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Abstract. A new model to simulate and predict the proper-
ties of a large ensemble of contrails as a function of given air
traffic and meteorology is described. The model is designed
for approximate prediction of contrail cirrus cover and anal-
ysis of contrail climate impact, e.g. within aviation system
optimization processes. The model simulates the full con-
trail life-cycle. Contrail segments form between waypoints
of individual aircraft tracks in sufficiently cold and humid air
masses. The initial contrail properties depend on the aircraft.
The advection and evolution of the contrails is followed with
a Lagrangian Gaussian plume model. Mixing and bulk cloud
processes are treated quasi analytically or with an effective
numerical scheme. Contrails disappear when the bulk ice
content is sublimating or precipitating. The model has been
implemented in a “Contrail Cirrus Prediction Tool” (CoCiP).
This paper describes the model assumptions, the equations
for individual contrails, and the analysis-method for contrail-
cirrus cover derived from the optical depth of the ensemble
of contrails and background cirrus. The model has been ap-
plied for a case study and compared to the results of other
models and in-situ contrail measurements. The simple model
reproduces a considerable part of observed contrail proper-
ties. Mid-aged contrails provide the largest contributions to
the product of optical depth and contrail width, important for
climate impact.

1 Introduction

Contrails are thin linear ice particle clouds which form in
the atmosphere behind cruising aircraft because of mixing
of the emitted water vapor with cold ambient air leading to
local liquid saturation, condensation of water on aerosols,
and subsequent freezing (Schmidt, 1941; Appleman, 1953;
Schumann, 1996). In ice-supersatured air masses contrails
spread and grow by uptake of ambient water. The total ice

mass content may be several orders of magnitude larger
than the amount of water emitted from the aircraft (Knol-
lenberg, 1972; Heymsfield et al., 1998; Atlas et al., 2006).
Contrails have often been observed to persist for many hours
and transform into contrail cirrus, with considerable cloud
cover and optical depth (Detwiler and Pratt, 1984; Schu-
mann and Wendling, 1990; Bakan et al., 1994; Minnis et al.,
1998; Duda et al., 2001; Mannstein and Schumann, 2005;
Atlas et al., 2006; Vazquez-Navarro, 2009; Atlas and Wang,
2010). Persisting contrails are often associated with, or em-
bedded in thin cirrus (Sassen, 1997; Immler et al., 2008). In
regions with high traffic density, high humidity, and thin cir-
rus, contrails may spread quickly over a large region. Such
so-called contrail outbreaks may cause a considerable frac-
tion of the annual mean contrail cover (Duda et al., 2001;
Haywood et al., 2009). Presently, more than 80 000 com-
mercial flights per day are performed globally and traffic is
increasing (Wilkerson et al., 2010). A large fraction of the
aircraft cruises at altitudes where contrails may form (Ap-
pleman, 1953; Miake-Lye et al., 1993; Sausen et al., 1998).
Contrails may provide surfaces for heterogeneous chemistry
(Meilinger et al., 2005; Voigt et al., 2010). Contrails are vis-
ible tracers of aircraft impact on the atmosphere. In spite of
still large uncertainties, the climate impact of contrails ap-
pears to be important (Fahey et al., 1999; IPCC, 2007; Lee
et al., 2010; Burkhardt and K̈archer, 2011).

In order to assess the climate impact of individual aircraft
flights, e.g. as input for route optimization (Mannstein et al.,
2005), for aircraft optimization (Green, 2002; Koch et al.,
2009; Schwartz and Kroo, 2011), or for prediction of con-
trail cover in an area with intense air traffic day by day (Duda
et al., 2009), one needs a model which is able to compute
contrail properties for individual flights as well as for a large
fleet of aircraft regionally and globally with short computa-
tion times.
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Contrail and cirrus formation is a nonlinear process de-
pending strongly on ambient meteorology and plume pro-
cesses (Scorer and Davenport, 1970; Lee et al., 2010). These
plume processes are inherently subgrid-scale in multidimen-
sional global models (Schumann and Konopka, 1994; Cari-
olle et al., 2009; Burkhardt et al., 2010; Paoli et al., 2011).
Plume ice cloud models with different degree of complexity
for mixing and particle microphysics have been developed
(Miake-Lye et al., 1993; Kärcher et al., 1996, 2009a; Brown
et al., 1997; Jensen et al., 1998b; Kärcher, 1998; Meilinger
et al., 2005; Naiman et al., 2010), but none of them treats the
whole contrail life-cycle from contrail formation until dissi-
pation.

The decision of whether a contrail forms or not along a
given flight is a relatively simple task because it can be ex-
plained thermodynamically once the meteorological and air-
craft parameters are sufficiently known (Schumann, 1996;
Rädel and Shine, 2007). Weather and flight track data have
been used to identify contrail forming flight tracks and fol-
low their advection (Duda et al., 2004; Atlas et al., 2006;
Duda et al., 2009). From comparisons with satellite data at
computed contrail-positions, optical and sedimentation prop-
erties were successfully deduced (Duda et al., 2004). Con-
trail persistence analysis was compared with satellite-derived
contrail cover showing high sensitivity to ice supersaturation
and vertical wind input (Duda et al., 2009).

However, the formation of ice particles in the exhaust jet
at time scales of 0.1 s to 20 s (Kärcher et al., 1998; Paoli
and Garnier, 2005; Paoli et al., 2008), their spreading and
downwash (Scorer and Davenport, 1970) with the wake vor-
tices forming behind aircraft at time scales of 1 min to 20 min
(Lewellen and Lewellen, 2001) and their transition into wide-
spread cirrus clouds and final decay at timescales of less than
a hour to possibly days (Unterstrasser and Gierens, 2010a),
are difficult to compute in one model. Three-dimensional
(3d) large eddy simulation (LES) models resolve the fluid
dynamics of wake vortex formation and decay (Gerz and
Ehret, 1996; Lewellen and Lewellen, 1996; Holzäpfel et al.,
2010; Misaka et al., 2012) and the bulk microphysics of con-
trails (Gierens, 1996; Chlond, 1998; Lewellen and Lewellen,
2001; Unterstrasser and Sölch, 2010; Naiman et al., 2011),
but require large computing times. Even two-dimensional
(2d) variants of such models, which allow for parameter
studies and several hours of contrail ages, are too expensive
to be applied for simulations of a large ensemble of con-
trails with realistic meteorological variability (Jensen et al.,
1998a; Gierens and Jensen, 1998; Unterstrasser and Gierens,
2010b). Hence, simpler models with parameterized physics
are required, providing proper results for the whole contrail
life-cycle and for the global aircraft fleet under realistic me-
teorological conditions, with far less computing time.

Such a model, the “Contrail Cirrus Prediction Tool” (Co-
CiP), is described in this paper. The model principles and
its application for comparison with satellite data have been
presented briefly before (Schumann, 2009). Basic model fea-

tures and comparisons to in-situ observations have been pub-
lished in Voigt et al. (2010). The model has been applied
to estimate the global climate impact of contrail cirrus and
to demonstrate the potential of mitigation of contrail cli-
mate impact by route optimization (Schumann et al., 2011a).
This paper describes the details of the basic model concept,
presents global results for illustration, and compares results
for a few special cases with other models and observations.

2 Model

2.1 The Gaussian concentration profile

The spatial distribution of concentrations in a plume or con-
trail segment (without or with ice) at any timet has to
be know for computing plume properties depending on its
width, depth, cross-section area, and shear-induced inclina-
tion. For this purpose, the concentration field in the plume
is approximated as a Gaussian function of given width (or
breadth)B, depthD, and inclination using the analytical re-
lationships derived byKonopka(1995). Here, we describe
the concentration profile. The computation of the plume pa-
rameters and their integration in time are explained in the
following sections.

The concentrationc of a species per air mass in the plume
with local orthogonal coordinates(x,y,z) relative to the
plume axis (x = flight direction, y = cross-direction,z =

vertical) is approximated in the plane perpendicular to the
segment axis by a Gaussian function of the position vector

x = (y,z)T ,

c(x) =
C0

A
exp[−

1

2
xT σ−1x]. (1)

The effective cross section areaA of the plume follows from
the integral over ally andz,

A ≡

∫ ∫
exp[−

1

2
xT σ−1x]dx. (2)

As a consequence, see AppendixA1,

A = 2π [det(σ )]1/2, (3)

and∫ ∫
c(x)dx = C0, (4)

whereC0(x, t) is the mass of the species per plume length
andC0/A is the volume specific concentration in the center
of the plume. Here,σ(x, t) is the covariance matrix of the
concentration fieldc in the plane for unit mass content (C0 =

1) (Konopka, 1995),

σ =

∫ ∫
(x ⊗ x)c(x)dx, (5)
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Fig. 1. Schematic of contrail dynamics versus altitude and con-
trail age with plume depthD, breadthB, and normal velocity shear
dVn/dz at stages 0: contrail formation, 1: downwashed wake vor-
tex, 2: aged Gaussian cross-section.

(with dyadic product⊗). The components ofσ describe a
real symmetric and positive definite matrix,

σ =

σyy σyz

σyz σzz

 . (6)

The inverse matrix is

σ−1
=

1

det(σ )

 σzz −σyz

−σyz σyy

 , (7)

with det(σ ) = σyyσzz − (σyz)
2.

Since the area of an ellipse in normal form with widthB

and depthD is A = π B D/4, we identify (see Fig.1)

B2
= 8σyy, D2

= 8σzz. (8)

For optical depth computation, as we will see, we need the
effective vertical depthDeff = A/B which equalsDπ/4 ini-
tially but gets smaller when the cross-section deforms with
ambient shear.

This plume model has been used in the past to derive tur-
bulent diffusivities from observed trace gas measurements
and large eddy simulations (Schumann et al., 1995; Dürbeck
and Gerz, 1995, 1996; Schlager et al., 1997), has been ap-
plied for air chemistry, sometimes as part of regional and
global models (Schumann and Konopka, 1994; Karol et al.,
1997; Kraabøl et al., 2000), and has been used as bench-
mark for tests of other models (Naiman et al., 2010; Un-
terstrasser and Gierens, 2010a). Compared to earlier plume
studies (Danilin et al., 1994; Kärcher, 1995), this model ac-
counts not only for turbulent diffusion but also shear. Its
main advantage compared to an elliptical model described by
Naiman et al.(2010) lies in the fact that the Konopka-model
gives the exact solution of the advection-diffusion equations
for constant shear and constant diffusivities.

The shape of aged contrails is sometimes not too far differ-
ent from a Gaussian plume shape (Freudenthaler et al., 1995;

Fig. 2. CoCiP simulation framework. For a list of CoCiP modules,
see Table1.

Paugam et al., 2010). However, the initial exhaust jet, wake
vortex and contrail (with primary and secondary parts) often
deviate considerably from this shape (Sussmann and Gierens,
1999; Gerz et al., 1998; Holzäpfel et al., 2010; Lewellen and
Lewellen, 2001). However, the Gaussian approximation al-
lows for efficient simulation of global contrail cover.

2.2 Numerical weather prediction input

CoCiP simulates the contrails formed for given meteorol-
ogy regionally or globally. Numerical weather prediction
(NWP) data are used to determine the ambient meteorologi-
cal conditions by linear interpolation for given positions and
times (see AppendixA2). (For a list of abbreviations and
frequently used symbols, see TablesA1 andA2 in the Ap-
pendix.)

Sub-module INITMET, see Fig.2, reads input of discrete
3d and time-dependent NWP fields for pressurep, geopoten-
tial altitudez, horizontal velocitiesu (eastward) andv (north-
ward), pressure change rateω = dp/dt , absolute tempera-
ture T , absolute humidityq, cirrus ice water mass fraction
IC, fractional cloud coverCC, and kinetic energy of subgrid-
scale motions ESGS. For analysis of radiative forcing, we
also require input for the flux values of outgoing longwave
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radiation (OLR), the reflected solar radiation (RSR), and the
solar direct radiation (SDR) at top of the atmosphere as a
function of x, y, and t from the NWP model. Finally, we
specify the solar constantS0(t) for the time of the year con-
sistent with the NWP data.

For global studies, we use analysis data from the Inte-
grated Forecast System (IFS) of the European Center for
Medium Range Weather Forecasts (ECMWF; seehttp://
www.ecmwf.int/research/ifsdocs/). Since a few years, the
ECMWF model allows for supersaturation in clear air which
has been demonstrated useful for this purpose (Tompkins
et al., 2007; Rädel and Shine, 2007; Haywood et al., 2009;
Lamquin et al., 2009, 2012). The model assumes that ice
forms in a fraction of a grid cell when the supersatura-
tion reaches the limit for homogeneous ice nucleation (Koop
et al., 2000), typically of the order 150 %. In this study, the
grid-cell mean humidity is taken as representative in both the
cloudy and clear parts of the grid cell. For regional applica-
tions, we used NWP input from the COSMO-DE model of
the German Weather Service (Baldauf et al., 2011). Also the
meteorological fields from a global circulation climate model
can be used to drive CoCiP.

Presumably the most critical input from the NWP model
is the relative humidity RHi over ice, which is the domi-
nant parameter for controlling the ice mass content in con-
trails (Unterstrasser and Gierens, 2010a). Contrails like cir-
rus, once formed, persist when the relative humidity is above
a critical value RHic. In principle, RHic = 1. However, su-
persaturated regions are shallow and narrow and, hence, may
not be resolved by the discrete humidity field on a finite
grid. Moreover, subgrid scale variability could cause local
supersaturation in a grid cell that is subsaturated on average
(Lamquin et al., 2009). Hence, the critical value RHic is usu-
ally taken different and below 100 % in NWP models. In the
ECMWF model, this value is

RHic = 0.8, (9)

in the mid-troposphere, 1.0 in the stratosphere and follows
a smooth transition with pressure altitude between these two
values in the upper 20 % of the troposphere. For simplicity
of further analysis, we divide the input value ofq by RHic
initially. Care has to be taken when interpolating humidity
(see Sect.A2).

2.3 Flight track and aircraft definition

CoCiP simulates the contrails formed by cruising aircraft,
flight by flight. Flight routes are prescribed on input as
a sequence of waypoints versus flight time. For example,
waypoint data from commercial flights over North America
and Southern Canada are available in the internet (Garber
et al., 2005). We got such data for case studies for German
airspace from the Deutsche Flugsicherung (DFS) for a few
days in October–November 2008, and for the European and
the North Atlantic air space from EUROCONTROL for some

days in August 2005. A global data set was setup by the
United States (US) Federal Aviation Administration (FAA)
with support from Volpe National Transportation Systems
Center based on a cooperation by FAA, EUROCONTROL,
and ICAO for 2006 (Wilkerson et al., 2010). For other pe-
riods, we simulate waypoint tracks for global commercial
aviation using aircraft type, airport-connection, and schedule
information from the Official Airline Guide (OAG), a com-
mercially available product.

From such data, for each flight, a sub-module READFP
reads the input to define the aircraft type and a list ofNW >

1 waypointsWi = (xi,yi,zi, ti), i = 1,2, . . . ,NW , in space
and time, specifying longitudex, latitudey, altitudez, and
time t , from start to end of the given flight track. The way-
points usually list the flight levelzi which is converted to
a static pressurep0,i according to the standard atmosphere
of aviation (ICAO, 1964), see AppendixA4. CoCiP loops
over the waypoints or over flight segmentsSi = (Wi,Wi+1),
i = 1,2, . . . ,NW − 1. For each waypoint, we set a flag to
identify if the waypoint is followed by a contrail segment
or a flight segment without contrail. This allows considering
tracks with several non-consecutive contrails.

Wake vortices, particle formation, and the initial contrail
dimensions depend obviously on aircraft and engine prop-
erties (Holzäpfel and Gerz, 1999; Sussmann and Gierens,
2001; Lewellen and Lewellen, 2001; Kärcher and Yu, 2009;
Voigt et al., 2010; Naiman et al., 2011). This model accounts
for the aircraft wing spansa, aircraft massMa, true air speed
Va, fuel consumption per flight distancemF , soot number
emission index EIsoot, and the overall propulsion efficiencyη.
This efficiency is needed for deciding on contrail formation
(Sect.2.4) and defined asη = Fa/(mF Qfuel) as a function of
thrust of engines or drag of aircraftFa, fuel flow per flight
distancemF , and fuel combustion heatQfuel (Schumann,
1996). The soot emission index belongs to the critical model
parameters, listed in Table2. Aircraft usually burn kerosene
with water vapor emission index EIH2O = 1.23 and combus-
tion heatQfuel = 43.2MJ kg−1. Other fuels can be simulated
as well, e.g. EIH2O = 8.94 andQfuel = 120MJ kg−1 for liq-
uid hydrogen (Schumann, 1996).

Type dependent properties are set in module AINIT.
The aircraft and operations data are collected from several
sources, such as the BADA data set (EUROCONTROL,
2009) and soot emissions estimated within the AERO2K
project (Eyers et al., 2004).

2.4 Contrail formation conditions

Each flight segment between consecutive waypoints on
which contrails can form is treated as a contrail segment.
We use the well-known Schmidt-Appleman criterion (SAC)
(Schmidt, 1941; Appleman, 1953; Schumann, 1996). The
SAC requires liquid saturation to occur locally in the plume
of aircraft exhaust gases mixing with cold ambient air. The
maximum threshold temperatureTLM is reached when the
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Table 1.Modules, in sequence of calls.

Name Purpose Sect.

INITMET meteorological fields 2.2
READFP reads flight plans 2.3
AINIT aircraft properties 2.3
SAC Schmidt-Appleman criterion 2.4
WINIT wake vortex 2.5
ICEINI ice mass and number initialization 2.6–2.7
INTCOCIP integration over several time steps 2.8
RUNGE Runge-Kutta 2.8
DTCONTR time derivatives and contrail properties2.8–2.12
RADI radiative forcing analysis 2.14
TAU2DS cloud mask for one contrail 2.15
TAU2DX cloud mask for cirrus 2.15

relative humidity over liquid water in ambient air is at satura-
tion, U = 1, U = RHipice(T )/pliq(T ). The saturation pres-
sures over liquid and over ice water surfaces,pliq andpice,
are computed as inSonntag(1994), see AppendixA3. An
often used approximation forTLM (liquid maximum) is

TLM = −46.46+9.43ln(G−0.053)+0.72[ln(G−0.053)]2,

(10)

with G in units of Pa K−1 and TLM in ◦C (Schumann,
1996), and with errors below 0.07 K for 0.24 Pa K−1 <

G <23 Pa K−1. Here,G is the steepness of the mixing line
between engine exit and ambient air in ap − T diagram,

G =
cp pEIH2O

(MH2O/Mair)Qfuel (1− η)
, (11)

with specific heat capacity of aircp = 1004 J (kg K)−1, ratio
of molecular masses of water and airMH2O/Mair = 0.622,
pressurep, water emission index EIH2O and combustion heat
Qfuel of the fuel used, and overall propulsion efficiencyη of
the aircraft at cruise. All these values are available for analy-
sis within CoCiP. For kerosene-driven aircraft, atp = (100–
500) hPa,G varies typically within (0.6–4) Pa K−1. Larger
values occur for fuels with larger water mass contents.

So far, no such approximation was available for the thresh-
old temperatureTLC at 0< U < 1. SinceTLC has to be com-
puted for each waypoint, we developed a new efficient ap-
proximation as presented in AppendixA5.

An alternative contrail threshold criterion avoiding itera-
tive solutions for givenTLM has been suggested by Ponater
et al. (2002). Instead ofT < TLC, it requires that the ambient
relative humidityU stays above a critical value

ULC =
G(T − TLM ) + pliq (TLM )

pliq
, (12)

or correspondingly RHi>RHiLC. This more efficient variant
is used unlessTLC is required for analysis.

An explicit criterion for persistency as a function of su-
persaturation is not necessary in CoCiP. In case of very low
temperatures, short-lived contrails may form from the emit-
ted water vapor even in totally dry air. Contrails are some-
times observed in slightly subsaturated air masses (Schr̈oder
et al., 2000; Rädel and Shine, 2007; Krämer et al., 2009;
Voigt et al., 2010). At least at low temperatures, it may take
up to an hour until the ice formed initially from emitted wa-
ter is sublimated, see AppendixA6. Contrails in subsaturated
air masses reach small cover and, hence, contribute little to
radiative forcing (Ponater et al., 1996). Nevertheless, such
contrails may be important when comparing contrail proper-
ties to observations (Voigt et al., 2011). Also, soot properties
may possibly get changed when processed in contrails (Lee
et al., 2010).

2.5 Wake vortex downwash

Since the global climate impact of contrails comes mainly
from contrails surviving far longer than the wake vortex
phase, we do not resolve the details of the jet and wake
dynamics in the first minutes. Instead, we use a parametric
model to estimate the initial depthD0, width B0, and maxi-
mum and mean downward displacements1zw and1z1 such
that the follow-on advection and dispersion is approximately
consistent with the results of the Gaussian model. After for-
mation of the contrail in the jet of the aircraft engines at point
“0”, see Fig.1, the sinking of the contrail with the wake
vortex behind the aircraft is estimated using a wake vortex
model. The subsequent computations then start from model
point “1” at the time and horizontal position of the contrail
forming aircraft but at lower altitude, see Fig.1. The plume
model assumes that aircraft wake induced turbulence affect-
ing the initial plume dimensions has ceased at this stage.

A wake vortex sub-model WINIT computes the maximum
downward displacement1zw of the contrails at the end of
the wake vortex phase as a function of aircraft and atmo-
spheric parameters using a parameterization derived from a
nondimensional fit to results of the Probabilistic Two-Phase
Aircraft Wake-Vortex Model (P2P) (Holzäpfel, 2003). The
sinking and decaying wake vortex depends on typical length
and time scales of the aircraft, ambient stratification, and am-
bient turbulence which are defined as:

wake vortex separationb0 = πsa/4,

initial circulation00 = 4Mag/(π saρ Va),

effective time scalet0 = 2π b2
0/00,

initial velocity scalew0 = 00/(2π b0),

and normalized dissipation rateε∗ = (ε b0)
1/3/w0,

which are functions of wing spansa,

aircraft massMa,

www.geosci-model-dev.net/5/543/2012/ Geosci. Model Dev., 5, 543–580, 2012
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Fig. 3. Non-dimensional maximum wake vortex sinking dis-
tance versus nondimensional stratification.Z∗ = −1zw/b0, b0 =

(π/4)sa, N∗ = NBV t0, t0 = 2πb2
0/00, 00 = Mag4/(πsaρVa).

Crosses depict CoCiP results. The deviation from a piece-wise
straight line is a consequence of different (non-dimensional) tur-
bulent dissipation ratesε∗ = (εb0)1/3/w0, w0 = b0/t0. The lines
depict the parameterization for fixedε∗ = 0.01, 0.05 and 0.23 (red,
blue, black) (Holzäpfel, 2003). Filled symbols with correspond-
ing colors are LES results (Hennemann, 2010; Delisi and Robins,
2000). Open symbols are experimental results in tanks (Sarpkaya,
1983; Delisi and Robins, 2000) and behind aircraft (deBruin and
Kannemans, 2004; Voigt et al., 2011) (projects AWIATOR and
CONCERT).

true air speedVa,

air densityρ,

Brunt-Vaisaila frequencyNBV , and turbulent kinetic en-
ergy dissipation rateε.

The parameterization distinguishes between strongly and
weakly stably stratified conditions: IfNBV t0 ≥ 0.8:

1zw = 1.49
w0

NBV
,

else, withε∗ ≤ 0.36,

1zw

b0
= 7.68(1− 4.07ε ∗ +5.67ε∗2)(0.79− NBV t0) + 1.88.

The maximum sinking1zw is larger than the value
w0/NBV for a pure Brunt-Vaisaila oscillation because of ad-
ditional rotational momentum in the sinking and rotating vor-
tices (Holzäpfel and Gerz, 1999). The influence of ambient
turbulence on wake vortex decay enters this model as a func-
tion of the turbulent dissipation rateε in the atmosphere.
As discussed later, the value of this parameter may vary in
the range (10−8–10−2) m2 s−3 (Schumann et al., 1995; Gul-
tepe and Starr, 1995). For small dissipation rate, the down-
wash depth depends only weakly on its value. Here we use
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Fig. 4. Initial contrail depth (black) and width (blue) versus air-
craft mass for an example traffic and meteorology over the North
Atlantic 6–9 June 2006. Each point corresponds to an aircraft at a
given position. Following the International System of Units (NIST,
2008), non-dimensional axis values (here: mass/Mg) represent the
quantity plotted (mass) divided by the given unit (Mg).

Eq. (37), see below, to estimate dissipation as a function of
ambient shear. Typical values are of the order 10−5 m2 s−3.

The wake vortex reaches maximum downward displace-
ment at times which are 5–12 times larger thant0, depending
on stratification (Holzäpfel, 2003). Hence,1zw is rarely ob-
served in the atmosphere because this occurs up to 50 km
behind the aircraft and the measurable wake turbulence is
weak at this stage. Nevertheless, the empirical fit is consis-
tent with the few existing field and laboratory results, see
Fig. 3. This figure contains previously published results and,
in addition, the result computed with the present approxima-
tion for one of the largest commercial aircraft (A380) as ob-
served during the CONCERT campaign (Voigt et al., 2010,
2011), with Va = 250 m s−1, Ma = 508 Mg,sa =79.8 m,ρ =

0.39 kg m−3, NBV = 0.012 s−1, ε = 10−5 m3 s−2. Hence,
b0 = 62.7 m, t0 = 30.3 s, w0 = 2.07 m s−1, N∗ = NBV t0 =

0.363,ε∗ = (εb0)
1/3/w0 = 0.04. With these parameters, the

above model computes a maximum wake vortex sinking of
Z∗ = −1zw/b0 = −4.63 (see Fig.3) or 1zw = 290 m. This
value is close to the observed value of 270 m.

The initial sinking from state “0” to “1” (Fig.1) is set to

1z1 = Cz11zw, Cz1 = 0.25. (13)

The center of the contrail is assumed to start higher than
midway between the initial and maximum sinking distance,
partly because of buoyancy. The initial contrail depthD1 is
set to

D1 = CD01zw, CD0 = 0.5. (14)

The initial contrail depth is taken considerably smaller than
1zw, because initial tests have shown that otherwise the
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model simulates too large dilution compared to observations.
In fact, the initial contrail widthB1 is parameterized,

B1 = Ndil(t0)mF /[(π/4)ρ D1], (15)

so that the dilutionNdil at the timet = t0 of wake vortex
formation fits an often used empirical function

Ndil(t) ≈ 7000(t/ts)
0.8, (16)

with ts = 1 s (Schumann et al., 1998).
For a fleet of aircraft and typical meteorological condi-

tions, Fig.4 illustrates the initial depth and width results.
These scales increase with aircraft mass, as expected. For
the same aircraft mass, the initial depth is largest for weak
stratification. The initial width is usually far smaller than the
depth.

2.6 Initial contrail ice crystal mass concentration

We simulate the contrail ice properties using two plume-bulk
ice quantities, the mass mixing ratioI of ice in the contrail,
and the total number concentrationN of contrail ice particles
per contrail length. We prescribeN and not the volume spe-
cific ice number concentrationn = N/A becauseN is con-
served during plume mixing.

We assume that the plume vapor is at ice saturation within
the effective cross-section areaA (Eq. 3) of the contrail
plume at all times. Besides for young contrails with low
ice mass and low particle concentrations, this assumption
is supported for contrails after the vortex formation even
for large ambient supersaturation by large eddy simulations
(Lewellen and Lewellen, 2001; Unterstrasser and Gierens,
2010a; Paugam et al., 2010) and measurements (Heymsfield
et al., 1998). The temperature increase in the plume from
combustion heat and later by sublimation heat is small af-
ter a few seconds of contrail age, see AppendixA6. Hence,
the contrails are assumed to be in thermal equilibrium with
ambient air in the wake phase after contrail formation. These
assumptions are essential for efficient simulation. As a con-
sequence, the ice mass contentI can be computed from pure
thermodynamics. Otherwise, we would have to solve also a
budget equation for heat, and the resolution of vertical oscil-
lations in stratified air would require time steps smaller than
N−1

BV .
The initial valueI0 at stage “0” is computed in a module

ICEINI as the sum of the water mass emitted by the engines
from burning kerosene mass per flight distance plus the water
mass concentration available from humidity in the air mass
entrained into the young contrail:

I0 =
EIH2OmF

(π/4)ρD1B1
+ q0 − qs(p0,T0). (17)

The first term is the water mass emitted by the engines
from burning kerosene per flight distance. The last two terms
measure the amount of water vapor above ice saturation

available in the air mass entrained into the young contrail.
This amount is deposited on ice particles at ice saturation.
Here,q0 is the ambient humidity (mass ratio) andqs(p,T ) =

(R0/R1)pice(T )/p is the saturation humidity at point “0”.I0
is replaced by zero if becoming negative (in dry air), and this
ends the contrail life-cycle, for such cases.

During sinking of the contrail with the wake vortex, part
of the initial ice mass sublimates because of adiabatic warm-
ing (Holzäpfel and Gerz, 1999; Sussmann and Gierens, 1999;
Lewellen and Lewellen, 2001). Hence, the ice water mass
fractionI1 in the contrail at stage “1” (at the end of the wake
vortex phase) is smaller:

I1 = I0 − 1Iad (18)

where

1Iad =
R0

R1

[pice(T0 + 1Tad)

p1
−

pice(T0)

p0

]
(19)

and

1Tad = T0(R0/cp)(p1 − p0)/p0, (20)

with gas constantR0 and specific heat capacitycp of air.
Again, the contrail life-cycle ends if the above expression
gives a negative result (in dry air). Without aircraft emis-
sions, a plume starting atp0 = 250 hPa,T0 = 220 K, with
RHi = 1.5 has to descend 400 m according to these equations
to reach saturation (RHi=1), in agreement with earlier es-
timates (Lewellen and Lewellen, 2001; Unterstrasser et al.,
2008).

2.7 Initial contrail ice crystal number concentration

The initial number of ice particles is a result of liquid droplets
which form by nucleation on emitted and ambient aerosols
and which freeze shortly thereafter (Kärcher et al., 1996; Fa-
hey et al., 1999). The local relative humidity at the place of
contrail formation in the exhaust plume exceeds liquid satu-
ration, so that liquid droplets form at least on the larger soot
particles in the young contrail, which then freeze quickly be-
cause they are relatively large (compared to volatiles), and
form at low temperature and high relative humidity in the
contrail. This nucleation process depends on aerosol prop-
erties, mixing, and local temperature and humidity in the
plume. This process has been extensively studied with mea-
surements and models (Busen and Schumann, 1995; Schu-
mann et al., 1996; Kärcher et al., 1996; Brown et al., 1997;
Jensen et al., 1998b; Kärcher, 1998; Kärcher et al., 1998;
Schumann et al., 2002; Paoli et al., 2008; Wong and Miake-
Lye, 2010). Ice particle formation is a self-limiting process in
which vapor depletion by the first ice particles limit further
nucleation (Jensen et al., 1998b; Kärcher et al., 1998). The
initial number of ice particles is essentially determined by the
number of soot particles emitted by the engines (Brown et al.,
1997; Kärcher, 1998). In principle, also nucleation in volatile
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materials, e.g. sulfuric acid and organic material, contributes
to ice formation, however, the contribution of volatiles is
small for typical soot emissions and moderately low tem-
peratures (Kärcher and Yu, 2009). The few existing mea-
surements of ice and soot particle concentrations in young
contrails are hardly accurate enough to test this assumption
(Schumann et al., 2002). However, analysis of experiments
for different fuel sulfur contents show that the number of ice
particles in young contrails increases by only about a fac-
tor 1.3 for an increase in fuel sulfur content from 6 µg g−1

to 2800 µg g−1 (Brown et al., 1997; Kärcher et al., 1998;
Schumann et al., 2002). Volatile particles contribute a larger
share to ice nucleation for low soot particle emissions (be-
low 1014 kg−1) and low ambient temperatures (below 210 K)
(Kärcher and Yu, 2009).

Hence, the initial numberN0 of ice particles per con-
trail length in the freshly formed contrail at stage “0” is as-
sumed to be determined by soot, and prescribed (in a module
ICEINI) as a function of the soot emission index and the fuel
consumption rate per flight distance,

N0 = EIsootmF . (21)

Contributions of ice particles from other sources, such as nu-
cleation in volatiles or aerodynamic contrails (Gierens et al.,
2009; Kärcher et al., 2009b), could be included when proper
parameterizations become available.

Only a fraction of the ice crystals survives the transition
between stages “0” and “1”. Ice particle loss by Brownian-
motion-induced coagulation after the jet phase is small
(Gierens, 1996; Kärcher, 1998; Paoli et al., 2008). However,
important loss is caused in the sinking vortex (Sussmann and
Gierens, 1999; Lewellen and Lewellen, 2001; Unterstrasser
et al., 2008). Any initial supersaturation gets reduced by de-
position of humidity on ice particles quickly and before the
vortex has reached its lowest altitude. The sinking vortex
with adiabatic heating causes local subsaturation around the
ice particles. As a consequence, the ice particles sublimate
and some of them disappear (Unterstrasser and Sölch, 2010).
Also turbulent detrainment from the sinking wake vortex in
dry air may contribute to particle losses. These losses de-
pend on aircraft type, aircraft speed and mass, soot and heat
emissions, humidity, temperature, shear, stratification, ambi-
ent turbulence, and particle sizes (Huebsch and Lewellen,
2006; Unterstrasser et al., 2008; Unterstrasser and Gierens,
2010a,b; Naiman et al., 2011).

Hence, we prescribe a “survival factor”fsurv of ice parti-
cles remaining after the vortex phase:

N1 = fsurvN0. (22)

As a first approximation, we assume that the surviving parti-
cle fraction is in line with ice mass changes,

fsurv = I1/I0, 0 < fsurv < 1. (23)

Implicitly this is a function of ambient humidity and tem-
perature. The survival factor varies between 1 and about 0.7.
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Fig. 5. Survival factor for ice mass due to adiabatic wake vortex
sinking versus the critical relative humidity over ice RHiLC required
for contrail formation, for meteorology over the North Atlantic for
6–9 June 2006. Each point corresponds to an aircraft with proper-
ties representing aircraft types in the traffic input (black) or with
properties of an heavy aircraft (red).

LES models compute smaller factors (Unterstrasser et al.,
2008; Kärcher et al., 2009a). The difference is partly caused
by the small sinking distancez1 of the bulk plume (in contrast
to maximum sinking), see Eq. (13). In principle, ice mass
and ice number evolve differently (Gierens and Bretl, 2009)
implying different survival factors. Therefore, we cannot ex-
clude at this stage that smaller survival factors might give
better results. Anyway, the ratioI1/I0 is aircraft dependent.
The survival factor depends on the temperature and humidity
differences relative to the SAC threshold values, see Fig.5,
because the plume starts sinking with initial ice mass depend-
ing on these differences.

2.8 Time integration and segment trajectories

After contrail initialization at stage “1” slightly below the
aircraft track, the contrail trajectories and properties are fol-
lowed with the Gaussian plume model until a given time of
analysis or until final disappearance of the contrail at any
later stage “2” (Fig.1). This evolution is computed by nu-
merical integration of the Lagrangian contrail position and
properties in a sub-module INTCOCIP. The integration in
time t is performed over a sequence of time steps1t . For
global simulations, we may use large time steps, of the or-
der of 1 h, for computational efficiency. The ice mass and
particle concentrations have to stay non-negative. Hence, the
integration scheme has to be accurate, positive definite, and
unconditionally stable.

The state of the contrail is characterized by a state vector
X(t, i), i = 1,2, . . . ,NW , containingX = x,y,p,σ,I,N, in-
cluding horizontal positions, static pressure, plume parame-
ters, mass specific ice mass content, and total number of ice
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particles per contrail length. All components ofX depend on
position in space and timet . The integration is performed
for each contrail segment between two successive contrail
points.

For the trajectory partX = (x,y,p) of the state vector, we
could use the standard second-order two-step Runge-Kutta
scheme (Abramowitz and Stegun, 1964). Lagrangian mod-
els for trajectory calculation in meteorology often use a first
order or the two-step second order scheme, which is uncon-
ditionally stable for smooth wind fields, without iterations
(Danilin et al., 1994; Nair et al., 2003; Stohl et al., 1998,
2001; Wernli and Davies, 1997). However, for accuracy at
large time steps, and because of strong nonlinearities of other
plume parameters, we apply the Runge-Kutta scheme with a
few (2–6) iteration steps. Accuracy tests have shown that the
time step1t does not need to be taken much smaller than the
time step of the available NWP results. This is very important
for the efficiency of the scheme.

The integration over one step is performed in a sub-module
RUNGE. Time derivatives ofX are computed in module DT-
CONTR. For each time step, these routines internally assume
that the input was given for a time point “1” and the integra-
tion ends after one step at a time “2”, with1t = t2 − t1.

The Runge-Kutta scheme starts with a predictor step:

X̃ = X(t) + 1t
∂

∂t
X(t), (24)

followed by one or several corrector steps,

X(t + 1t) = X(t) +
1t

2

[ ∂

∂t
X(t) +

∂

∂t
X̃

]
, (25)

X̃ := X(t + 1t). (26)

The time derivatives of the positions are computed using
the wind vector(U,V,ω) and ice particle terminal fall speed
VT ,

∂x/∂t = U, ∂y/∂t = V, ∂p/∂t = ω + gρVT . (27)

Here, we assume that the contrail follows the mid point of
the bulk of the ice particles under sedimentation so that the
point “2” gets displaced downwards according to the termi-
nal fall speedVT . Vertical advection may be computed fol-
lowing kinematic or diabatic trajectories (Danielsen, 1961).
The local heating rates required for the diabatic approach
are not generally available from NWP output (Fueglistaler
et al., 2009). Here, we use the kinematic variant for given
ω, although it may cause excessive vertical dispersion and
noise for large time steps due to waves and assimilation er-
rors (Schoeberl et al., 1997; Ploeger et al., 2002). Adiabatic
advection for constant potential temperature was tested, but
showed only minor changes in contrail statistics compared to
the kinematic variant. The other components ofX are inte-
grated quasi analytically as described below.

For numerical integration, one has to keep the way-point
variables at the start of the time-step, at the intermediate level

denoted with tilde, and at the end of the time step. Thereafter,
older results may be forgotten, unless required for later anal-
ysis. For old contrail waypoints originating from the same
aircraft at times beforet1, integration is performed with the
given time step. For new contrail waypoints getting initiated
within the time interval, a smaller time step is used to reach
t2. Polewards of| y |> 80◦, these calculations are performed
in Cartesian coordinates to avoid the pole singularity, see Ap-
pendixA7. This seems to be common practice in trajectory
models (Nair et al., 2003), but details have not been pub-
lished. Moreover, care is needed to make sure that the coordi-
nates stay consecutive when passing the date line (at±180◦)
for periodicity in longitude (see AppendixA8).

It should be noted that advection with horizontally di-
verging wind fields changes the segment lengthL between
waypoints. Individual waypoints may depart from each other
considerably over the time of integration, so thatL changes
by factors of order 0.5–2. Because of continuity, horizon-
tal divergence is connected with convergence in vertical
planes and this reduces the cross-section area. The change
in segment lengthL(t) is taken into account when integrat-
ing cross-sections and the particle concentrationN per unit
contrail length in time. Segment length is computed effi-
ciently as square root of the sum of squared geographical
coordinate differences (in meters), except in polar regions
where great circle equations are used (http://www.astro.uu.
nl/∼strous/AA/en/reken/grootcirkel.html).

For illustration, Fig.6 shows contrails analyzed for global
traffic and for ECMWF NWP data for a time slice at an ar-
bitrary analysis time 06:00 UTC 6 June 2006. This analysis
includes contrails with maximum age of< 36 h. The code
actually reads NWP data for a 5-days period, including the
period 36 h before the analysis time. The plot shows in red
the contrails existing at the analysis time. In addition, the
flight paths of aircraft cruising in cold and humid air causing
at least short contrails are plotted for the 3-h time interval be-
fore the analysis time. Most of the contrails at analysis time
originate from recent flights but some from flights that oc-
curred more than one day (and up to 36 h) before. Young
contrails experience little advection, but older contrails get
advected partly over large distances as indicated by the sep-
aration between red and black lines. Contrails occur in clus-
ters in regions with supersaturation. Many of these regions
also include natural cirrus. This coexistence of cirrus and
contrails will be taken into account when analyzing the ra-
diative forcing and contrail cirrus cover. The results will be
discussed further below.

2.9 Evolution of Gaussian plume parameters

The initially symmetrical Gaussian contrail inclines and
grows in cross-section areaA with time because of shear
(vertical gradient of the horizontal velocity normal to the
contrail axis),S = dVn/dz, of either sign, and horizontal
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Fig. 6. Contrail forming flight paths (cyan) for global traffic between 03:00–06:00 UTC 6 June 2006. Contrails existing at 06:00 UTC that
day are identified by red lines. Those parts of the tracks where these contrails originated are shown in black.

and vertical diffusivities,DH and DV , and possibly shear
diffusivity DS (of either sign) with the constraint

D2
S ≤ DV DH (28)

for positiv definite solutions. As derived byKonopka(1995),
with extension for variable segment lengthL(t), the tempo-
ral evolution ofσ(t), for constant values ofS, DH, DV , DS
follows from

σyy(t + 1t) = [
2
3S2DV1t3

+ (S2σzz(t) + 2DSS)1t2

+2(DH + Sσyz(t))1t + σyy(t)] [L(t)/L(t + 1t)]2 (29)

σzz(t + 1t) = 2DV1t + σzz(t) (30)

σyz(t + 1t) = [SDV1t2

+(2DS+ Sσzz(t))1t + σyz(t)]L(t)/L(t + 1t). (31)

The equations assume that only the horizontal plume scales
change inversely to the segment lengthL(t), while the verti-
cal stays constant. The vertical to horizontal divergence ratio
could be estimated from the NWP model, if necessary.

The contrail model starts from initial valuesσyy(t = t0) =

B2/8, σzz(t = t0) = D2/8, σyz(t = t0) = 0, see Eqs. (14,
15). Thereafter, these equations are used with equal-weight
algebraic mean values ofDH,DV,DS, andS at timest and
t + 1t to integrate over time tot + 1t . (The accuracy of the
method might be improved by weighting the contributions
differently.) Linear diffusivity changes with time could be

treated analytically (Konopka, 1995), but any parameteriza-
tion of the diffusivities as a function of plume scales makes
the equations nonlinear. Hence, the solutions are no longer
exact and the accuracy becomes time-step dependent. How-
ever, the integration is unconditionally stable and guarantees
positive definite solutions ofσ .

In the code we computeA from Eq. (3) for each waypoint.
However, the analytical solution forA is

A(t + 1t) = 2π
[1

3S2D2
V(1t)4

+
2
3S2DVσzz(t)(1t)3

+(2SDVσzz(t) − 2SDSσzz(t) + 4DHDV − 4D2
S)(1t)2

+(2DVσzz(t) + 2DHσzz(t) − 4DSσyz(t))1t

+σyy(t)σzz(t) − σ 2
yz(t)

]1/2
. (32)

Except for a factor 2, Eq. (32) is the same as Eq. (9) of
Dürbeck and Gerz(1996). It should be noted that shear alone
does not increase the cross-sectionA. It makes the elliptical
contrail cross-section wider but also thinner. But in combi-
nation with turbulent diffusion, mainly vertically, shear en-
hances mixing considerably. The vertical diffusivity is most
important for growth, since whenDV = 0 (DS = 0 because
of Eq.28), Eq. (32) reduces toA(t +1t) = 2π [2DHσzz1t +

σyyσzz − σ 2
yz]

1/2 regardless of the shear value. The valueDS
looses importance forA(t) when shear increases (Dürbeck
and Gerz, 1996). The same would be true forDH if it were
shear-independent.

2.10 The turbulence model

Most of the contrails form in the upper troposphere or lower
stratosphere where strong winds, shear and stratification
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prevail (Birner et al., 2002; Houchi et al., 2010; Manney
et al., 2011). Shear production of turbulence is driven by total
shearST , while plume distortion follows the vertical shearS

of the plume-normal velocity,

S2
T = (dU/dz)2

+ (dV/dz)2, S = dVn/dz. (33)

The Brunt-Vaisaila frequencyNBV measures stratification,
and the Richardson numberRi the ratio of both.

N2
BV = (d2/dz)g/2, Ri = N2

BV/S2
T . (34)

Molecular diffusion is negligible at plume scales because
of large Reynolds numbers. The state of turbulence in this
region is highly anisotropic and often composed of large-
scale horizontal quasi 2d motions with little vertical mo-
tions. These motions are composed of wavy motions and
intermittent turbulent spots (Dewan, 1979; Dörnbrack and
Dürbeck, 1998; Riley and Lindborg, 2008). The kinetic en-
ergy spectrum follows a−3-power law for the large scales
and a−5/3-power law for smaller scales, suggesting ei-
ther 2d turbulence or 3d inertial range turbulence, but local
isotropy requires smaller scales (Nastrom and Gage, 1985;
Riley and Lindborg, 2008). Wavy motions advect and distort
the plumes without mixing. As mentioned before, the dis-
sipation rate is often small (Schumann et al., 1995; Kantha
and Hocking, 2011; Gultepe and Starr, 1995; Clayson and
Kantha, 2008). Vertical motions in stratified air are limited
by kinetic energy convertible to potential energy (buoyancy
scaleLB = w′/NBV). Overturning turbulence occurs only
for scales below the Ozmidov scaleLOz = ε1/2N

−3/2
BV (Ri-

ley and Lindborg, 2008). Only dissipating turbulence causes
essential mixing between plume air and ambient air. The
horizontal scalesB of aged contrails are often in the tran-
sition region between the 2d-turbulence controlled by shear
and stratification and even the smaller vertical scaleD is of-
ten far too large for being within the isotropic inertial range
turbulence. Estimates of kinetic energy from subgrid scale
models require knowledge of the Richardson number and the
length scales of mixing and dissipation (Schumann, 1991),
see AppendixA9, which is uncertain for NWP grids with
grid scales far outside the inertial range. Turbulence expe-
rienced by cruising aircraft (including but not restricted to
clear air turbulence) can be estimated from coarse NWP
fields (Sharman et al., 2005; Frehlich and Sharman, 2010)
but the scaling of this turbulence (composed of waves and
turbulence) to plume scales has still to be investigated.

Since the plume trajectory meanders with ambient air mo-
tions at the scales of the contrail segments by advection in
a Lagrangian manner, internal mixing is limited to motions
at segment scales. The assumption of the same constant dif-
fusivities for young and aged contrails would certainly not
be appropriate. Instead, the diffusivities depend on shear and
stratification at plume scales. The diffusivity model used
here is based on classical fluid dynamics arguments, such as

Prandtl’s mixing length for shear driven mixing and equilib-
rium between dissipation and energy production by shear and
(negative) buoyancy, due to vertical mixing in stably strat-
ified fluids (Hunt et al., 1988; Schumann, 1991; Schumann
and Gerz, 1995).

Vertical diffusivities derived from measurements in the
free atmosphere are typically (0–1) m2s−1 (Pavelin et al.,
2002). Only slightly larger values occur locally in buoy-
ant plumes (Pisso et al., 2009) or in breaking gravity
waves (Dörnbrack and D̈urbeck, 1998). Smaller values, (0–
0.6) m2 s−1, should be effective at plume scales. The hori-
zontal diffusivities within a Lagrangian plume are of order
(5–20) m2 s−1 for young plumes but grow to the order of
104 m2 s−1 for wider and thicker plumes (Schumann et al.,
1995; Dürbeck and Gerz, 1996; Pisso et al., 2009). Large
eddy simulations are prone to numerical diffusion in par-
ticular in the presence of shear and stratification (Dürbeck
and Gerz, 1995, 1996). They compute mixing in an Eule-
rian frame and do not identify the Lagrangian and scale-
dependent mixing. Therefore, differences between analyti-
cal plume models and large eddy simulations (Naiman et al.,
2010; Unterstrasser and Gierens, 2010a) can hardly be used
to constrain the model parameters for diffusivities.

Vertical mixing can be parameterized either for given dis-
sipation rateε or for given root-mean-square (rms) verti-
cal turbulence fluctuationsw′

N (Schumann and Gerz, 1995).
Here, we prescribew′

N = 0.1 m s−1 to compute

DV =
cV

NBV
w′2

N + fT VT Deff, cV = 0.2, fT = 0.1, (35)

DH = cH D2ST , DS = 0, cH = 0.1 (36)

(To avoid division by zero, we constrainNBV > 0.001 s−1.)
The value ofw′

N is related to the dissipation rate by

ε = ASw′2
NS2, AS = 0.5 (37)

(Hunt et al., 1988; Schumann and Gerz, 1995). Typical shear
values, S = (10−3–10−2) s−1, and typical stratifications,
NBV = (0.01–0.03) s−1, for D = 100m, implyDV ≈ (0.07–
0.2) m2 s−1, DH ≈ (1–10) m2 s−1, and ε ≈ (5×10−7–
0.05) m2 s−3. These values are within the range of measured
data (Schumann et al., 1995). The buoyancy and Ozmidov
scales are astonishingly small in this range,LB ≈ (3–10) m,
LOz ≈ (0.07–0.7) m, i.e. not very much larger than the
Kolmogorov scale LK = (ν3/ε)1/4

≈ (0.3–6) mm where
kinematic viscosityν becomes important.

For quasi-steady homogeneous turbulence at low Richard-
son numbers,cV is a constant andcV = 0.2 is supported by
atmospheric boundary layer measurements (Hunt, 1985). For
large values ofRi, cV decreases (Schumann and Gerz, 1995)
but NBV gets large and, hence,DV gets small in this limit
anyway, so that this decrease is less important.DH would be-
come unrealistically large when replacing the mixing length

www.geosci-model-dev.net/5/543/2012/ Geosci. Model Dev., 5, 543–580, 2012



554 U. Schumann: Contrail cirrus model

scaleD in Eq. (36) with the dimensionally possible alterna-
tive B. The coefficientcH = 0.1 is a free adjustable model
coefficient. Its value is of minor importance because mixing
is mainly controlled by the product ofDVS and less byDH,
see Eq. (32). The essential free parameter isw′

N which mea-
sures the turbulence level at flight altitude.

Ice particles in contrails differ from passive tracers in that
they sediment, grow or sublimate, release latent heat, and in-
teract with radiation. Larger ice particles efficiently increase
the effective depth of a contrail by sedimentation (Schumann,
1994; Atlas et al., 2006). We account for the vertical growth
of the contrail cross-section by increasing the vertical diffu-
sivity for given fall velocityVT (as computed below). Also
fT is an important adjustable parameter.

Except for the constraintD2
S ≤ DV DH, little is known

about the off-diagonal “shear” diffusivityDS (which has ei-
ther sign). The shear diffusivity increasesA only if SDS < 0,
see Eqs. (32) and (31). This sign is imposed by shear driven
correlations between vertical and horizontal velocity fluctua-
tions.

DS = −CDS(DV DH)1/2S/|S|. (38)

As noted before, the value ofDS is unimportant for strong
shear. Therefore, in the absence of further information, we
setDS = 0.

The shearS is determined numerically from the wind field
provided by the NWP model. The vertical grid spacing1z in
such models is usually far larger than the contrail depthD.
Hence, the magnitude of the shear at contrail scale may be
larger because of shear by subgrid velocity fluctuations. The
effective vertical resolution1zeff in respect to shear is usu-
ally larger than the numerical resolution1z. By comparisons
to radiosondes,Houchi et al.(2010) show that the effective
vertical resolution of the ECMWF model for shear is about
1zeff = 2000 m. We, therefore, use a shear value which is
enhanced by a factor

fS = (1+ (1zeff/D)n)/2, n ≥ 0. (39)

This can be justified by considering the relationship between
the mean squared shear and the kinetic energy spectrumE(k)

of homogeneous turbulence versus wave numberk (Lilly ,
1967):

〈(
∂u

∂z
)2

〉 '

π/1z∫
0

k2E(k)dk. (40)

The angular brackets denote a suitable statistical mean oper-
ator. ForE(k) ∼ k−m, follows

〈(
∂u

∂z
)2

〉 ∼ (D/1z)3−m. (41)

For isotropic turbulence in Komogorov’s inertial subrange,
m = 5/3, and hencen = 2/3. For stably stratified flows, one

expects steeper spectra, e.g.m = 3, and hencen = 0. The
true value ofn needs to be determined empirically (Adelfang,
1971; Riley and Lindborg, 2008). For this model, we assume
n = 1/2.

The upper panels of Fig.7 illustrate the order of magni-
tude of the contrail mixing properties computed this way. The
vertical and horizontal diffusivities,DV andDH, are small
initially and grow with time when the contrails spread.DH
is about 10–100 times larger thanDV . The details depend
on age, shear, and stratification and, for high supersaturation,
also on sedimentation. The diffusivity values for the early pe-
riod, (0.01–0.5) m2 s−1 vertically and (5–20) m2 s−1 horizon-
tally, are fully consistent with estimates derived from mea-
surements and large eddy simulations (Dürbeck and Gerz,
1996; Schumann et al., 1995). Also the later values are con-
sistent with observations (Pisso et al., 2009). The thickness
and width values,D andB, are of the right order of mag-
nitude compared to ground-based lidar and satellite observa-
tions (Detwiler and Pratt, 1984; Freudenthaler et al., 1995;
Duda et al., 2004; Atlas et al., 2006; Immler et al., 2008;
Iwabuchi et al., 2012). More detailed comparisons have still
to be made.

2.11 Contrail ice mass integration in time

The ice content changes with time according to mixing of the
water mass mixing ratio in the plume with humidity from the
ambient air. To simulate this process, we consider the mass
budgets of contrail air massM = ρAL and contrail water
massMH2O = M (I + q) per contrail segment. The humidity
q inside the plume is assumed, as before, at ice-saturation,
q = qs.

The air massM(t+) at t+ ≡ t + 1t is

M(t+) = ρ(t+)A(t+)L(t+). (42)

Here,ρ(t+) is computed for given ambient pressure and tem-
perature att+, and the contrail cross-sectionA(t+) from
Eq. (3). The segment lengthL is computed for the waypoint
geometry.

The water massMH2O in the segment is composed of con-
trail water in the ice phase and water in the vapor phase at
ice-saturation. The water mass budget changes by mixing
with humid ambient air. The ambient air contains water va-
por at mass specific concentrationqa, and it may be supersat-
urated or subsaturated. Hence, at the end of the time step, the
amount of water mass in the contrail is

M(t+)(I (t+)+qs(t+)) = M(t)(I (t)+qs(t))+1Mqa, (43)

with contrail mass change1M = M(t+) − M(t), and ambi-
ent humidityqa = (qa(t+) + qa(t))/2 on average during the
time step. We do not include ice from ambient cirrus and ig-
nore the latent heat release for phase changes, because the
resultant temperature changes are small, see AppendixA6.
As a consequence, we find

I (t+) = [M(t)(I (t)+qs(t))+1Mqa]/M(t+)−qs(t+). (44)
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Fig. 7.Contrail properties versus contrail age in a set of contrail segments in the North Atlantic region during 6–9 June 2006. Top-left panel:
Width B and depthD. Top-right: Horizontal and vertical diffusivitiesDH andDV . Bottom-left: Total number of ice particles per nanometer
flight distanceN , ice particle volume mean radiusr, Bottom-right: Ice particle number concentration per volumen, and ice water mass
content per volumeρI .

Equations (42, 44) are used in CoCiP in their discrete form
to computeM(t+) andI (t+) for each time step. In case of
mixing with subsaturated ambient air and for decreasing sat-
uration vapor inside the plume, the contrail may dry out. In
this case, we setI (t+) = 0.

Here, we could distinguish contrails inside and outside the
cloud covered part of a NWP grid cell, as assumed in the
ECMWF model.Tompkins et al.(2007) assumed ice satura-
tion inside the cloudy part of the cell,qa = qs. Outside the
cloudy part,qa = (q − Cqs)/(1− C), whereC is the cloud
cover in the grid cell. However, assuming that contrails occur
uniformly inside the grid cell, with a shareC inside clouds
and a share 1− C outside clouds, implies that the ambient
humidity qa equals on average the grid mean value,qa = q.
Still, there could be differences in the contrail properties in-
side and outside of clouds because of nonlinearities. Full
treatment of such differences would require considering two
types of contrails, within and outside cloudy parts of a grid
cell. In view of many other uncertainties in NWP humidity
predictions, we ignore these differences in the present CoCiP
version.

For interpretation, we note that Eqs. (42, 44) are discrete
representations of

dI/dt = (dM/dt)(qa− qs− I )/M − dqs/dt. (45)

We see that this differential equation describes the uptake
of ice water mass from the ambient air in supersaturated air
masses and the loss of ice water in subsaturated air masses
according to the change in contrail massM(t). The ice water
content of the contrail adapts to changes of saturation hu-
midity inside the contrail with given plume mass. The con-
trail mass and the ice content grow mainly by mixing with
ambient air masses. If the ambient air is supersaturated, this
supersaturation of the air entrained into the plume is con-
verted to ice. If the ambient air is subsaturated, ice parti-
cles in the plume sublimate keeping the mixed plume in ice
saturation until all ice is consumed. Forqa = qs, we have
dI/dt = −I (dM/dt)/M, i.e. the ice mass content gets dis-
tributed over a growing plume mass with decreasing concen-
tration. Moreover, the ice water content of the contrail adapts
to changes of saturation humidity due to temperature or pres-
sure changes inside the contrail with given plume mass. Fi-
nally, we note thatI = const in this approximation for con-
stant ambient conditions, as it should.

The lower-right panel of Fig.7 shows that the ice water
content of the contrails, at a given time instant, varies lit-
tle with their ages. In fact, the IWC is mainly a function
of ambient ice supersaturation and temperature. Tempera-
ture determines the amount of water mass condensable for
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given relative humidity, consistent with empirical relation-
ships (Schumann, 2002; Schiller et al., 2008), see Fig.8.

2.12 Contrail lifetime and ice number integration

For given ice water contentI and total number of ice parti-
clesN , we compute the ice particle number concentration per
volumen and the volume-mean ice particle radiusr (needed
as input for sedimentation and optical depth computations)

n = N/A, (46)

r = [ρ I/(nρice4π/3)]1/3. (47)

The volume mean radius is the radius of a volume-equivalent
ice-particle sphere. It does not imply assuming spherical ice
particles. Here,ρice = 917 kg m−3 is a commonly used bulk
density of ice particles. Mixing of air between the contrail
plume and ambient air conservesN but reducesn by spread-
ing the ice particles over an increasing plume cross-section.

Without microphysical loss processes (and without nucle-
ation, without mixing with ambient cirrus, and for constant
segment lengthL), the total numberN of ice particles re-
mains conserved. (The change in segment lengthL(t) is
taken into account, see Eq. (56), later). As a consequence,
contrails would stay infinitely for constant ice supersatura-
tion, although getting thinner with time.

The lifetime of contrail clusters should be similar to the
lifetime of ice supersaturated regions (ISSR) (Gierens et al.,
1999). However, there are important differences: The life-
time of contrails is shorter because flight routes only excep-
tionally start when the air mass becomes supersaturated first.
The lifetime of individual contrails may be shorter than the
lifetime of contrail clusters. Moreover, the phase speed of
contrails and ISSR regions is basically different. Contrails
get advected with the wind while ISSR regions may be stag-
nant (at mountains) or move slower (in the upward motion
branch of cyclones, i.e. in so-called conveyor belts).

The lifetime of ISSR has been estimated from observa-
tions to be of the order of hours (Immler et al., 2008). A
mean flight path length in ISSR of 150 km, with a standard
deviation of 250 km, was derived from humidity measure-
ments onboard commercial aircraft (Gierens and Spichtinger,
2000); hence, there were many small ISSR regions. The
longest distance flown inside an ISSR extended over more
than 3700 km (Gierens and Spichtinger, 2000). The mean
values are consistent with observed contrail cluster diame-
ters of a few 100 km (Mannstein et al., 1999). If age scales
with this length and with the mean wind speed (possibly of
order 20 m s−1), a maximum ISSR age of about 1 d is to
be expected, but most have likely shorter lifetimes. In two
case-studies, at different scales, the lifetime derived from
ECMWF trajectories was 6 and 24 h (Spichtinger et al.,
2005b,a). Values exceeding 1 d are consistent with contrail
cluster observations (Bakan et al., 1994).
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Fig. 8. Top: Ice water content versus temperature in a set of con-
trail segments as in Fig.7, compared to an empirical approximation
(Schumann, 2002). Bottom: Terminal fall velocities versus particle
radius Ice water content versus temperature in the same set of con-
trail segments.

Here, we estimate an aviation-related lifetime of ISSR re-
gions by computing the age of trajectories which start at
aicraft flight waypoints satisfying the SAC in ice supersat-
urated air and last until the ambient humidity drops below
ice saturation. For this purpose, we use the advection scheme
for a passive tracer (without sedimentation) with ECMWF
data for 6–9 June 2006. Most of such trajectories end after
less than one hour, see Fig.9, the mean, median, and max-
imum (mean, med, max) ages of these aircraft-related ISSR
trajectories are computed this way as 9.5 h, 7.3 h, and>36 h,
respectively. Apparently, the age frequency distribution fol-
lows an exponential function. Based on such a fit, the mean
and median ages are 14.6 and 10.1 h. Simulated ISSR life-
times exceeding 24 h are found for about 1 % of all flights,
which is not unrealistic (Bakan et al., 1994).

When we apply CoCiP without particle number loss pro-
cesses, we compute even larger ages, see Fig.9. The mean,
med, max ages of these contrails would be 11.2 h, 8.7 h,
>36 h. The larger lifetime can be explained by the reservoir
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.

of ice water built up while staying in the ISSR, which is
maximum just when the ISSR regime ends, and which takes
time to sublimate. At this timet , the contrails have large
cross-sectionsA(t). It takes a further time of orderτdil =

A/(dA/dt) to dilute the plume to subsaturation. For dilu-
tion following a power-law with time,A(t) = A0t

n, and for
n ≈ 0.8 (Schumann et al., 1998), the mixing timeτdil = t/n

is large and the total contrail aget + τdil could reach twice
the age of ISSR masses.

The lifetime of contrails is highly variable (Detwiler and
Pratt, 1984). Contrail ages up to 18 h and possibly more have
been observed (Bakan et al., 1994; Minnis et al., 1998; Hay-
wood et al., 2009). These ages may be exceptions, not the
rule. Contrails were traced in time with data from geostation-
ary (Duda et al., 2001, 2004; Vazquez-Navarro, 2009) and
polar orbiting satellites (Atlas et al., 2006). Contrails become
first visible in these data after a dwell time of about (0.5–1) h,
depending on satellite resolution (Atlas and Wang, 2010).
Contrail clusters were often followed for (2–5) h (Duda et al.,
2001, 2004). An automatic contrail-tracking algorithm iden-
tified many contrails in METEOSAT satellite scenes with
mean, med, max ages (without this dwell time) of 51 min,
20 min, 14 h, respectively (Vazquez-Navarro, 2009). Hence,
we expect median contrail lifetimes of order of a few hours,
definitely shorter than what is computed without losses.

Therefore, we add particle loss models to CoCiP. The
model contains three of them:

(dN/dt)loss= (dN/dt)turb+ (dN/dt)agg+ (dN/dt)meso.

(48)

Unfortunatley, we found very little theory in the litera-
ture which would allow to parameterize contrail or cir-
rus ice particle loss processes within the framework of a

bulk model. The models used are mainly based on dimen-
sional analysis. The modeled loss processes are designed
to simulate (turb:) particle losses by plume-internal turbu-
lence, (agg:) sedimentation-induced aggregation (Sölch and
Kärcher, 2010), and (meso:) losses induced by turbulent
humidity fluctuations by mesoscale turbulence and gravity
waves (Kärcher and Str̈om, 2003) and possibly plume turbu-
lence (Gierens and Bretl, 2009; Unterstrasser and Gierens,
2010a). Also radiative heating of the contrail plume and
of individual (large) ice particles may contribute to particle
losses (Gierens, 1994; Chlond, 1998; Jensen et al., 1998a;
Dobbie and Jonas, 2001; Unterstrasser and Gierens, 2010b).
Efficient treatment of radiative heating is possible (similar to
radiative forcing, see Sect.2.14), but not considered in this
paper (Schumann et al., 2010).

Mixing of contrails with dry ambient air masses was con-
sidered for ice mass in the Sect.2.11. If the ice size distribu-
tion would be narrow and if the plume is well mixed, then it
seems conceivable that the number of ice particles stays con-
stant until all ice mass is sublimated, when all particles dis-
appear suddenly. However, this is not realistic (Gierens and
Bretl, 2009). While growth of particles would narrow the size
distribution, turbulent mixing of cloud air masses with parti-
cles of different sizes tends to broaden the size distribution.
Eventually, mixing causes some of the smaller particles to
sublimate. We roughly model this with the first loss term,
“turb”,

(dN/dt)turb = −ET

(
DH

max(B,D)2 +
DV
D2

eff

)
N (49)

with ET = 1 as an adjustable parameter. The maximum func-
tion avoids large losses for the initially narrow plume, when
B < D, because the initial losses are included in the survival
factor, Eq. (22). The scaleDeff is used instead ofD because
it enhances the loss for vertically thin contrails. Parameter
studies, with and without this and the other loss models, show
that the “turb” part contributes to losses relatively to all loss
terms most strongly at low ice supersaturation. Further im-
provements appear possible in future model versions (e.g. the
losses may be humidity dependent).

Sedimentation limits the lifetime of contrails for high
ambient supersaturation when the ice particles grow large
(Schumann, 1996; Unterstrasser and Gierens, 2010a). During
sedimentation, large falling particles may collide and aggre-
gate with smaller ice particles so that the total number of ice
particlesN decreases. In a size-resolved model, withni rep-
resenting the number density of ice particles in a size range
ri–ri+1, the aggregation process could be parameterized by
a rate equation (e.g.Pruppacher and Klett, 1997; Sölch and
Kärcher, 2010)

(d nk/dt)agg=
1

2

∑
i+j=k

Kij ni nj − nk

∞∑
j=1

Kkj nj , (50)

with rate coefficients

Kij = EA π (ri + rj )
2
|Vi − Vj |, (51)
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accounting for aggregation due to collision of particles of dif-
ferent sizesri and different fall speedsVi . Since we have no
explicit information on the particle size spectrum, we assume
that the size spectrum in the contrails has a width of orderr,
so that(ri + rj )

2
≈ 4r2, and |Vi − Vj | ≈ VT (2r) ≈ 2VT (r).

Hence, an approximate aggregation rate as a function of
mean particle sizer is

(dN/dt)agg= −EA 8π r2VT N2/A, (52)

with an adjustable model parameterEA = 1. The terminal
fall velocity VT (r,T ,p) is computed as inSölch and K̈archer
(2010). The aggregation efficiencyEA may depend on tem-
perature (Sölch and K̈archer, 2010). However, the aggre-
gation is unimportant anyway at low temperatures (Jensen
et al., 2011). We find important contributions by aggregation
only for temperatures larger about 220 K when the ice water
content gets large (see Fig.8).

Finally, we roughly parameterize the effect of sub-
grid scale vertical velocity fluctuationsw′

meso, e.g. from
mesoscale turbulence and gravity waves (Kärcher and Str̈om,
2003). The velocity fluctuations induce temperature fluctua-
tions depending on vertical stratification and mixing,T ′

meso≈

w′
mesodT /dz. Particles are assumed to get lost whenT ′

meso
becomes large. In place for a better scale still to be found,
we compare to the temperature change for doubling ice mass
(Pruppacher and Klett, 1997),

1Tc = (R1T
2/Ls). (53)

Here, Ls ≈ 2.8× 106 J kg−1 is the latent heat of sublima-
tion andR1 = 461.5J(Kkg)−1 the gas constant for water va-
por; typically,1Tc ≈ 9 K. Note thatw′

meso is different from
w′

N , because it includes wave motions. Moreover,w′
mesois a

mesoscale property related to a NWP grid scale` and pos-
sibly plume segment length, but different from the plume
cross-section scales. Hence, a separate turbulence model is
needed for this. We estimate

w′2
meso= w′2

SGS+ w̄2 (54)

for the variancew′2
SGS of vertical SGS turbulence and of

vertical motionsw̄ (possibly gravity wave driven) at NWP
scales. The method to analyse SGS velocity variance follows
Schumann(1991), his Eqs. (10, 12, 14). Details are given in
AppendixA9. These velocity fluctuationsw′

mesoare mostly
small, of the order (1–10) cm s−1. We further assume that the
time scale for reducing the number of ice particles by wave
induced vertical fluctuations is of orderN−1

BV . With these re-
lations we set

(dN/dt)meso= −EmesoNBV w′
meso(dT /dz)/1Tc, (55)

Based on preliminary tests and comparisons of computed and
observed contrail cirrus cover, we presently use this model
with Emeso= 2. Further studies are needed to test and possi-
bly improve this model.

For keepingN ≥ 0 during numerical integration ofN in
time, even for strong loss processes, instead of using the stan-
dard Runge-Kutta scheme, we use an analytical integral (see
AppendixA10), which provides the exact solution for con-
stant coefficients and positive approximate solutions other-
wise.

N(t + 1t) =
N(t)β exp(−β 1t)

β + αy0[1− exp(−β 1t)]

L(t)

L(t + 1t)
. (56)

(The length scale ratio corrects for the change in segment
length during the time step.) The coefficientsα andβ

α = −
1t

N2
(∂N/∂t)agg, β = −

1t

N
(∂N/∂t)turb, (57)

are computed as average of the values at timest andt + 1t .
Figure9 shows that the contrail ages get considerably re-

duced with these particle loss parameterizations. The contrail
ages are now below the ISSR ages. The mean, med, max ages
for this June-case are 2.9 h, 2.0 h, 24 h. These ages are con-
sistent with the observations cited. From parameter studies,
we find that all three loss models are important for the mean
statistics.

The computed particle concentrations are consistent with
observations: The lower-left panel in Fig.7 shows that the to-
tal ice crystal numberN in the ensemble of contrails ranges
within (1–50)×1011 m−1, slowly decreasing with plume age.
For comparison,Spinhirne et al.(1998) deduced values of
(1–3)×1011 m−1 slightly decreasing with plume age from re-
mote sensing of two contrails with estimated ages in the order
of one or a few hours. The computations show ice particle
concentrationsn decreasing more strongly thanN because
of dilution from about 0.1 cm−3 to 0.001 cm−3 for 1-h aged
contrails, which is roughly consistent with extensive in-situ
observations in cirrus (Krämer et al., 2009). For aged con-
trails, one expects ice particle concentrations similar to ambi-
ent cirrus (Gayet et al., 1996; Spinhirne et al., 1998; Schr̈oder
et al., 2000; Schumann et al., 2011b).

The lower panel of Fig.8 shows the relationship be-
tween particle sizes and fall speeds. The fall speeds de-
pend on Reynolds number and, hence, the scatter of data
reflects variations of viscosity with pressure and tempera-
ture. The range of computed sedimentation speeds is con-
sistent with the few observations:Duda et al.(2004) found
best agreement with observations for computed contrail po-
sitions, depending on wind shear and altitude, for fall speeds
up to 0.045 m s−1. Konrad and Howard(1974) deduced fall
speeds up to 1.4 m s−1 from radar observations in contrail
fallstreaks.

2.13 Contrail optical depth for solar radiation

The radiative effect of a contrail segment is controlled by the
product of the effective widthB of the contrail and its optical
depthτ for solar radiation (at 550 nm) from zenith. These
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values follow from the horizontal and vertical integrals over
the width and height of the contrail,

B τ = β

∫ ∫
exp[−

1

2
xT σ−1x]dzdy = β A. (58)

The extinctionβ and the optical depthτ are related to the
effective plume depthDeff,

β = 3Qextρ I/(4ρicereff), τ = β Deff, (59)

Deff = A/B. (60)

The radiation extinction efficiencyQext is computed using
approximate Mie-theory

Qext = 2− (4/ρλ)(sin(ρλ) − (1− cos(ρλ))/ρλ, (61)

with ρλ = 4πreff(κ −1)/λ, κ = 1.31 as the real refractive in-
dex of ice, andλ = 550 nm the wavelength of visible light
(van de Hulst, 1957).

The effective radiusreff is defined by the ratio of particle
volumeV̄p to particle projected areāAp (Hansen and Travis,
1974),

reff =
3V̄p

4Āp

=
r

Cr

. (62)

The coefficientCr measures the ratio between volume mean
radius and the effective radius. Its valueCr = 0.9± 0.3 de-
pends on the particle shape and size distribution of the ice
particles, which are variable, so that this value is uncertain
(Schumann et al., 2011b).

According to AppendixA11, the local value ofτ(y) =

fτ (y)τ for giveny, as needed for analysis of contrail cover
for given optical depth, is a factor

fτ (y) = (4/π)1/2exp[−(1/2)y2/σyy] (63)

larger than the bulk valueτ ; fτ (0) = 1.13.
The contrail simulation ends whenτ gets small (< 10−4),

or when the number concentrationn of ice particles gets
small (< 1 L−1), or when the contrail center of gravity falls
below the lower boundary of the computational domain (typ-
ically at 600 hPa).

Figure 10 shows that the model computes optical depth
values within the range 0.001–0.5 in most cases, with larger
values for young contrails. This is fully consistent with ob-
servations and other models (Kärcher et al., 2009a; Atlas and
Wang, 2010; Voigt et al., 2011). However, with respect to
climate impact, it is the product ofτ with the contrail width
B which counts. This value generally increases and takes a
maximum after about a few hours in this model, consistent
with observations (Atlas and Wang, 2010). Only a few of the
older contrails reach larger values. It implies that the largest
climate impact comes from contrails a few hours of age.

2.14 Radiative forcing

Contrails induce a change in net radiances at top of the at-
mosphere, which is known as radiative forcing (RF). RF is
commonly used for assessing the climate impact of contrails
(IPCC, 2007). For CoCiP it is essential to have a parame-
terization which allows for efficient computation of RF for
each contrail segment. The standard approach using com-
plex radiation transfer models would be far too time consum-
ing. Therefore, a new parameterization has been developed
(Schumann et al., 2009, 2012) which is briefly summarized
here.

The RF by contrails is computed separately for the long-
wave (LW) and shortwave (SW) spectral ranges. For each
range, the local RF is computed as a function of the optical
depthτ , effective radiusreff, and temperatureT of the con-
trail, and optical depthτc of cirrus above the contrail. The pa-
rameterization uses NWP input for outgoing longwave radi-
ation (OLR), reflected solar radiation (RSR), and solar direct
radiation (SDR) (Blanco-Muriel et al., 2001) for the given
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atmosphere without contrails. Further input includes the so-
lar constantS0 which varies with the day of the year a few
percent around the annual mean value of about 1365 W m−2

(Blanco-Muriel et al., 2001; Paltridge and Platt, 1976).
From these input values, the model (in module RADI)

computes the LW and SW RF per contrail area using given
analytical functions,

RFLW = RFLW(OLR,T ,τ,reff,τc) ≥ 0, (64)

RFSW = RFSW(S0,Aeff,µ,τ,reff,τc) ≤ 0, (65)

with effective albedoAeff = RSR/SDR, and cosine of so-
lar zenith angleµ = cos(θ) = SDR/S0. RFLW is constrained
to positive values, so that contrails at low altitudes with
high ambient temperatures have zero contribution. Likewise,
RFSW, is constrained to negative values. The model pre-
scribes the contrail habit mixture as a function of radiusr

(Schumann et al., 2011b). The parameterization with 5 fit
parameters for LW and 10 for SW has been calibrated for an
extensive set of atmospheres/surfaces against libRadtran for-
ward calculations (Mayer and Kylling, 2005). The approxi-
mate results and the libRadtran results correlate better than
98 %. The RF parameterization is consistent with previous
results (Meerk̈otter et al., 1999; Schumann et al., 2012). Pre-
liminary RF results have been presented inSchumann et al.
(2011a).

2.15 Contrail cirrus cover

The ensemble of contrails together with the natural (non-
aviation) NWP-cirrus is considered as the “total cirrus” in
this model. The additional cirrus induced by contrails is inter-
preted as “contrail cirrus”. Contrail cirrus differs from young
isolated contrails in shape. Single contrails widen by turbu-
lent diffusion and shear, get distorted by variable winds, and
disrupted by contrail free segments, but still remain identifi-
able as a near-linear sequence of contrail segments in clear
air. Single contrails change their shape when overlapping
with natural cirrus. A cluster of contrails with different his-
tories overlap irregularly so that the linear structure gets lost.
CoCiP in this version does not account for physical inter-
actions between contrails among each other nor with cirrus.
However, CoCiP does simulate irregularly structured contrail
cirrus.

We define the regional coverC of a cirrus as that frac-
tional horizontal area in which the optical depthτ of the cir-
rus is larger than a critical valueτc. This seems plausible,
because only cirrus with a minimum optical depth is visi-
ble. Moreover, the optical depth controls its radiative forcing
and, hence, its climate impact. Details of detectability de-
pend on underground properties, ambient atmosphere, illu-
mination, etc. The threshold is observer and instrument de-
pendent. Hence, cloud cover may be ill-defined. Here, we
orient ourselves on satellite observations, where a value of
τc ≈ 0.1 may be realistic.

Overlapping contrails are treated according to their known
position and optical depth. The coverage of overlapping con-
trails is far smaller than the summed coverage of individ-
ual contrails. In regions with many overlapping contrails, the
contrail cirrus cover increases less than linear with air traf-
fic and saturates at a maximum value (which may be 100 %).
The cover gets even smaller when contrails overlap with nat-
ural cirrus. Hence, it is important to have a clear definition
of coverC. Here, we define the cover of contrail-cirrus (CO)
as the cover of total cirrus (COCI) minus the cover of natural
cirrus (CI),

CCO = CCOCI− CCI, (66)

based on their optical depth values, respectively, above a crit-
ical value,

τCOCI > τc andτCI > τc. (67)

More complex criteria, e.g. the contrast in brightness temper-
ature and reflectance of contrails and cirrus, computed simi-
lar to RF, Sect.2.14, might be included in future versions.

Here, the cover is computed pixel-wise based on optical
depth. The NWP grid is far too coarse to resolve the contri-
butions from the relatively narrow contrails. Instead, we use a
fine-resolution matrix of optical depth values (“cloud mask”)
τi,j in grid cells (pixels) with far higher resolution and inde-
pendent of the NWP grid. For global analysis, the grid center
points are located atxi = i 1x, yj = j1y, i = 0,1, ...,NxT ,
j = 0,1, ...,NyT , with grid spacing1x = 360/(NxT − 1),
1y = 180/(NyT − 1). We useNxT = 5001,NyT = 3601 in
our global reference cases. The pixel area size is1x×1y. In
this implementation its value is 5.7×5.6 km2 at 45◦ latitude.
Even this fine grid cannot resolve the very narrow young con-
trails, but these contribute little to the total cover. The resolu-
tion error caused by finite grid spacings depends on the ratio
of contrail width relative to grid resolution and on the thresh-
old ratio τc/τ . It decreases with increasing contrail width
and decreasing threshold. The error gets small in particular
for many randomly distributed and overlapping contrails. For
example, for a region over the North Atlantic, forτc = 0.1,
mean widthB = 7 km, and mean optical depthτ = 0.12, the
contrail cover changes by 5 % if the grid scale is reduced by
a factor 10. This appears to be acceptable.

The contrail contributions toτi,j are computed within a
module TAU2DS within the loop over all flights. The NWP-
cirrus contributions are added in module TAU2DX at the end.
As explained in AppendixA12 and Fig.A7, a segment con-
tributes toτi,j when the normal fromxi,yj onto the segment
(Wn,Wn+1) crosses the segment at a cross-pointxs,ys be-
tween its endpoints. The amountτ fτ (s), see Eq. (63), of
contribution depends on the distances betweenxs,ys and
xi,yj . In order to add allτ -contributions from all contrail
segments, one has to test the distance to all points(i,j) in
the cloud mask. This time-consuming test can be reduced to
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pixels in a certain distance from the segment end-points, de-
pending on the maximum productBτ of the contrail seg-
ments. By this strategy, the computing time increases about
linearly with the total number of contrail segments from all
flights.

For analysis of contributions of natural cirrus toτi,j

in the upper troposphere and lower stratosphere (between
zmin = 6.0 km andzmax = 16.1 km), we first compute the op-
tical depthτC =

∫ zmax
zmin

βCdz of this cirrus for given cirrus-
extinction βC = 3QCextIWCC/(4ρicereffC ), and extinction
efficiencyQCext = 2. The effective radius is determined from
the NWP data as a function of temperature and ice water con-
tent IWCC of the NWP-cirrus. When using ECMWF data, we
computereffC consistently (Sun, 2001; Sun and Rikus, 1999).

Moreover, we account for the 3d distribution of cirrus
coverCC(x,y,z, t) inside a cirrus, which is provided as in-
put for each NWP grid cell: For givenCC(x,y,z, t), we
first compute a 2d cirrus cover effective for observers from
above,CiC(x,y, t) = maxz[CC(x,y,z, t)]. Since the cloud
mask has a far higher resolution than the NWP-grid, we dis-
tribute the broken cirrus coverage in the cloud mask ran-
domly. For this purpose, we distribute the cirrus optical depth
τC in at least partially covered grid cells onto pixels, keeping
its grid mean value constant atτC . For each grid celli,j with
CiC > 0, a random numberR, uniformly distributed within
0–1, decides, ifR > 1− CiC thenτc = τC/CiC, elseτc = 0.
The valueτc is added toτi,j as cirrus contribution. The ran-
domly distributed cloud cover is evident in Figs.11–12.

For example, the top panel of Fig.11 shows the optical
depth of contrails (τCO) for all the contrails identified by
red lines in Fig.6, while the lower panel shows the opti-
cal depth of contrails and cirrus together (τCOCI). Figure11
(upper panel) exhibits again clusters of contrails over North
America, the North Atlantic and mid Europe. Some contrails
plotted in Fig.6 (e.g. near 90◦ latitude in the Southern In-
dian Ocean) are invisible in Fig.11, because of low optical
depth. When plotted together with the optical depth of nat-
ural cirrus (lower panel, only few contrails (e.g. over North
America) remain visible. This plot shows the optical depth of
ice clouds above 6 km altitude. This includes deep convec-
tive clouds with quite large optical depth, in particular in the
tropics.

Figure 12 shows the computed cover for a contrail out-
break over parts of North America. The upper part shows the
cover CCO of contrails (τCO > 0.1) alone, while the lower
panel shows the cover of total cirrusCCOCI as composed
of natural cirrus (τCI > 0.1, blue pixels) and contrail-cirrus
(τCI < 0.1 andτCOCI > 0.1, red pixels). Contrails inside (or
above/below) thick cirrus do not contribute to contrail-cirrus
cover. In fact, a large fraction of contrail pixels (about 2/3
globally) become invisible inside natural cirrus. However,
even thin contrails may push the optical depth of thin cir-
rus above the critical value. The contrail outbreak happens to
occur in this simulation over North America (at 10 pm local
time). Some contrails are still identifiable as linear structures.

However, the linear shape gets lost in contrail clusters, which
mostly occur in the neighborhood of natural cirrus. Still part
of the contrail pixels remain visible in the total cirrus re-
sults while others submerge in natural cirrus. Some of the
additional contrail cirrus pixels are closing cloud gaps in the
natural cirrus cover. Regionally, over (100–600) km scales in
this example, the contrails cause 100 % cirrus cover.

For this cloud mask, we finally compute global or re-
gional cloud covers by summing the areas of pixel cells
with CCOCI = 1 andCCI = 0, and dividing by the respective
global or regional total horizontal area. The results depend
nonlinearly on the threshold valueτc. Forτc = 0.1 and 0.05,
in this example, for a single time slice, the global contrail
coverage is 0.23 % and 0.36 % (NWP cirrus cover: 19 % and
27 %), respectively. Hence, the value ofτc has to be carefully
selected for meaningful comparisons to observations.

3 Results and discussions

3.1 Example simulation of contrails

As discussed before, see Figs.6, 11, and 12, CoCiP has
been applied for a global case study using NWP data from
ECMWF and traffic data from FAA-EUROCONTROL. The
global simulation identifies 31 575 flights in the time period
03:00–06:00 UTC 6 June 2006, forming at least short con-
trails. In this simulation, the time step is1t = 1 h. The com-
putation time is 3.5 min (including a large fraction for I/O
time). Hence, for each contrail, less than 0.01 s is needed.
For a snapshot at 06:00 UTC that day, a total of 3402 con-
trails are found. This clearly demonstrates the size of the
problem and the efficiency of the method. Still, to simulate
a full year hourly with an order 30 million flights globally,
requires about 7 h of computing time.

Figures7–10 show the contrail properties for a random
subset of contrail segments over the North Atlantic. As
discussed above, the resultant contrail dimensions and ice
properties exhibit magnitudes and trends with age at least
roughly consistent with observations. The simulations were
performed with model parameters as explained. The most
important parameters and their values are set as listed in
Table2. For quantitative assessment, we next consider case
studies for single contrails.

3.2 Dilution

The dilution ratio of passive tracers emitted form aircraft
was discussed before. It determines the mass specific con-
centration above background for given emission index EI as
1c = EI/Ndil . The empirical function, Eq. (16), was derived
from measurements for plume agest up to 5000 s, with about
factor three uncertainty (Schumann et al., 1998). A rather
large spread of the data relative to this approximation had to
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Fig. 11.Optical depth of contrail cover (top) and of cirrus and contrails (bottom) for traffic and time as in Fig.6. Note, the data include cirrus
above 6 km altitude. The light blue background color indicates zero optical depth.

be expected because the empirical function does not account
for different dilution processes (in the jet, wake vortex, and
dispersion phases), for aircraft details, and for atmospheric
shear and stratification.

CoCiP is applied to compute the dilution of a passive
tracer for a flight in a uniform model atmosphere, and for
a range of values of shearS and Brunt-Vaisaila frequency
NBV , and for three typical commercial aircraft of different
sizes, similar to B747, A310, and B737, see Table3.

Figure13shows that the dilution depends on aircraft prop-
erties and, in particular, on ambient shear and ambient strati-
fication. As to be expected, the dilution is stronger for smaller
aircraft, stronger shear, and weaker stratification. Overall,
the order of magnitude agrees with Eq. (16). In fact, CoCiP
provides a generalization of this function for given parame-
ters. This agreement is sensitive to various model parameters

Table 2.Critical model parameters.

Variable Explanation Eq.

CD0 = 0.5 initial wake vortex depth (14)
Cr = 0.9 volume mean to effective particle radius ratio (62)
Cz1 = 0.25 wake vortex downwash distance (13)
EA = 1 aggregation efficiency (52)
Emeso= 2 mesoscale sublimation efficiency (55)
ET = 1 turbulent sublimation efficiency (49)
EIsoot= 3.57× 1014kg−1 soot number emission index (17)
fsurv= I1/I0 survival factor (22)
fT = 0.1 sedimentation impact onDV (35)
RHIc = 0.8 critical humidity for persistence (9)
w′

N
= 0.1 m s−1 turbulent velocity scale (35)

1zeff = 2000 m effective resolution for shear (39)
τc = 0.1 optical depth threshold of cover (67)
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Fig. 12.Distribution of total cirrus-cover composed of natural cirrus
and contrail-cirrus for a North American region, with a contrail out-
break. Top: contrail-cirrus pixels (red); bottom: natural cirrus pixels
(blue) and contrail-cirrus pixels (red).

listed in Table2. Smaller initial downwash (Cz1), vertical dif-
fusivity (w′

N ), and shear1zeff reduce dilution. On the other
hand, these parameters also control the contrail depth, and
larger parameter values may bring our depth results closer to
observed values (Freudenthaler et al., 1995).

The computed dilution for integration with two different
time steps of either1t = 60 s or 3600 s has been found to
show differences of about 10 %. Hence, the model results
are only weakly sensitive to such drastic time step changes.
Thus, CoCiP can be applied with rather large time steps. This
is essential for computational efficiency in global applica-
tions.

3.3 Aged contrail in comparison with other
model results

CoCiP is designed to simulate contrails with large ages.
Comparisons with in-situ measurements for short and mid
time-scales will be reported in Sect.3.4. Here, we describe
model results for an artificial case, discuss their plausibility,
and compare with results obtained with a more complex 2d
fluid and microphysics model (Unterstrasser, 2008; Unter-
strasser and Gierens, 2010a) for nearly the same case.
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Fig. 13. Bottom: Dilution versus plume age for various aircraft
sizes in comparison to an empirical dilution function Eq. (16) for
fixed shearS = 0.002 s−1 and Brunt-Vaisaila frequencyNBV =

0.01 s−1. Top: Dilution versus plume age for a large aircraft, for
different shearS (full curve: 0, dashed: 0.005 s−1), and different
Brunt-Vaisaila frequencyNBV (red: 0.001 s−1, black: 0.01 s−1), in
comparison to the empirical dilution function.

Table 3.Aircraft parameters used for test cases.

Large Medium Small Unit

Type B747 A330 B737
spansa 64.4 60 34.4 m
massMa 310 190 65 Mg
fuel flow mF 12 6.5 3 g m−1

Va 250 240 230 m s−1

EIsoot 2.8 2.8 2.8 1014kg−1

η 0.3 0.3 0.3 1

We consider a long-lived contrail, up to 10 h age, in a
static, clear, and uniformly ice-supersaturated atmosphere
without vertical motions. Note that the real atmosphere will
never be uniform for such a long time period. Both models
use the same parameters except that the uniformly supersat-
urated layer in the 2d model is only 1 km thick, with decreas-
ing humidity above and below (Unterstrasser and Gierens,
2010b). The simulations are performed for a “B747” as listed
in Table3, atp = 250 hPa,T = 217 K,NBV = 0.01 s−1, S =
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Fig. 14.Comparison of contrail properties versus plume age as computed with CoCiP (black lines) and with a 2d model (blue lines). CoCiP
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blue: 2d modelτ OM. Bottom-left: black: CoCiP number concentration, blue: 2d model number concentration NN. Bottom-right: black:
CoCiP productτB of optical depth and width, blue: 2d integrated optical depth AA.

0.002 s−1, and RHi= 1.2. We vary EIsoot relative to the
value given in Table3 by a factor 3, to study the impact of
wake-induced particle losses. In addition, we varyDV (ref-
erence as in Eq.35), to explain differences between CoCiP
and the 2d model, see Figs.14and15.

CoCiP is run in this case with time steps of 150 s (5 s in the
2d model). Small wiggles in the CoCiPτ values are caused
by Mie oscillations, Eq. (61). Wiggles at late times are caused
by accumulation of approximation errors in the late expo-
nential particle growth phase. Note that the model contains
no smoothing which could damp oscillations along waypoint
tracks. These wiggles are avoided when using smaller time
steps.

Qualitatively, the results of the two models are similar in
magnitude and trends, but significant differences are notable.
The CoCiP contrail width (Fig.14 left upper panel) initially
increases linearly with time because shear dominates the lat-
eral spread at early times. Note that the widthB as defined
by the Gaussian plume model is plotted. Smaller plume con-
centrations spread further away from the contrail center line.
In the 2d model, the width of the contrail is defined as that
part with optical depth larger than given threshold values,
as identified in the figure legend (0.01, 0.02, 0.05, and 0.1).
Our reference case agrees best with the 2d results for opti-
cal depth 0.01–0.05. In principle, a similar threshold-width
could be computed for the Gaussian profiles in CoCiP. But
more important is the product of optical depth with contrail
width (or its integral over the lateral coordinate), see Eq. (58),

which controls cover and radiative forcing. The right panels
of Fig. 14 showτ and this integral value or productτB. We
see that the two models agree for these important parameters
to the order of magnitude. Best agreement is achieved at early
times for enhanced vertical diffusivity. Later, the width grows
stronger than linear in CoCiP because of increasing depth
making shear dispersion more efficient. The thicker depth at
later times is mainly caused by sedimentation. For reduced
particle emissions, sedimentation becomes important earlier,
as expected, so that the width grows more quickly. The thick-
ness also increases for enhanced vertical diffusivity.

The dilution at one hour of age (not shown) is about a fac-
tor 4 larger for enhanced vertical diffusivity. Sedimentation
effects on dilution are still small (10 %–20 %) at this age. For
lower diffusivity, the dilution is slightly (30 %) below, for
higher diffusivity, it is 3 times above the empirical function
Eq. (16). Hence, both versions and both models are roughly
compatible with measured dilution.

The number of ice particles per flight distanceN (left
lower panel of Fig.14) remains fairly constant for the first
few hours in both models after the wake vortex period. Later,
N decreases more quickly in CoCiP. Figure16 shows that
aggregation, Eq. (52), has by far the strongest impact on par-
ticle losses in this model. However, the other processes also
contribute to these losses.

We note that CoCiP agrees far better with the 2d model
for reduced particle emissions. This is unexpected, because
of the rather low ambient temperature and high humidity. The
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Fig. 15.Same as Fig.14 for further contrail properties. Top-left panel: Volume mean radiusr. Top-right: black: Ice mass per contrail length,
blue: 2d model result II. Bottom-left: Vertical sedimentation displacement1z. Bottom-right: Contrail depthD.

contrail is formed at conditions far above the SAC threshold
(RHiLC = 3.3, TLC − T = 8.3 K). Therefore, in spite of the
size of the aircraft, CoCiP computes large survival fractions
of ice particles (fsurv = 0.91), see Fig.5. An enhanced verti-
cal diffusivity has a minor impact onN . The slow decrease in
the first hours is caused by the turbulent decay process sim-
ulated according to Eq. (49). Later, the loss by aggregation
dominates by far.

The optical depth values of the two models differ most
strongly. The CoCiP optical depth comes closer to the 2d
model result for enhanced vertical diffusivity. Later, the op-
tical depth increases in CoCiP because the contrail particles
start to sediment. Hence, the contrail gets thicker, and col-
lects more humidity from the ambient air, giving larger ice
mass, with larger particles and, hence, larger optical thick-
ness values. In contrast, the 2d model predicts a decrease
in optical depth after 3 h age. One possible reason for this
difference is the limited depth of the supersaturated layer in
this example with ice sedimenting out of the layer in the 2d
model, while CoCiP follows the plume in Lagrangian man-
ner without loss of ice mass. A second reason may result
from the assumed ice saturation in the contrail. At late times,
the few remaining ice particle may no longer be effective in
keeping the contrail at ice saturation, causing less ice water
content.

Figure15 shows further results to explain the contrail dy-
namics. The left lower panel of this figure shows the small
initial downward displacement of the contrail center sim-
ulated for the wake vortex phase. Later, this displacement
grows and exceeds 1 km because of sedimentation. The near
constant numberN of particles share in the growing amount

of ice mass from entrained humidity in supersaturated air.
Hence, the particles grow in size (see top left panel). Eventu-
ally, the particles become large and start sedimenting quickly.
In reality the largest particles would sediment first while the
smaller ones stay longer at the initial altitude (Jensen et al.,
1998a). This separation of particles cannot be simulated with
the plume-bulk model. Instead, CoCiP simulates this pro-
cess by letting the center of gravity of the contrail sink with
time (see left lower panel), similar to what has been deduced
from observations (Atlas et al., 2006). At the same time, the
contrail depth increases by enhanced vertical diffusivity, see
Eq. (35). At contrail ages of 8.7 h and 6.7 h, for the high
and low emission cases, respectively, the particle sizes ex-
ceed 100 µm in radius, the fall speed exceeds 0.7 m s−1 (see
lower panel of Fig.8). Hence, the contrail falls quickly and
precipitates at lower altitudes. We note that a reduction of the
initial particle number and an increase of vertical diffusivity
have similar effects on sedimentation (see mean radius and
vertical displacement in the left panels of Fig.15).

In a rough approximation, the model simulates the effects
of fallstreaks which have been observed to form below con-
trails at high ambient humidity (Schumann, 1994; Heyms-
field et al., 1998; Atlas et al., 2006). This process effectively
limits the contrail life-cycle at high ambient humidity. Con-
trails would live longer for lower ambient humidity because
of less sedimentation and aggregation. For this reason, the
contrail climate impact does not increase linearly with hu-
midity. The example results show also the importance of soot
emissions. Reduced soot emissions reduce the number of ice
particles but increase their sizes. As a consequence, both the

www.geosci-model-dev.net/5/543/2012/ Geosci. Model Dev., 5, 543–580, 2012



566 U. Schumann: Contrail cirrus model

Age/h

0 2 4 6 8 10

N
um

be
r 

of
 ic

e 
pa

rt
ic

el
es

/m
-1

1e+10

1e+11

1e+12

1e+13

Reference
aggregation loss=0
turbulent loss=0
mesoscale loss=0
only aggregation loss

Fig. 16.Ice number per distance: Impact of omitting certain particle
loss processes.

optical depth and the lifetime of the contrail get reduced.
Both effects reduce the climate impact of contrails.

Although we can explain most of the differences, some
differences remain to be understood. It is tempting to take
the 2d model as benchmark. However, dynamics and micro-
physics in the 2d model also have uncertainties. Obviously,
correct representation of turbulent mixing is as important as
that of cloud physics. Therefore, in the absence of detailed
measurements it is hard to decide which model is closer to
the truth.

3.4 Young and mid-aged contrails in comparison with
in-situ observations

CoCiP is applied to compute the ice bulk properties of con-
trails for comparison with in-situ measurements for various
contrail ages (5 s–2000 s) behind various aircraft as reported
by Schr̈oder et al.(2000), Febvre et al.(2009) and for the
CONCERT campaign (Voigt et al., 2010). (We do not expect
good agreement for CoCiP for the youngest contrails.) For
plume ages larger 150 s, some of the data have been used be-
fore to test LES models (Unterstrasser and Gierens, 2010a;
Naiman et al., 2011). Also, CoCiP has been tested before
by comparison to data for six contrails measured during one
measurement flight in CONCERT; here we compare in more
detail to the data for a CRJ2 aircraft from that campaign
(Voigt et al., 2010).

The observational data are compiled in Table4. We re-
place the reported ice particle concentrationnm by nice =

IWC/((π/6)ρiced
3
mean), i.e. the value consistent with the re-

ported ice water content IWC and volume mean diameter
dmean; both values, partly with large differences, are listed
in Table4. The measured concentrations are uncertain due to
variable lower cut-off size of ice particles in the data anal-
ysis (Febvre et al., 2009). Some aircraft types and humidity
values were unknown and had to be estimated.

Measurements of relative humidity at low ambient temper-
atures are prone to large uncertainties. The ambient humidity
may be estimated for the measured ice water content assum-
ing that the ice water content stems from condensing ambient
supersaturation and from the emitted water. Hence, we invert
Eq. (17), and use the dilution function, Eq. (16) to obtain

RHii = 1+

[ IWC

ρ
−

EIH2O

7000(tage/ts)0.8

] R1p

R0pice(T )
. (68)

Table5 compares the measured relative ice humidity values
RHim with the computed values RHi0 (for zero engine emis-
sions) and RHii . We see that the computed values generally
are close to the measured ones. The values RHi0 and RHii
differ considerably for young plumes. This highlights the im-
portance of the water emitted by the aircraft engines in addi-
tion to water from ambient supersaturation for young con-
trails. The measured IWC for the youngest plume cannot be
explained this way. The computation for the small age would
imply negative ambient humidity. The maximum analyzed
humidity values are in a reasonable range, above saturation
but below homogeneous nucleation thresholds (Koop et al.,
2000), as expected for persistent contrails.

We apply CoCiP for static atmospheres (without subsi-
dence and other changes with time), mostly under ice super-
saturated conditions in clear air. During these conditions and
ages, the ice loss terms of CoCiP, Eq. (48), though included
in these computations, are small. Table5 lists the model pa-
rameters as used for these simulations.

The results are most sensitive to ambient humidity RHi
and to dispersion (as a function of ambient shearS), as to be
expected. CoCiP is run with RHi= 0.9 for those cases where
the table indicates smaller RHii values. Unfortunately, also
ambient shear, as listed in Table5, and stratification had to
be estimated. In most cases, shear was not reported. Even
when the velocity profile was measured (Febvre et al., 2009),
where shear was quite large, the effective shear value is dif-
ficult to derive because of large variability. Hence, we apply
the model with a set ofS-values, 0, 0.001 s−1 and 0.002 s−1.

The results are shown in Fig.17. The CoCiP results for
low and high shear values embrace most of the observed data
points. The IWC results for this input are close to the ob-
served values as they should because of adjusted humidity
values. The agreement is not perfect, because the dilution
in CoCiP depends on the unknown shear, and differs from
the empirical dilution function, as expected. With this input,
CoCiP reproduces the data as observed in most cases, see
Fig. 17. For example, the model comes closest to the obser-
vations ofFebvre et al.(2009) (ages 150 s and 900 s) for the
largestS-value. An exception is case A ofSchr̈oder et al.
(2000), with smallest (5 s) plume age, for which the mea-
sured IWC is far less than computed. This may be caused by
incomplete condensation in the young contrail.

Because of the uncertainty in ice particle nucleation and in
the fraction of ice particles surviving the wake vortex phase,
we run CoCiP with reduced and increased initial particle
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Table 4.Observed contrail properties for comparison with simulations. Refer.: Schr –Schr̈oder et al.(2000) with corresponding aircraft types
indicated, Feb –Febvre et al.(2009) for young (y) and aged (a) contrails, and one case ofVoigt et al. (2010). For explanation of negative
RHii , see text. Stars∗ indicate estimated values.

Refer. AC age T p RHim RHii RHi0 IWC nm nice dmean
Unit type s ◦C hPa 1 1 1 mg m−3 cm−3 cm−3 µm

Schr A A310 5 −58 238 0.53 −0.35 1.02 0.26 1200 2506 0.60
Schr AT ATTAS 8 −54 287 1.02 0.45 1.12 2.80 2200 3374 1.20
Schr B B757 30 −54 262 0.85 0.83 1.04 0.91 1200 2599 0.90
Schr A1 A310 70 −54 262 0.85 1.03 1.14 3.20 1100 3033 1.30
Voigt CRJ2 CRJ2 90 −52 263 1.00 0.99 1.06 1.65 125 156 2.80
Schr B1 B737 120 −57 238 0.91 1.15 1.25 3.90 2150 4700 1.20
Schr D A330∗ 135 −53 287 1.35 1.22 1.28 7.30 1150 5540 1.40
Feb y E170 150 −60 196 1.20 0.99 1.08 0.90 68 69 3.00
Schr A2 A300∗ 200 −54 262 0.77 1.04 1.09 2.00 290 1016 1.60
Schr E A330∗ 340 −55 262 1.20 1.06 1.09 1.90 870 1442 1.40
Schr B2 B737 600 −57 238 0.91 1.21 1.23 3.70 180 963 2.00
Schr F Falcon 700 −55 262 1.20 1.12 1.14 2.90 130 652 2.10
Schr O A330∗ 800 −54 274 1.40 1.13 1.15 3.40 95 665 2.20
Feb a E170 900 −60 196 1.20 1.07 1.09 1.00 19 20 4.70
Schr U B737∗ 2000 −56 238 1.10∗ 1.21 1.22 3.90 11 23 7.00

Table 5. Input and results of contrail simulation. The last three columns list the CoCiP output. References as in Table4.

Refer. age η Va Ma mF sa EIsoot S IWCc nc dc

Unit s 1 m s−1 Mg g m−1 m 1014kg−1 10−3 s−1 mg m−3 cm−3 µm

Schr A 5 0.33 230 120 4.40 43.9 3 0 13.50 3532 2.00
Schr AT 8 0.17 177 18 1.00 21.5 10 1 2.55 3910 1.11
Schr B 30 0.33 240 95 4.31 38.0 3 0 14.46 3960 1.97
Schr A1 70 0.33 230 120 5.06 43.9 3 0 15.26 3453 2.10
Voigt CRJ2 90 0.26 210 52 1.30 21.2 3 2 0.67 230 1.82
Schr B1 120 0.33 230 60 2.82 34.3 3 0 17.57 3582 2.17
Schr D 135 0.33 230 190 6.50 60.3 3 0 15.09 2298 2.39
Feb y 150 0.33 220 30 1.85 26.0 3 2 0.79 210 1.99
Schr A2 200 0.33 230 140 6.22 44.8 3 1 2.46 331 2.49
Schr E 340 0.33 230 190 6.50 60.3 3 0 10.27 2143 2.15
Schr B2 600 0.33 230 60 2.82 34.3 3 1 4.07 121 4.13
Schr F 700 0.33 180 10 0.57 16.3 3 1 2.95 49 4.99
Schr O 800 0.33 230 190 6.50 60.3 3 1 3.83 122 4.03
Feb a 900 0.37 220 30 1.85 26.0 3 2 1.07 53 3.48
Schr U 2000 0.33 230 60 2.82 34.3 3 2 4.14 27 6.85

emissions. For this purpose, we simply multiply the soot
emission index with factors 0.5 or 2. We found that the agree-
ment gets worse when simulating a smaller survival ratio
by reducing the particle emissions. The agreement gets also
worse for enhanced particle emissions, which should provide
better results if ice particle formation, e.g. in volatile parti-
cles, is important. This result is in part a consequence of the
selected shear values. Nevertheless, the test shows that the

data are consistent with the model for the selected parameter
values.

Finally, we test again the sensitivity to the vertical diffu-
sivity. We changedDV by factors 0.5 and 10 compared to
the reference case. For plume ages below 3 min, the impact
of DV is minor, as expected. For larger plume ages, e.g. case
U, an increase inDV by a factor 10 causes more dilution
and considerably (factor 7) smaller particle concentrations,
therefore. The ice water content increases slightly (by 5 %)
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Fig. 17.Comparison of CoCiP results (lines with triangles, pointing towards increasing shear in the range 0– 0.002 s−1), with observations
(open circles) versus contrail age. From left to right: Ice water content, ice particle number concentration, volume mean ice particle diameter.

and the particles become a factor 2 larger in diameters. How-
ever, the agreement with observations deteriorates whenDV
gets increased compared to the reference case. Hence, the
diffusivity parameterization should stay unchanged.

It appears that the bulk microphysics model used in CoCiP
is sufficient to explain the contrail properties consistent with
the observations. The agreement between results and obser-
vations is at least as good for CoCiP as it is for LES models
(Unterstrasser and Gierens, 2010a; Naiman et al., 2011). To
some extent this implies that the set of measurements are not
complete (e.g. for shear) or accurate enough (e.g. for humid-
ity) to provide rigorous constrains. However, the comparison
shows that the model gives a fair representation of the frac-
tion of particles surviving the early wake vortex. There is no
hint for important ice nucleation in volatile particles in these
cases.

3.5 Further discussion

The results presented provide support for the usefulness of
the model. However, because of the large number of mete-
orological and traffic input parameters and the simplifying
assumptions used in the model, further parameter and vali-
dation studies are to be performed. For example, the model
results depend critically on the quality of the NWP humidity
input data. These have been shown to be reasonable (Tomp-
kins et al., 2007; Lamquin et al., 2012). It also depends on the
parameter RHic used in the troposphere in the NWP model,
and on further parameters, such as the type of interpolation
(in absolute or relative humidity, AppendixA2). These pa-
rameters should be varied and tested by direct comparisons
of measured and computed contrail results. The single Gaus-
sian plume model may need improvements for the wake vor-
tex phase. Two plumes instead of one may be used to simu-
late the primary and secondary vortex parts (Gerz and Ehret,
1996; Lewellen and Lewellen, 1996) separately. This would
allow simulating deeper sinking of the primary wake vor-
tex part without overestimate of dilution. A deeper sinking
would reduce the survival factor of ice particles in the wake

phase. The model assumes ice saturation and equilibrium in-
side the contrail, which may cause significant errors for low
ice particle concentrations. The model in the present form
does not account for radiative heating which may be essen-
tial for thick long-lived contrails. The contrails are simu-
lated in this paper without feedback among each other or
with the background meteorology. Narrow contrails fill only
a small fraction of the grid volume of a NWP model, so
that the change of grid cell mean humidity by few contrails
is small. Larger changes may occur for overlapping con-
trails and for many contrails in one grid cell (Burkhardt and
Kärcher, 2011). Coupling of the model with the NWP model
is an option to test the importance of this feedback. The bulk
model does not account for the dependency of the equilib-
rium vapor pressure on the ice surface tension (Kelvin effect)
which is important for very small ice particles (Pruppacher
and Klett, 1997). A recent study suggests particle losses due
to larger crystals scavenging water vapor from smaller ones
because of the Kelvin effect (Lewellen, 2012). More research
is required to improve understanding and modeling of the mi-
crophysics controlling ice crystal number losses (Sect.2.12).
Theses losses are critical for the simulated contrail lifetime
and climate impact. As explained, only few data exist to test
the lifetimes of contrails. This is also true for cirrus and
ice supersaturated regions in general. CoCiP may serve as
a model framework for testing alternative ice bulk models in
relationship to contrail observations.

4 Conclusions

The contrail physics model implemented in the “Contrail Cir-
rus Prediction Tool” (CoCiP) has been described in detail.
The model has been applied successfully for a global case
and for individual contrails in comparison with other model
results and in-situ measurements.

The Lagrangian Gaussian contrail model treats the life-
cycle of contrails with bulk contrail ice physics, containing
several simplifying assumptions (see Sect.3.5). The model is

Geosci. Model Dev., 5, 543–580, 2012 www.geosci-model-dev.net/5/543/2012/



U. Schumann: Contrail cirrus model 569

efficient in treating mixing and cloud processes quasi analyt-
ically. The numerical scheme is unconditionally stable and
guarantees positive definite solutions. The simulation of an
individual contrail along a flight track with hundreds of way-
points with maximum lifetime of order a day, requires far
less than a second computing time on a laptop. This makes
contrail simulations for a large fleet of aircraft feasible.

The model accounts for the influence of aircraft proper-
ties and ambient meteorology. This includes standard con-
trail formation thresholds, advection, turbulent mixing, and
ice mass formation from emitted and ambient humidity, with
ice crystal number depending on the number of soot parti-
cles emitted. The model includes simple approximations for
ice particle survival in the adiabatically sinking wake vor-
tices, and particle losses in aged contrails. These model parts
may need to be further improved when comparing to further
observations. Moreover, we note the strong sensitivity of the
model results to turbulent diffusivities. This calls for further
refinement of the parameters for this purpose, e.g. kinetic en-
ergy and dissipation rates from NWP input data.

CoCiP provides a generalization of an often used sim-
ple dilution function derived previously from measurements
(Schumann et al., 1998). The dilution of passive tracers from
aircraft engines in the wake vortex and dispersion phases de-
pends weakly on aircraft properties and rather strongly on
shear and stratification in the ambient atmosphere.

The model reproduces measured contrail properties for
given aircraft type in terms of ice water content, crystal
number concentration, and mean crystal diameters, in con-
trails of about 100 s–2000 s age. Comparable measurements
in isolated single contrails at larger ages are missing.

The CoCiP model constrains the ambient relative humid-
ity at the time of contrail formation, which is difficult to mea-
sure. It is also used to estimate the ambient wind shear con-
trolling contrail dispersion. The comparison supports the as-
sumption that the number of ice particles in the contrail at
several minutes plume age is mainly determined by the num-
ber of soot particles emitted by the aircraft engines. Turbu-
lence and cloud physics are equally important for explaining
observed contrail dynamics.

Particle loss processes, in particular sedimentation in
warm ice supersaturated air masses, control the contrail life-
time. Such contrails end with fallstreaks. Contrails persist
shorter for smaller soot particle emissions. Aged contrails
contribute most to climate change because of largest product
of optical depth and width. More data are needed to constrain
the maximum ages of contrails and their final dissipation pro-
cesses.

We have shown an example with contail-cirrus outbreaks.
The linear shape of young contrails gets lost in this model
by overlap with other contrails and cirrus. The global-mean
contrail-cirrus cover is small, but reaches 100 % regionally
at scales of a few 100 km, depending nonlinearly on traffic
density and threshold values for cloud detectability.

Appendix A

Model details

A1 Gaussian area integral

The area integral, Eq. (3), can be evaluated using a principal
axis transformation

xT σ−1x = zT X−13Xz.
With eigenvalues3, defined by
σ−1X = 3X, 3 = diag(λ1,λ2),
and substitutiony = Xz,
we have
A =

∫ ∫
exp[−(1/2)yT 3y]dy.

With,
yT 3y = y1λ1y1 + y2λ2y2,
we obtain
A =

∫ ∫
exp[−(1/2)(y1λ1y1 + y2λ2y2)]dy1dy2

= [
∫

exp[−(1/2)λ1y2
1]dy1] [

∫
exp[−(1/2)λ2y2

2]dy2].
With (Abramowitz and Stegun, 1964)∫

∞

−∞
exp[−(1/2)λy2

]dy = (2π/λ)1/2,
and
λ1λ2 = det(σ−1) = 1/det(σ ),
we obtain the result as given in Eq. (3),
A = 2π [det(σ )]1/2.
In previous applications of the Konopka model, the first

factor 2 in Eq. (3) was often missing.

A2 Interpolation aspects

Interpolation is performed, e.g. for a functionFi,j at discrete
grid-points(i,j) in a Cartesianx–y–plane, with equidistant
grid spacings1x and1y, and mid-cell coordinatesxi , yj ,
using bilinear interpolation:

F(x,y) =
1
4(g1Fi,j +g2Fi+1,j +g3Fi+1,j+1 +g4Fi,j+1),

whereg1 = (1−γ )(1−η), g2 = (1+γ )(1−η), g3 = (1+

γ )(1+η), g4 = (1−γ )(1+η), with γ = (x−xi)2/1x, η =

(y − yj )2/1y.
Relative (RHi) and absolute (q) humidity, for given tem-

peratureT and pressurep, are nonlinearly related by satu-
ration pressurepice(T ) andq = RHi(pice(T )/p)R0/R1. In-
terpolation of humidity may be performed in NWP input in
either variable. Both variants introduce up to 7.2 % errors (ei-
ther in RHi or inq) for 50 hPa pressure intervals, see Fig.A1.
CoCiP has been coded in both variants, and the differences
have been found to be important because of strong sensitivity
to relative humidity in the SAC and to absolute humidity in
the ice water content and optical depth. The results in this pa-
per were computed with interpolation in q, partly (Sects.3.2–
3.4) with fine vertical resolution.
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Fig. A1. Illustration of the difference in local relative humidity over
ice (RHi) caused by either interpolating in absolute or relative hu-
midity. Full curves: Absolute humidityq versus pressure altitude
p for the ICAO standard atmosphere with RHi = 100 %. The dots
represent the discrete pressure values as given in the NWP input.
Data are constructed for this example (as in the ECMWF data) with
50 hPa intervals below 250 hPa and 25 hPa above that altitude. The
full black line represents the interpolation in absolute humidity. The
red full line represents the interpolation in relative humidity. Dashed
curves: RHi versus pressure altitudep. The dashed black line repre-
sents RHi computed by linear interpolation in relative humidity. The
dashed red line represents RHi computed by linear interpolation in
absolute humidity. The difference in RHi (up to 0.07) between the
red and black dashed lines is a consequence of different interpola-
tion methods either between discreteq or RHi values.

A3 Saturation pressure

Saturation pressure over liquid and ice water surfaces,pliq
andpice, is approximated as inSonntag(1994):

pliq(T ) =

100exp[−6096.9385/T + 16.635794− 0.02711193T

+1.67395210−5T 2
+ 2.433502 ln(T )] (A1)

pice(T ) =

100exp[−6024.5282/T + 24.7219+ 0.010613868T

−1.319882510−5T 2
− 0.49382577 ln(T )]. (A2)

The equation for ice saturation agrees better than 1 % with
approximations recommended byMurphy and Koop(2005)
at temperatures down to−100◦C. Somewhat larger differ-
ences are found for liquid saturation.

A4 Altitude in the standard atmosphere

In the ICAO standard atmosphere (T = 15◦C at the sur-
face, decreasing linearly with constant laspe ratedT /dz =

−6.5 K km−1 up toT = −56.5◦C at 11 km altitude, and con-
stant above), the flight levelz is converted to a static pressure
p, for p in Pa andz in m (ICAO, 1964): In the troposphere
(z < 11000 m,p > 22632 Pa),

p = 101325(1− 2.2557710−5z)5.25589,

z = 44330.8[1− (p/101325)0.190263
]. (A3)

Otherwise,

p = 22632 exp[−1.5768910−4 (z − 11000)],

z = [11000− 6341.62 ln(p/22632)]. (A4)

A5 Contrail formation conditions

The Schmidt-Appleman criterion (SAC) requires computing
a threshold temperatureTLC ≤ TLM depending on ambient
relative humidity over liquid waterU = RHipice(T )/pliq(T )

and the steepnessG of the mixing line, see Eq. (11). The ex-
act solutions forTLM andTLC follow implicitly from (Schu-
mann, 1996)

p′

liq(TLM ) = G (A5)

and

TLC = TLM −
pliq(TLM ) − U pliq(TLC)

G
. (A6)

For U � 1 and U = 1, and for givenTLM , e.g. from
Eq. (10), an explicit solution for the threshold temperature
TLC follows from:

TLC = TLM − (1− U)pliq(TLM )/G andTLC = TLM , (A7)

respectively. So far, no explicit approximation was available
for TLC, for 0< U < 1.

A solution can be found by solving Eq. (A6) iteratively for
given humidityU and value ofG. To start the iteration we
use a quadratic Taylor series ofpliq(TLM ) aroundTLM with
1T = TLM − TLC,

pliq(TLC) ≈

pliq(TLM ) − 1Tp′liq(TLM ) +
1T 2

2 p′′

liq(TLM ). (A8)

With this series, Eq. (A6) implies

TLC = TLM + A −

√
A2 + 2B. (A9)

Schumann(1996) gives expressions forA andB requiring to
calculate the second derivative ofp”

liq(TLC) with respect to

T . (Eq. 34 of this reference contains a mistake:U2 should
be replaced byU (Ferrone, 2011).) The second derivative of
pliq(T ) can be approximated by (e.g.Ferrone, 2011)

p′′

liq(TLM ) ≈
2pliq(TL0)G

2

pliq(TLM )
. (A10)
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Fig. A2. Differences between fits (Eqs.10andA16) and exact solu-
tions for (bold curve:) contrail threshold temperature at liquid satu-
rationTLM = TLC(U = 1) and (thin cuves:) forTLC(U) at various
values of liquid relative humidityU .

This gives

A =
(1− U)pliq(TLM )(TLM − TL0)

2U pliq(TL0)
, (A11)

B = A(TLM − TL0), TL0 = TLM − pliq(TLM )/G. (A12)

The approximate result, Eq. (A9), deviates from the exact
solution with maximum errors 0.3 K at humidityU ≈ 0.92,
nearly independent ofG. Higher accuracy is achieved with a
few Newton iteration steps:

F = pliq(TLM ) − G(TLM − TLC) − U pliq(TLC), (A13)

F ′
= G − U p′liq(TLC), (A14)

1T = F/F ′, TLC = TLC − 1T, (A15)

until 1T is less than about 0.001 K.
The iteration is delicate because it requires the first and

second derivatives of the saturation pressure and because
TLC varies smoothly for lowU but suddenly increases near
U = 1, see Fig.A3. For these reasons, it was not easy to find
better fitting approximations. The analytical solutions for a
third order Taylor series instead of Eq. (A8) were found to
be sensitive to round-off errors.

A suitable fit extends Eq. (A7):

TLC = TLM − (1− U)
pliq(TLM )

G
− 1Tc, (A16)
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Fig. A3. Threshold temperatureTLC versus liquid relative humidity
for 5 values ofG, equidistant within (0.24–23) Pa K−1, increasing
from bottom to top.

with a correction1Tc which is zero forU = 0, 1 and in-
creases sharply nearU = 1,

1Tc = F1U [W − F2(1− W)], (A17)

with

F1 = x1 + x3 ln(G), W = (1− U2)x2, (A18)

F2 =

[1

4
− (U −

1

2
)2

]4

. (A19)

The fit uses three fit coefficientsx1 = 5.686, x2 = 0.3840,
x3 = 0.6594. The maximum error is 0.13 K over the
full range 0≤ U ≤ 1, 0.24 Pa K−1 < G < 23 Pa K−1 (see
Fig. A2). It is efficient becauseTLC is computed with just
one evaluation ofpliq(TLM ).

A6 Contributions of emitted heat and water and latent
heat release

Engine water emissions increase the relative humidity over
ice within the plume as a function of dilution,1RHi =
EIH2OR1p/(R0pice(T )Ndil(t)). The dilution can be esti-
mated with Eq. (16). FigureA4 shows the change in rela-
tive humidity versus time after emission for selected values
of ambient temperatureT (200 K and 240 K) and pressure
p (100 hPa and 400 hPa). The water vapor emission con-
tributes considerably to relative humidity at low temperatures
(where ambient air contains little water vapor). The contribu-
tion increases linearly with pressure because the plume mass,
over which the emissions get spread, increases with pressure.
Hence, the emitted water vapor is important (order 5 % or
larger) for times up to about 1 h at low temperatures near
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Fig. A5. Temperature increases due to combustion-heat and latent-
heat releases versus time.

200 K. For higher temperatures, near 240 K, the emitted wa-
ter vapor is important only for shorter ages, up to about 1
min.

The temperature increase1T due to combustion heat re-
lease is1T = Qfuel(1− η)/(cp Ndil(t)), see Fig.A5. For
comparison, we note that a vertical potential temperature
gradient of typically 0.003 K m−1 in the troposphere implies
0.3 K warming for 100 m altitude increase. The combustion
induced temperature increases stay below 0.3 K after about 1
min age. The warming by latent heat release by condensing
all emitted water would be about 10 times smaller because
the latent heat is so much smaller than the combustion heat.

Typical ice water contents in cirrus and contrails are
IWC/(mg m−3) = exp(6.97+ 0.103T/◦C)

(Schumann, 2002; Schiller et al., 2008). If all this water
gets sublimated, the resultant temperature change remains
below 0.1 K in cold air, forT < 240 K.

A7 Advection near the Poles

To avoid singularities at the Poles, for large latitude mag-
nitudes|y| > 80◦, we invert the longitude (E) and latitude
(N) coordinatesxn andyn at the previous time steptn first
into Cartesian coordinatesX, Y (in the directions of 90◦ and
180◦ from the Pole), then compute advection during the time
step1t = tn+1 − tn towards new Cartesian coordinatesX̃, Ỹ

with the horizontal longitudinal/latitudinal velocity compo-
nentsun, vn at (xn,yn,pn, tn) in degrees−1, and then return
the new longitude/latitude coordinates toxn+1,yn+1 in de-
gree. The angleα measures the negative longitude relative to
theX-axis-direction. The variables equalss = 1 at the North
Pole ands = −1 at the South Pole.

Sx = sin(xn π/180◦), Cx = cos(xn π/180◦),
X = Sx (90◦

− |yn|), Y = −s Cx (90◦
− |yn|),

Cy = cos(yn π/180◦),
Un = Cy un Cx − s vn Sx , Vn = s Cy un Sx + vn Cx ,
X̃ = X + 1t Un, Ỹ = Y + 1t Vn.
These equations apply for the Runge-Kutta predictor step.

For the corrector step,̃X,Ỹ are computed usingUn+1,Vn+1
derived similarly usingun+1,vn+1 atxn+1,yn+1,pn+1, tn+1:

X̃ = X + (1/2)1t [Un + Un+1], Ỹ = Y + (1/2)1t [Vn +

Vn+1],
and then
Z = X̃2

+ Ỹ 2, α = atan(Ỹ, X̃)180◦/π ,
xn+1 = 90◦

+ s α, yn+1 = s [90◦
− Z1/2

].
After call of this routine, one has to make sure (by adding

or subtracting 360◦) that consecutive way points are consec-
utive in longitude with increments< 180◦.

A8 Flight and contrail segments passing the date line

Flights across the Pacific and some flights near the Poles pass
the date line at±180◦ once or several times. On input, flight
way points are given consecutively with small longitude in-
crements (we require increment less than 300◦, which should
be sufficient even close to the Poles). However, flights pass-
ing the date line, with some longitude values exceeding 180◦

in magnitude, require special attention.
For contrail analysis, all segment coordinates are left un-

changed from the input. This allows for straightforward com-
putation of segment length and direction values (the lat-
ter is needed for computing the horizontal velocity compo-
nent Vn normal to the segment). Only for interpolation in
NWP data, we shift longitudes by±360◦ into the inner range
−180◦ < x ≤ 180◦.

However, for plots and related analysis, one needs to map
the flight paths and contrail segment coordinates to the in-
ner range. This is done (in module TESTD) by inserting two
extra points into a segment whenever passing the date line,
one with x = 180◦, the other withx = −180◦, where the
sequence depends on the flight direction. All other contrail
properties (except segment length) are interpolated linearly
between the original endpoints to the new end points. Special
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Fig. A6. Normalized subgrid-scale energye and mixing length-
scale for heat̀h versus Richardson number,es = e(Ri = 0), `h0 =

`h(Ri = 0).

care was needed with input coordinates|x| > 540◦. Such rare
segments crossing this secondary date line are eliminated
from further analysis (in module LIMITX).

A9 Subgrid-scale vertical velocity variance

The kinetic energy of mesoscale subgrid-scale turbulent mo-
tions e per unit mass, and its vertical variance partw′

meso
as needed in Eq. (55), are computed followingSchumann
(1991):

e = `ε(`mS2
T − `hN

2
BV), (A20)

w′2
SGS/e = (2/3) [`h/(ch`)]

2, (A21)

with

`h = ch `e/(e + 0.3`2N2
BV),

`ε = `/cε,`m = cm`. (A22)

Most of the model coefficients are consequences of an in-
ertial range spectrum assumed at subgrid scales (Schumann,
1991): cε = 0.845,cm = 0.0856,ch = 0.204. The NWP grid
scale is set tò = 700 m. A larger̀ implies a smallerEmeso
in Eq. (55). Hence, this is essentially not an additional free
parameter in this application.

Because of the dependence of`h on e, these equations
are quadratic ine. The solution ise = b +

√
b2 + c, with

b = αSS2
T − αN N2

BV , c = αc S2
T N2

BV , αS = `ε`m/2, αN =

(0.3` + `ε ch)`/2, αc = 0.3`2`ε `m. The solutione is non-
negative for any positive or negative stratification.

Normalized results are functions of the Richardson num-
berRi. The energye stays rather large, but the turbulence be-
comes highly anisotropic with decreasingw′2

SGS for growing
Ri. The ratio of vertical to total kinetic SGS energyw′2

SGS/e

is (2/3) for locally isotropic turbulence at weak stratification
and tends to zero for̀2N2

BV/e → 0, see Fig.A6.

Table A1. List of symbols.

Parameter Explanation Unit

A contrail cross-section area m2

B contrail breadth m
c concentration kg m−3

cp specific heat capacity of air J (kg K)−1

C fractional cloud cover 1
C0 mass of a plume species per length kg m−1

d particle diameter m
D contrail depth m
Deff effective contrail depthA/B m
DH horizontal diffusivity m2 s−1

DV vertical diffusivity m2 s−1

DS off-diagonal “shear” diffusivity m2 s−1

e kinetic energy of turbulent subgrid-scale motions m2 s−2

ESGS kinetic energy of all subgrid-scale motions m2 s−2

EI emission index, mass or number per fuel mass kg kg−1, kg−1

fsurv fraction of particles surviving the wake vortex phase 1
g gravity m s−2

G mixing line gradient Pa K−1

I ice mass mixing ratio kg kg−1

IWC ice water concentration kg m−3

IWP ice water path kg m−2

` NWP subgrid length scale m
L horizontal segment length m
Ls latent heat of sublimation J kg−1

mF fuel consumption per flight distance kg m−1

M plume mass per contrail length kg m−1

Ms molar mass of species s (air, H2O) kg mol−1

Ma aircraft mass kg
n number of ice particles per volume m−3

N total ice number concentration per contrail length m−1

NBV Brunt-Vaisaila frequency s−1

NW number of waypoints 1
Ndil ratio between contrail mass and fuel flow per length 1
OLR outgoing longwave radiation W m−2

p pressure Pa
pliq liquid saturation pressure Pa
pice ice saturation pressure Pa
q absolute humidity (mass fraction of water vapor in air) kg kg−1

qs ice saturation humidity kg kg−1

Qext solar radiation extinction efficiency 1

For ST = 0.002 s−1, NBV = 0.02 s−1, the result ise ≈

0.11 m2 s−2, which is within the range of measured values
(Schumann et al., 1995). For Ri ≈ 10, the modeled ratio is
w′2/e ≈ 0.02, while the measurements show a ratio of about
0.15. Therefore, we enhancew′2

SGSby adding the variance of
mean vertical motions̄w at grid scales, see Eq. (54).

A10 Particle number integration

For the number of particles per contrail length, we need to
integrate an ordinary differential equation of the form

N ′
= −AN2

− BN, N(0) = N0. (A23)

The analytical solution of this equation is:

N(t) =
BN0e−B t

B + AN0(1− e−B t )
, for B t > 0. (A24)

The solution simplifies to

N(t) =
N0

1+ AN0
, forB t � 1, (A25)
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Table A1. Continued.

Parameter Explanation Unit

Qfuel heat of fuel combustion MJ kg−1

r volume mean particle radius m
reff optically effective particle radius m
R0,R1 gas constants of air and water vapor J (kg K)−1

RHi relative humidity over ice 1
Ri Richardson numberN2

BV/S2
T

1
RF radiative forcing W m−2

RSR reflected shortwave radiation W m−2

sa aircraft wing span m
SDR solar direct radiation W m−2

S0 solar constant W m−2

Si flight segment(Wi ,Wi + 1)

S,ST shear perpendicular to plume, total shear s−1

t time or age s
T absolute temperature K
TLC threshold temperature K
TLM maximum threshold temperature K
U air speed in x-direction m s−1

U relative humidity of liquid saturation 1
V air speed in y-direction m s−1

Va aircraft true airspeed m s−1

VT particle terminal fall velocity m s−1

w vertical velocity m s−1

w′
N

stratified turbulence velocity scale m s−1

Wi waypoint(xi ,yi ,zi , ti), i = 1,2, . . . ,NW
◦, ◦, m, s

x longitude ◦

X vector of variables(x,y,p,σ,I,N)

y latitude ◦

z altitude above sea level m
ε kinetic energy dissipation rate m2 s−3

1t time step s
1zw downwash distance m
η overall propulsion efficiency 1
0 wake vortex circulation m2 s−1

µ cosine of solar zenith angle 1
ρ, ρice air, bulk ice density kg m−3

ω pressure change rate Pa s−1

σ covariance matrix m2

σyy ,σzz,σyz elements ofσ m2

τ optical depth at 550 nm 1
τdil time scale of dilution s
θ solar zenith angle ◦

2 potential temperature K

N(t) = N0e−B t , forAN0 � B. (A26)

A11 One-dimensional Gaussian integral

The functionfτ (y), Eq. (63), follows from
fτ (y) = (B/A)I (y), with
I (y) =

∫
∞

−∞
exp[−(1/2)xT σ−1x]dz.

This integral can be evaluated (Abramowitz and Stegun,
1964, 7.4.2, 7.1.2 and 7.1.9),

I (y) =
∫

∞

−∞
exp[−(az2

+ 2bz + c)]dz

= (π/a)1/2exp[(b2
− a c)/a]

where
a = (1/2)σyy/detσ , b = (1/2)σyz/detσ ,

Table A2. Abbreviations.

Acronym Explanation

ACCRI FAA-project “Aviation Climate Change Research Initiative”
BADA Base of Aircraft Date from EUROCONTROL
CATS DLR-project “Climate-compatible Air Transport System”
CI cirrus
CO contrail
COCI contrail cirrus
CoCiP Contrail Cirrus Prediction tool
CONCERT CONtrail and Cirrus ExpeRimenT
COSMO-DE Consortium for Small Scale Modelling –

Deutschland, NWP model of DWD
DFS Deutsche Flugsicherung
DLR Deutsches Zentrum für Luft- und Raumfahrt
DWD Deutscher Wetterdienst
ECMWF European Centre for Medium Range Weather Forecasts
EU European Union
EUROCONTROL European Organization for the Safety of Air Navigation
FAA Federal Aviation Administration
ICAO International Civil Aviation Organization
IFS Integrated Forecasting System
ISSR ice supersaturated region
LES large-eddy simulation
LW longwave
NWP numerical weather prediction
OAG Official Airline Guide
OLR outgoing longwave radiation
rms root-mean-square
RSR reflected shortwave radiation
REACT-4C EU project “Reducing Emissions from Aviation by

Changing Trajectories for the benefit of Climate”
SAC Schmidt-Appleman criterion
SGS subgrid scale
SW shortwave
TOA top of atmosphere
US, USA United States, ... of America
2d, 3d two-dimensional, three-dimensional

andc = (1/2)σzz/detσ .
With Eqs. (3, 8),
A = 2π(detσ)1/2 andσyy = B2/8,
this results into Eq. (63),
fτ (y) = (4/π)1/2(A/B)exp[−(1/2)y2/σyy],
independent ofσyz.

A12 Contrail segment contribution to optical depth in
the cloud-mask

For given Cartesian segment end-points(x1,y1), (x2,y2), we
compute the contribution of the segment to the optical depth
τ0,0 at the pixel position, e.g. at(x0,y0), using linear geome-
try, see Fig.A7, as follows. First, a parameterw is computed,

1x0 = x2 − x1, 1y0 = y2 − y1
det= (1x0)

2
+ (1y0)

2

1x1 = x0 − x1, 1y1 = y0 − y1
w = (1x11x0 + 1y11y0)/det,
with det> 0 if the normal from(x0,y0) crosses the seg-

ment line. If the cross-point(xs,ys) is within the segment
line, i.e. for |w − 1/2| < 1/2, we compute the distances to
the pixel point and with this the contribution to optical depth.

xs = x1 + w(x2 − x1), ys = y1 + w(y2 − y1)

s2
= (x0 − xs)

2
+ (y0 − ys)

2

B = wB2 + (1− w)B1
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Fig. A7. Example of a contrail-segement between end-points
(x1,y1) and (x2,y2) (red) with closest connection (blue) from a
point (x0,y0) in the cloud mask to(xs ,ys) on the contrail center-
line, and contribution to optical depthτ (see Sects.2.15andA12).

δ = s2/(B2/8)

γ = (4/π)1/2 exp[−(1/2)δ]

τ = wτ2 + (1− w)τ1
τ0,0 := τ0,0 + γ τ

Here,Bm andτm are the contrail width and optical depth
at the segment end points,m = 1,2.
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