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Abstract. Model evaluation and verification are key in im- 1 Introduction

proving the usage and applicability of simulation models for

real-world applications. In this article, the development and

capabilities of a formal system for land surface model evaly-Verification and evaluation are essential processes in the de-
ation called the Land surface Verification Toolkit (LVT) is Velopment and application of simulation models. Land sur-
described. LVT is designed to provide an integrated envi-face models (LSMs) are one such class of simulation models
ronment for systematic land model evaluation and facilitatesSPecifically designed to represent the terrestrial water, energy
a range of verification approaches and analysis capabilities2nd biogeochemical processes. LSMs generate estimates of
LVT operates across multiple temporal and spatial scales anfrrestrial biosphere exchanges by solving governing equa-
employs a large suite of in-situ, remotely sensed and othefions of soil-vegetation-snowpack medium, and can be run
model and reanalysis datasets in their native formats. In adl? €ither offline mode or coupled to an atmospheric model.
dition to the traditional accuracy-based measures, LVT alscAn accurate representation of land surface processes is there-
includes uncertainty and ensemble diagnostics, informatiorfore critical for improving models of the boundary layer and
theory measures, spatial similarity metrics and scale decomind-atmosphere coupling as well as real world applications,
position techniques that provide novel ways for performing such as ecosystem modeling, agricultural forecasting and wa-
diagnostic model evaluations. Though LVT was originally ter resources prediction and managemaRC, 1999. The
designed to support the land surface modeling and data adf0C€ss of systematic evaluation and verification helps in the
similation framework known as the Land Information Sys- characterization of accuracy and uncertainty in the model
tem (LIS), it supports hydrological data products from non- predictions, which can then be used as a benchmark for fu-
LIS environments as well. In addition, the analysis of diag- ture model enhancements. Further, quantitative measures of
nostics from various computational subsystems of LIS in-the fidelity of model simulations are essential for improving
cluding data assimilation, optimization and uncertainty es-the usage and acceptability of LSM forecasts for real-world
timation are supported within LVT. Together, LIS and LVT applications.

provide a robust end-to-end environment for enabling the The Global Energy and Water Cycle Experi-
concepts of model data fusion for hydrological applications.ment  (GEWEX) Global Land Atmosphere System
The evolving capabilities of LVT framework are expected to Study (GLASS) has identified that a general bench-
facilitate rapid model evaluation efforts and aid the definition Marking framework capable of capturing useful modes of

and refinement of formal evaluation procedures for the landvariability of LSMs through a range of performance metrics
surface modeling community. is necessary for further advancing the performance and

predictability of the modelsvan den Hurk et al.2011).
In their recommendation of the priorities for hydrologic
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research Entekhabi et al(1999 emphasize the need for water and energy states (e.g., soil moisture, snow) and fluxes
defining formal evaluation procedures to improve the (e.g., evaporation, transpiration, runoff) over a range of spa-
“observability” of many LSM processes. For example, soil tial (as finely resolved as 1 km or finer) and temporal (up
moisture in most LSMs represents an index of the moisturgo 1 h and finer) resolutions. LIS operates several commu-
state Koster et al. 2009 and the estimates from different nity land surface models and supports their application over
models vary significantly even when forced with the sameglobal, regional or point domains. LIS is designed with ad-
meteorology Dirmeyer et al.2006. Further, the soil profile  vanced software engineering principles and provides a flexi-
representations in LSMs and assumptions about parametelse, extensible framework for the inclusion of models, com-
such as soil hydraulic properties vary significantly acrossputational tools and datasets.
models. As a result, direct comparison of soil moisture esti- As a land surface modeling component for earth system
mates from these models against in-situ and remote sensingodels, LIS has also been coupled to atmospheric mod-
measurements becomes difficult. Given that a large suite oéls such as the Weather Research and Forecasting (WRF)
application models require soil moisture estimates as inputsmodel Kumar et al, 2007 Santanello et al2009. LIS in-
e.g., weather and climate forecastif@(inessey and Shukla cludes a comprehensive data assimilation subsydtemér
1999 Koster et al. 2004, agricultural modelsRosenzweig et al, 20081 that enables the incorporation of several ob-
et al, 2002, ecosystem model$(iend and Kiang2009), it servational and satellite data sources for assimilation, in an
is important for the LSMs to generate observable estimategnteroperable manner. Additional computational tools to as-
of soil moisture to avoid potential misinterpretations and sist the utilization of data include parameter estimation and
incorrect usages. The development of a formal, systematioptimization Santanello et al.2007 Peters-Lidard et al.
environment for model evaluation will help in bridging the 2008 Kumar et al, 2012 and uncertainty modelindH@arri-
gaps between the model and observations, and in improvingon et al.2012 subsystems. The uncertainty modeling com-
the observability of LSM outputs. ponents in LIS enable the explicit characterization of differ-
Model performance is typically improved by either en- ent sources of uncertainty in modeling using Bayesian infer-
hancing the conceptual representations of processes (i.eence techniques. In summary, LIS provides several key com-
model physics) or by employing computational techniquesponents of the MDF paradigm, including a suite of LSMs
(e.g., data assimilation, optimization, uncertainty algorithms,and computational tools such as data assimilation, optimiza-
fuzzy logic) to augment model simulations. These computa-tion and uncertainty estimation.
tional techniques provide the tools to exploit the information In this article, we describe the development of a formal
content in the observational data for improving model pre-system for land surface model evaluation called the Land sur-
dictions. The concept of “model data fusion” (MDRau-  face Verification Toolkit (LVT), designed to enable the sys-
pach et al. 2005 Williams et al, 2009 has been used to tematic evaluation and intercomparison of various terrestrial
describe the paradigm of combining the information from hydrological datasets. LVT not only supports the diagnos-
models and available datasets. The key aspect of the MDFc evaluation of the land model simulations from LIS and
philosophy consists of using information from data to help other land surface modeling systems, but also provides the
the formulation, characterization and evaluation of models incapabilities for the analysis of outputs from various LIS sub-
a structured manner. The results of the evaluation step arsystems, such as data assimilation, optimization, uncertainty
then used to revise and improve model formulation and subestimation, radiative transfer and emission models, and ap-
sequent development. As part of the new structure formu-plication models. A large suite of in-situ, remotely-sensed
lated in 2009, the GLASS community has identified Bench-and other model and reanalysis datasets are supported in
marking and MDF as two of its three core themes for research.VT, which captures a wide range of land surface and terres-
going forward. Here we describe the development of a for-trial hydrologic regimes across the globe. In addition, a wide
mal evaluation system for land surface models that addresseange of analysis metrics and procedures are supported in
both these themes identified by the GLASS community. Thel VT to facilitate a comprehensive evaluation of hydrological
evaluation framework is designed to supplement an existinglatasets. Figurepresents a schematic of the key functions of
modeling system, to enable end-to-end formulations of theLVT and its interconnections with LIS and the observational

MDF paradigm. datasets. The following sections describe the capabilities of
As described irKumar et al.(2006, Peters-Lidard et al.  LVT in detail.
(2007 andKumar et al.(20083, the NASA Land Informa- Together, LIS and LVT encompass a comprehensive set of

tion System (LIS) is a flexible land surface modeling frame- computational tools for fully enabling the MDF concept. The
work that has been developed with the goal of integratingcapabilities in LIS enable the estimation of model param-
satellite- and ground-based observational data products aneters with the use of the optimization subsystem and state
advanced land surface modeling techniques to produce optiestimation with the use of the data assimilation subsystem.
mal fields of land surface states and fluxes. The LIS infras-The uncertainty estimation tools enable the characterization
tructure is designed as a land surface modeling and hydroef various sources of input uncertainty and their impacts
logical data assimilation system that generates estimates afn model prediction uncertainty. By providing the tools for
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Fig. 1. Schematic of the Land surface Verification Toolkit and the association with the Land Information System (LIS). LVT supports the
analysis of outputs from various LIS subsystems. LIS-DA represents the data assimilation subsystem, LIS-RTM represents the radiative
transfer models within LIS, LIS-OPT represents the optimization subsystem, LIS-UE represents the uncertainty estimation subsystem, LIS-
LSM represents the land surface models, and LIS-APP represents the various application models within LIS.

model testing and diagnostic evaluation, LVT completes the There have been several community-wide efforts such
requisite components of the MDF paradigm. as the Global Soil Wetness Project (GSWBirmeyer
This article is structured as follows: Se2tprovides are- et al, 2006, African Monsoon Multidisciplinary Analy-
view of the land model evaluation and verification efforts. sis (AMMA) Land surface Model Intercomparison Project
This is followed by the description of LVT design (Se8}. (ALMIP; de Rosnay et 312006 and Carbon-LAnd Model
and features (Secd). A number of examples are presented Intercomparison Project (C-LAMARanderson et al2009
in Sect.5 that demonstrate how the LVT capabilities enable that were focused on evaluating and intercomparing a suite
end-to-end MDF experiments. of land surface models when forced with a common suite
of inputs. The C-LAMP effort also included evaluations of
biogeochemical variables including global forest phenology,
2 Background global primary productivity, C® seasonality and regional
carbon stocks and dynamics. These studies documented the
There have been a number of efforts to document and stan:- e X
. ) systematic improvements in land surface model development
dardize land surface model evaluation. The model process

. . . and provided benchmarks for the simulation of continental
development studies are typically focused on evaluating the

. Scale water and energy budgets. Similar multi-model efforts
model performance at point or local scales (e-gnderson- . . L
X . include the North American Land Data Assimilation System
Sellers et al.1995 Chen et al.1996 Pitman and Henderson- (NLDAS: Mitchell et al, 2004 and the Global Land Data
Sellers 1998 Koren et al, 1999 Blyth et al, 201Q Barlage ’ :

etal, 2010 Niu et al, 2011). Though they are instrumental in As§|mllat|on System (GLDASRodell etal, 200.4b prOJects,.
i , . which generate land surface model outputs in near real-time,
benchmarking the improvements to model physics, these re; : : .
. forced with observation-based meteorology. A detailed eval-
ported enhancements do not necessarily translate to broader

spatial scalesBlyth et al.(2017) stresses that the model eval- tation of the NLDAS model products against available obser-

uations must be performed separately at the scales of intere%,i}“onS were conducted during phase-I and Il of the project

to guarantee transferability of model processes to differen obock et al.2003 Sheffield et al.2003 Pan et al.2003
sce?les y P ohmann et al.2004 Mo et al, 2011, Xia et al, 20123b).

Evaluation of the model simulations from GLDAS against
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Fig. 2. Three-layer software architecture of Land surface Verification Toolkit (LVT).

in-situ and remote sensing measurements are presented is a system developed by the Developmental Testbed Cen-
Rodell et al.(20043 andKato et al.(2007). The LandFlux-  ter (DTC) for the numerical weather prediction community to

EVAL project, a more recent initiative, evaluated evapotran-evaluate model performance. MET includes several methods
spiration estimates from a number of LSMs against in-situfor the diagnostic and spatial verification of NWP model out-

data based estimatedirfinez et al. 2011). Approaches to  puts. However, MET requires that the input datasets (model
define a minimum acceptable performance benchmark obutput and the observational data) be reformatted to certain
LSMs by comparing them to calibrated noncausal (statisti-predefined file formats. LVT shares many features with these
cal/correlational) models are exploredAbramowitz et al.  existing environments, but focuses on the native use of obser-
(2008. Though these efforts cover a wide spectrum of modelvational and model data sets, since the interpretation of the
evaluation and benchmarking of model process advancedata formats and reporting procedures is a critical and time
ments, the evaluation criteria and the performance metrickonsuming step in the evaluation process. LVT is designed
tend to be specific to each application. LVT consolidates theas a framework that can be directly used and extended by the
requirements identified in these efforts within a single frame-individual users and also includes a number of advanced fea-
work. tures such as the evaluation of data assimilation diagnostics,

A number of software environments for conducting model standardized land surface diagnostics and uncertainty and in-
verification has been reported in the literature. The Ensemformation theory based analysis features. The following sec-
ble Verification System (EVSBrown et al, 2010 developed tions describe the design and capabilities of LVT.
at the US National Oceanic and Atmospheric Administra-
tion’s (NOAA) Office of Hydrologic Development (OHD) )
provides an environment to verify ensemble forecasts of3 Design of the LVT framework
hydrologic and atmospheric varla_bles such as preC|p|tat|onLVT is implemented using object oriented framework de-
temperature and streamflow, and is used by forecasters at the . .

: sign principles as a modular, extensible and reusable system.
US River Forecast Centers (RFCs). Protocol for the Anal- .

; . . The software architecture of the system follows a three layer
ysis of Land Surface models (PALS) is a web-based appli- -
cation for evaluating land surface models against observegtrucmre’ as s.hown n '.:'g' LVT core, the top layer, encom-

. - . asses generic modeling features, such as the management
datasets and calibrated statistical modAlsramowitz et al, b 9 g ' 9

2009. LVT and PALS will continue to be developed con- of time, 1/O, configuration, logging and geospatial transfor-

currently to address community goals for benchmarkin anc{Tkaltions. The middle layer, called “Abstractions” represents
Y . 9 9 he extensible interfaces defined for incorporating additional
MDF. Model Evaluation Toolkit (METBrown et al, 2009

functionalities into LVT. These include plugin interfaces for
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S. V. Kumar et al.: Land surface Verification Toolkit 873

implementing new observational data sources and analysimeasurements from in-situ, satellite and remote sensing plat-
metrics. The Abstractions layer provides the entry points forforms. These datasets typically have different file formats,
the reuse of existing generic capabilities of the LVT core. Thespatial and temporal scales and reporting procedures. Fur-
top two layers thus represent the classic “semi-complete” nather, the in-situ and remotely sensed measurements typically
ture of an object oriented framework, which is made fully require extensive quality control before their use. The rec-
functional by including specific implementations of the ab- tification of such differences between datasets being com-
stractions. As shown in Fi@, implementations to read and pared is an essential, but routine and time consuming step in
process observations from a wide range of terrestrial hydrothe evaluation process. The philosophy in LVT is to use the
logical observations have been implemented using @le-“  datasets in their native formats. The “plugin” style design of
servation$ abstraction. Similarly, a large suite of analysis LVT enables the development of data processors correspond-
metrics has been implemented by extending thtettics’ ing to each dataset. Once developed, these data processors
abstraction. can be subsequently used to work with an ongoing data col-

LVT software is primarily written in Fortran 90 program- lection without additional reprocessing. Though the empha-
ming language. Though Fortran 90 lacks the direct supporsis on the use of native formats is useful for rapid use of the
for object oriented programming concepts such as polymordatasets, the use of high resolution datasets could be compu-
phism and inheritance, these properties can be simulated itationally limiting, especially when the analysis is conducted
software Decyk et al, 1997 through the combined use of against a coarse resolution model simulation. To circumvent
Fortran 90 and C programming languages. The compile-timehis limitation, LVT provides a “data processing” run mode,
polymorphism in LVT is simulated through the use of vir- where it performs various data handling operations (read, in-
tual function tables, by employing C language to interfaceterpolation, reprojection and subsetting) and outputs the pro-
with Fortran 90 functions, and by storing them in memory to cessed data to disk. The processed data can then be used by
be invoked at runtime. These virtual function tables enablea subsequent analysis run of LVT.
the “Abstractions” layer constructs mentioned in the previ-
ous paragraph. 4.1 Support for terrestrial hydrological datasets in LVT

A key advantage of this object oriented-based design is
interoperability. The top two layers (LVT core and Abstrac- The key processes that constitute the terrestrial hydrological
tions) define the interactions between @bservationor a  cycle include precipitation, radiation, interception of precip-
Metric implementation with the LVT core in a generic man- itation by vegetation, infiltration of precipitation into the soil
ner. Similarly, the required interconnections betweei®an  and the vertical transfer of soil moisture, evapotranspiration,
servationimplementation and detric implementation are  formation of snow, snow melt, and river runoffs, among oth-
also handled generically. As a result, the existing function-ers. In order to quantify the contribution of these individual
alities of the system are automatically available to a newprocesses to the overall variability of the terrestrial hydro-
addition in LVT, implemented through the extension of an logical cycle, they must be evaluated against the full suite
Abstraction. For example, a newly incorporated observationof available measurements. Motivated by this goal, the pro-
implementation can take advantage of all available analysisessing of a large set of measurements of different processes
metrics without having to define any additional interconnec-from a variety of sources are supported in LVT. As shown in
tions between each bottom layer component. Tablel, these datasets constitute the monitoring of different

Note that many of the model-independent capabilitiescomponents of the terrestrial hydrological cycle, from differ-
within the LVT are enabled by the Earth System Model- ent observing platforms. The spatial and temporal scales of
ing Framework (ESMFHIill et al., 2004. ESMF provides these measurements also vary significantly. By incorporat-
a structured collection of building blocks that can be cus-ing the processing of these datasets under a single, integrated
tomized to develop model components for Earth Science apframework, LVT enables an environment for performing a
plications. It provides an infrastructure of utilities and a su- comprehensive evaluation of the terrestrial hydrological pro-
perstructure for coupling different model components. LVT cesses. Note that the support of this large suite of products
employs the ESMF infrastructure utilities to handle the man-is enabled by the extensible nature of LVT software design
agement of clock/time, configuration, and logging. Further,and is expected to further expedite the incorporation of other
LVT also employs the generic ESMF objects (called ESMF relevant datasets in the future.
States) for sharing data and information between different
components. 4.2 Analysis metrics

The need for having a variety of performance evaluation
4 Capabilities of LVT metrics in the verification process is well recogniz&taf-

ski et al, 1989, as the robustness and sensitivity of each
A critical part of an evaluation procedure is the processingmetric to measurement attribute variEntekhabi et al.
of datasets, which normally consists of model outputs and2010. Further, the appropriateness of an analysis metric

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, &86-2012
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Table 1. List of datasets supported in LVT.
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Dataset

Measurement
variables

Model/reanalysis outputs

Agricultural Meteorology
Model (AGRMET) from the
Air Force Weather Agency (AFWA)

NLDAS model outputs
Mitchell et al. (2004

GLDAS model outputs
Rodell et al.(2004H

Canadian Meteorological Center
(CMC) snow depth analysis
Brown and Brasne{2010

Snow Data Assimilation System
SNODAS;Barrett(2003

Water and energy fluxes,
Soil moisture, soil temperature,
Snow conditions, meteorology

Water and energy fluxes
Soil moisture, soil temperature,
snow conditions, meteorology

Water and energy fluxes,
Soil moisture, soil temperature,
snow conditions, meteorology

Snow depth

Snow depth, snow water
equivalent

In-situ measurements

AMMA

(database.amma-international.org/)

Atmospheric Radiation
Measurement (ARM)
(www.arm.goy

Ameriflux
(public.ornl.gov/amerifluy/

Coordinated Energy and water cycle

Observations Project (CEOP)
(www.ceop.ney

National Weather Service

Cooperative Observer Program (COOP)

(www.nws.noaa.gov/om/coop/

NOAA CPC unified
Higgins et al.(1996

Gridded FLUXNET
Jung et al(2009

Finnish Meteorological Institute

FMI/SYKE; www.environment.fi/syke

Global Summary of the Day (GSOD)

International Soil Moisture Network

(www.ipf.tuwien.ac.at/insity/

Soil Climate Analysis Network

Water and energy fluxes,

soil moisture, soil temperature

Water and energy fluxes,
Soil moisture, soil temperature,
meteorology

Water and energy fluxes

Water and energy fluxes,
soil moisture, soil temperature,
meteorology

Snow depth, precipitation,
land surface temperature
Precipitation
Water and energy fluxes

Snow water equivalent

Snow depth

Soil moisture

Soil moisture

(SCAN;www.wcc.nrcs.usda.gov/scan/ Soil temperature

Geosci. Model Dev., 5, 869886, 2012
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WMO synoptic observations

NRCS SNOwpack TELemetry network

(SNOTEL; www.wcc.nrcs.usda.gov/snow/

Surface Radiation Network (SURFRAD)
(www.srrb.noaa.gov/surfrad/

Southwest Watershed Research Center
(SWRC;www.tucson.ars.ag.gov/dap/

Snow depth

Snow water equivalent

Downwelling shortwave,

downwelling longwave

Soil moisture,

soil temperature

USGS water data Streamflow

(waterdata.usgs.gov/nvyis

AMSR-E radiances
(mrain.atmos.colostate.edu/LEVELJC/

Brightness temperature for
different channels

Satellite and remote sensing data

AFWA NASA Snow Algorithm
ANSA,; Foster et al.2011

GlobSnow;Pulliainen(2006
(www.globsnow.info/)

Snow cover, snow depth,
snow water equivalent

Snow cover,
snow water equivalent

International Satellite Cloud Climatology
Project; ISCCPRossow and Schiffgf1997)
(isccp.nasa.ggv

MODIS/Terra Snow cover 500 m
MOD10A1; Hall et al.(2006

Land surface temperature

Snow cover

MODIS Evapotranspiration product
MOD16; Mu et al.(2007)

Evapotranspiration

NASA Level-3, soil moisture Soil moisture
retrieval from AMSR-E (AE_Land3)

Njoku et al.(2003

Land Parameter Retrieval Model (LPRM) Soil moisture

from NASA GSFC and VU Amsterdam
Owe et al(2008

may also differ significantly based on the targeted applica-conventionally used for model evaluation by comparing the
tion (Gupta et al.2009. Model evaluation studies quite of- model simulation against independent measurements and ob-
ten use accuracy-based metrics that quantify model perforservations (e.g., RMSE, Bias), (2) ensemble measures that
mance using residual-based measures. These metrics, hopwrovide assessments of the accuracy of probabilistic model
ever, may not provide further insights on the robustness obutputs against observations, (3) metrics that help in quan-
the model under future or unobserved scenamachepsky tifying the apportionment of uncertainty and sensitivity of
et al, 2006. They are also inadequate in capturing estimatesmodel simulations to model parameters, (4) information
of associated uncertaintieGglden et al.2008, relative im-  theory-based measures that provide estimates of information
portance and sensitivity of model parameters to the overaltontent and complexity associated with model simulations
accuracy and uncertainty, tradeoffs in performance due tand measurements, (5) spatial similarity and scale decompo-
spatial scales and the tradeoffs between actual informatiosition methods that assist in quantifying the impact of spatial
content and variabilities introduced by random noGapta  scales in model improvements and errors and (6) standard
et al.(2008 emphasize the need for sophisticated diagnosticdiagnostics to evaluate the efficiency of computational algo-
evaluation methods that help in isolating the limitations of rithms such as data assimilation. TaRl@resents a list of
the model representations. supported metric implementations within LVT. The details of
A number of analysis metric types is supported in the metricimplementations are discussed in Sgittrough a
LVT including (1) statistical accuracy measures that arenumber of illustrative examples. The availability of this suite

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, &86-2012


www.wcc.nrcs.usda.gov/snow/
www.srrb.noaa.gov/surfrad/
www.tucson.ars.ag.gov/dap/
waterdata.usgs.gov/nwis
mrain.atmos.colostate.edu/LEVEL1C/
isccp.nasa.gov

876 S. V. Kumar et al.: Land surface Verification Toolkit

of metrics enables novel ways to quantify and translate model
performance.

S

DEFAULT —+— 350 DEFAULT —+—
CALIBRATED - 300 [CALIBRATED v
OBS = nE OBS =

250

250
200
150
100

50 rm

4.3 Miscellaneous features
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LVT also supports a number of miscellaneous features to as-
sist the verification procedures. To provide a measure of the
statistical significance and the influence of sampling density
on the results, confidence intervals based on Gaussian distrfig. 3. Comparison of average diurnal cycles of latent (left column)

butions are computed for each verification metric. Note thatand sensible heat (right column) fluxes from the uncoupled Noah
LVT does not include any graphical packages in it. LVT gen- (version 3.2) LSM simulations using the default model parameters
erates the results of the analyses in ASCII text, binary, Grig{CEFAULT) and calibrated parameters (CALIBRATED) against the

Y ' . in-situ measurements (OBS) from 19 ARM-SGP stations.

and NetCDF output formats and the generation of appropri-
ate graphics are left to the user. The capabilities to generate

probability density functions (PDFs) of the computed met-

ios by stratifving t ifind ; 50 includ ote that this process does not involve any spatial or tem-
rics by stratifying to specified parameters are also include oral transformation of the data, rather the conversion to a

in L.VT. Furthe_r, LVT also provides methqu tq impose user- different data format and convention.

defined masking to exclude selected grid points when anal-

ysis metrics are computed. These masks can be static, time-

varying or based on a certain variable. For example, a downs \odel evaluation examples using LVT

ward shortwave radiation (SYY based mask can be defined

that separates the analysis computations when th¢ $W 5.1 An end-to-end example of the MDF paradigm

ues are above and below a specified threshold (say 5%y.m

This will enable a day-night stratification of the computed As noted earlier, one of the key motivations behind LVT is to

metrics, when SW values are above and below 5W#) provide a system that can augment LIS’ modeling capabili-

respectively. ties with an evaluation framework. The joint use of both these
LVT also includes a number of land surface process di-systems enables an end-to-end environment for facilitating

agnostics related to the partitioning of energy across the landghe steps of the MDF paradigm. In this section, we present

atmosphere interface, such as evaporative fraction, bowen ran example of using the modeling and computational tools

tio and overall energy, water and evaporation budgets at thén LIS to refine the model performance and the verification

land-atmosphere interface. These diagnostics are computddatures in LVT to quantitatively evaluate the simulations.

for both model and observational datasets. Quantifying these Model simulations using the Noah LSM (version 3.Bk(

diagnostics are important for improving the understanding ofet al, 2003 Barlage et al.2010 forced with the NLDAS-II

the feedbacks between the land surface and the atmospheréatasets are conducted over a 50800 domain covering the
As mentioned earlier, LVT also supports the analysis of US Southern Great Plains (SGP) at 1 km spatial resolution

diagnostics generated by the LIS data assimilation subsysduring the time period of 1 May 2006 to 1 September 2006.

tem. These include distribution statistics of data assimilationThis domain is used in a number of prior studies on land-

innovations and analysis gain, which provide measures ohtmosphere feedbackSgntanello et al2009 2011). Using

the efficiency of data assimilation configurations. Similarly, the default values of the soil and vegetation parameters of the

LVT also handles the outputs of the optimization and uncer-Noah LSM, a model simulation is conducted first to simulate

tainty estimation subsystems of LIS. For example, checks tesurface latent and sensible heat flux estimates. Using LVT,

assess the convergence of these iterative algorithms can libese flux estimates are evaluated against the in-situ measure-

performed by analyzing the optimization and uncertainty es-ments from 19 Atmospheric Radiation Measurement (ARM)

timation outputs through LVT. stations. The optimization algorithms in LIS are then used to
In the examples presented in SegtLVT is employed in  estimate a refined set of model parameters with the objective

serial mode, as the support of computational parallelism isof minimizing the cumulative error in the hourly surface flux

currently under development. The memory and CPU require-observations from the ARM stations, over the four month

ments and the corresponding computational performance gberiod. The optimization simulations were used to estimate

LVT are largely determined by the analysis domain, the29 model parameters in the Noah LSM that included both

datasets being used and the metrics being computed. soil and vegetation properties. Subsequently, the improved
Though LVT was originally designed to support LIS out- model performance with the calibrated parameters is quanti-

puts, it has since been extended to facilitate the evaluation ofied using LVT.

other “non-LIS” model products. LVT contains the features  Figure3 shows a comparison of the mean diurnal cycles of

to convert the given non-LIS product to a LIS output style latent and sensible heat fluxes from model simulations com-

and format. It then uses the converted output for evaluationpared against that of the measurements from 19 ARM-SGP

Hour Hour
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Table 2. The range of analysis metric types and implementations supported in LVT.

Metric class Supported
Implementations

Standard measures RMSE, Anomaly RMSE, unbiased RMSE (UubRMSE), Correlation, Anomaly correlation,
Mean absolute error (MAE), Bias, Probability of “yes” detection (PODy), False alarm ratio (FAR)
Probability of “no” detection (PODn), Accuracy measure (ACC), Probability of false detection (POFD),
Critical success index (CSI), Equitable threat score (ETS), Frequency bias (FBIAS),
Nash sutcliffe efficiency (NSE)

Ensemble metrics Mean, Standard deviation, Likelihood
Uncertainty metrics Uncertainty importance
Information theoretic Metric entropy, Information gain, Effective complexity, Fluctuation complexity

Data assimilation metrics Mean, variance, lag correlation of innovation distributions
Spatial similarity metrics ~ Spatial area, Hausdorff distance

Scale decomposition Discrete wavelet transforms

stations. The simulations using default model parameter:
show large errors, with a significant underestimation in the =
latent heat fluxes and an overestimation in sensible hes ™
fluxes. The calibration of model parameters helps in improv- _
ing the model performance, by correcting the systematic bias ,,
in energy partitioning. This example illustrates an example ..
of the MDF paradigm that includes model characterization, =
reformulation through parameter estimation, and verification ™
using LVT. Similar instances can be implemented using the ™

extensive evaluation capabilities of LVT. S

5.2 Example of model evaluation against satellite data  Fig, 4. probability of Detection (left column) and False Alarm Ratio

. . . (right column) of the model simulated snow cover fields compared
Model formulation and evaluation are typically conducted gainst the fractional MODIS snow cover product (MOD10A1).
over instrumented locations of the world where indepen-

dent measurements are available. Though these in-situ ob-
servations provide valuable information on the spatial and
temporal variability of process variables, they are limited in employs blended satellite (IR and microwave) and gauge ob-
their spatial coverage. Satellite and remotely-sensed measervations. The model domain has complex terrain character-
surements, on the other hand, have improved spatial covistics, with elevation ranges from 1000 to 6000 m. The frac-
erages and they enable the extension of model evaluatiotional snow cover extent global 500 m product (MOD10A1
to uninstrumented locations and hydrologic regimes. In thisVersion 4;Hall et al, 2006 from the Moderate Resolution
section, we present an example of model evaluation againdmaging Spectroradiometer (MODIS) optical sensor on the
satellite data over a region where in-situ measurements ar@erra spacecraft is used as the reference data for evaluating
sparse. simulations of snow cover fields simulated by the LSM. The
A model simulation using Noah LSM (version 2.7.1) is MOD10AL1 product is aggregated to 1 km spatial resolution
conducted over a 1200 k1000 km domain, at 1 km spa- for enabling the comparisons presented here.
tial resolution over Afghanistan from 1 October 2007 to The snow cover fields are evaluated by computing the
1 May 2010. The LSM is driven with meteorological data probability of detection (POD) and false alarm ratio (FAR)
from the Global Data Assimilation System (GDAS); the against the MOD10A1 product. POD measures the fraction
global meteorological weather forecast model of the Nationalof snow cover presence that were correctly simulated and
Centers for Environmental Predictiobérber et al. 1991). FAR quantifies the fraction of no-snow events that were in-
The precipitation input for the model simulations is pro- correctly simulated. Figurd shows the average POD and
vided from the NOAA Climate Prediction Center's (CPC) FAR values during the model simulation period, computed
operational global 255-day Merged Analysis of Precipita- using detection threshold of 0.8 (above which a positive de-
tion (CMAP; Xie and Arkin 1997, which is a product that tection of snow cover simulation is assumed). The POD and
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FAR fields display the terrain features of the Hindu Kush -
mountains, that run northeast to southwest. High values of:
POD and low values of FAR are observed over the Central
Highlands region of the domain, suggesting a high degree
of accuracy of model snow cover estimates over these areas
Over the northeast parts of the domain, however, the model

simulations are less accurate, as indicated by the lower POD
and higher FAR values. Fig. 5. Mean (left column) and variance (right column) of normal-

ized innovations (dimensionless) of data assimilation diagnostics.
The gray color represents grid cells excluded from the computa-
tions.

5.3 Analysis of data assimilation diagnostics

The example in Secb.1 presents an instance of the MDF

paradigm that employs parameter estimation for model regjstribution, are also provided within LVT for more detailed

formulation. As noted iWilliams et al.(2009), similar MDF  evaluations of the efficiency of the data assimilation system.
instances can be defined that employ data assimilation tech-

niques to improve state estimation. This section presents ag.4 Characterization of uncertainty diagnostics
example of using data assimilation diagnostics to assess the
performance of the system within a MDF context. It is well acknowledged that model simulations and observa-
The difference between the observations being assimilatetions are affected by different sources of uncertainties. The
and the model forecasts, known as innovations, are typicallyerrors in model parameters, input forcing and structural de-
computed during data assimilation. The statistics of the in-ficiencies introduce uncertainties in the model simulations.
novations are typically used to diagnose the performance offhe measurements from satellite and remote sensing plat-
the assimilation algorithm. For example, when the Ensembldorms are subject to measurement noise and errors in retrieval
Kalman Filter (EnKF) is used as the assimilation algorithm, amodels. Similarly, the in-situ measurements also have asso-
linear system dynamics is assumed with Gaussian, mutuallgiated uncertainties due to environmental factors, data pro-
and serially uncorrelated errors in model and observationgessing and instrument errors. Therefore, it is important to
(Reichle and Koste2002. Consequently, the distribution of quantify the impact of these uncertainty sources in modeled
normalized innovations (normalized with their expected co-estimates. LVT includes a number of measures to quantify
variance) is expected to follow a standard normal distributionthe propagation of model parameter uncertainty in predic-
N(0,1) (Gelb 1974. The deviations from the expected mean tions.
and standard deviation of the normalized innovation distribu- To demonstrate the use of uncertainty analysis metrics,
tion is used as a measure of suboptimality of the data assimia model simulation using Noah LSM (version 3.2) is con-
lation configuration. A number of studies have confirmed thatducted during the summer months (May to September) of
poor specification of model and observation error parameter2010 over a region encompassing the Walnut Gulch water-
can significantly degrade the quality of assimilation productsshed in southeastern Arizona. The meteorological bound-
(Reichle and Crow2008 Reichle et al.2008. The assimi- ary conditions from the Agricultural Meteorology Model
lation diagnostics can be analyzed using LVT and the mode(AGRMET; Moore et al, 1990 are used to force the mod-
and observation error specifications can then be continuallyels at 0.28 spatial resolutions. The in-situ measurements of
revised to ensure optimal data assimilation performance. soil moisture values are used to evaluate the model simula-
To demonstrate these capabilities, a synthetic data assintions. To investigate the impact of parameter uncertainty in
ilation experiment is conducted over the Continental US do-simulated soil moisture estimates, a Monte Carlo (MC) sim-
main at T spatial resolution, for a time period of 1 Jan- ulation is conducted by sampling four soil hydraulic prop-
uary 2000 to 1 January 2006. In this experiment, the obsererties (SHPS) s — porosity, s — saturated matric poten-
vations to be assimilated are synthetically simulated (fromtial, Ks — saturated hydraulic conductivity aihd- pore size
an independent land model simulation using the Catchmentlistribution index) from assumed uniform distributions. The
LSM) and as a result, the associated errors are perfectlgimulation uses an ensemble size of 100. Fighaeshows
known. The observations are assimilated using the Ensembla time series comparison of the model simulation of sur-
Kalman Filter (EnKF) algorithm. The details of the assim- face soil moisture against the in-situ measurements. Note that
ilation setup are provided iKumar et al.(2012. Figure5 the vertical profile of observations are suitably weighted to
shows the spatial distribution of mean and variance of nor-provide an equivalent comparison against the model simu-
malized innovations over the domain generated by the assimlation which represents a surface layer of 10 cm depth. The
ilation system. In this instance, the mean values are close tcomparison indicates significant differences between the en-
zero and the variances are closer to 1, indicating near-optimademble mean and the observations. Further, the considera-
performance. Additional analysis metrics, such as lag corretion of uncertainty in SHPs translates to significant uncer-
lation coefficients to assess the “whiteness” of the innovationtainty in simulated soil moisture. The shaded region (shown
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sensitive to the soil moisture magnitude and variability. Dur-

" Ensemble Mg%r; R ing the late summer months, the uncertainty importan@g of
also increases with the magnitude of simulated soil moisture.

Knowledge of the relative importance of the model parame-

05

g ters is significant when choosing the set of model parameters
€ o03f for calibration and sampling, and LVT facilitates the quantifi-

g cation of such sensitivities. Similar to the examples described
2 o2l in Sects5.1and5.3, this example provides another instance
E of using LVT to enable the MDF concept, in the context of
4 ol uncertainty estimation.

5.5 Information theory metrics

2010/05 201006 2010/07 2010/08 2010/09 A number of studieswWackerbauer et gl1994 Lange 1999
describe the use of information theory-based metrics to dis-

(a)

15+ 6, ——— 1 criminate time series data based on their information con-
Es . tent (or randomness) and their complexPachepsky et al.
y e (2006 andPan et al(2011) describe the use of these mea-
1 r s A o sures for discriminating soil water models. LVT includes a

M number of information theory-based measures such as met-
e

ric entropy, mean information gain, effective complexity and

Uncertainty Importance (-)

05 ¢ 1 fluctuation complexity. These measures are computed by

— Wﬂﬂ%&ﬁ% . converting the time series of a given dataset into a binary
%D symbol string Lange 1999. Within the symbol string, pat-

or | terns of words (defined as a group of consecutive symbols

of a certain length) are identified, representing a state of the

2016/05 201‘0/06 201‘0/07 201(‘)/08 2010/09 system of interest. For example, a word consisting t_nbn-

® secutive symbols haddossible states. The information the-
ory metrics are then defined by computing the probabilities

Fig. 6. (a) Comparison of ensemble soil moisture simulations associated with the patterns of words in the converted time

against observations. The cyan shading ir_1di.cates the ensemb@eries of the data. For example, the metric entropy (ME) and
spread, shown ak2x ensemble standard deviatigh) The uncer- information gain (IG) metrics are defined as follows:
tainty importance of model parameters towards soil moisture uncer- ’

tainty.

L
1 2
ME=—=> pilog, p: (1)
i=1

as+2x the ensemble standard deviation) around the ensem- oL

ble mean represents the uncertainty in simulated soil mois-|~ _ B o

ture. The soil moisture uncertainty is small during the dry pe- G== D prijlogzpLivs. o
riod, but grows significantly during the late summer months
when both the magnitude and variability of soil moisture in- where p; is the probability of occurrence of theth word,
crease. Though the spread of the ensemble encompasses thg;; is the probability of transition from theth to thej-th
observations, the observations tend to fall towards the tail enavord, andp;. ;. ; is the conditional probability of the occur-

of the ensemble distribution. This emphasizes the need to rerence of thej-th word given that thé-th word has already oc-
fine the model parameters and their sampling strategies for aurred in the symbol sequence. A more detailed description
better characterization of modeling uncertainty. of these measures are providedPiachepsky et a(2006.

Figure 6b also provides an uncertainty importance mea- The information theory-based metrics are typically ap-
sure which is an assessment of the relative contribution oplied to discriminate model simulations, especially when
each parameter to the ensemble spread. This metric is conthey yield similar accuracy measures. Here we demonstrate
puted as the correlation between the simulated variable (suttheir use for comparing soil moisture simulations from Noah
face soil moisture) and the parameter across the ensembl&SM (version 3.2) when two different retrievals from the Ad-
Figure 6b suggests that among the four SHPs consideredyanced Microwave Scanning Radiometer for the Earth Ob-
model simulations are most sensitivettp followed by K. serving System (AMSR-E) sensor aboard the Aqua satellite
The variability inys and theb parameters contribute less to are assimilated. The NASA Level-3, “AEand3” product
the uncertainty in soil moisture in this instance. The figure (version 6 Njoku et al, 2003 and the AMSR-E Land Param-
also illustrates that the relative importance of the parameter ieter Retrieval Model (LPRM) product developed at NASA

i,j=1
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Fig. 7.Changes in Metric Entropy (top row) and Information gain (bottom row) from the assimilation of NASA AMSR-E (left column) and
LPRM AMSR-E (right column) retrievals.

GSFC and VU AmsterdamQwe et al, 2008 are used in  in the consecutive patterns in the time series. This leads to

the data assimilation (DA) integrations. The experiments arehigher I1G values for NASA DA relative to LPRM DA, sug-

carried out over the Continental United States for a periodgesting that the changes in soil moisture time series intro-

of 2002 to 2008, using the same configuration used in theduced by LPRM DA may be less spurious (random). In prior

NLDAS project Mitchell et al, 2004 (from 25-53 N and MDF studies Reichle et al.2007 Q. Liu et al, 2011, Peters-

125-67 W at 1/8 degree spatial resolution). The details of Lidard et al, 2011), accuracy-based measures were used to

the assimilation methodology are describedPeters-Lidard  characterize the value of assimilating these retrievals into

etal.(201D). LSMs. The results in this article present an alternate eval-
Figure 7 presents a comparison of the change in metricuation using information theory metrics within LVT.

entropy AME) and the information gainAIG) metric as

a result of data assimilation. These metric values are com- »

puted using a word length of 3. Th&ME and AIG val-  ©-8 Scale decomposition features

ues are calculated by subtracting the metric values for the

simulation without data assimilation from the corresponding Study of the effects of spatial scale has been an active area of

data assimilation integration. Figureindicates that DA in-  hydrological researchQupta et al.1986 Wood et al, 199Q

troduces more entropy (randomness) in the simulations, ovegjvapalan and Kalmal995 Seyfried and Wilcox 1995

most parts of the domain, with higher values SME for Bloschl and Sivapalanl995 Wood et al, 1988 Bloschl

the NASA DA compared to the LPRM DA. The information 1999 Erickson et al. 2005 Trujillo et al., 2009. Charac-

gain metric indicates how much the sequence of patterns iferization of the nature of spatial variability of different com-

the data contributes to the overall information. Thks val- ponent processes over a range of scales are important for im-

ues when assimilating NASA retrievals are larger comparedproving the utility of terrestrial hydrological models. LVT

to that of LPRM assimilation. The changes in soil moisture includes approaches such as discrete wavelet transforms to

introduced by the NASA DA also result in more randomnessenable scale based decomposition analyses. Here we present
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35 R, of LVT for another MDF experiment where the MODIS frac-
tional snow cover data is used to assess the applicability of
model formulations at different spatial scales.

5.7 Spatial similarity measures

Percentage contribution

With the increased availability of spatially distributed
datasets from satellites and remote-sensing platforms, there
is a need for techniques and metrics that evaluate models
1 2 4 8 16 32 64 128 256 512 1024 . . . . .
Spatial Scale (KM) and observations based on the their spatial patterns, in addi-
tion to the one-to-one correspondence comparisons that are
Fig. 8. Percentage contribution to the total improvement in snow typically used. The incorporation of spatial pattern compar-
covered area POD at different spatial scales, generated by a Wgons will aid in further improving the reliability of LSMs
dimensional discrete Haar wavelet analysis. for hydrological applicationsRloschl and Sivapalarl995
Grayson and BloschR000. A review of spatial similarity
methods in hydrology is provided MWealands et ak2005,
an examp|e Of Sca|e_decomposition eva|uation Of sSnow CoveVVhiCh inClUdeS teChniqueS ba.sed on Statistical identiﬁcation
simulations from the LSMs using LVT. as well as image processing techniques. In this section, an ex-
The intensity-scale approach Gasati et al(2004, orig-  ample of using a similarity metric through LVT to compare
inally developed for the spatial verification of precipitation SNOW cover patterns from two different LSMs is presented.
forecasts, is used to perform a scale decomposition analy- Snow cover estimates using two LSMs, Noah (version 3.2)
sis. The technique employs a two dimensional discrete Haa@nd CLM (version 2Dai et al, 2003, forced with GDAS and
wavelet transform that decomposes a given field into theCMAP datasets, are generated over a A0 region near
sum of orthogonal components at different spatial scales. Théhe Southern Great Plains in the US at 1 km spatial resolution
mean squared error (MSE) of the decomposed components £ & time period of 1 November 2008 to 1 June 2009. The

each spatial scale is used to quantify the scale decompositiohSMs have different representations of snow processes, with
effects. Noah employing a simple single snow layer scheme. CLM

Using the domain configuration at 1 km spatial resolution includes a more complex five layer snow scheme with param-
over Afghanistan (used in SeéLl), two model simulations ~ eterizations for temporally varying snow albedo, as a func-
are conducted using Noah LSM (version 2.7.1); one that em?ion of snow cover and snow age. Both LSMs simulate tem-
ploys a terrain based correction of shortwave radiation input?orally varying snow density with evolution of patchy snow
to the LSM and one that does not include such adjustmentsSover. The model simulations are evaluated against the frac-
The terrain-based corrections adjust the incoming shortwavdional snow cover observations from MODIS (MOD10A1
radiation based on terrain slope and aspect, and these changésion 4) using the “Hausdorff distance” similarity metric.
in turn impact the evolution of snow over these terrain. The Hausdorff distance (HD) measures the similarity of points
improvements in the snow cover simulation as a result ofin two finite sets and is not designed to find one-to-one cor-
the terrain-based correction is computed as the difference ifieSpondence between points in each set. Itis expressed as the
POD fields from the two simulations, generated by Compar_maximum distance of a set to the nearest point in the other
ing against the MOD10AL1 (version 4) fractional snow cover Set:
product. The scale-decomposition approach is then applied

to this difference field, to quantify how the improvements in /(M. 0) = lﬂ?&({ﬂig{”m —oll}}, ©)
snow cover estimates at 1 km spatial resolution translate to
coarser spatial scales. whereh(M, O) is the HD valuejn ando are points of sets

Figure8 shows the result of scale decomposition of the to- M (representing model) an@ (representing observations),
tal improvement field for POD using the two dimensional respectively||m — o|| is the norm of the points in the model
discrete Haar wavelet transform. The algorithm computesand observation spaces and can be computed as the Euclidean
successive decompositions of the original field by powers ofdistance betweem ando.
2. The percentage contribution to the total improvement at Figure9 shows a time series comparison of the cumulative
each coarse spatial scale is shown in Bigl'he results indi- HD measure from Noah and CLM snow cover simulations
cate that most of the improvements in POD are obtained afor the winter season of 1 November 2008 to 1 June 2009.
fine spatial scales and the contribution of the scale decreasédore temporal variability in HD values is observed during
with increase in spatial resolution. At scales coarser tharthe snow evolution and ablation periods and it drops during
16 km, the percentage contribution drops below 10 %. Simi-the peak snow season, suggested by the flattening of the cu-
lar analysis of scale effects can be performed on other metricenulative HD curves. This indicates that there is more con-
and variables of interest. This example demonstrates the ussstent agreement in the observational and model simulated
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applications. These extensible interfaces allow the incorpo-
Noah —— ration of new observational datasets and analysis metrics in
an interoperable manner. The combination of the modeling
capabilities of LIS and the analysis capabilities of LVT pro-
vide a robust environment for conducting end-to-end model
data fusion experiments that has been identified in the com-
munity as a key paradigm for improving the applicability of
LSMs.

LVT currently supports a large suite of in-situ, satellite
and remotely-sensed, and model and reanalysis products to
enable comprehensive evaluations of various hydrological
processes. These datasets are supported in their native for-
mat and LVT handles the temporal and spatial transforma-

t t tions required in the analysis. Diagnostic model verifica-
2008/11 2009/01 2009/03 2009/05 tion and intercomparisons are supported through a variety
Fig. 9. Comparison of the cumulative Hausdorff distance measuresof analysis metrics and procedures. In addition to the stan-

- : . dard accuracy-based measures, LVT supports ensemble and

of snow cover simulations from Noah and CLM. . - : .
uncertainty measures, metrics based on information theory,
similarity metrics and methods to quantify the impact of spa-

patterns during the peak snow season. During the snow meftal scales on model performance. This variety of techniques
period, Noah produces lower HD values compared to CLM.Provide novel ways to characterize model performance and
This suggests that the spatial patterns in the Noah snow covdP investigate associated tradeoffs. _

simulations capture the observational patterns more accu- The article presents a number of illustrative examples that
rately relative to CLM's simulations, though CLM’s snow demonstrate the capabilities of LVT and provide several in-
physics formulations are more complex. Note that newer verStances of end-to-end MDF experiments. The optimization
sions of both these models (Noah-MWiu et al, 201) and  @lgorithms in LIS are used to refine the model parameters of
CLM version 4.0 Lawrence et a).2011) with updated snow the LSM to improve its estimation of surface fluxes. LVT is
physics formulations are currently being incorporated intoUsed to quantify the systematic improvements resulting from
LIS, and similar comparisons can be performed through LvTthe refined model parameters. The impact of data fusion for
to evaluate the updated snow physics in these LSMs. Thignodel state and uncertainty estimation is assessed through
experiment demonstrates the use of spatial similarity metricslata assimilation and uncertainty quantification metrics, re-

for comparing the performance of two different LSMs within SPectively. The information theory-based metrics provide
a MDF framework. measures such as metric entropy, information gain and com-

plexity to identify tradeoffs in datasets based on their infor-

mation content and complexity. Acknowledging the need to
6 Summary and future directions perform model evaluations in a spatially distributed manner,

spatial similarity metrics and scale decomposition techniques
This article describes the development and capabilities of ahat provide spatial pattern comparisons against remotely-
verification system for terrestrial hydrology known as the sensed distributed datasets are also incorporated in LVT.
Land surface Verification Toolkit. LVT enables an environ- LVT is an evolving framework and continues to be en-
ment for conducting the systematic evaluation of land modelhanced with the addition of new analysis capabilities and the
outputs by providing a variety of analysis metrics and proce-incorporation of terrestrial hydrological datasets. In addition
dures. LVT functions primarily as an analysis back-end sys-to the handling of LSM outputs, the support for computa-
tem for the NASA Land Information System (LIS), but also tional parallelism and outputs from various application mod-
supports the analysis of data products from other modelingels coupled to LIS (e.g., crop, drought, flood, landslide mod-
environments. LIS is a comprehensive land surface modelingls) is also being developed. Ensemble measures such as reli-
framework and includes data assimilation and posterior infer-ability, resolution and discriminatioMurphy and Winkler
ence tools such as optimization and uncertainty estimatiorf992 and timing error measure¥.(Liu et al., 2011) will also
to facilitate the exploitation of information content from ob- be incorporated into the current suite of analysis metrics. In
servational datasets to augment model predictions. LVT notddition, capabilities for weighting various metrics and scor-
only supports the verification of LSM outputs, but also pro- ing models based on a collection of metrics are also being
vides the tools to analyze the performance of these computgplanned. The use of a common environment for diagnostic
tional algorithms within LIS. LVT is designed using object evaluation will also help in quantifying the tradeoffs between
oriented software principles, with abstractions defined fordifferent metrics and skill scores. For example, different or-
the customization and extension of the system for differentganizations use different indices for quantifying the severity

\V] w L (&)} » ~ (oo
T

Hausdorff distance

!

Geosci. Model Dev., 5, 869886, 2012 www.geosci-model-dev.net/5/869/2012/



S. V. Kumar et al.: Land surface Verification Toolkit 883

of drought Heim, 2002. The availability of these drought Casati, B., Ross, G., and Stephenson, D. B.: A new intensity- scale
indices through LVT will enable cross-comparisons of these approach for the verification of spatial precipitation forecasts,
measures and the assessment of their suitability for the in- Meteor. Appl., 11, 141-154, 2004.

tended application. In summary, the growing capabilities ofChen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H., Koren, V.,
LVT are expected to help in the definition and refinement of ~ Duan. Y., Ek, M., and Betts, A.: Modeling of land-surface evapo-
a formal benchmarking and evaluation process for the LSMs ration by four schemes and comparison with FIFE observations,

d istin i ina thei f | Id licati J. Geophys. Res., 101, 7251-7268, 1996.
and assist inimproving their use for real-world applications. Dai, Y., Zeng, X., Dickinson, R., Baker, I., Bonan, G., Bosilovich,

M., Denning, S., Dirmeyer, P., Houser, P., Niu, G., Oleson, K.,
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