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Abstract. Model evaluation and verification are key in im-
proving the usage and applicability of simulation models for
real-world applications. In this article, the development and
capabilities of a formal system for land surface model evalu-
ation called the Land surface Verification Toolkit (LVT) is
described. LVT is designed to provide an integrated envi-
ronment for systematic land model evaluation and facilitates
a range of verification approaches and analysis capabilities.
LVT operates across multiple temporal and spatial scales and
employs a large suite of in-situ, remotely sensed and other
model and reanalysis datasets in their native formats. In ad-
dition to the traditional accuracy-based measures, LVT also
includes uncertainty and ensemble diagnostics, information
theory measures, spatial similarity metrics and scale decom-
position techniques that provide novel ways for performing
diagnostic model evaluations. Though LVT was originally
designed to support the land surface modeling and data as-
similation framework known as the Land Information Sys-
tem (LIS), it supports hydrological data products from non-
LIS environments as well. In addition, the analysis of diag-
nostics from various computational subsystems of LIS in-
cluding data assimilation, optimization and uncertainty es-
timation are supported within LVT. Together, LIS and LVT
provide a robust end-to-end environment for enabling the
concepts of model data fusion for hydrological applications.
The evolving capabilities of LVT framework are expected to
facilitate rapid model evaluation efforts and aid the definition
and refinement of formal evaluation procedures for the land
surface modeling community.

1 Introduction

Verification and evaluation are essential processes in the de-
velopment and application of simulation models. Land sur-
face models (LSMs) are one such class of simulation models
specifically designed to represent the terrestrial water, energy
and biogeochemical processes. LSMs generate estimates of
terrestrial biosphere exchanges by solving governing equa-
tions of soil-vegetation-snowpack medium, and can be run
in either offline mode or coupled to an atmospheric model.
An accurate representation of land surface processes is there-
fore critical for improving models of the boundary layer and
land-atmosphere coupling as well as real world applications,
such as ecosystem modeling, agricultural forecasting and wa-
ter resources prediction and management (NRC, 1996). The
process of systematic evaluation and verification helps in the
characterization of accuracy and uncertainty in the model
predictions, which can then be used as a benchmark for fu-
ture model enhancements. Further, quantitative measures of
the fidelity of model simulations are essential for improving
the usage and acceptability of LSM forecasts for real-world
applications.

The Global Energy and Water Cycle Experi-
ment (GEWEX) Global Land Atmosphere System
Study (GLASS) has identified that a general bench-
marking framework capable of capturing useful modes of
variability of LSMs through a range of performance metrics
is necessary for further advancing the performance and
predictability of the models (van den Hurk et al., 2011).
In their recommendation of the priorities for hydrologic
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research,Entekhabi et al.(1999) emphasize the need for
defining formal evaluation procedures to improve the
“observability” of many LSM processes. For example, soil
moisture in most LSMs represents an index of the moisture
state (Koster et al., 2009) and the estimates from different
models vary significantly even when forced with the same
meteorology (Dirmeyer et al., 2006). Further, the soil profile
representations in LSMs and assumptions about parameters
such as soil hydraulic properties vary significantly across
models. As a result, direct comparison of soil moisture esti-
mates from these models against in-situ and remote sensing
measurements becomes difficult. Given that a large suite of
application models require soil moisture estimates as inputs,
e.g., weather and climate forecasting (Fennessey and Shukla,
1999; Koster et al., 2004), agricultural models (Rosenzweig
et al., 2002), ecosystem models (Friend and Kiang, 2005), it
is important for the LSMs to generate observable estimates
of soil moisture to avoid potential misinterpretations and
incorrect usages. The development of a formal, systematic
environment for model evaluation will help in bridging the
gaps between the model and observations, and in improving
the observability of LSM outputs.

Model performance is typically improved by either en-
hancing the conceptual representations of processes (i.e.,
model physics) or by employing computational techniques
(e.g., data assimilation, optimization, uncertainty algorithms,
fuzzy logic) to augment model simulations. These computa-
tional techniques provide the tools to exploit the information
content in the observational data for improving model pre-
dictions. The concept of “model data fusion” (MDF;Rau-
pach et al., 2005; Williams et al., 2009) has been used to
describe the paradigm of combining the information from
models and available datasets. The key aspect of the MDF
philosophy consists of using information from data to help
the formulation, characterization and evaluation of models in
a structured manner. The results of the evaluation step are
then used to revise and improve model formulation and sub-
sequent development. As part of the new structure formu-
lated in 2009, the GLASS community has identified Bench-
marking and MDF as two of its three core themes for research
going forward. Here we describe the development of a for-
mal evaluation system for land surface models that addresses
both these themes identified by the GLASS community. The
evaluation framework is designed to supplement an existing
modeling system, to enable end-to-end formulations of the
MDF paradigm.

As described inKumar et al.(2006), Peters-Lidard et al.
(2007) andKumar et al.(2008a), the NASA Land Informa-
tion System (LIS) is a flexible land surface modeling frame-
work that has been developed with the goal of integrating
satellite- and ground-based observational data products and
advanced land surface modeling techniques to produce opti-
mal fields of land surface states and fluxes. The LIS infras-
tructure is designed as a land surface modeling and hydro-
logical data assimilation system that generates estimates of

water and energy states (e.g., soil moisture, snow) and fluxes
(e.g., evaporation, transpiration, runoff) over a range of spa-
tial (as finely resolved as 1 km or finer) and temporal (up
to 1 h and finer) resolutions. LIS operates several commu-
nity land surface models and supports their application over
global, regional or point domains. LIS is designed with ad-
vanced software engineering principles and provides a flexi-
ble, extensible framework for the inclusion of models, com-
putational tools and datasets.

As a land surface modeling component for earth system
models, LIS has also been coupled to atmospheric mod-
els such as the Weather Research and Forecasting (WRF)
model (Kumar et al., 2007; Santanello et al., 2009). LIS in-
cludes a comprehensive data assimilation subsystem (Kumar
et al., 2008b) that enables the incorporation of several ob-
servational and satellite data sources for assimilation, in an
interoperable manner. Additional computational tools to as-
sist the utilization of data include parameter estimation and
optimization (Santanello et al., 2007; Peters-Lidard et al.,
2008; Kumar et al., 2012) and uncertainty modeling (Harri-
son et al., 2012) subsystems. The uncertainty modeling com-
ponents in LIS enable the explicit characterization of differ-
ent sources of uncertainty in modeling using Bayesian infer-
ence techniques. In summary, LIS provides several key com-
ponents of the MDF paradigm, including a suite of LSMs
and computational tools such as data assimilation, optimiza-
tion and uncertainty estimation.

In this article, we describe the development of a formal
system for land surface model evaluation called the Land sur-
face Verification Toolkit (LVT), designed to enable the sys-
tematic evaluation and intercomparison of various terrestrial
hydrological datasets. LVT not only supports the diagnos-
tic evaluation of the land model simulations from LIS and
other land surface modeling systems, but also provides the
capabilities for the analysis of outputs from various LIS sub-
systems, such as data assimilation, optimization, uncertainty
estimation, radiative transfer and emission models, and ap-
plication models. A large suite of in-situ, remotely-sensed
and other model and reanalysis datasets are supported in
LVT, which captures a wide range of land surface and terres-
trial hydrologic regimes across the globe. In addition, a wide
range of analysis metrics and procedures are supported in
LVT to facilitate a comprehensive evaluation of hydrological
datasets. Figure1presents a schematic of the key functions of
LVT and its interconnections with LIS and the observational
datasets. The following sections describe the capabilities of
LVT in detail.

Together, LIS and LVT encompass a comprehensive set of
computational tools for fully enabling the MDF concept. The
capabilities in LIS enable the estimation of model param-
eters with the use of the optimization subsystem and state
estimation with the use of the data assimilation subsystem.
The uncertainty estimation tools enable the characterization
of various sources of input uncertainty and their impacts
on model prediction uncertainty. By providing the tools for
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Fig. 1. Schematic of the Land surface Verification Toolkit and the association with the Land Information System (LIS). LVT supports the
analysis of outputs from various LIS subsystems. LIS-DA represents the data assimilation subsystem, LIS-RTM represents the radiative
transfer models within LIS, LIS-OPT represents the optimization subsystem, LIS-UE represents the uncertainty estimation subsystem, LIS-
LSM represents the land surface models, and LIS-APP represents the various application models within LIS.

model testing and diagnostic evaluation, LVT completes the
requisite components of the MDF paradigm.

This article is structured as follows: Sect.2 provides a re-
view of the land model evaluation and verification efforts.
This is followed by the description of LVT design (Sect.3)
and features (Sect.4). A number of examples are presented
in Sect.5 that demonstrate how the LVT capabilities enable
end-to-end MDF experiments.

2 Background

There have been a number of efforts to document and stan-
dardize land surface model evaluation. The model process
development studies are typically focused on evaluating the
model performance at point or local scales (e.g.,Henderson-
Sellers et al., 1995; Chen et al., 1996; Pitman and Henderson-
Sellers, 1998; Koren et al., 1999; Blyth et al., 2010; Barlage
et al., 2010; Niu et al., 2011). Though they are instrumental in
benchmarking the improvements to model physics, these re-
ported enhancements do not necessarily translate to broader
spatial scales.Blyth et al.(2011) stresses that the model eval-
uations must be performed separately at the scales of interest,
to guarantee transferability of model processes to different
scales.

There have been several community-wide efforts such
as the Global Soil Wetness Project (GSWP;Dirmeyer
et al., 2006), African Monsoon Multidisciplinary Analy-
sis (AMMA) Land surface Model Intercomparison Project
(ALMIP; de Rosnay et al., 2006) and Carbon-LAnd Model
Intercomparison Project (C-LAMP;Randerson et al., 2009)
that were focused on evaluating and intercomparing a suite
of land surface models when forced with a common suite
of inputs. The C-LAMP effort also included evaluations of
biogeochemical variables including global forest phenology,
global primary productivity, CO2 seasonality and regional
carbon stocks and dynamics. These studies documented the
systematic improvements in land surface model development
and provided benchmarks for the simulation of continental
scale water and energy budgets. Similar multi-model efforts
include the North American Land Data Assimilation System
(NLDAS; Mitchell et al., 2004) and the Global Land Data
Assimilation System (GLDAS;Rodell et al., 2004b) projects,
which generate land surface model outputs in near real-time,
forced with observation-based meteorology. A detailed eval-
uation of the NLDAS model products against available obser-
vations were conducted during phase-I and II of the project
(Robock et al., 2003; Sheffield et al., 2003; Pan et al., 2003;
Lohmann et al., 2004; Mo et al., 2011; Xia et al., 2012a,b).
Evaluation of the model simulations from GLDAS against
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Fig. 2.Three-layer software architecture of Land surface Verification Toolkit (LVT).

in-situ and remote sensing measurements are presented in
Rodell et al.(2004a) andKato et al.(2007). The LandFlux-
EVAL project, a more recent initiative, evaluated evapotran-
spiration estimates from a number of LSMs against in-situ
data based estimates (Jiminez et al., 2011). Approaches to
define a minimum acceptable performance benchmark of
LSMs by comparing them to calibrated noncausal (statisti-
cal/correlational) models are explored inAbramowitz et al.
(2008). Though these efforts cover a wide spectrum of model
evaluation and benchmarking of model process advance-
ments, the evaluation criteria and the performance metrics
tend to be specific to each application. LVT consolidates the
requirements identified in these efforts within a single frame-
work.

A number of software environments for conducting model
verification has been reported in the literature. The Ensem-
ble Verification System (EVS;Brown et al., 2010) developed
at the US National Oceanic and Atmospheric Administra-
tion’s (NOAA) Office of Hydrologic Development (OHD)
provides an environment to verify ensemble forecasts of
hydrologic and atmospheric variables such as precipitation,
temperature and streamflow, and is used by forecasters at the
US River Forecast Centers (RFCs). Protocol for the Anal-
ysis of Land Surface models (PALS) is a web-based appli-
cation for evaluating land surface models against observed
datasets and calibrated statistical models (Abramowitz et al.,
2008). LVT and PALS will continue to be developed con-
currently to address community goals for benchmarking and
MDF. Model Evaluation Toolkit (MET;Brown et al., 2009)

is a system developed by the Developmental Testbed Cen-
ter (DTC) for the numerical weather prediction community to
evaluate model performance. MET includes several methods
for the diagnostic and spatial verification of NWP model out-
puts. However, MET requires that the input datasets (model
output and the observational data) be reformatted to certain
predefined file formats. LVT shares many features with these
existing environments, but focuses on the native use of obser-
vational and model data sets, since the interpretation of the
data formats and reporting procedures is a critical and time
consuming step in the evaluation process. LVT is designed
as a framework that can be directly used and extended by the
individual users and also includes a number of advanced fea-
tures such as the evaluation of data assimilation diagnostics,
standardized land surface diagnostics and uncertainty and in-
formation theory based analysis features. The following sec-
tions describe the design and capabilities of LVT.

3 Design of the LVT framework

LVT is implemented using object oriented framework de-
sign principles as a modular, extensible and reusable system.
The software architecture of the system follows a three layer
structure, as shown in Fig.2. LVT core, the top layer, encom-
passes generic modeling features, such as the management
of time, I/O, configuration, logging and geospatial transfor-
mations. The middle layer, called “Abstractions” represents
the extensible interfaces defined for incorporating additional
functionalities into LVT. These include plugin interfaces for
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implementing new observational data sources and analysis
metrics. The Abstractions layer provides the entry points for
the reuse of existing generic capabilities of the LVT core. The
top two layers thus represent the classic “semi-complete” na-
ture of an object oriented framework, which is made fully
functional by including specific implementations of the ab-
stractions. As shown in Fig.2, implementations to read and
process observations from a wide range of terrestrial hydro-
logical observations have been implemented using the “Ob-
servations” abstraction. Similarly, a large suite of analysis
metrics has been implemented by extending the “Metrics”
abstraction.

LVT software is primarily written in Fortran 90 program-
ming language. Though Fortran 90 lacks the direct support
for object oriented programming concepts such as polymor-
phism and inheritance, these properties can be simulated in
software (Decyk et al., 1997) through the combined use of
Fortran 90 and C programming languages. The compile-time
polymorphism in LVT is simulated through the use of vir-
tual function tables, by employing C language to interface
with Fortran 90 functions, and by storing them in memory to
be invoked at runtime. These virtual function tables enable
the “Abstractions” layer constructs mentioned in the previ-
ous paragraph.

A key advantage of this object oriented-based design is
interoperability. The top two layers (LVT core and Abstrac-
tions) define the interactions between anObservationor a
Metric implementation with the LVT core in a generic man-
ner. Similarly, the required interconnections between anOb-
servationimplementation and aMetric implementation are
also handled generically. As a result, the existing function-
alities of the system are automatically available to a new
addition in LVT, implemented through the extension of an
Abstraction. For example, a newly incorporated observation
implementation can take advantage of all available analysis
metrics without having to define any additional interconnec-
tions between each bottom layer component.

Note that many of the model-independent capabilities
within the LVT are enabled by the Earth System Model-
ing Framework (ESMF;Hill et al., 2004). ESMF provides
a structured collection of building blocks that can be cus-
tomized to develop model components for Earth Science ap-
plications. It provides an infrastructure of utilities and a su-
perstructure for coupling different model components. LVT
employs the ESMF infrastructure utilities to handle the man-
agement of clock/time, configuration, and logging. Further,
LVT also employs the generic ESMF objects (called ESMF
States) for sharing data and information between different
components.

4 Capabilities of LVT

A critical part of an evaluation procedure is the processing
of datasets, which normally consists of model outputs and

measurements from in-situ, satellite and remote sensing plat-
forms. These datasets typically have different file formats,
spatial and temporal scales and reporting procedures. Fur-
ther, the in-situ and remotely sensed measurements typically
require extensive quality control before their use. The rec-
tification of such differences between datasets being com-
pared is an essential, but routine and time consuming step in
the evaluation process. The philosophy in LVT is to use the
datasets in their native formats. The “plugin” style design of
LVT enables the development of data processors correspond-
ing to each dataset. Once developed, these data processors
can be subsequently used to work with an ongoing data col-
lection without additional reprocessing. Though the empha-
sis on the use of native formats is useful for rapid use of the
datasets, the use of high resolution datasets could be compu-
tationally limiting, especially when the analysis is conducted
against a coarse resolution model simulation. To circumvent
this limitation, LVT provides a “data processing” run mode,
where it performs various data handling operations (read, in-
terpolation, reprojection and subsetting) and outputs the pro-
cessed data to disk. The processed data can then be used by
a subsequent analysis run of LVT.

4.1 Support for terrestrial hydrological datasets in LVT

The key processes that constitute the terrestrial hydrological
cycle include precipitation, radiation, interception of precip-
itation by vegetation, infiltration of precipitation into the soil
and the vertical transfer of soil moisture, evapotranspiration,
formation of snow, snow melt, and river runoffs, among oth-
ers. In order to quantify the contribution of these individual
processes to the overall variability of the terrestrial hydro-
logical cycle, they must be evaluated against the full suite
of available measurements. Motivated by this goal, the pro-
cessing of a large set of measurements of different processes
from a variety of sources are supported in LVT. As shown in
Table1, these datasets constitute the monitoring of different
components of the terrestrial hydrological cycle, from differ-
ent observing platforms. The spatial and temporal scales of
these measurements also vary significantly. By incorporat-
ing the processing of these datasets under a single, integrated
framework, LVT enables an environment for performing a
comprehensive evaluation of the terrestrial hydrological pro-
cesses. Note that the support of this large suite of products
is enabled by the extensible nature of LVT software design
and is expected to further expedite the incorporation of other
relevant datasets in the future.

4.2 Analysis metrics

The need for having a variety of performance evaluation
metrics in the verification process is well recognized (Stan-
ski et al., 1989), as the robustness and sensitivity of each
metric to measurement attribute vary (Entekhabi et al.,
2010). Further, the appropriateness of an analysis metric
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Table 1.List of datasets supported in LVT.

Dataset Measurement
variables

Model/reanalysis outputs

Agricultural Meteorology Water and energy fluxes,
Model (AGRMET) from the Soil moisture, soil temperature,
Air Force Weather Agency (AFWA) Snow conditions, meteorology

NLDAS model outputs Water and energy fluxes
Mitchell et al.(2004) Soil moisture, soil temperature,

snow conditions, meteorology

GLDAS model outputs Water and energy fluxes,
Rodell et al.(2004b) Soil moisture, soil temperature,

snow conditions, meteorology

Canadian Meteorological Center Snow depth
(CMC) snow depth analysis
Brown and Brasnett(2010)

Snow Data Assimilation System Snow depth, snow water
SNODAS;Barrett(2003) equivalent

In-situ measurements

AMMA Water and energy fluxes,
(database.amma-international.org/) soil moisture, soil temperature

Atmospheric Radiation Water and energy fluxes,
Measurement (ARM) Soil moisture, soil temperature,
(www.arm.gov) meteorology

Ameriflux Water and energy fluxes
(public.ornl.gov/ameriflux/)

Coordinated Energy and water cycle Water and energy fluxes,
Observations Project (CEOP) soil moisture, soil temperature,
(www.ceop.net/) meteorology

National Weather Service Snow depth, precipitation,
Cooperative Observer Program (COOP) land surface temperature
(www.nws.noaa.gov/om/coop/)

NOAA CPC unified Precipitation
Higgins et al.(1996)

Gridded FLUXNET Water and energy fluxes
Jung et al.(2009)

Finnish Meteorological Institute Snow water equivalent
FMI/SYKE; www.environment.fi/syke

Global Summary of the Day (GSOD) Snow depth

International Soil Moisture Network Soil moisture
(www.ipf.tuwien.ac.at/insitu/)

Soil Climate Analysis Network Soil moisture
(SCAN; www.wcc.nrcs.usda.gov/scan/) Soil temperature
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Table 1.Continued.

WMO synoptic observations Snow depth

NRCS SNOwpack TELemetry network Snow water equivalent
(SNOTEL;www.wcc.nrcs.usda.gov/snow/)

Surface Radiation Network (SURFRAD) Downwelling shortwave,
(www.srrb.noaa.gov/surfrad/) downwelling longwave

Southwest Watershed Research Center Soil moisture,
(SWRC;www.tucson.ars.ag.gov/dap/) soil temperature

USGS water data Streamflow
(waterdata.usgs.gov/nwis)

AMSR-E radiances Brightness temperature for
(mrain.atmos.colostate.edu/LEVEL1C/) different channels

Satellite and remote sensing data

AFWA NASA Snow Algorithm Snow cover, snow depth,
ANSA; Foster et al., 2011 snow water equivalent

GlobSnow;Pulliainen(2006) Snow cover,
(www.globsnow.info/) snow water equivalent

International Satellite Cloud Climatology Land surface temperature
Project; ISCCP;Rossow and Schiffer(1991)
(isccp.nasa.gov)

MODIS/Terra Snow cover 500 m Snow cover
MOD10A1;Hall et al.(2006)

MODIS Evapotranspiration product Evapotranspiration
MOD16;Mu et al.(2007)

NASA Level-3, soil moisture Soil moisture
retrieval from AMSR-E (AE−Land3)
Njoku et al.(2003)

Land Parameter Retrieval Model (LPRM) Soil moisture
from NASA GSFC and VU Amsterdam
Owe et al.(2008)

may also differ significantly based on the targeted applica-
tion (Gupta et al., 2009). Model evaluation studies quite of-
ten use accuracy-based metrics that quantify model perfor-
mance using residual-based measures. These metrics, how-
ever, may not provide further insights on the robustness of
the model under future or unobserved scenarios (Pachepsky
et al., 2006). They are also inadequate in capturing estimates
of associated uncertainties (Gulden et al., 2008), relative im-
portance and sensitivity of model parameters to the overall
accuracy and uncertainty, tradeoffs in performance due to
spatial scales and the tradeoffs between actual information
content and variabilities introduced by random noise.Gupta
et al.(2008) emphasize the need for sophisticated diagnostic
evaluation methods that help in isolating the limitations of
the model representations.

A number of analysis metric types is supported in
LVT including (1) statistical accuracy measures that are

conventionally used for model evaluation by comparing the
model simulation against independent measurements and ob-
servations (e.g., RMSE, Bias), (2) ensemble measures that
provide assessments of the accuracy of probabilistic model
outputs against observations, (3) metrics that help in quan-
tifying the apportionment of uncertainty and sensitivity of
model simulations to model parameters, (4) information
theory-based measures that provide estimates of information
content and complexity associated with model simulations
and measurements, (5) spatial similarity and scale decompo-
sition methods that assist in quantifying the impact of spatial
scales in model improvements and errors and (6) standard
diagnostics to evaluate the efficiency of computational algo-
rithms such as data assimilation. Table2 presents a list of
supported metric implementations within LVT. The details of
the metric implementations are discussed in Sect.5 through a
number of illustrative examples. The availability of this suite
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of metrics enables novel ways to quantify and translate model
performance.

4.3 Miscellaneous features

LVT also supports a number of miscellaneous features to as-
sist the verification procedures. To provide a measure of the
statistical significance and the influence of sampling density
on the results, confidence intervals based on Gaussian distri-
butions are computed for each verification metric. Note that
LVT does not include any graphical packages in it. LVT gen-
erates the results of the analyses in ASCII text, binary, GriB
and NetCDF output formats and the generation of appropri-
ate graphics are left to the user. The capabilities to generate
probability density functions (PDFs) of the computed met-
rics by stratifying to specified parameters are also included
in LVT. Further, LVT also provides methods to impose user-
defined masking to exclude selected grid points when anal-
ysis metrics are computed. These masks can be static, time-
varying or based on a certain variable. For example, a down-
ward shortwave radiation (SW↓) based mask can be defined
that separates the analysis computations when the SW↓ val-
ues are above and below a specified threshold (say 5 W m−2).
This will enable a day-night stratification of the computed
metrics, when SW↓ values are above and below 5 W m−2,
respectively.

LVT also includes a number of land surface process di-
agnostics related to the partitioning of energy across the land
atmosphere interface, such as evaporative fraction, bowen ra-
tio and overall energy, water and evaporation budgets at the
land-atmosphere interface. These diagnostics are computed
for both model and observational datasets. Quantifying these
diagnostics are important for improving the understanding of
the feedbacks between the land surface and the atmosphere.

As mentioned earlier, LVT also supports the analysis of
diagnostics generated by the LIS data assimilation subsys-
tem. These include distribution statistics of data assimilation
innovations and analysis gain, which provide measures of
the efficiency of data assimilation configurations. Similarly,
LVT also handles the outputs of the optimization and uncer-
tainty estimation subsystems of LIS. For example, checks to
assess the convergence of these iterative algorithms can be
performed by analyzing the optimization and uncertainty es-
timation outputs through LVT.

In the examples presented in Sect.5, LVT is employed in
serial mode, as the support of computational parallelism is
currently under development. The memory and CPU require-
ments and the corresponding computational performance of
LVT are largely determined by the analysis domain, the
datasets being used and the metrics being computed.

Though LVT was originally designed to support LIS out-
puts, it has since been extended to facilitate the evaluation of
other “non-LIS” model products. LVT contains the features
to convert the given non-LIS product to a LIS output style
and format. It then uses the converted output for evaluation.
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Fig. 3. Comparison of average diurnal cycles of latent (left column) and sensible heat (right column) fluxes

from the uncoupled Noah (version 3.2) LSM simulations using the default model parameters (DEFAULT) and

calibrated parameters (CALIBRATED) against the in-situ measurements (OBS) from 19 ARM-SGP stations.
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Fig. 3.Comparison of average diurnal cycles of latent (left column)
and sensible heat (right column) fluxes from the uncoupled Noah
(version 3.2) LSM simulations using the default model parameters
(DEFAULT) and calibrated parameters (CALIBRATED) against the
in-situ measurements (OBS) from 19 ARM-SGP stations.

Note that this process does not involve any spatial or tem-
poral transformation of the data, rather the conversion to a
different data format and convention.

5 Model evaluation examples using LVT

5.1 An end-to-end example of the MDF paradigm

As noted earlier, one of the key motivations behind LVT is to
provide a system that can augment LIS’ modeling capabili-
ties with an evaluation framework. The joint use of both these
systems enables an end-to-end environment for facilitating
the steps of the MDF paradigm. In this section, we present
an example of using the modeling and computational tools
in LIS to refine the model performance and the verification
features in LVT to quantitatively evaluate the simulations.

Model simulations using the Noah LSM (version 3.2) (Ek
et al., 2003; Barlage et al., 2010) forced with the NLDAS-II
datasets are conducted over a 500× 500 domain covering the
US Southern Great Plains (SGP) at 1 km spatial resolution
during the time period of 1 May 2006 to 1 September 2006.
This domain is used in a number of prior studies on land-
atmosphere feedbacks (Santanello et al., 2009, 2011). Using
the default values of the soil and vegetation parameters of the
Noah LSM, a model simulation is conducted first to simulate
surface latent and sensible heat flux estimates. Using LVT,
these flux estimates are evaluated against the in-situ measure-
ments from 19 Atmospheric Radiation Measurement (ARM)
stations. The optimization algorithms in LIS are then used to
estimate a refined set of model parameters with the objective
of minimizing the cumulative error in the hourly surface flux
observations from the ARM stations, over the four month
period. The optimization simulations were used to estimate
29 model parameters in the Noah LSM that included both
soil and vegetation properties. Subsequently, the improved
model performance with the calibrated parameters is quanti-
fied using LVT.

Figure3 shows a comparison of the mean diurnal cycles of
latent and sensible heat fluxes from model simulations com-
pared against that of the measurements from 19 ARM-SGP
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Table 2.The range of analysis metric types and implementations supported in LVT.

Metric class Supported
Implementations

Standard measures RMSE, Anomaly RMSE, unbiased RMSE (ubRMSE), Correlation, Anomaly correlation,
Mean absolute error (MAE), Bias, Probability of “yes” detection (PODy), False alarm ratio (FAR)
Probability of “no” detection (PODn), Accuracy measure (ACC), Probability of false detection (POFD),
Critical success index (CSI), Equitable threat score (ETS), Frequency bias (FBIAS),
Nash sutcliffe efficiency (NSE)

Ensemble metrics Mean, Standard deviation, Likelihood

Uncertainty metrics Uncertainty importance

Information theoretic Metric entropy, Information gain, Effective complexity, Fluctuation complexity

Data assimilation metrics Mean, variance, lag correlation of innovation distributions

Spatial similarity metrics Spatial area, Hausdorff distance

Scale decomposition Discrete wavelet transforms

stations. The simulations using default model parameters
show large errors, with a significant underestimation in the
latent heat fluxes and an overestimation in sensible heat
fluxes. The calibration of model parameters helps in improv-
ing the model performance, by correcting the systematic bias
in energy partitioning. This example illustrates an example
of the MDF paradigm that includes model characterization,
reformulation through parameter estimation, and verification
using LVT. Similar instances can be implemented using the
extensive evaluation capabilities of LVT.

5.2 Example of model evaluation against satellite data

Model formulation and evaluation are typically conducted
over instrumented locations of the world where indepen-
dent measurements are available. Though these in-situ ob-
servations provide valuable information on the spatial and
temporal variability of process variables, they are limited in
their spatial coverage. Satellite and remotely-sensed mea-
surements, on the other hand, have improved spatial cov-
erages and they enable the extension of model evaluation
to uninstrumented locations and hydrologic regimes. In this
section, we present an example of model evaluation against
satellite data over a region where in-situ measurements are
sparse.

A model simulation using Noah LSM (version 2.7.1) is
conducted over a 1200 km× 1000 km domain, at 1 km spa-
tial resolution over Afghanistan from 1 October 2007 to
1 May 2010. The LSM is driven with meteorological data
from the Global Data Assimilation System (GDAS); the
global meteorological weather forecast model of the National
Centers for Environmental Prediction (Derber et al., 1991).
The precipitation input for the model simulations is pro-
vided from the NOAA Climate Prediction Center’s (CPC)
operational global 2.5◦ 5-day Merged Analysis of Precipita-
tion (CMAP; Xie and Arkin, 1997), which is a product that

Fig. 4. Probability of Detection (left column) and False Alarm Ratio (right column) of the model simulated

snow cover fields compared against the fractional MODIS snow cover product (MOD10A1).
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Fig. 4.Probability of Detection (left column) and False Alarm Ratio
(right column) of the model simulated snow cover fields compared
against the fractional MODIS snow cover product (MOD10A1).

employs blended satellite (IR and microwave) and gauge ob-
servations. The model domain has complex terrain character-
istics, with elevation ranges from 1000 to 6000 m. The frac-
tional snow cover extent global 500 m product (MOD10A1
Version 4;Hall et al., 2006) from the Moderate Resolution
Imaging Spectroradiometer (MODIS) optical sensor on the
Terra spacecraft is used as the reference data for evaluating
simulations of snow cover fields simulated by the LSM. The
MOD10A1 product is aggregated to 1 km spatial resolution
for enabling the comparisons presented here.

The snow cover fields are evaluated by computing the
probability of detection (POD) and false alarm ratio (FAR)
against the MOD10A1 product. POD measures the fraction
of snow cover presence that were correctly simulated and
FAR quantifies the fraction of no-snow events that were in-
correctly simulated. Figure4 shows the average POD and
FAR values during the model simulation period, computed
using detection threshold of 0.8 (above which a positive de-
tection of snow cover simulation is assumed). The POD and
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FAR fields display the terrain features of the Hindu Kush
mountains, that run northeast to southwest. High values of
POD and low values of FAR are observed over the Central
Highlands region of the domain, suggesting a high degree
of accuracy of model snow cover estimates over these areas.
Over the northeast parts of the domain, however, the model
simulations are less accurate, as indicated by the lower POD
and higher FAR values.

5.3 Analysis of data assimilation diagnostics

The example in Sect.5.1 presents an instance of the MDF
paradigm that employs parameter estimation for model re-
formulation. As noted inWilliams et al.(2009), similar MDF
instances can be defined that employ data assimilation tech-
niques to improve state estimation. This section presents an
example of using data assimilation diagnostics to assess the
performance of the system within a MDF context.

The difference between the observations being assimilated
and the model forecasts, known as innovations, are typically
computed during data assimilation. The statistics of the in-
novations are typically used to diagnose the performance of
the assimilation algorithm. For example, when the Ensemble
Kalman Filter (EnKF) is used as the assimilation algorithm, a
linear system dynamics is assumed with Gaussian, mutually
and serially uncorrelated errors in model and observations
(Reichle and Koster, 2002). Consequently, the distribution of
normalized innovations (normalized with their expected co-
variance) is expected to follow a standard normal distribution
N(0,1) (Gelb, 1974). The deviations from the expected mean
and standard deviation of the normalized innovation distribu-
tion is used as a measure of suboptimality of the data assimi-
lation configuration. A number of studies have confirmed that
poor specification of model and observation error parameters
can significantly degrade the quality of assimilation products
(Reichle and Crow, 2008; Reichle et al., 2008). The assimi-
lation diagnostics can be analyzed using LVT and the model
and observation error specifications can then be continually
revised to ensure optimal data assimilation performance.

To demonstrate these capabilities, a synthetic data assim-
ilation experiment is conducted over the Continental US do-
main at 1◦ spatial resolution, for a time period of 1 Jan-
uary 2000 to 1 January 2006. In this experiment, the obser-
vations to be assimilated are synthetically simulated (from
an independent land model simulation using the Catchment
LSM) and as a result, the associated errors are perfectly
known. The observations are assimilated using the Ensemble
Kalman Filter (EnKF) algorithm. The details of the assim-
ilation setup are provided inKumar et al.(2012). Figure5
shows the spatial distribution of mean and variance of nor-
malized innovations over the domain generated by the assim-
ilation system. In this instance, the mean values are close to
zero and the variances are closer to 1, indicating near-optimal
performance. Additional analysis metrics, such as lag corre-
lation coefficients to assess the “whiteness” of the innovation

Fig. 5. Mean (left column) and variance (right column) of normalized innovations (dimensionless) of data

assimilation diagnostics. The gray color represents grid cells excluded from the computations.
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Fig. 5. Mean (left column) and variance (right column) of normal-
ized innovations (dimensionless) of data assimilation diagnostics.
The gray color represents grid cells excluded from the computa-
tions.

distribution, are also provided within LVT for more detailed
evaluations of the efficiency of the data assimilation system.

5.4 Characterization of uncertainty diagnostics

It is well acknowledged that model simulations and observa-
tions are affected by different sources of uncertainties. The
errors in model parameters, input forcing and structural de-
ficiencies introduce uncertainties in the model simulations.
The measurements from satellite and remote sensing plat-
forms are subject to measurement noise and errors in retrieval
models. Similarly, the in-situ measurements also have asso-
ciated uncertainties due to environmental factors, data pro-
cessing and instrument errors. Therefore, it is important to
quantify the impact of these uncertainty sources in modeled
estimates. LVT includes a number of measures to quantify
the propagation of model parameter uncertainty in predic-
tions.

To demonstrate the use of uncertainty analysis metrics,
a model simulation using Noah LSM (version 3.2) is con-
ducted during the summer months (May to September) of
2010 over a region encompassing the Walnut Gulch water-
shed in southeastern Arizona. The meteorological bound-
ary conditions from the Agricultural Meteorology Model
(AGRMET; Moore et al., 1990) are used to force the mod-
els at 0.25◦ spatial resolutions. The in-situ measurements of
soil moisture values are used to evaluate the model simula-
tions. To investigate the impact of parameter uncertainty in
simulated soil moisture estimates, a Monte Carlo (MC) sim-
ulation is conducted by sampling four soil hydraulic prop-
erties (SHPs) (θs – porosity,ψs – saturated matric poten-
tial, Ks – saturated hydraulic conductivity andb – pore size
distribution index) from assumed uniform distributions. The
simulation uses an ensemble size of 100. Figure6a shows
a time series comparison of the model simulation of sur-
face soil moisture against the in-situ measurements. Note that
the vertical profile of observations are suitably weighted to
provide an equivalent comparison against the model simu-
lation which represents a surface layer of 10 cm depth. The
comparison indicates significant differences between the en-
semble mean and the observations. Further, the considera-
tion of uncertainty in SHPs translates to significant uncer-
tainty in simulated soil moisture. The shaded region (shown
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Fig. 6. (a) Comparison of ensemble soil moisture simulations against observations. The cyan shading indicates

the ensemble spread, shown as ± 2 × ensemble standard deviation (b) The uncertainty importance of model

parameters towards soil moisture uncertainty.

31

Fig. 6. (a) Comparison of ensemble soil moisture simulations
against observations. The cyan shading indicates the ensemble
spread, shown as±2× ensemble standard deviation.(b) The uncer-
tainty importance of model parameters towards soil moisture uncer-
tainty.

as±2× the ensemble standard deviation) around the ensem-
ble mean represents the uncertainty in simulated soil mois-
ture. The soil moisture uncertainty is small during the dry pe-
riod, but grows significantly during the late summer months
when both the magnitude and variability of soil moisture in-
crease. Though the spread of the ensemble encompasses the
observations, the observations tend to fall towards the tail end
of the ensemble distribution. This emphasizes the need to re-
fine the model parameters and their sampling strategies for a
better characterization of modeling uncertainty.

Figure 6b also provides an uncertainty importance mea-
sure which is an assessment of the relative contribution of
each parameter to the ensemble spread. This metric is com-
puted as the correlation between the simulated variable (sur-
face soil moisture) and the parameter across the ensemble.
Figure 6b suggests that among the four SHPs considered,
model simulations are most sensitive toθs, followed byKs.
The variability inψs and theb parameters contribute less to
the uncertainty in soil moisture in this instance. The figure
also illustrates that the relative importance of the parameter is

sensitive to the soil moisture magnitude and variability. Dur-
ing the late summer months, the uncertainty importance ofθs
also increases with the magnitude of simulated soil moisture.
Knowledge of the relative importance of the model parame-
ters is significant when choosing the set of model parameters
for calibration and sampling, and LVT facilitates the quantifi-
cation of such sensitivities. Similar to the examples described
in Sects.5.1and5.3, this example provides another instance
of using LVT to enable the MDF concept, in the context of
uncertainty estimation.

5.5 Information theory metrics

A number of studies (Wackerbauer et al., 1994; Lange, 1999)
describe the use of information theory-based metrics to dis-
criminate time series data based on their information con-
tent (or randomness) and their complexity.Pachepsky et al.
(2006) andPan et al.(2011) describe the use of these mea-
sures for discriminating soil water models. LVT includes a
number of information theory-based measures such as met-
ric entropy, mean information gain, effective complexity and
fluctuation complexity. These measures are computed by
converting the time series of a given dataset into a binary
symbol string (Lange, 1999). Within the symbol string, pat-
terns of words (defined as a group of consecutive symbols
of a certain length) are identified, representing a state of the
system of interest. For example, a word consisting ofL con-
secutive symbols has 2L possible states. The information the-
ory metrics are then defined by computing the probabilities
associated with the patterns of words in the converted time
series of the data. For example, the metric entropy (ME) and
information gain (IG) metrics are defined as follows:

ME = −
1

L

2L∑
i=1

pi log2pi (1)

IG = −

2L∑
i,j=1

pL,ij log2pL,i→j , (2)

wherepi is the probability of occurrence of thei-th word,
pL,ij is the probability of transition from thei-th to thej -th
word, andpL,i→j is the conditional probability of the occur-
rence of thej -th word given that thei-th word has already oc-
curred in the symbol sequence. A more detailed description
of these measures are provided inPachepsky et al.(2006).

The information theory-based metrics are typically ap-
plied to discriminate model simulations, especially when
they yield similar accuracy measures. Here we demonstrate
their use for comparing soil moisture simulations from Noah
LSM (version 3.2) when two different retrievals from the Ad-
vanced Microwave Scanning Radiometer for the Earth Ob-
serving System (AMSR-E) sensor aboard the Aqua satellite
are assimilated. The NASA Level-3, “AE−Land3” product
(version 6,Njoku et al., 2003) and the AMSR-E Land Param-
eter Retrieval Model (LPRM) product developed at NASA
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Fig. 7. Changes in Metric Entropy (top row) and Information gain (bottom row) from the assimilation of NASA

AMSR-E (left column) and LPRM AMSR-E (right column) retrievals
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Fig. 7. Changes in Metric Entropy (top row) and Information gain (bottom row) from the assimilation of NASA AMSR-E (left column) and
LPRM AMSR-E (right column) retrievals.

GSFC and VU Amsterdam (Owe et al., 2008) are used in
the data assimilation (DA) integrations. The experiments are
carried out over the Continental United States for a period
of 2002 to 2008, using the same configuration used in the
NLDAS project (Mitchell et al., 2004) (from 25–53◦ N and
125–67◦ W at 1/8 degree spatial resolution). The details of
the assimilation methodology are described inPeters-Lidard
et al.(2011).

Figure 7 presents a comparison of the change in metric
entropy (1ME) and the information gain (1IG) metric as
a result of data assimilation. These metric values are com-
puted using a word length of 3. The1ME and1IG val-
ues are calculated by subtracting the metric values for the
simulation without data assimilation from the corresponding
data assimilation integration. Figure7 indicates that DA in-
troduces more entropy (randomness) in the simulations, over
most parts of the domain, with higher values of1ME for
the NASA DA compared to the LPRM DA. The information
gain metric indicates how much the sequence of patterns in
the data contributes to the overall information. The1IG val-
ues when assimilating NASA retrievals are larger compared
to that of LPRM assimilation. The changes in soil moisture
introduced by the NASA DA also result in more randomness

in the consecutive patterns in the time series. This leads to
higher IG values for NASA DA relative to LPRM DA, sug-
gesting that the changes in soil moisture time series intro-
duced by LPRM DA may be less spurious (random). In prior
MDF studies (Reichle et al., 2007; Q. Liu et al., 2011; Peters-
Lidard et al., 2011), accuracy-based measures were used to
characterize the value of assimilating these retrievals into
LSMs. The results in this article present an alternate eval-
uation using information theory metrics within LVT.

5.6 Scale decomposition features

Study of the effects of spatial scale has been an active area of
hydrological research (Gupta et al., 1986; Wood et al., 1990;
Sivapalan and Kalma, 1995; Seyfried and Wilcox, 1995;
Bloschl and Sivapalan, 1995; Wood et al., 1988; Bloschl,
1999; Erickson et al., 2005; Trujillo et al., 2009). Charac-
terization of the nature of spatial variability of different com-
ponent processes over a range of scales are important for im-
proving the utility of terrestrial hydrological models. LVT
includes approaches such as discrete wavelet transforms to
enable scale based decomposition analyses. Here we present
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generated by a two dimensional discrete Haar wavelet analysis.

33

Fig. 8. Percentage contribution to the total improvement in snow
covered area POD at different spatial scales, generated by a two
dimensional discrete Haar wavelet analysis.

an example of scale-decomposition evaluation of snow cover
simulations from the LSMs using LVT.

The intensity-scale approach ofCasati et al.(2004), orig-
inally developed for the spatial verification of precipitation
forecasts, is used to perform a scale decomposition analy-
sis. The technique employs a two dimensional discrete Haar
wavelet transform that decomposes a given field into the
sum of orthogonal components at different spatial scales. The
mean squared error (MSE) of the decomposed components at
each spatial scale is used to quantify the scale decomposition
effects.

Using the domain configuration at 1 km spatial resolution
over Afghanistan (used in Sect.5.1), two model simulations
are conducted using Noah LSM (version 2.7.1); one that em-
ploys a terrain based correction of shortwave radiation input
to the LSM and one that does not include such adjustments.
The terrain-based corrections adjust the incoming shortwave
radiation based on terrain slope and aspect, and these changes
in turn impact the evolution of snow over these terrain. The
improvements in the snow cover simulation as a result of
the terrain-based correction is computed as the difference in
POD fields from the two simulations, generated by compar-
ing against the MOD10A1 (version 4) fractional snow cover
product. The scale-decomposition approach is then applied
to this difference field, to quantify how the improvements in
snow cover estimates at 1 km spatial resolution translate to
coarser spatial scales.

Figure8 shows the result of scale decomposition of the to-
tal improvement field for POD using the two dimensional
discrete Haar wavelet transform. The algorithm computes
successive decompositions of the original field by powers of
2. The percentage contribution to the total improvement at
each coarse spatial scale is shown in Fig.8. The results indi-
cate that most of the improvements in POD are obtained at
fine spatial scales and the contribution of the scale decreases
with increase in spatial resolution. At scales coarser than
16 km, the percentage contribution drops below 10 %. Simi-
lar analysis of scale effects can be performed on other metrics
and variables of interest. This example demonstrates the use

of LVT for another MDF experiment where the MODIS frac-
tional snow cover data is used to assess the applicability of
model formulations at different spatial scales.

5.7 Spatial similarity measures

With the increased availability of spatially distributed
datasets from satellites and remote-sensing platforms, there
is a need for techniques and metrics that evaluate models
and observations based on the their spatial patterns, in addi-
tion to the one-to-one correspondence comparisons that are
typically used. The incorporation of spatial pattern compar-
isons will aid in further improving the reliability of LSMs
for hydrological applications (Bloschl and Sivapalan, 1995;
Grayson and Bloschl, 2000). A review of spatial similarity
methods in hydrology is provided inWealands et al.(2005),
which includes techniques based on statistical identification
as well as image processing techniques. In this section, an ex-
ample of using a similarity metric through LVT to compare
snow cover patterns from two different LSMs is presented.

Snow cover estimates using two LSMs, Noah (version 3.2)
and CLM (version 2;Dai et al., 2003), forced with GDAS and
CMAP datasets, are generated over a 100× 100 region near
the Southern Great Plains in the US at 1 km spatial resolution
for a time period of 1 November 2008 to 1 June 2009. The
LSMs have different representations of snow processes, with
Noah employing a simple single snow layer scheme. CLM
includes a more complex five layer snow scheme with param-
eterizations for temporally varying snow albedo, as a func-
tion of snow cover and snow age. Both LSMs simulate tem-
porally varying snow density with evolution of patchy snow
cover. The model simulations are evaluated against the frac-
tional snow cover observations from MODIS (MOD10A1
version 4) using the “Hausdorff distance” similarity metric.

Hausdorff distance (HD) measures the similarity of points
in two finite sets and is not designed to find one-to-one cor-
respondence between points in each set. It is expressed as the
maximum distance of a set to the nearest point in the other
set:

h(M,O)= max
m∈M

{min
o∈O

{||m− o||}}, (3)

whereh(M,O) is the HD value,m ando are points of sets
M (representing model) andO (representing observations),
respectively.||m− o|| is the norm of the points in the model
and observation spaces and can be computed as the Euclidean
distance betweenm ando.

Figure9 shows a time series comparison of the cumulative
HD measure from Noah and CLM snow cover simulations
for the winter season of 1 November 2008 to 1 June 2009.
More temporal variability in HD values is observed during
the snow evolution and ablation periods and it drops during
the peak snow season, suggested by the flattening of the cu-
mulative HD curves. This indicates that there is more con-
sistent agreement in the observational and model simulated
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Fig. 9. Comparison of the cumulative Hausdorff distance measures
of snow cover simulations from Noah and CLM.

patterns during the peak snow season. During the snow melt
period, Noah produces lower HD values compared to CLM.
This suggests that the spatial patterns in the Noah snow cover
simulations capture the observational patterns more accu-
rately relative to CLM’s simulations, though CLM’s snow
physics formulations are more complex. Note that newer ver-
sions of both these models (Noah-MP;Niu et al., 2011) and
CLM version 4.0 (Lawrence et al., 2011) with updated snow
physics formulations are currently being incorporated into
LIS, and similar comparisons can be performed through LVT
to evaluate the updated snow physics in these LSMs. This
experiment demonstrates the use of spatial similarity metrics
for comparing the performance of two different LSMs within
a MDF framework.

6 Summary and future directions

This article describes the development and capabilities of a
verification system for terrestrial hydrology known as the
Land surface Verification Toolkit. LVT enables an environ-
ment for conducting the systematic evaluation of land model
outputs by providing a variety of analysis metrics and proce-
dures. LVT functions primarily as an analysis back-end sys-
tem for the NASA Land Information System (LIS), but also
supports the analysis of data products from other modeling
environments. LIS is a comprehensive land surface modeling
framework and includes data assimilation and posterior infer-
ence tools such as optimization and uncertainty estimation
to facilitate the exploitation of information content from ob-
servational datasets to augment model predictions. LVT not
only supports the verification of LSM outputs, but also pro-
vides the tools to analyze the performance of these computa-
tional algorithms within LIS. LVT is designed using object
oriented software principles, with abstractions defined for
the customization and extension of the system for different

applications. These extensible interfaces allow the incorpo-
ration of new observational datasets and analysis metrics in
an interoperable manner. The combination of the modeling
capabilities of LIS and the analysis capabilities of LVT pro-
vide a robust environment for conducting end-to-end model
data fusion experiments that has been identified in the com-
munity as a key paradigm for improving the applicability of
LSMs.

LVT currently supports a large suite of in-situ, satellite
and remotely-sensed, and model and reanalysis products to
enable comprehensive evaluations of various hydrological
processes. These datasets are supported in their native for-
mat and LVT handles the temporal and spatial transforma-
tions required in the analysis. Diagnostic model verifica-
tion and intercomparisons are supported through a variety
of analysis metrics and procedures. In addition to the stan-
dard accuracy-based measures, LVT supports ensemble and
uncertainty measures, metrics based on information theory,
similarity metrics and methods to quantify the impact of spa-
tial scales on model performance. This variety of techniques
provide novel ways to characterize model performance and
to investigate associated tradeoffs.

The article presents a number of illustrative examples that
demonstrate the capabilities of LVT and provide several in-
stances of end-to-end MDF experiments. The optimization
algorithms in LIS are used to refine the model parameters of
the LSM to improve its estimation of surface fluxes. LVT is
used to quantify the systematic improvements resulting from
the refined model parameters. The impact of data fusion for
model state and uncertainty estimation is assessed through
data assimilation and uncertainty quantification metrics, re-
spectively. The information theory-based metrics provide
measures such as metric entropy, information gain and com-
plexity to identify tradeoffs in datasets based on their infor-
mation content and complexity. Acknowledging the need to
perform model evaluations in a spatially distributed manner,
spatial similarity metrics and scale decomposition techniques
that provide spatial pattern comparisons against remotely-
sensed distributed datasets are also incorporated in LVT.

LVT is an evolving framework and continues to be en-
hanced with the addition of new analysis capabilities and the
incorporation of terrestrial hydrological datasets. In addition
to the handling of LSM outputs, the support for computa-
tional parallelism and outputs from various application mod-
els coupled to LIS (e.g., crop, drought, flood, landslide mod-
els) is also being developed. Ensemble measures such as reli-
ability, resolution and discrimination (Murphy and Winkler,
1992) and timing error measures (Y. Liu et al., 2011) will also
be incorporated into the current suite of analysis metrics. In
addition, capabilities for weighting various metrics and scor-
ing models based on a collection of metrics are also being
planned. The use of a common environment for diagnostic
evaluation will also help in quantifying the tradeoffs between
different metrics and skill scores. For example, different or-
ganizations use different indices for quantifying the severity
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of drought (Heim, 2002). The availability of these drought
indices through LVT will enable cross-comparisons of these
measures and the assessment of their suitability for the in-
tended application. In summary, the growing capabilities of
LVT are expected to help in the definition and refinement of
a formal benchmarking and evaluation process for the LSMs
and assist in improving their use for real-world applications.
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