigL2a). In December, the NOmixing ratios
to under-predict daily maximum4gXxoncentrations in all re- P . ' 9

gions, particularly from March to June in Exp. 1-3 were slightly higher than for Ref. Eta, whereas in
' ' July they were marginally lower. For Ref. MM5, NOnix-
ing ratios were higher at the surface in December than was
seen for the simulations with Eta meteorology.
The differences in modelled {Oconcentrations between

The model results in Secs.2 are based on daily or hourly . k )
averages, and the assimilation procedure was performed ond&€f- Eta and Exp. 1-3 were only visible for the simulations
in July, where the assimilation tended to result in slightly

an hour for each hour when observations were available, i k
Thus these are effectively a mixture of background (input for/0Wer Os concentrations in the boundary layer and free tro-
an assimilation), analysis (result of an assimilation) and forePosphere. The differences between the Ref. MMS and the
cast (the time-integration using an analysis as input), and cafr@-driven simulations are more pronounced fertan for

be thought of as reanalyses. It is also of interest to assess tHi02: due to combination of the longer atmospheric lifetime
impact of the initial conditions on CTM forecasts. of O3 and the dynamic boundary conditions provided by the

From Exp. 2, instantaneous concentration fields werg'€mispheric nest.
stored for every hour for July and December, and these were
used as initial conditions for 48-h forecasts. It was necessary
to start forecasts at each hour of the 24-h cycle in order to

10
onc. (10'° molecules per cm?)

5
Trop. column NO, c«

3.3 Forecasts
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4 Discussion Background covariances were estimated from the differ-
S _ . ence between paired CTM simulations, run with different
The assimilation of the OMI retrieved tropospheric NE®I-  meteorology and a different domain structure. The back-

umn concentrations led to increased temporal correlatioyround covariances were calibrated for each month and for
with surface measurements of RCGnd somewhat surpris- each hour, to allow for seasonal and diurnal patterns in the
ingly with surface @. However the differences between the modelled NQ field. The resulting parameter estimates illus-
free run (Ref. Eta) and the simulations with assimilation trated not only these temporal patterns but also vertical struc-
(EXp. 1—3) were rather small and were difficult to see in theture in the NQ error correlations.
time series of the modelled concentrations. The short fore- This construction of the background covariances incorpo-
casts showed only minor differences from the other simula-rates uncertainties due to meteorological inputs only. While
tions once diurnal effects were averaged out (by starting forethe meteorology is an important source of uncertainty in the
casts at each hour of the day), and did not necessarily relayodelled concentration field/autard et al.2012), other key
toward the free run as expected. factors (such as emission rates, the choice of physical and
While the impact of assimilation of OMI retrievals may be chemical parameterisations, grid resolution) should also be
positive, at the surface at least, it appears rather small; thergccounted forilallet and Sportiss€008.
may be several factors at play. First, due to the short atmo- Qpservation errors for the OMI retrievals can be assumed
spheric lifetime of NQ, any improvement due to extra in- to be correlated due to the use of level-2 satellite data. The
formation from an observation has a relatively short durationeffects were investigated by thinning observations to a spa-
and is rather localised. Second, in a given day only a frac+jal resolution comparable to the model grid, as well as as-
tion of the model domain benefits from observations. This issuming fixed error variances for all observations (during a
partly due to the nature of the satellite overpasses, and partlijiven month). The combination of these yielded a better bal-
due to the quality control procedure, which excluded a largeance between the magnitude of the observed residuals and
fraction of the retrievals due to high cloud fraction or surface the specified error variances. The loss of information result-
albedo. ing from the observation thinning did not appear to systemat-
In spite of the preceding consideratioiéang etal(2011) jcally degrade the quality of the modelled NOr Oz surface
report a substantial improvement in surfaceNfoncentra-  concentrations (based on the verification statistics).
tions due to assimilation of OMI Ncolumn concentra- The assumption of independent observation errors was not
tions. This suggests that the relatively small improvementonly applied in specification of the observation error ma-
found here was due to a non-optimal usage of the data rathefix, R, but also in the use of sequential processing of ob-
than, for example, high errors in the retrievals themselvesservations. Such batch processing is only strictly valid if data
YetWang et al(201]) estimated parameters for th&tinor-  with correlated observation errors are assimilated in the same
der to optimise performance at surface monitoring sites. Thissatch Houtekamer and Mitchell2001). This could have
is likely to have contributed to the greater performance gainsseen avoided if a shorter assimilation cycle were used (as
than may be achieved without such tuning; the NMC methodin Wang et al. 2011), thus reducing the number of observa-
used here to parameteriBedid not allow for “tuning” (by  tions per cycle. However such a treatment ignores correla-
its nature, and also due to the large number of parametergons in observation errors between successive assimilation
involved). cycles Dee 2005. Appropriate treatment of observation er-
The assimilation experiments were all run with meteo- ror correlations requires further investigation.
rology from the Eta NWP model, however we also exam- The year-long span of the simulations allowed us to
ined results from the free run with meteorology from MM5, consider seasonal variation. For example, the assimilation
which was used in the construction of the background co-showed the most pronounced effects on modelled -
variances. It was seen that for three of the regions considcentrations in the winter, and had the biggest impact gn O
ered, Ref. MM5 showed much higher correlation with sur- during the summer months.
face NG measurements than any of the Eta-driven simula-  Barbu(201Q pp. 65-78) assimilated the OMI tropospheric
tions. This highlights the importance of considering the influ- NO, retrievals into the LOTOS-EUROS model, using a bias-
ence of model inputs in chemical data assimilation researchaware ensemble Kalman filter. Ensemble spread was gener-
The three-dimensional Ol scheme presented here is a dQ{[ed by perturbing the emissions of N&nd VOC emissions.
velopment from an earlier two-dimensional schefigden-  while the bias-aware assimilation led to much more accu-
dall et al, 2009. The three-dimensional version makes ap- rate estimates of surface N(he simulation period covered
propriate use of the averaging kernels, thus providing extrapnly one month and verification statistics fog @ere not
vertical structure in the analysis increment. Despite the exteported. This significance of model bias is emphasised by
tra dimension involved, a number of algorithmic speed-upspee and da Silv§1998, who showed that a biased back-
and approximations were implemented and the Ol scheme tground field will result in a biased increment. Biases in the
limit the extra computational burden. background or observations were not accounted for in the
work presented here, and could be addressed as an extension
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of this system, such as with the sequential bias correctiorbetween paired simulations, effectively attributing all model
scheme given in Eqgs. (17)—(18) bEe(2005. uncertainties as arising from the meteorological inputs. De-

The Ol assimilation scheme is both conceptually sim-spite the incomplete survey of sources of model uncertainty,
ple and relatively straightforward to implement. If both the the parameters of the three-dimensional background covari-
length of control vector (i.e. those modelled variables ad-ances reflect temporal patterns and vertical structures that fit
justed by the assimilation) and the number of observationswith the modelled variation in N@concentrations.
are sufficiently small, then it may be less computationally Despite its limitations, the optimal interpolation algorithm
demanding than other assimilation schemes. However thé conceptually simple and relatively straightforward to im-
framework of Ol is, in several ways, rather limitedainay; plement, and proved it to be useful in this context. We have
2003. First, it does not scale well as the number of ob- demonstrated that the effects of chemical DA are not limited
servations or the size of state increases. Second, it requirds the assimilated species, and can be seen in chemically re-
the preparation of a climatologic& matrix, which must lated compounds. Finally, the effectiveness of chemical DA
be recalibrated if extra variables are added to the state vedn a forecasting context must be considered in conjunction
tor. Third, unlike variational techniques it cannot be usedwith the atmospheric lifetime of the species in question.
for parameter estimation or quality control of observations.

Far more flexible approaches to chemical DA are offered by
variational or Kalman filter-based schemes (saboz et al, AcknowledgementsiVe are grateful to the EMEP consortium for
2007 and references therein). providing the ground-based observationsvjv.emep.in}, the Tro-

For historical re-analysis and for single-component assim-{pospheric Emission Monitoring Internet Servieenw.temis.n) of
ilation, then Ol may be a sufficiently competent scheme, bethe European Space Agency for providing the tropospherig NO
yond which any gains are marginal and require a significantlycommn dgta from the OMI sensor, the AirBase service qf thg Euro-
more complicated and computationally demanding DA pro-?ean Environment Agencyv(Nw.eea:europa.eu/themes/alr/alrt)ase
cedure Wu et al, 2008. In a forecasting context, however, or meta-data for the EMEP stations. A number of colleagues

the st forci f hemist d . limit th at Aarhus University discussed aspects of this work with us:
€ strong torcings from chemistry and emissions fimi eZ. Zlatev, H. Skov, T. Becker, C. Nordstem and S. Z. Nielsen.

potential benefit from more accurate |n|t|allc0.nd|.t|ons, al- two anonymous reviewers provided a wide range of insightful

though the rate depends on the atmospheric lifetime of theomments and criticism on this manuscript. This study was

species in question and whether they are emitted directlfunded in part by the European Space Agency’s PROMOTE

or formed chemically. The framework of DA can be used project (www.gse-promote.odg and as well as a program grant

to re-estimate highly uncertain model parameters (e.g. emistECOGLOBE) from the Danish Council for Technology and

sion rates, as were examinedBlpern et al.2007), and this  Innovation (vww.fi.dKk).

appears to be a promising means of addressing forecast ac-

curacy for directly emitted, short-lived atmospheric compo- Edited by: V. Grewe

nents such as NQhowever, this is not possible with Ol.

The DA scheme described here could be developed in sev-

eral ways. For example, the observations were originally pro-References
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