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Abstract. A wide variety of different plankton system mod- poral and spatial variability in the expected simulation error
els have been coupled with ocean circulation models, withvariance over an annual cycle, indicating variation in the sig-
the aim of understanding and predicting aspects of envinificance attributable to individual model-data differences.
ronmental change. However, an ability to make reliable An inverse scheme using ensemble-based estimates of the
inferences about real-world processes from the model besimulation error variance to allow for this environment er-
haviour demands a quantitative understanding of model error performs well compared with weighting schemes used
ror that remains elusive. Assessment of coupled model outin previous calibration studies, giving improved estimates of
put is inhibited by relatively limited observing system cover- the known parameters. The efficacy of the new scheme in
age of biogeochemical components. Any direct assessmemeal-world applications will depend on the quality of statisti-
of the plankton model is further inhibited by uncertainty in cal characterizations of the input data. Practical approaches
the physical state. Furthermore, comparative evaluation ofowards developing reliable characterizations are discussed.
plankton models on the basis of their design is inhibited by
the sensitivity of their dynamics to many adjustable param-
ete_rs. I_Darameter uncertalnt_y has been _Wldely addressed by |ntroduction
calibrating models at data-rich ocean sites. However, rel-
atively little attention has been given to quantifying uncer- Ocean biogeochemical general circulation models
tainty in the physical fields required by the plankton models(OBGCMs) have a key contribution to make to the
at these sites, and tendencies in the biogeochemical propegpal of understanding biogeochemical cycles at global
ties due to the effects of horizontal processes are often neanq regional scales. These models are highly simplified
glected. “mechanistic” models of a generic plankton ecosystem,
Here we use model twin experiments, in which synthetic coupled with 3-dimensional ocean circulation models that
data are assimilated to estimate a system’s known “true’provide the physical environment to which the plankton
parameters, to investigate the impact of error in a plank-models respond. Reliable plankton models are needed to
ton model’s environmental input data. The experiments aramake inferences about the potential role of the marine biota
supported by a new software tool, the Marine Model Opti- in environmental change. However, the contrast between the
mization Testbed, designed for rigorous analysis of planktoncomplexity of biological systems and the limited data avail-
models in a multi-site 1-D framework. Simulated errors are able to empirically constrain model structure and parameter
derived from statistical characterizations of the mixed layervalues has led to a wide range of different representations
depth, the horizontal flux divergence tendencies of the bio-of the marine plankton system. Each model is one of a still
geochemical tracers and the initial state. Plausible patterngiider set of competing hypotheses concerning the dominant
of uncertainty in these data are shown to produce strong temmechanisms that control the biological response to change
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in the physical and chemical environment. The level of with the sensitivity of plankton models to their forcing data
complexity that can be justified in these models, given theinevitably makes the problem persistent, motivating a formal
available biogeochemical data, has been a subject of somgeatment of uncertainty.

debate Anderson 2005 Le Quérg, 2006. To resolve this The uncertainty introduced by horizontal processes poses
we must be able to comparatively evaluate models on thea further problem for 1-D studies that has yet to be satisfacto-
basis of their structure and process formulations. Behaviourily addressed. Flux divergences associated with mesoscale
of plankton models in OBGCMs is sensitive to the details eddy activity are particularly problematical in this respect.
of the physical dynamicsSinha et al.2010. Dependence The issue does not arise explicitly when calibrating a model
on a particular physical model in comparative assessmentt simulate a climatological annual cycldétear 1995

of model designs should therefore be avoided if futureHurtt and Armstrong1996 1999 Spitz et al, 1998 2001
biogeochemical simulations are to benefit from improved Schartau and Oschlie8003 Dadou et al.2004 Losa et al.
representations of the physical environment. 2009. In these cases, mesoscale and inter-annual variabil-

Direct comparison of plankton models on the basis of theirity are both interpreted as noise superimposed on the aver-
design is inhibited by parameter uncertainty: behaviour ofage annual cycle. Alternatively, mesoscale variability can be
each model depends on many adjustable parameters that ameated as noise superimposed on spatially averaged plankton
poorly known or difficult to quantify. Although some of concentrations. On this basldemmings et al(2003 2004
these values can be determined experimentally under cortreated all satellite chlorophyll data within either 150 km
trolled conditions, the corresponding values in nature areor 100 km as equally representative of the calibration site.
generally highly variable in space and time or across taxaA problem with both approaches is that averaging tends to
Fasham and Evar(d995 andMatear(1995 started to ad- smooth out features such as blooms, in effect changing the
dress this problem by fitting plankton models to observationsapparent response of the system that we are attempting to
from time-series sites in the temperate North Atlantic andmodel.
subarctic Pacific respectively, using non-linear data assim- Simulating the dynamics for specific years at specific lo-
ilation techniques to seek optimal parameter sdifatear  cations seems preferable, particularly if we want plankton
(1995 investigated 3 different ecosystem configurations with models that will benefit from increased resolution in gen-
3, 4 and 7 nitrogen compartments and concluded that the dataral circulation models, but it requires more supporting data.
from the study site were insufficient to justify either of the Year-specific forcing can be derived from in situ observations
more complex models over the simple nitrate-phytoplankton-(Fasham and Evan&995 Schartau et al2001 Fasham et
zooplankton modelDadou et al(2004 compared 3 alterna- al., 2006, from a 1-D physical model with appropriate me-
tive configurations, spanning a similar range of complexity, teorological forcing Prunet et al.1996ab; Faugeras et al.
at an oligotrophic study site in the eastern North Atlantic and2003 2004 Kettle, 2009, from a 3-D circulation model
were not able to objectively discriminate between the designgFennel et al.2001; Schartau et al.2007) or from a com-
on the basis of their misfit results. bination of in situ and 3-D model datd&riedrichs et al.

To test models’ predictive ability it is necessary to ex- 2006 2007). However, the local forcing is only relevant
amine their misfit with respect to unassimilated data aswhen local effects are dominant. The presence of strong
in the more recent model inter-comparison experiments ofmean flows in some regions, together with the ubiquity
Friedrichs et al(2006 2007). In an experiment with 12 mod- of mesoscale patchiness associated with fronts and eddies
els (Friedrichs et a].2007), data from Arabian Sea and Equa- means that such dominance cannot generally be assumed.
torial Pacific sites were used and models calibrated at oné&riedrichs et al(2007) determined that horizontal advective
site were cross-validated at the other. Here, the more comdivergence of nutrients could have first order effects on the
plex models with multiple plankton functional groups tended biogeochemistry at the Equatorial Pacific site and introduced
to perform better, provided that only a small number of pa-an additional source/sink term computed from a°1¢8u-
rameters were optimized, suggesting greater portability angbled biological-physical model to account for these, while
predictive skill associated with model design. acknowledging the issue of unknown error in the 3-D model.

The results obtained from all of these optimization exper- Other approaches to the horizontal flux divergence prob-
iments are dependent on the external inputs to the planktotem have been applied with some success to specific data
model. Friedrichs et al(2006 examined the impact of un- sets. Fasham et al(1999 used data from a 3 week North
certainty in the physical forcing and demonstrated that likely Atlantic spring bloom survey that followed a drogued buoy,
errors in the physical forcing data can have a major impact ordeployed within an anti-cyclonic eddy, to minimize contam-
biogeochemical simulations, causing a calibration process tanation of the biological dynamics by non-local effects. In a
yield inappropriate parameter values. One approach to solvealibration exercise using data from the SOIREE iron fertil-
ing this problem is to improve the physical forcing. Joint ization experimentFasham et a(2006 parameterized dif-
assimilation of physical and biogeochemical data, as advofusive flux divergence effects using a mixing rate based on
cated byFriedrichs et al(2006, seems likely to be benefi- the dilution of a passive tracer added to the iron enriched
cial. However, the inadequacy of data coverage combinedvater. A novel “variable lag” fitting technique introduced
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by Wallhead et al(2006 allows for phase differences asso- whereC is the number of casesy is the number of observa-
ciated with mesoscale patchiness. Survey data from a relaion points for casé (in space and time) and is the num-
tively wide area could thereby be combined without explic- ber of observed variables;;, is the simulated value of the
itly resolving mesoscale processes yet avoiding the risk ofj-th variable at theé-th observation point ang;;; is its ob-
smoothing out temporal variability. served value. We refer to the squared residugh — y,'jk)2

Itis clear that a thorough investigation of the impact of un- as the model misfit. The coefficiept;, is 1 if the variable
certainty in all factors that contribute to uncertainty in plank- is present in the observation set or 0 otherwise; is a
ton model simulations is a high priority. The associated dataweighting factor to be applied to the misfit.uf; is the re-
management issues, in combination with the need to perforngiprocal of the expected residual variance for a perfect sim-
a wide range of computationally expensive model analysesilation then the cost function value for a perfect simulation
involving many different simulations has been a factor in- should approach 1 for large.
hibiting rapid progress in this area. The MarMOT software Model-data differences may be calculated in transformed
system has been developed as a generic tool applicable to difariable space. log or square root transformations are some-
ferent plankton models with the aim of removing this barrier. times used, in which caseis replaced by logyx or /x, re-

In Sect.2, existing model calibration schemes are re- spectively and is likewise replaced by logy or ./y. Log

viewed and a new scheme is proposed that includes an estransformations emphasize relative error and are appropri-
plicit treatment of environmental uncertainty. Secti®de- ate for variables that tend to exhibit log-normal distributions.
scribes an evaluation of the scheme in idealized model-twirHowever, in ecological analyses it is often unclear whether
experiments where the true system is known, exploiting keyabsolute or relative errors should be considered. Square root
features of the MarMOT system. The challenges of apply-transformations have been applied as a compromise in some
ing the scheme to real-world data and the wider role of Mar-studies for this reasonF@sham and Evand995 Evans
MOT in plankton model analysis are discussed in Seand 1999 Dadou et al.2004 Fasham et a|2006).
a summary is presented in Se&t. The basic cost function described here could be extended
to introduce additional constraints. In particular, parameter
penalty terms are often included to inhibit excessive devia-
tion of parameters from their prior expected values. Such
terms allow subjective prior information about the parame-

In inverse analyses of plankton ecosystem models, paramégrs to 'be included which can be particularly valuable in the
ter optimization is generally performed by minimization of a analysis of under-determined systems. Although MarMOT

cost function. Maximum likelihood methods have also beend©€s not presently Support_penalty terms in the cost function,
employed Hurtt and Armstrong1996 1999, in which an parameter _bounds_ can be imposed mdgpenc_iently of th_e cost
optimizer is applied to the problem of maximizing a function fUNCtion using optimizer features described in Appendix
describing the likelihood of the parameter values conditiona/AN @lternative approach is to reduce the size of the adjustable

on the observation set. The two techniques are essentialljarameter set to one that can be adequately constrained by

equivalent and give point estimates of the model parameterdn€ available datarfiedrichs et a|.2007. While parame-
Alternatively, in a fully Bayesian scheme, the likelihood is ter constraints are generally useful, omitting them can reveal

multiplied by prior probability distributions for the parame- useful mforn"_natlon about deficiencies in model deS|gn.|f the _
ters to estimate their complete posterior distributidrart data constraints cause parameters to take values outside their

mon and Challenor1997 or combined distributions for the ~€XPected ranges.
parameters and the system st&ewd and Meyer2003.

2 Cost function design

2.2 Weighting of model-data differences
2.1 Generic cost function The weight given to individual model-data misfits in a par-

Th f ¢ funci trics f ing th ticular cost function or likelihood function is fundamental to
€ use of cost Iunctions as metrncs Tor Summanzing M€y, offectiveness of data assimilation for controlling model
overall performance of simulations against multivariate ob-

. S parameter values. As discussedBans(2003, a wide va-
servational data sets is discusse Hgw et aI.(ZC_)OQ. The . riety of different approaches have been used in the literature,
MarMOT system supports a generic cost function for multi-

I able t d multiple simulati fthe f having a potentially major impact on parameter estimates and
pie vaniable ypes and mulliple simulation cases ot the 1orm ¢ ragyitant estimates of key biogeochemical quantities from

the calibrated model simulations.

1 C m ng . . g
J == Diiewi ik (Xiik — Viik)2 (1) Unweighted 'mISfItS h.ave been usdeagham _and quns _
N ;;; YETUE Y 1995 or sometimes weights have been used in a subjective
m g way to give more influence to observations that are felt to be
N = Z Zpijk @) more reliable or more important to fifgsham et al.1999
=1 j=1li=1 2009. The square root transform usedBgsham and Evans
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(1995, Evans(1999 and Fasham et al(2006, while not  al., 2007 Kettle, 2009 Ward et al, 2010, while in others, no
weighting individual misfits explicitly, has the effect of giv- such weighting is appliedMatear 1995 Prunet et a].1996a
ing more influence to misfits occurring when values of modelHurtt and Armstrong1996 Spitz et al, 2001, Friedrichs
and data are low. This is a compromise between treatment a2002 Dadou et al.2004 Kuroda and Kishi2004 Friedrichs
absolute and relative errors; absolute errors might be considet al, 200§. The choice is significantFasham and Evans
ered more important in the context of estimating total ele-(1995 performed experiments with and without a weight-
ment fluxes, whereas relative errors might be favoured by aring factor that increased the influence of the small number
guments based on representing ecological structtvar(s of zooplankton observations in their data set, obtaining two
1999. Hurtt and Armstrong1996; Fasham et al(1999); different optimal parameter sets for which simulated primary
Hurtt and Armstrong(1999 scaled model-data differences production differed by a factor of about 2.
relative to the model values at the observation points, giving Explicit weighting to balance the contributions of differ-
equal weight to equal relative departures. ent data types is objectively justifiable if error correlations

More typically, some characteristic scale is determined forare much greater between variables of the same type than be-
each assimilated data type, designed to reflect its variabilithween different data types. However, this cannot generally be
relative to other data types over the whole data set. Weightaissumed anBvans(2003 argues that, while such balancing
w; (Eq. 1) are chosen to be inversely proportional to the has the advantage of emphasizing scarce but important mea-
mean of all observations of the same tyBei(z et al, 2001), surements, it may not be desirable in a formal procedure. As
the square of the mealroda and Kishi2004 or theirvari-  discussed b¥vans(2003, we can expect simulation errors
ance Friedrichs et al.2006 2007, Kettle, 2009 Ward et al, arising from model error or external factors to introduce both
2010. Friedrichs et al(2007 andWard et al (2010 found it serial correlations and correlations between variables via the
necessary to introduce a subjective up-weighting of misfit tomodel dynamics. This could be allowed for by the use of a
primary production observations due to the high variability non-diagonal covariance matrix in the cost function formula-
of these dataEvans(2003 suggested that if focusing on the tion. However, the issue has not been addressed in previous
cycle of a particular element it may be desirable to give thestudies and a full treatment is not presently supported in Mar-
same weight to all misfits for that element, regardless of theMOT.
form in which it occurs.Dadou et al(2004) therefore used Another issue arises when optimizing over multiple sites.
a single scaling factor for all nitrogen variables, based onSchartau and Oschli€2003 optimized parameters for three
the maximum observed nitrate, and used intuitive argument®tlantic sites simultaneously and found with their initial
to determine relative scaling factors for primary production weighting scheme that observations at a particular site had a
and particle fluxes based on the maximum observed valuegmuch greater influence than those at the other sites. This was
of other relevant properties. a consequence of order-of-magnitude variations in property

In general, characteristic scales are used because of the abencentrations between sites. The problem was countered by
sence of information required to properly estimate error vari-introducing a weight based on variables’ mean values at each
ances. In some studies though, the variable-specific weighsite, an approach also adoptedfayedrichs et al(2007) in
is presented as the reciprocal of an assumed or estimated oimultaneous optimizations for sites in the Arabian Sea and
servation error variancé>(unet et al.1996ab; Fennel etal.  Equatorial Pacific. No site-specific weighting was used in
2001, Faugeras et 12003 2004, for a particular variable, the two-site calibration oflurtt and Armstrong1999 or the
either absolute or relative error variances are taken to be conmulti-site calibrations oHemmings et al(2003 2004).
stant. Schartau et a2001) used a combination of constant  When the objective is to achieve a particular compromise
absolute and relative error variance estimates for chlorophylbetween sites or between variables that is dictated by an ap-
and primary production data. Finally, seasonally varying ob-plication of the model then some subjective weighting can
servation error variance estimates have been used in invergse justified. However, when it is to make inferences about
modelling of the annual cycleMatear 1999, while Hem-  the model such weighting is undesirable. Furthermore, it is
mings et al(2003 2004 estimated error variances specific possible that improved normalization of model-data misfits
to individual chlorophyll observations from spatial variances could reduce the need for it.
in satellite data.

There are some other weighting considerations that are un2.3  An uncertainty-based weighting scheme
related to the expected error variances. Cases are common
in the literature where different numbers of observations areA formal weighting scheme is developed here, with explicit
available for different data types. They are generally treatecconsideration given to the different sources of error con-
in one of two ways: in some studies, misfits for different tributing to the model-data misfit. Misfit arises from a com-
variables are weighted by the reciprocal of the number of ob-bination of error in the observations and error in the simula-
servations of each typéd(rtt and Armstrong1999 Schar-  tion. Error in the observations arises from both measurement
tau et al, 2001, Schartau and Oschlie2003 Faugeras et error and error of representativeness. The latter is error due
al.,, 2003 2004 Hemmings et a).2003 2004 Friedrichs et  to small-scale variability or, more specifically, the mismatch

Geosci. Model Dev., 5, 471498 2012 www.geosci-model-dev.net/5/471/2012/



J. C. P. Hemmings and P. G. Challenor: Uncertainty in plankton model calibration 475

between the volume of water sampled and the minimum scalenodel’s environmental inputs. The expected valud &br a
resolved by the simulation. It includes error due to small- perfect model is 1; if the model-data difference is no larger
scale variations in both space and time. Error in the simula-on average than might be expected as a result of observa-
tion is the result of model error, attributable to deficiencies intion error and environment error then there is no evidence for
the model, and environment error, attributable to error in itsmodel error so the data give us no cause to reject the model.
environmental inputs (forcing data and boundary conditions). If the aim is to estimate model parameters we need also
For a model with optimizable parameters, model error canto take into account structural uncertaintyeses becomes a

be treated as the sum of parameter error and structural erraandom variable. The cost function for evaluating a particular
components. The structural error is the residual error for theparameter set is:

true parameter set (assuming such a set exists conceptually).

It is the error associated with the model design and includes, 1 (xijr — yijk)z )

error attributable to values of any flxed.r_nodel p:_arameters. N ijk gs_k oBs+ ‘Ti%'kENv + gs_k S

If we assume that all errors are additive and independent,

the simulated and observed values of varigbket observa-  |f the model-data difference is no larger than might be ex-
tion pointi at sitek can be expressed as pected as a result of observation error, environment error and
(3)  structural error then there is no evidence for parameter error
S0 no cause to reject the parameter set.

In ecosystem models, parameters typically do not corre-
wherex; ;T is the true value (i.e. that for a perfect simula- spond to well defined physical constants and the hypothetical
tion) ande;jrenv, €ijkp, €ijks ande;jros are the environ-  “true” parameter set is likely to be model-specific. In such
ment error, parameter error, structural error and observatiogases the distinction between parameter error and structural
error, respectively. Observation error here is the sum of meaerror becomes unclear. In addition, the problem of estimating
surement error and representativeness error. The model dathe structural error and its varying contribution between data
difference or residual is then: points is less tractable than that of estimating the environ-
ment error. For pragmatic reasons, we might therefore per-
mit parameter values to compensate for structural error and
While it is unreasonable to assume that the simulation erignore the structural error term. The free parameters would
ror sources are truly independent, the interpretation here ighen be adjusted to minimize E)(
useful if they are in some sense separable. For the purposes A value foro;jxoss can in principle be derived from repeat
of this study, mean errors are assumed to be zero. The lackbservations, if available. An appropriate value éfeny
of any explicit treatment of bias is consistent with previous can be obtained from ensemble integrations of the model
studies. However, it is acknowledged as a potential limita-with input data representative of the probability distributions
tion. A further assumption is that errors are normally dis- of the forcing variables and boundary conditions. The un-
tributed. certainty in these external fields is propagated to the model-

The appropriate normalization variance (reciprocal of estimated properties via the simulation angkeny is then
w;jk) for the cost function depends on the objective. If it determined from the resulting probability distribution at each
is to evaluate the goodness-of-fit of a given simulation, thendata point. The method relies on a good characterization of
all simulation errors are fixede;xogs is treated as a ran- uncertainty in forcing data and boundary conditions, requir-
dom variable and the expected variance of the residual for g a thorough analysis of relevant satellite and in situ data
perfect simulation is the observation error varianﬁ/%OBS_ available for the site and its surroundings. Local modelling
However, if the aim is to evaluate the plankton model itself studies, including data assimilating hindcasts, might provide
then we must take into account environmental uncertaintyadditional information. In a calibration exercise, parameter
For a model with a prescribed parameter sgtp ande; jks error is non-zero and the issue of separability of parameter
are fixed, while botk; jxogs ande; jxenv should be treated as ~ error and environment error arises. This is addressed by tak-
random variables. The residual for a perfect model (obtainedng into account parameter uncertainty in the derivation of
by setting the fixed errors in Ecp)to zero) has an expected 0ijkENV-
variance equal to the2 sum of ;he observation and environ-
ment error variances;; 405 . The corresponding ] ]
cost function for quaﬁjtff?/?:g mgé(g%oodness-of—fit is: 3 Twin experiments

Xjjk = XijkT + €ijkENV T €;jkP + €;jkS
Yijk = XijkT + €ijkOBS (4)

Xijk — Yijk = €ijkENV + € jkP + €ijkS — €i jkOBS. ®)

The potential of the proposed calibration method is examined
6 by way of identical twin experiments in which the true pa-

rameter values are known. We focus on the design of the cost
The significance of each individual model-data misfit is re- function. The more general calibration problem normally in-
duced to take into account the effect of uncertainty in thecludes a parameter selection phase guided by a sensitivity

2
J— 1 (Xijk — Yijk)

> 2 :
N % o5ioBs T Okeny
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analysis to determine which parameters can be independenthhis synthetic environment represents the true environment
constrained and/or which parameters are likely to impact orand the corresponding simulation is used to generate the ob-
model outputs of particular scientific interest. The selectionservation set. A second realization is treated as the best avail-
phase is outside the scope of the present study. able estimate of the true environment and used to drive trial
In the twin experiments, synthetic observations are genersimulations with varying parameter vectors in the optimiza-
ated from a model with a particular parameter set, taken tdion experiments. This realization of the environmental data
represent the true system. The same model with 5 free pas referred to as the optimization environment. To examine
rameters is then optimized to fit these data in an attempt tdhe robustness of the results with respect to environment er-
recover the original “true” parameter values. Results for theror, the set of optimization experiments is repeated for differ-
proposed method are compared with those obtained using eent realizations. Estimates of the environment error variances
tablished weighting schemes. Gz%’kENV are determined from ensemble realizations using the
A set of three experiments is performed with different same synthetic environment model, so they reflect the im-
weighting schemes, one using a characteristic scale for eagbact of known uncertainty in the environmental inputs. In a
variable, another based on the known observation error statigeal-world experiment, the reliability of the data assimilation
tics and a third using these in combination with expectedresults will depend on how well the uncertainty is character-
simulation error variances. The first two schemes are repized.
resentative of established schemes described in 3&ct. The plankton model is a version of the HadOCC (Hadley
In Experiment 1, we consider observation error varianceCentre Ocean Carbon Cycle) model, based on the model
estimates based on the inherent variability in the data set anayf Palmer and Totterdef2007), in which organic carbon
following Friedrichs et al(2006, set the uncertainty to 25% fluxes are controlled by a 4 compartment nitrogen cycle. The
of the standard deviation for all observations of the same state variables are dissolved inorganic nitrogen (DIN), phy-
type at the same site. So for variahlat sitek the weights  toplankton, zooplankton and detritus. A full description of

in the MarMOT cost function (EdL) are: the model’s nitrogen cycle is given in Appendix The pa-
rameters to be optimized are specified in Table
16 he ch io | | cycle at th
Wijk = —- (8) The chosen scenario is based on an annual cycle at three
Sk sites with 1-D simulations being driven by environmental in-

put data from a global ocean biogeochemical general cir-

In Experiment 2, the known observation error statistics are, | tion model: the NEMO (Nucleus for European Mod-

used, so: elling of the Ocean) model coupled with the plankton model
1 MEDUSA (Model for Ecosystem Dynamics, carbon Utilisa-
Wijk = —G'Zoss- (©) tion, Sequestration and Acidification) is used to provide local
J

physical forcing data and statistics for the horizontal flux di-
Model-data differences are calculated in transformed spacevergence tendencies of the biogeochemical properties. The
corresponding to that in which the observation errors are genplankton model providing the divergence tendencies is there-
erated. In Experiment 3, the weights are derived following fore different from the plankton model being analyzed in the
the new method proposed in Se2t3, using environmental 1-D simulations. This is acceptable in the context of the twin
simulation error variance EStimatf%Z?kENv- Structural error  experiments: there is no requirement for the lateral forcing
is zero by definition so the cost function formulation is that to be consistent with the model being calibrated, provided
given in Eq. 6). Weights for individual misfits are of the that it is representative of likely conditions in real-world ex-
form: periments. For model assessment in a real-world scenario,
1 the relevant divergence tendencies are estimates of those that
- . (10)  would be obtained by running the same model in a hypothet-
Sijkoss 1 SijkENV ical perfect 3-D physical simulation.
. . The environmental input data from NEMO-MEDUSA are
All model-data differences are calculated in square rootd . ) . :
: : erived from 5 day mean fields from a 3-D simulation af1/4
space. The expected observation error in square root space . . :
. : ; . fésolution with 64 vertical levels, referred to as ORCA025-
sijkoss is derived fromojogs according to the obsevation 561 ponova et a.2010. The run was undertaken at the

Wijk =

type. National Oceanography Centre as part of the DRAKKAR

31 Method collaboration Barnier, 200§ with model integration be-
ing performed on HECTOR, the UK National Supercomput-

3.1.1 Experimental design ing Centre facility. The selected sites are at R164° W,

47°N 20° W and 59 N 19 W corresponding to the BATS,
The first step is to create a statistical characterization of theNABE and OWS-INDIA sites used b§chartau and Oschlies
environmental inputs representing a given scenario with reaf2003.
sonably realistic patterns of uncertainty. One realization of
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Table 1. Free parameter space.

Parameter Unit Symbol  Minimum Maximum  Transformation Local Search
Initial slope of mgC (mgcChiy? Asurf 0.5 50 log unbounded
photosynthesis-PAR curve
Half-saturation conc. for mmol Nm~3 kN 0.01 1 log unbounded
nutrient uptake
Maximum grazing rate ot gmax 0.1 10 log unbounded
Zooplankton density- d=I(mmoINm—3)-1 m, 0.03 3 log unbounded
dependent mortality
Detrital sinking md-1 wp 0 100 none bounded
velocity

3.1.2 1-D simulations can be interpreted to represent missing tendencies due to hor-

izontal flux divergence or they might be used to introduce or
All of the 1-D simulations were performed using the Marine correct for errors in the simulation.
Model Optimization Testbed (Fid). Following the testbed In addition to the tendency terms in EQ.1j, rapid mix-
concept of Friedrichs et al. (2006, 2007), MarMOT provides ing of the upper mixed layer can be parameterized by com-
acommon physical and computational environment in whichplete homogenization of tracers above an externally specified
different plankton ecosystem models can be calibrated anéhixed layer depth at each time step. Optional partial mixing
compared. It is designed to support computationally inten-of the model level spanning the specified depth is included.
sive experiments in which model integrations are performed Forcing data for the model can be periodic, representing a
many times with different input data. MarMOT does not in- repeating annual cycle, or year specific. The standard forcing
clude a 1-D physical model. All physical forcing is instead variables for a 1-D plankton model simulation determine the
provided by external input data. Plankton model responses tfight availability at the sea surface and the transport of pas-
awide range of different physical environments can be examsive tracers in the water column. In MarMOT, they comprise
ined by providing different instances of the forcing data de-the downwelling solar radiation incident on the sea surface,
rived from models or observations or a combination of both. either as a daily mean or a point-in-time estimate, the mixed
Further details of the system design are given in AppeAdix  layer depth, the depth-dependent turbulent diffusion coeffi-
The features described here relate to each individual simulacient kK, and the vertical velocityw,. Additional model-

tion case. specific forcing variables are also catered for.
The equation for the evolution of a biogeochemical tracer  In perturbed simulations, the perturbation for an individual
concentratiorC; in a MarMOT simulation is: tracer can be independent of the concentrafipar it can be
applied to log-transformed or square root-transformed con-
dC,’ 3C,’ 3wi d 3C,‘ . . .
o —(wp+ w,-)a_ — 5. Ci + Py Kpa_ centration so thap; becomes a function of concentration. In
t Z Z Z Z

f either case, the applied perturbatiphis given by the sum
+SMS(C. F)+ pi(Ci. p)) +1i(C¥ = C)).  (11)  of a prescribed perturbatiquP®" and a stochastic term. The

) . latter is modell first order auto-regressive pr h
The first three terms represent the tendencies due to vertlfatte s modelled as a first order auto-regressive process suc

cal flux divergencewy is the vertical velocity of the water, that the perturbation at time steps

w; is the active vertical velocity of the biological material pr= Mperthqn (12)

relative to the water (if any) and, is the turbulent diffu- ! !

sion coefficient. Note that vertical divergenceuin changes  where:

the concentration, whereas vertical divergence in the flow is

balanced by fluid continuity so that the associated concentrag, = ag,—1+ €. (13)

tion tendency is zero (in the absence of horizontal gradients).

SMS is the source-minus-sink term from the selected plank- The valuea is determined from the auto-correlation co-

ton model which is a function of the state vectorand a  efficient forg at a time lag of 24 h as specified by a fixed

forcing vectorF. w; is also provided by the plankton model. Simulation parametere, is a normally distributed random
The last two terms define the boundary conditign:is variable with zero mean. Its standard deviation is set to give

a perturbation term driven by an app“ed perturbatjﬂn an expectedoi* standard deviation matching that prescribed

which may be stochastic, and the final term is a relaxationby external datarl.pert in cases where the process is station-

term given by the product of a rateand the deviation of’; ary. The actual perturbation process can be non-stationary:

from a reference concentrati@i®’. The sum of these terms 1P ando”*" are handled as forcing variables and both can

i i
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3.1.3 Statistical characterization of the synthetic
environment

INPUT ITEM TABLES

Case Table

Options

Estimates of the mixed layer depth, horizontal advection ten-
. Sl dencies and the initial state at each site are treated as uncer-
Space Vectors tain and represented by input ensembles. The methods for
ensemble generation are described below. The potential im-

§ Comespeatc pact of uncertainty in solar radiation, vertical velocity and

Tl parsmeter interior vertical diffusion is not explored: the “true” values

-Silao of these variables are used throughout. The true monthly
mmmmmmely means for the horizontal advection tendencies are also used,
the uncertainty in these tendencies being restricted to their

value
shorter time-scale anomalies. The vertical diffusion coeffi-

cient is set to zero so that only numerical diffusion occurs
Model Output & ot Fancton below the mixed layer.
Misfit Data Final Parameters

For the mixed layer depth, the level of uncertainty is based
on the assumption that time-varying mixed layer depth statis-
tgics for a ® square area are known. Mixed layer depth at
a given time is described by a log-normal distribution with
mean and variance determined from the distribution of tur-
bocline depths over all ORCA025 grid points within & 1
be time- and depth-dependen}, covaries at all depths and square area centred on each site location, using data from the
is scaled according to the local valueat™". Any negative ~ Scenario year (2005). The turbocline depth at each grid point
post-perturbation tracer concentrations are set to zero. is taken to be an equally likely representation of the depth of
Each relaxation rate is handled as a forcing variable, as the mixed layer at the site. Mixed layer depth values are gen-
is the reference concentratia{®' for each tracer. Any of erated at 5 day intervals with no temporal inter-dependency
these variables can vary independently in time and/or depti@nd linearly interpolated between these times. The charac-
if required. A further option allows relaxation to be restricted teristics of the mixed layer depth input ensemble are summa-
to grid points above or below the mixed layer depth, the eu-fized in Fig.2.
photic zone depth (1 % light level) or the greater of the two. It is assumed, for the purposes of quantifying uncertainty,
A number of different 1-D simulations were performed that data for the horizontal advection tendencies are avail-
at each site in connection with the twin experiments. Anable from a model-based climatology in the form of depth-
overview is given in Tabl@. Simulation Group A provides dependent monthly mean and standard deviation estimates
a synthetic climatology used to create an ensemble of ini-2nd that these statistics are not strongly parameter depen-
tial states. Simulation Group B is an ensemble simulationdent. In a real-world experiment it would be important to
giving state estimates of the formyt +€;jxeny, used to es- ~ €nsure that the statlst|c_s were conS|_stent with the mpdel be-
timate the environment error Varianc%(ENv_ The Group Ing analyzgq. Here., this is not reqUIred and advection ten-
B variances are for a known system; they do not take intodency statistics derived from the ORCA025-N201 output are
account parameter uncertainty but serve to illustrate the imused. Inter-annual variability in the 3-D simulation provides
pact of environmental uncertainty on the simulation. Simu-Separate realizations of the circulation, the statistical proper-
lation Group C gives state estimatest -+ €;jkenv -+ €;jkp- ties of which are taken be representative of uncertainty in our
These are used to calculate parameter-independent environowledge of the true circulation affecting conditions in the
ment error variance estimates for optimization Experimentscenario year. The 3-D model resolution is eddy-permitting,
3. Simulation Group D provides the true system state for thesO the adve'cti.ve flux divt?rgehces can be expected to repre-
true environment; ;7. This state is used in generating syn- Sent some limited eddy diffusion effects.
thetic observations; ;.1 + €;jroBs With observation error of All perturbatlons are applied in transformed tracer space
known variancew.ZOBS. These observations are then assimi- SO are concentration dependent. A square root transformation
lated in a set of optimization experiments comprising Simu-Was chosen for all tracers at all sites, giving a rate of change
lation Group E. The observed variables are DIN, particulatefor tracer concentratio@; of
organic nitrogen (PON), phytoplankton chlorophyll and pri-
mary production. For the purposes of this experiment, PON
is defined as the sum of the organic nitrogen tracers (phyto-
plankton, zooplankton and detritus).

Cross-
Referencer

Model
L| Parameters

Forcing Data

Initial
Conditions

MarMOT
Model
Evaluator

Environment
Constants

Observations

Fig. 1. Simplified schematic of the MarMOT system, showing the
main system components and data flows. Data flows shown by do
ted lines are purely internal.
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a) 0 - fields for each site are shown in Figsand4. Different re-
v T ™A alizations of the perturbation rate anomaly, consistent with
] / @ oP°" are generated internally from different input seed val-
E 0 PN f ues. A 24 h auto-correlation coefficient of 0.5 is used for all
3 \w‘«.\“ simulations.
150 \ There is clearly strong correlation between state variables
/ in the mean advection tendencies represented in3igor-
207 . relation structure arising from the plankton dynamics would
U F M A M J 4 A s 0o N oD likewise be expected in any anomalies, although the present
b) . _ MarMOT system only generates perturbation rate anomalies
N sl for different variables independently. Functionality to in-
100 [TV e troduce correlation structure on the basis of input statistics
= K | N\ would be a useful extension.
q 20 ‘\\ For the initial state, it is assumed that multi-variate
= \Vp\ | monthly climatological statistics are available for all trac-
300 \g,] ers at depths of 5, 10, 20, 40, 60, 80, 100, 150, 200, 250,
300, 500, 750 and 1000 m. A synthetic climatology is cre-
400 e A B S B ated for each site from a 15yr HadOCC integration to the
R e s e e start of the scenario year with the true parameter set (Sim-
c) 0 : ——— ulation Group A). Excessive model drift due to absent hor-
. o " izontal processes is avoided by relaxing the DIN tracer to-
"‘6‘1’ wards climatology at all depths below the combined mixed

400 —

layer and euphotic zone, with a 60 day relaxation time scale
(r =0.0167d1). The reference concentrations for relax-
ation are given by local annual mean nitrate profiles from
800 the World Ocean AtlasGarcia et al. 2010 and the 15yr
0 r < < integrations are initialized from a steady ;tate annual cycle
o F M A M J J A s o N D obtained from repeat integrations of the first year. Monthly
. ) ) statistics from the resulting climatology are used to construct
Fig. 2. [lllustration of 100 member mixed Ia_yer depth gnsemble a probability model for randomly generating system states as
at (a) BATS, (b) NABE and (c) OWS-INDIA sites, showing full - oqqeq preserving vertical covariances and covariances be-
ranges (light grey), inter-quartile ranges (dark grey) and three ex., - - .
ample members (coloured). tween tracers as cha}racterlzed by the_ first 5 principal compo-
nents of the anomalies. These explain 76 %, 62 % and 74 %
of the variance at BATS, NABE and OWS-INDIA sites, re-
spectively. A multi-variate state representative of December
or January is selected with equal probability to initialize sim-
pi = 2\/6 pr (14) ulations at the start of the calendar year. The main character-
istics of the initial state input ensemble are summarized in
in response to a perturbatigri applied to,/C;. The choice  Fig.5.
of tracer transformation was a compromise supported by a
Box and Cox(1964 analysis in which a maximum likeli- 3.1.4 Environment error for a known system
hood method is used to determine the optimum variance-
stabilizing transformation from those available in MarMOT Given a statistical characterization of the input data, the ex-
(log, square root or none). The applied perturbation was depected environment error in the simulation is dependent on
rived from the advection tendency of the transformed traceithe plankton model and its parameter values. Estimates of
as determined from the 5 day mean concentration and velocthe environment error fields for a known system, specifically

MLD (m)

600

ity fields output by the 3-D model, so the HadOCC model with default parameters (Tablg, are
given by a 100 member ensemble simulation at each site
pr=—un-Vn/Ci (15) (Simulation Group B). A square root transformation is ap-

plied to each observed variable, on the basis of a Box-Cox
where the subscript h denotes vectors in the horizontal plananalysis Box and Cox1964), to stabilize the ensemble vari-
anduy, is the current velocity. This is calculated for all times ance. The ensemble standard deviation for each transformed
and depth levels over 15yr of the 3-D simulation (1991— variable gives an estimate of its expected r.m.s. environment

2005) and binned by month to obtain statisfi¢S" ando”*"  error. Estimates are shown in Figas a function of depth

1

for one annual cycle. The resulting tracer perturbation inputand time.
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Fig. 3. Perturbation rate meapu?ert for transformed state variables. For the BATS s{@:DIN (+/N), (b) phytoplankton {/P), (c) zoo-

plankton ¢/Z) and(d) detritus (/D). (e—h) Same variables at the NABE sit@-l) Same variables at the OWS-INDIA site.

There are particular patterns in Fif.that are directly  mixed layer. These are symptomatic of more complex inter-
linked with uncertainty in mixed layer depth (Fig) dur- actions between the variance in the input ensemble and the
ing seasonal deepening of the boundary layer. At NABE andbiological dynamics.

OWS-INDIA, clear bands of high sta_ndard_ deviatioq intrans-  Another important point with respect to the transformed

formed PON and chlorophyll are evident in the region of the b\ ensemble standard deviation is its strong increase over
maximum mixing depth from late summer onwards. Thesey,qo year at OWS-INDIA. Here, the ensemble variance is
are also seen at BATS and NABE from January to Marchp, o higher over the full depth range at the end of December
where corresponding bands are present in the DIN plots. I§ya a¢ the beginning of the year. The situation is similar at
cop_tras_t, at_ OWS-INDIA where there is much greater vari- BATS, although less obvious. In contrast, the DIN pattern at
ability in mixed layer depth over the ensemble, there areyagg js much more suggestive of a repeatable annual cycle.
no obvious peaks in the depth distributions of the ensemblery g hresence of the net growth in error variance at BATS at
standard deviation over the winter period. At OWS-INDIA e nths down to 400 m, well below the ensemble maximum in
particularly hlgh ensemble variance occurs in transfqrmedthe mixed layer depth, suggests that much of the error growth
DIN as the mixed layer deepens in the autumn. This ex-g g6 exclusively to the variance in the advective tendencies.
tends throughout the boundary layer and appears to be thg; o\ys-|NDIA where the winter mixing is deeper and the

result of high variability in the advective DIN tendency (See gngemple variance in mixed layer depth is greater, it is likely
Fig. 4), much of which is above the mixed layer depth. Vari- 1, e the result of strong interaction between the effects of

ability in DIN flux divergence is similarly high at BATS at 4 \ariances in the advective tendencies and the mixed layer
this time but below the mixed layer depth, contributing to 2 depth.

sub-surface band of high simulation variance in DIN from
spring through to the end of the year. Other high variance At Poth BATS and OWS-INDIA, the error growth may be

patterns in late spring and early summer appear to be assélue in part to deficiencies in the statistical representation of
ciated with the biological response to spring shoaling of thethe advective tendencies. This should be further investigated
with a view to possible refinement of the boundary condition.
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Fig. 4. Perturbation rate standard deviati@,ﬁert for transformed state variables. For the BATS si@) DIN (+/N), (b) phytoplankton
(v/P), (c) zooplankton {/Z) and(d) detritus /D). (e—h) Same variables at the NABE sitg-l) Same variables at the OWS-INDIA site.

In particular, the use of a square root transformation in theof evaluating the cost function designs. The vectors were
tendency calculation (E45) may not be appropriate over all chosen according to a Latin hypercube desiljitay et
times and depths at which it is applied. Preliminary analysesl., 1979. For improved coverage, a “maximin” criterion

of the 3-D biogeochemical simulation suggest that the ten{Johnson et al.1990 was applied to 500 randomly gener-
dencies might be better represented using a variable poweated hypercubes: the hypercube design is selected that maxi-
law transformation that adapts to time and depth variationamizes the smallest Euclidean distance between pairs of sam-

in their probability distributions. ple points. For each parameter vector, the error variance esti-
_ _ mates were determined using 100 realizations of the environ-
3.1.5 Parameter-independent environment error ment, requiring 10 000 simulations at each site in Simulation
Group C.

The proposed cost function formulation for parameter opti-
mization (Eq.6) is based on the assumption that the envi-_lo 000 member ensemble are shown in Fig.The differ-
ronment error and parameter error are independent. If thigceq hetween the error standard deviation patterns shown in
were truly the case, then the environment error vanances_deFigS_ 6 and 7 give an indication of the effect of parameter
termined for our known system could be applied to the min- ;e ainty. While the patterns are broadly similar, it is clear
imization problem. However, in practice we expect depen-yhat many of the details are sensitive to the parameter values,
dencies to exist. The problem is alleviated to an extent byg,yqesting that the use of parameter-specific environment er-
considering parameter uncertainty in the derivation of the enyq - agtimates in the cost function could be beneficial. This
vironment error variance. option would be computationally more expensive and is not

An estimate OfgijkENV that IS not depenQent ona particu- explored in the optimization experiments presented here.
lar parameter set was determined by pooling variances calcu-

lated for 100 different parameter vectors in the 5-dimensional
parameter space described by the bounds given in Table
The choice of bounds is arbitrary and solely for the purposes

The parameter-independent field estimates from the
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Fig. 5. lllustration of the 100 member initial state ensemble. For the BATS &i#eDIN (N), (b) phytoplankton ), (c) zooplankton
(Z) and(d) detritus (D). (e—h) Same variables at the NABE sitéi—) Same variables at the OWS-INDIA site. Full ranges (light grey),
inter-quartile ranges (dark grey) and three example members (coloured) are shown.

3.1.6 Synthetic observations

The observations for the scenario year are generated from &jroBs = |n(10)@0joss. (16)
simulation with the true environment (Simulation Group D) 2

by sampling the output and adding observation errors. Theror DIN:

resulting observation data set comprises monthly DIN and

PON concentrations at depths of 10, 30, 50, 100, 200, 300ijkOBS = 0,jOBS: (17)

and 500 m, monthly chlorophyll concentrations and primary  \ypjje the presence of significant correlation structure in

pr_oductlon fluxes at 10, 30, 50, 190 and 200m qnd UPPEhye simulation error between sample points is acknowledged,
mixed layer chlorophyll concentrations at 5 day intervals. ., 5 joance is made for covariances in the cost function
Plausible errors are applied to square root or log transformeg, oiohting. The adverse effects of this limitation are reduced
valges as .specmed in Tab& For the Iog-t'ransformed b'_o' by removing duplicate simulation values that occur at mul-

logical variables (chlorophyll, PON and primary production) tiple sampling depths within the upper mixed layer. Where

the error standard deviations are derived from nominal rel'this occurs, all mixed layer observations below 10 m are ex-
ative errors by averaging positive and negative errors in logcluded '

space. The actual relative errors are shown in brackets.
In Experiment 3, all model-data differences are calculated3 1.7 Parameter optimization
in square root space. The observation error for the log-
transformed variables is specified in {ggpace and the ex- The MarMOT optimizer is well suited to non-linear problems
pected error in square root space depends on the untrans: multi-dimensional parameter space: it includes a genetic
formed observation valug = yl.zjk according to algorithm for identifying promising areas of a bounded pa-
rameter space and a non-gradient direction set algorithm for
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Fig. 6. Ensemble standard deviation of square-root transformed variables from Simulation Group B: estimated environment error for the

HadOCC model with the default parameter set. For the BATS @)@®IN (v/N), (b) PON (VP + Z + D), (c) Chlorophyll 12.01(%)P)
and(d) primary production {/1ipfp P). (e—h) Same variables at the NABE sit@-I) Same variables at the OWS-INDIA site.

bounded or unbounded local minimization. The two algo- The direction set algorithm was designeddywell(1964)
rithms can be used in combination or independently. The geto locate a cost function minimum in a continuous un-
netic algorithm is a global method in the sense that it is ablebounded free parameter space. The implementation of
to locate multiple minima in the cost function. However, it bounded minimization is described in AppendixThe ver-
searches the parameter space in discrete intervals, limitingion of Powell’s algorithm used is that describedPiress et
the accuracy with which it can locate a particular minimum. al. (1992, with reference tdActon (1970. Line minimiza-
In contrast, the direction set algorithm navigates towards aion is performed using Brent's methoBrent 1973. No
local minimum from a given starting point, making it un- gradient information is used so it does not require the provi-
suited to finding the global minimum in a cost function with sion of an adjoint code for calculating the cost function gradi-
complex topography, but can give greater accuracy. Locaknt with respect to the model parameters. Itis therefore more
algorithms can be applied to global problems by performingstraight-forward to apply than the variational adjoint method
repeated searches from different initial points in parameteiin situations where the formulation of the plankton model
space to increase the likelihood of locating the global mini-is not fixed. The algorithm has been applied in a number
mum. of plankton model calibration studieggsham and Evans
The genetic algorithm provided is a micro-genetic algo- 1993 Fasham et 3].1999 Evans 1999 Hemmings et aJ.

rithm (1 GA) (Krishnakumay1989, based on an implemen- 2003 2004 Dadou et al.2004 Fasham et a12008.

tation byCarroll (1996. It has been applied to the problem  The optimization procedure was identical for each set
of plankton model optimization bpchartau and Oschlies of optimization experiments. Initial optimization was per-
(2003, Weber et al(2005 andKettle (2009 and byWard formed with the uGA which was run for a minimum of

et al. (2010 who compared its performance with the local 1000 generations to provide a pre-conditioned set of parame-
variational adjoint technique employed Byiedrichs et al.  ter vectors for local searches with the direction set algorithm.
(2007). On any convergence in the parameter vector population,
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Fig. 7. Ensemble standard deviation of square-root transformed variables from Simulation Group C: estimated environmgpEgkfor
applicable to the HadOCC free parameter space defined by @”e optimizer bounds. For the BATS sitda) DIN (+/N), (b) PON

(VP + Z+ D), (c)Chlorophyli (, /1201(%)P) and(d) primary production{/tpfp P). (e—h)Same variables at the NABE sitg-l) Same
variables at the OWS-INDIA site.

defined by uniformity across the population in at least 95 %set algorithm was applied to each unique parameter vector in
of the bits in the binary code describing the parameter vecthe final population and the lowest cost result selected. To
tors, a new random population is generated, retaining the beshvestigate the sensitivity of the result to the initial parameter
individual. Additional generations after Generation 1000 vectors, each application of the optimizer was repeated for
were run until the next convergence. The algorithm was conb alternative designs, choosing those with the largest min-
figured with uniform cross-over between bit strings at a prob-imum Euclidean distances from a sample of 500 randomly
ability of 0.5. Bounds are required for theSA but were re-  generated hypercubes.
moved for the local search to avoid enforcing artificial con- A single set of three optimization experiments is referred
straints when locating minima close to the boundaries of theto as Simulation Group E. Simulation Group E was repeated
parameter space. Log transformations were used to preveffior 10 different realizations of the optimization environment.
parameters taking negative values. An exception was madBecause the mixed layer depth varies between different real-
for the detrital sinking velocity for which bounds were re- izations of the environment error, a slightly different obser-
tained in the local search to avoid potential problems withvation set is used for each set of experiments. A further set
numerical instability. Details of the free parameter space aref three optimization experiments was performed using the
summarized in Tabld. Within the uGA, each parameter true environment.
was represented by 8 bits giving 256 possible values prior to
refinement by the local searches.

The population size for the GA was 5, chosen to match
the number of free parameters following the recommenda-
tion of Schartau and Oschli€2003. Initial parameter vec-
tors in the original population were distributed in parameter
space according to a Latin hypercube design. The direction
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Table 2. Overview of 1-D plankton model simulations.
Simulation  Product(s) Time Simulations Model Initial Forcing Boundary
group id period at each site parameters state (ORCAO025) condition
A initial state 1990-2004 1 true 1990 on-site data DIN relaxation
statistics parameter repeat to climatology
vector cycle
B expected 2005 100 member true initial state on-site solarugd., perturbation
environment environment parameter ensemble MLD ensemble ensemble
error for true ensemble vector (100 members) (100 members) (100 members)
system
C estimated 2005 100 member sample from initial state on-site solaujgad.,perturbation
parameter- environment parameter ensemble MLD ensemble ensemble
independent ensemble space (100 members) (100 members) (100 members)
environment x 100 (100 vectors)
error param. vectors
D observation 2005 1 (true true 1 initial state on-site solar tagl., 1 perturbation
set environment) parameter realization 1 MLD realization realization
vector
E optimal 2005 1 optimization free 1 initial state on-site solar rggl., 1 perturbation
parameter environment, parameter realization 1 MLD realization, realization
vectors trial parameter  space
(Expts. 1-3) vectors
Table 3. Observation errors.
Observation HadOCC  Transformation Error Relative
type equivalent std. dev. error
DIN N sqrt 0.05 (mmol N rir3)0:5 variable
PON P+Z+D log 0.239 log g units 50% 42 %, +73 %)
Surface chlorophyll 12)199—':“P log 0.159 log g units 35% 31 %,+44 %)
Sub-surface chlorophyll mlf; P log 0.088 log g units 20 % (18 %,+22 %)
Primary production upbpP log 0.184 logg units 40 % 35 %,+53 %)

3.2 Results optimization experiments are consistently larger, indicating
that the level of uncertainty present is greater than that al-
lowed for in the cost function design. If the true parame-
ter vector were not known a priori, there would be a risk
Results of the cost function minimization procedure in eachof such high costs leading to rejection of the true hypoth-
optimization experiment are shown in Tadletogether with  esis. Cost function values are particularly large in Experi-
the cost function value for the true parameter vegdt@Pye). ment 2. This is a consequence of relative errors in organic
The initial minima and maxima show the range of the cbst tracer concentrations that are much larger than the small ob-
over a super population of 25 parameter vectors, comprisingervation errors associated with small concentrations. The
the 5 distinct initializations of the GA population. The final ~ effect can be attributed to our simple treatment of observation
cost range is that for the 5 output parameter vectors, eachrror, which inevitably underestimates expected error as the
being the lowest cost vector for opeGA initialization after  observed concentration tends to zero. A more sophisticated
local minimization. Final cost ranges are small indicating treatment would be to represent the error as a sum of absolute
low sensitivity to the details of optimizer initialization. and relative terms as done Bghartau et ak2001). Where

In Experiment 3, the final cost valudg Popy) and the true  the true environment is used, Experiment 2 gives cost values
parameter costd (Pyyue) both tend to be close to unity in  close to unity §(Popp) = 1.2 andJ (Pyye) = 1.2) since the
the presence of environmental error. The costs for the otheweighting used is consistent with the uncertainty present. In

3.2.1 Cost function minimization
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Table 4. Cost minimization.

Optimization  Environment Initial Cost Final Cost Final Cost Range True Parameter Cost Difference
Experiment Minimum  Maximum  J(Popp CostJ(Pyue)  J(Popd) — J (Pirue)
1 1 6.5 68 3.9 0.0002 45 -0.5
1 2 75 80 5.1 %107° 6.2 -11
1 3 6.8 73 5.1 0.0005 8.0 -3.0
1 4 5.6 64 3.6 0.02 6.4 —-2.9
1 5 10.2 95 8.3 0.004 20.6 —-123
1 6 7.0 79 4.9 %10°° 8.5 —-3.6
1 7 6.5 85 4.6 0.0002 5.7 -10
1 8 11.0 102 9.1 0.01 9.7 -0.6
1 9 14.2 91 12.1 0.009 14.4 -2.3
1 10 8.5 81 6.3 0.1 6.8 —-05
MEAN 8.4 82 6.3 0.02 9.1 -2.8
1 TRUE 5.3 63 2.6 ¥107° 2.9 -0.3
2 1 27.9 99 23.6 0.005 23.7 -0.1
2 2 40.5 108 37.2 0.008 37.6 -04
2 3 29.6 98 26.3 0.4 27.2 -0.9
2 4 17.8 89 12.6 0.02 14.5 -19
2 5 28.8 112 25.5 0.6 27.7 —22
2 6 20.6 85 15.9 0.01 16.2 -0.3
2 7 40.1 108 32.4 0.02 34.9 —24
2 8 36.1 98 33.2 0.003 33.5 -04
2 9 49.9 115 48 0.1 49.8 -18
2 10 24.9 95 20.1 0.0008 20.4 -0.2
MEAN 31.6 101 27.5 0.1 28.5 -11
2 TRUE 5.6 78 1.2 1075 1.2 0.0
3 1 1.71 15.1 1.04 21075 1.07 —0.03
3 2 1.90 14.9 1.12 210°° 1.26 —-0.14
3 3 1.68 14.4 1.01 2105 1.03 —0.02
3 4 1.62 12.7 0.95 0.0002 1.32 —0.38
3 5 2.09 16.3 1.40 2105 1.64 —0.24
3 6 1.76 13.7 1.01 210°° 1.07 —-0.07
3 7 1.82 12.7 1.13 2105 1.17 —0.05
3 8 2.06 14.3 1.30 0.0007 1.34 —0.04
3 9 2.14 15.0 1.57 0.0002 2.02 —0.45
3 10 1.94 13.0 1.31 0.0009 1.33 —0.02
MEAN 1.87 14.2 1.18 0.0002 1.33 -0.14
3 TRUE 1.43 135 0.53 81076 0.54 0.00

contrast, the corresponding Experiment 3 results show muclabout 4 and 6 for the initial cost minima and maxima re-
lower costs { (Popt) = 0.53, J (Ptrue) = 0.54). spectively, so is not simply due to a parameter-independent

' scaling of the cost function. It should also be noted that for
The final costs are always less tha(Pyye) except when 5 out of 10 environment error realizations, the Experiment 1

the true environment is used, indicating some degree of over: - .
o L .. . cost function is greater at the location of the true parameter
fitting. This is expected where the cost function is dis-

torted by error in the observations or environmental inputsvectorthan the cost function minimum found prior to any ap-

but should be reduced by an effective weighting scheme. Thglicati_on of t_he optimizer.. Thisis a clgar indication of a high
cost differences/ (Pop) — J (Pyue) Suggest that over-fitting over-fitting risk not seen in the Experiment 2 or 3 results.

is worst in Experiment 1, with a mean cost difference-@t8

in the presence of non-zero environment error compared witt-2.2 Parameter recovery

—1.1 and—0.14 in Experiments 2 and 3, respectively. The

Experiment 1 mean cost difference is a factor of 20 greatefThe final parameter values obtained in each experiment for
than that for Experiment 3. This contrasts with factors of each input environment are shown in F&. All distinct
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Table 5. Posterior parameter errors.

Parameter  True Unit R.M.S. Error Bias
Value Expt. 1 Expt. 2 Expt. 3 Expt. 1 Expt. 2 Expt. 3
asurf 5.56 mg C (mg Chiy! (Em—2)~1 1.80(32%) 0.78(14%) 0.48 (8.7%) —1.62 (—29 %) +0.11 (2%) —0.41(—7%)
kN 0.1 mmol N nt3 0.056 (56%) 0.045(45%) 0.021(20%) —0.016 (—16%) —0.002(—2%) +0.001 (1%)
gmax 0.8 a1 0.55(68%)  0.48 (60 %) 0.39 (48 %) +0.37 (45%) +0.24 (30%) +0.18 (23%)
mo 0.3 dY(mmolNm3)-1 0.59 (195%) 0.41(136%) 0.31(103%)  +0.45(149%) +0.20 (66%) +0.16 (52%)
wp 10 md-1 12.1 (121 %) 1.8 (18 %) 1.4 (14 %) +71(71%)  —0.3(-3%) +0.9 (9 %)
a)
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Fig. 8. Parameter recovery results f@) Experiment 1(b) Experiment 2 andc) Experiment 3. Red lines represent the true values for each
parameter. Crosses in each row show optimizer output parameter values for the true environment (blue) and for each of the 10 realizations of
the optimization environment (black). One cross is shown for each distinct parameter value obtained with 5 different optimizer initialization
cases. Optimal values are circled. Crosses not highlighted thus are values associated with higher cost function values.

values are shown for each of the 5 optimizer initialization parameter values are first averaged to give a single value for

cases but only the optimal values (those associated with theach environment error realization.

minimum costs) are highlighted. Tabtegives summary Parameter recovery is generally improved in Experi-

realizations of the environment error. Where multiple ini- js also less sensitivity in final parameter values to the ini-

tialization of the optimizer produced more than one final pa-tja| ;,GA population The Experiment 2 design, where the

rameter vector with the same cost (to 6 significant digits),weights are based on observation error, performs better than
the characteristic scale weighting used in Experiment 1,
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particularly with regard to parameter biases. In Experi-tors and highest for the Experiment 1 parameter vectors at
ment 1, the initial P-E slopesy is estimated low for all  all sites. In contrast, the biases are generally smallest for
but 1 case of the environment error and has a strong negativexperiment 2, rather than Experiment 3, with the sinking
bias 29 %). There are also some very high estimates of theparticle flux biases being less than half those given by the
sinking velocity parametewp, leading to a 71 % bias. Fur- Experiment 3 parameter vectors. This underlines the need
thermore, the r.m.s. errors in the final parameter values shovor further refinements to the new weighting scheme, de-
the expected error to be consistently higher than for the othespite its improved performance generally over both estab-
two experiments. In Experiment 2, although the r.m.s. errordished schemes. The characteristic scale weighting used in
are consistently higher than those for Experiment 3, the bithe Experiment 1 cost function leads to r.m.s. errors in pri-
ases are smaller for 2 of the 5 parameters suggesting somaary production due to environment error of 14—20%. The
room for improvement in the environment error weighting. corresponding errors with the new method are reduced by a
Closer inspection of the values for the parametgrsx factor of about 3 at each site. The sinking particle flux er-
andmy from all experiments shows them to be highly corre- rors when the characteristic scale weighting is used are more
lated. This is perhaps unsurprising considering their role inserious at 122-128 %. These are reduced by an order of mag-
the model dynamics, since the maximum grazing gatgx nitude in Experiment 3. The twin experiment configuration
impacts directly on nitrogen transfer into the zooplanktonis of course idealistic. It may not be possible to achieve such
pool and the density-dependent mortatityimpacts directly ~ improvements in real-world experiments, where characteri-
on transfer out. It is thus possible to compensate for exceszation of uncertainty is a much more difficult problem. Nev-
sively high values of one parameter by high values of theertheless, the poor performance of the widely used character-
other, keeping zooplankton nitrogen stable. This leads to astic scale method in the presence of a fairly modest amount
positive bias in both parameters. High values do increase thef synthetic environment error, combined with error in the
throughput of nitrogen from phytoplankton food to DIN po- observation data set, should be seen as a strong motivation
tentially impacting on chlorophyll and DIN observations but for developing reliable statistical characterizations for both
this effect is attenuated by recycling which fuels more phyto-sources of uncertainty.
plankton growth. Nevertheless, other features of the system
make some observational constraint possible. It is notable
that the cost function design in Experiment 3 appears moregl Discussion
robust in the face of this correlation tendency between pa-
rameters than either of the other designs. 4.1 Uncertainty in model calibration

3.2.3 Impact of parameter error The new cost function weighting scheme tested here clearly
has the potential to perform well against existing schemes in
To examine the implication of the parameter recovery errorsthe presence of environment error. In particular, it is seen that
for model estimates of key carbon fluxes, simulations werethe traditional schemes are prone to over-fitting in the pres-
run with each of the 10 optimal parameter vectors using theence of environment error, leading to relatively poor param-
true environment. Tablé gives error statistics, over this 10 eter recovery. Over-fitting occurs as the optimizer attempts
member ensemble, for the annual mean primary productiono adjust parameter values to compensate for the environment
integrated over the water column at each site. Correspondingrror. A key feature of the new scheme is that the relative im-
estimates of the export flux of sinking particles to the oceanportance of individual misfits is reduced at data points where
interior are given in Tablg. The export is represented by the impact of environmental uncertainty in the solution is ex-
the downward flux of particulate carbon at a site-dependenpected to be high. The posterior solution is less constrained
reference depthrer. The flux iswpOp D (zre), that is the by the data in these areas but the overall constraints are more
product of the sinking velocity, carbon:nitrogen ratio and ni- appropriate, reflecting our knowledge of the uncertainty in-
trogen concentration of the detrituger is set at 250, 400 and  troduced into the system and the system response. The risk
100 m for BATS, NABE and OWS-INDIA respectively, just that a large environment error value will have a detrimental
below the maximum depth of winter mixing for all ensemble impact of the calibration is thereby reduced. The results ob-
members. tained with the new scheme provide strong evidence that the
In all experiments, the sinking particle flux r.m.s. errors more appropriate weighting can reduce the problem of over-
and biases are consistent across sites and strongly reflect tfigting.
statistics for the sinking rate parametiep. While particle The possibility of further improvements should be inves-
flux is also affected by error in the detritus concentrationtigated by refining the scheme to use parameter-dependent
D(zref), Such errors are not consistent over the year so haveimulation error variances. Ideally, simulation error vari-
a relatively small impact on the annual mean. ances would be computed for all trial parameter vectors in
The r.m.s. errors in both primary production and sinking an optimization experiment, but the computational cost of
particle flux are lowest for the Experiment 3 parameter vec-this solution is high. A less expensive alternative would be
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Table 6. Error in annual mean primary production.

Production (mmol C m2d~1)

R.M.S. Error Bias
Optimization BATS NABE INDIA BATS NABE INDIA
Experiment
1 17(14%) 85(20%) 4.4(220%) —-13(-11%) -—-7.3(-18%) —3.6(—16%)
2 1.08%) 3.7(9%) 2.6(12%) +0.3 (2%) +0.6 (1%) +0.7 (3%)
3 05(4%) 2.4(6%) 1.5 (7 %) —03(-2%) —-17(-4%) —0.7(—-3%)

Table 7. Error in annual mean sinking particle flux.

Particle Flux at Reference Depth (mmol CAd—1)

R.M.S. Error Bias
Optimization BATS NABE INDIA BATS NABE INDIA
Experiment (250 m) (400 m) (1000 m) (250 m) (400 m) (1000 m)
1 0.154 (125%) 0.879 (122%) 0.825(128%) +0.089 (73%) +0.512 (71%)  +0.48 (74 %)
2 0.022 (18%)  0.128(18%) 0.116 (18%) —0.004 (—-3%) —0.024(—-3%) —0.021 (-3%)
3 0.016 (13%)  0.093(13%)  0.086 (13 %) +0.010 (8%)  +0.056 (8%)  +0.051 (8%)

to use a sample of simulation error variances calculated fobalancing schemes used to preserve physical laws in the as-
different points in the parameter space, as in the analysis afimilation process.

our Simulation Group C, selecting the nearest neighbour for

each trial parameter vector. A further refinement likely to be
beneficial is the inclusion of simulation error covariances in
the cost function weighting scheme.

Successful application of the horizontal flux divergence
scheme depends on obtaining good estimates for the per-
turbation rate statistics for each tracer. The biogeochemical
In a real-world context, obtaining reliable statistical char- flux divergence tendencies required for model assessment are

acterizations of the required environmental input data will those for the trial model in a perfect 3-D physical simula-
be a major Cha”enge. These are required for a” p|ankt0rﬁ0n. Thus they do not exist in reality and cannot be derived
model assessments, with or without parameter optimizationdirectly from observations. Furthermore, they are inevitably
To constrain the probability distributions for these inputs we Parameter-dependent. For these reasons we are forced to rely
must make use of a much wider range of Supporting data thaﬁn broad'based StatiSIiCS deriVed from biOgeOChemica| Sim'
is traditionally used when comparing biogeochemical modelulations. Multiple 3-D simulations should be analyzed to ex-
outputs with observations. plore sensitivity to model structure and parameters with the
aim of developing climatological statistics that are reason-
Background climatological statistics for physical forcing ably robust to model differences. This would allow consis-
can be based on analyses of 3-D physical simulations. Thesgnt unbiased boundary conditions to be applied to any trial
should ideally be eddy-resolving. Furthermore, it is impor- model configuration. The model-based background statis-
tant that they are evaluated against observational climatolotics should be further constrained by observations giving in-
gies so that information on biases can be included. Avail-formation about the contemporary physical environment. In
able satellite and in situ observations contemporary with thesitu current data can be used, if available. Otherwise, surface
biogeochemical evaluation data can be used to further congeostrophic current estimates derived from satellite altimetry
strain the physical forcing statistics. Assimilative physical might be used. Evidence of physical gradients from satel-
model output might also be used, although these data maljte sea-surface temperature or ocean colour measurements
be less reliable than output from free-running simulations ifis also relevant since horizontal flux divergence is likely to
used to infer relationships between observed and unobservdak increased in frontal regions, especially if there is evi-
variables. The details will depend on the performance of thedence of a cross-frontal velocity component. These types of
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information can be used to modify the climatological proba- MarMOT provides a flexible environment for comparing the
bility distributions. responses of alternative model designs to many different in-

In common with the flux divergence boundary condition, stances of their input data. Such comparisons will lead to an
the initial conditions in a model assessment could be choseimproved understanding of the relationships between models
to be consistent with a spin up of the trial model in a perfectand the implications of different design decisions. Effective
physical simulation. While the idea is conceptually appeal-calibration will allow models to be comparatively assessed,
ing, a reliable characterization of this hypothetical systemwith reference to independent observations, on the basis of
state is likely to be elusive. A more practical alternative is to their design.
use an estimate of the real-world state, explicitly restricting The large number of adjustable parameters in most plank-
any inferences about the model to its behaviour over relaton models makes the inverse problem particularly challeng-
tively short time scales. The state estimate would be basethg. Sensitivity analyses are often used as a basis for re-
on observational data where possible. ducing the size of the adjustable parameter vector prior to

In the absence of observations, initial conditions for 1-D formal optimization. The size and dimensionality of the in-
simulations are often determined by a steady state analyput spaces involved typically limit the effectiveness of Monte
sis based on a repeating annual cycle. The same approa€®arlo methods. However, output from ensemble integra-
might be taken in an ensemble simulation, provided that ertions performed in MarMOT can be used to build fast sta-
ror growth associated with uncertainty in the forcing data andtistical emulators@'Hagan 2006 with which coverage can
boundary conditions does not prevent achievement of a stabe achieved more efficiently.
tistical steady state. Here, the boundary condition should be Other applications include the comparison of plankton
based on estimates of real-world flux divergence tendenciesnodels at the level of individual processes and the provi-
A suitable scheme is described in AppenB& The scheme sion of 1-D state estimates for specific locations of interest.
relies on a climatological reference state. For unobservedComparison at the process level is achieved by holding indi-
state variables this would need to be primarily model-based/idual tracer concentrations constant or by fully prescribing
with an appropriately high level of uncertainty. their variation using external input fields. In addition, the

For some state variables, relevant measurements exist bgtope of model inter-comparison studies can be reduced to
the relationship between model variables and the real-worldocus on the biogeochemical interactions by applying a com-
observations is uncertain due to a combination of observimon photosynthesis sub-model, selecting from a number of
ing system limitations and simplifying assumptions made inphotosynthesis light-limitation options (Append#d). 1-D
model design. In such cases, the observational data can ksate estimates with uncertainty measures can be determined
use to partially constrain model-based estimates. For examen the basis of one or more plankton models.
ple, chlorophyll measurements can be used to constrain phy- MarMOT development is on-going. The software will
toplankton nitrogen subject to the uncertainty introduced bybe adapted to address some of the specific issues identified
an unknown nitrogen:chlorophyll ratio. PON measurementsin this study, including cost function support for parameter-
might be used to constrain the combined phytoplankton, zoodependent simulation error variances and covariances. In ad-
plankton and detritus variables in the HadOCC model. How-dition, the system is being extended to support models of
ever, they are affected by plankton avoidance of samplingvarying biogeochemical complexity with the aim of estab-
bottles so will tend to under-represent zooplankton. Theylishing a valuable community resource for plankton model
could therefore be used as an upper bound estimate for thevaluation in global and regional applications. At present,
sum of phytoplankton and detrital nitrogen or a lower boundMarMOT is not generally available and queries regarding ac-
estimate for the total organic nitrogen. A similar argument cessibility of the code should be addressed to the correspond-
was used byrasham and Evar{d995 to compare PON ob- ing author.
servations with values derived from simulated phytoplank-
ton, bacteria, detritus and zooplankton concentrations.

5 Summary
4.2 Role of the MarMOT facility
Plankton models cannot easily be assessed against biogeo-

We have focussed on the application of MarMOT to model chemical data because they are reliant on external drivers,
calibration but the system is also designed to be a generitypically provided by a physical simulation. Skill metrics are
tool for model assessment and inter-comparison. The aim isnore readily derived for a coupled systeBtdw et al, 2009
to provide a facility for evaluating plankton models indepen- but these metrics provide only indirect information about the
dently from a particular host model describing the physicalperformance of the plankton model since the biogeochemical
circulation. error fields are the combined result of errors in the plankton

Model inter-comparison may be performed separatelymodel and errors introduced by inaccurate physics. Infer-
from model assessment or models may be comparatively asences about the plankton model must be made against this
sessed with reference to observational data. In the first casdackground of environmental uncertainty.
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The potential impact of environmental uncertainty on A particular case table defines a set of simulations for
model calibration has been investigated here in an idealizedne or more ensemble members at one or more sites. The
experimental framework. It has been demonstrated that @et of ensemble members may vary between sites if re-
modest amount of error introduced into a plankton modelquired. Ensemble configurations for multiple sites can in-
simulation via the model's external drivers can have an im-volve site-specific information (e.g. water depth), ensemble-
portant detrimental effect on calibration results obtained us-member specific information (e.g. plankton model identifier
ing established cost function weighting schemes. A newin a multi-model comparison experiment), information spe-
weighting scheme that includes a formal treatment of simu-cific to the combination of site and ensemble member (e.g.
lation error due to error in the external drivers has been evalforcing data) and independent information (e.g. simulation
uated in the same experimental framework with promisingtime period). A cross-referencer links the appropriate item
results. instances to the case table, determining the required data for

The scheme’s effectiveness relies on good quality statistieach item either from an explicit reference or from the con-
cal characterizations of the plankton model’s uncertain envi-text implied by the site and/or the ensemble member. Free
ronmental input data to drive ensemble 1-D simulations frommodel parameters can be optimized over all cases in a given
which environment error variances are determined. Its succase table, so it is straight-forward to set up multi-site cali-
cessful transition to a real-world situation will be challeng- bration experiments. Multi-member calibrations are likewise
ing, requiring a major effort in uncertainty quantification for possible.
multiple drivers at each calibration site to be used. An ap- The core of the system is the MarMOT Model Evaluator
proach to using model results in combination with the avail-(MME) that performs plankton ecosystem model runs ac-
able observational data has been outlined here. Many of theording to the specifications in the case table. It calculates
required variables will inevitably remain poorly constrained a cost function value dependent on the misfit between simu-
due to the non-availability of suitable data and the levels oflation variables and a set of observations or other reference
uncertainty assigned to these variables may initially be ratheralues provided as an additional case-dependent input item.
subjective. Nevertheless, an explicit treatment of uncertaintylt can also provide a range of different output tables that are
is likely to be beneficial in reducing the problem of over- selected or de-selected according to user requirements.
fitting and can be refined to produce more robust results as The MME is implemented as a specific application within
new measurements become available. a system called the Generic Function Analyzer (GFAn).

If a sound treatment of uncertainty in plankton model pa- GFAN provides a cross-referencer for input selection and an
rameters and their environmental input data can be achieve@iptimizer for cost function minimization over the model pa-
then the plankton sub-models within more comprehensiveameter space. It also provides a generic data management
environmental models can be assessed independently as hffamework that adapts to the requirements of the MME ap-
potheses concerning the dominant biogeochemical process@¥cation to provide a MarMOT-specific user interface. GFAn
they are designed to represent. The MarMOT software proiS essentially an analysis engine with a well-defined applica-
vides a flexible fac|||ty that can be read"y adapted to Supporttion interface that makes all of its fUnCtiona”ty available to
the developments in data assimilation and uncertainty analyany compatible application. The full functionality of both
sis that will be needed and to ensure their applicability to aGFANn and the MME can likewise be applied to any plankton
wide range of candidate models for improving our ability to €cosystem model for which the basic input requirements are
understand and predict environmental change. supported. This layered approach ensures the widest possible

applicability of on-going improvements to the functionality
of both GFAn and the MME. The GFAn code and MME user
interface are written in C and the plankton model interface is

Appendix A in Fortran.

MarMOT design concepts Al Data management

Figurel gives an overview of the MarMOT system in terms An integrated data management system is essential for ef-
of its main components and the data flows between themficiently handling the diverse data requirements of differ-
Simulations are controlled by data selected from a numbeent experiments. GFAn handles 3 different kinds of input
of input tables, referred to as “item tables”, each containingdata item used in MarMOT: parameter set items, gridded do-
one or more instances of a particular input item. Differentmain items and non-gridded domain items. Each instance
instances of each item are combined according to entries iof a parameter set item consists of a number of individually
a further input table: the “case table”. Each case table entrynamed values, such as plankton model parameters. There is
defines a simulation case determined by a specific combinasne parameter set item for each supported plankton model,
tion of input data and identified by a site name (or number)containing one or more instances of the model's parameter
and an ensemble member name (or number). set. Further parameter set items provide model-independent
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information. Gridded-domain items consist of one or moreify one or more experiments to be run, each either with or
data arrays defined on a common regular grid with axes corwithout parameter optimization. Batches of experiments are
responding to one or more dimensions of the simulation do+un without the overhead of re-loading resident data. Com-
main. These are used to define the vertical grid, initial con-prehensive, customizable log output provides a record of the
ditions, boundary conditions and forcing data. Non-griddedexperimental configurations. An example of the input and
domain items are one or more vectors of values co-locateautput for a simple experiment is given in the Supplement.
at arbitrary points on the model domain axes. Observations

or other reference data for comparison with the simulationA2 Plankton model interface

output are input in this form.

An important design consideration is the need for the sys-The MarMOT Model Evaluator handles a superset of prog-
tem to support complex experiments while at the same timghostic and diagnostic variables and the necessary informa-
being easily configurable for simple experiments. Individ- tion is transferred between the MME data area and the active
ual items are optional wherever possible. Forcing data carPlankton model at each time step, allowing plankton models
be supplied in a number of different ways: as full-depth to be implemented with minimal changes to their native vari-
time-varying fields or as data fixed in space or in time orables and code. Each model must provide a specific set of
simply as environmental constants. Boundary condition datd-ortran subroutines to perform basic functions such as defin-
are treated likewise. Time-varying fields can be provided ating the model parameter names for use in the data manage-
any regular interval. The interval need not necessarily be thénent system, setting fixed model variables (e.g. model grid,
same for all variables: different forcing variables can be dis-time step) and providing MarMOT with source-minus-sink
tributed arbitrarily among a number of different input item tendencies. Generic socket subroutines on the MME side
tables, typically one for each user-defined grid. Forcing datz0f the interface are responsible for calling the appropriate
interpolated to the model time step is available in the simula-model-specific subroutines, according to the model selected
tion output. for the current simulation.

GFAnN provides multi-case support in the form of a flexi- MarMOT maintains two sets of tracers: primary tracers
ble cross-referencing algorithm that determines the require@nd derived tracers. The concentration of each derived tracer
data for each simulation case. This is done either by contexis determined by the concentration of one or more primary
or explicitly by using alphanumeric key variables to iden- tracers and zero or more ratios describing the composition of
tify particular instances of each item. The data instancegarticular ecosystem components. Derived tracers such as to-
selected for each case by the cross-referencer are indicatdal nitrogen or total carbon are made available for diagnostic
in the log file. For each item having multiple instances, the purposes only, while other derived tracers can be prognostic
cross-referencing method is determined by the presence ofariables.
absence of an item key in the input item table. Items with- The initial conditions required for a simulation are model-
out keys are to be referenced contextually and their instancegependent. For a given plankton model the initial state is de-
are identified by one or more variables referred to as caséined by profiles for each applicable primary tracer and any
variables. In MarMOT, there are 2 case variables: site andcomposition ratios that will vary dynamically. Where tracers
ensemble member. Input data can be associated with a paare linked by composition ratios, whether variable or fixed,
ticular site or a particular ensemble member or both. Boththere are alternative sets of prognostic variables and those
case variables are used to identify particular simulations inused within the model may be different from those initial-
the input case table and in any output tables produced. ized. MarMOT uses nitrogen variables as the primary tracers

MarMQOT is configured by providing a set of input tables for all organic components. Forcing data requirements are
and optionally produces a set of output tables, in addition toalso model-dependent. Each model indicates to the MME
the cost function value. Each table is contained in an ASCllwhat forcing data it requires and the MME selects the infor-
file. For each input item, a table is expected with one en-mation from the input data available. Only data relevant to
try for each instance of the data. For domain items, thisthe currently selected model appear in the simulation output.
table contains metadata describing the structure of the data Three plankton models are currently supported: the 4 com-
and the actual data values are extracted from a separate tablgartment nitrogen model ddschlies and Gargo(l999, a
Alternatively, for gridded data items, data can be extractedversion of the Hadley Centre Ocean Carbon Cycle model de-
automatically from one or more NetCDF data s&sW and  veloped byPalmer and Totterde(R001) and the MEDUSA
Davis, 1990 to populate a user-defined grid. A case table model of Yool et al. (2011). The first two models are of
is needed for any experiment involving more than one sim-the NPZD class, representing the nitrogen cycle in terms of
ulation. Further input tables are required for setting up op-fluxes between dissolved inorganic nitrogen (DIN), phyto-
timization experiments and output variable selection whereplankton, zooplankton and detritus. The HadOCC model
applicable. Finally, an “experiment control table” is used for also includes a carbonate system in the form of additional
assigning experiment-specific file names to all other inputtracers for total dissolved inorganic carbon and alkalinity.
and output tables. The experiment control table can specMEDUSA is a slightly more complex model that includes
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two types of phytoplankton and two types of zooplankton. A This directly affects the initial slope of the photosynthesis-

wider range of models, of varying complexity, will be sup- PAR curve. In many plankton models, this effect is ignored

ported in future versions. and a constant value is used for the initial slope. This option
is supported in MarMQOT, together with an alternative option
to use the spectrally-averaged chlorophyll absorption model

Appendix B of Anderson(1993. Like the attenuation coefficient model,
. ] this is based on an empirical approximation to a 61 waveband
MarMOT simulation features model Morel, 1988 1997).

Three alternative parameterizations are provided for the
light limitation of photosynthesis: two for calculating the
daily mean photosynthetic rate over each simulation level
and one for calculating a point-in-time rate for each level
that allows the diel cycle to be resolved explicitly when
Bl Photosynthesis options high resolution forcing data are available. The available pa-

rameterizations for daily mean photosynthesis are those of
Different parameterizations can be applied independentlyEvans and Parslof1985 and Platt et al.(1990. These
for the attenuation of photosynthetically available radiationare based on triangular and sinusoidal representations of the
(PAR) in the water column, the chlorophyll-specific absorp- diel cycle respectively and use different formulations of the
tion of light energy by the phytoplankton and the photosyn- photosynthesis-PAR curve. The point-in-time rate is calcu-
thetic response. lated using the same photosynthesis-PAR cuni&vass and

The PAR attenuation coefficient can be modelled as a lin-Parslow(1989.
ear function of pigment concentratia@i provided by the
plankton model B2 Horizontal flux divergence

Two important features of the MME not detailed in the main
text are the provision of different options for the light lim-
itation of phytoplankton photosynthesis and support for the
parameterization of real-world horizontal flux divergences.

Kdpar = kwater+ kpigG (B1) Parameterization of horizontal flux divergence by perturba-
] ) ] tion of the local state as described in S&dt consistent with
wherekwateris the attenuation due to walépig is the atten- e 4im of emulating the behaviour of a plankton model in a
uation due to pigment. Although widely used, this formula- 3 system for the purposes of assessing model skill. Mar-
tion ignores the effect of changes in the spectral di_stributior_1Mo-|- also supports a modified parameterization for use in
of the energy in the PAR waveband on the attenuation coeffigiae estimation when independent information, in the form
cient as the light quality changes with depth. An alternative ot 5 prior estimate of the real-world state, is available. The

option is available that accounts for these changes: an eMsrior Stateciref would typically be a high uncertainty es-

pirical approximation to the 61 wave-band modelMérel  (imate pased on climatology that could potentially be im-
(1988, developed by Andersomderson 1993 for use i 56yed upon by a plankton model's response to local forcing
OBGCMs. Light penetration is based on a 3 layer model of 4,4

the attenuation coefficiemtypar, as a function of a depth-

invariant biament concentration. The thr tical lavers ar The parameterization is designed to represent uncertain
variant pigment concentration. The three optical layers arGq o \yorid flux divergence tendencies. It combines stochas-
divided by layer boundaries at 5m and 23 &gpaRr is de-

tic perturbations with a relaxation tendency towards the ref-

termined from the local pigment concentration at each delOtherence state. Perturbations, constrained where possible by
level. Where the depth level boundaries for the current sim- '

i L . . s observed current velocities and property gradients, represent
glatlon do not comcu_je'wnh optical layer boundaridgear the effect of lateral processes moving the system trajectory
is depth averaged within levels.

X . . away from that of a locally forced system. The relaxation
The K4par profile from the attenuation model can option- Y y Y

. . . term ensures that as information is lost, the solution tends to-
ally be adjusted, follqwmg)schlles and’ Gargo(lgga, to wards the prior state estima(ée‘i The prior is effectively
allow for the geometric effect of the sun’s zenith angle on the

. assimilated during integration and the magnitude of the re-
path length be_tween the surface an(_j a given depth. The COfaxation tendency is balanced against that of the perturbation
rection factor is based only on the direct path effect, tendin

. : . SO %o ensure consistency with the expected change due to flux
to biasKgpar high. However, a compensating bias is intro- divergence
duced by basing the factor on the zenith angle at noon, when . _ . . .
In practice, the maximum relaxation rate is constrained by

path length is at its daily minimum. The true effect of zenith h turbat tandard deviatioRe" At h i ¢
angle on the attenuation coefficient is strongly wavelength € perturbation standard deviatiofi . /At each ime step,
a new perturbation-limited relaxation rate

dependent and decreases with degtieg et al.2002. The
depth dependency is not currently modelled.

Chlorophyll-specific light absorption by phytoplankton rf=min( R; rgxt) (B2)
varies with depth, due to changes in spectral distribution. |cref— ¢y
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is determined for each tracerwhereRr; is a maximum per-  presented to the optimizer. Transformations are dimension
mitted magnitude for the rate of change in concentration duespecific, so bounded and unbounded parameters can be opti-
to relaxation ana®™is the input relaxation rate. The degree mized simultaneously.

of limitation is determined by a relaxation control factor The parameter transformation is based on that introduced
such that by Fasham et a[1999 for the same purpose. In that study, a
pert parameter penalty term was also included in the cost func-
R = Yo (B3) ; ; ; i ot
i i tion formulation to weight against large deviations of the

transformed parameters from their prescribed prior values.
In MarMOT, prior parameter information is provided purely

in terms of allowable ranges so that the value of the cost func-
tion J(P) is unaffected by the parameter values, except via

soyr controls the significance of the relaxation change, rel-
ative to the random perturbations. Alternativelyoft®" is
defined in transformed variable space

Ri = Cippo™" B4) the simulation.
or

Appendix D
R = 2\/Ci1paipert (B5) P

for log and square root transformations, respectively. TheH2dOCC nitrogen cycle simulation
optimal value fory rate depends on the relative quality of

the two different estimates of the local state provided by theTh® HadOCC model described here is a modified version
model and the prior. of the model ofPalmer and Totterde(2001) incorporating

The maximum permitted relaxation rate is determined sep& humber of subsequent developments (Totterdell, personal
arately for each tracer. However, it is desirable to use thef@mmunication, 2005). The nitrogen tracers are phytoplank-
same relaxation rate for all tracers to preserve relationship&on £, zooplanktor?, detritusD and dissolved inorganic ni-
between different tracers in the prior state estimate. At eacifo9en/V. The main differences from the original version are

time step, a universal relaxation rate the introduction of a variable carbon:chlorophyll ratio and
changes to the pathways of material originating from graz-
ri = min(r)) (B6) ing and mortality. In addition, spectrally-averaged photosyn-
! thesis is parameterized using tAaderson(1993 approxi-
is therefore applied to all relaxed tracers. mations (see AppendiB1). There is no temperature limi-

tation of photosynthesis and DIN limitation is applied to the
photosynthesis-PAR curve maximum, rather than the light-

Appendix C limited photosynthetic rate, reducing its effect at low light
_ S levels. A different parameterization of depth variation in the
Implementation of bounded parameter optimization detrital remineralization rate is used and a number of the pa-

_ ) ) rameters common to both model versions are assigned differ-
The micro-genetic algorithm employed by the MarMOT 0p- gt values. Process parameterizations and source-minus-sink

timizer is designed to work with a bounded parameter spaceerms are defined below. Refer to Table D1 for parameter
while Powell’s direction set algorithm treats the parameter, 5 es.

space as infinite. To support bounded minimizations with
the direction set algorithm, transformations can be applied to Photosynthesis:daily mean biomass-specific growth

any parameter valug, in original or log space, to provide rate /ip is calculated for each model level using the
an unbounded valug* for the optimizer integral approximation ofPlatt et al.(1990. The

P—Pmd p _ p photosynthesis-PAR response at dep#nd timer is

P = Tyl fower _ (C1)
Pupper—P ) P> Pmld
1
Bcnl Pmax

where Piower and Pypperare the required bounds in the orig- ' . o '
inal finite parameter space. The magnitudePdftends to where the maximum nutrient-limited photosynthetic

infinity as P approaches either bound, so any pantin the rate is given by:
infinite space seen by the optimizer maps to a vaélughere

Piower < P < Pypper The behaviour of the search algorithm

with respect to the original parameter space is affected as a N

consequence of the modified cost functigt{P*) = J(P) Prmax= Vmaxm- (D2)
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Table D1. HadOCC model parameters.

Parameter Symbol  Value

Minimum C:Chl ratio Omin 20gC (gchiy?!
Maximum C:Chl ratio Omax 200gC (gchiyl

C:N ratio for phytoplankton Op 6.625

C:N ratio for zooplankton 67 5.625

C:N ratio for detritus 6p 7.5

Maximum photosynthetic rate Vmax 201

Initial slope of photosynthesis-PAR curve  agyrf 5.56mg C (mg Chiy! (E m*Z)*1
Half-saturation conc. for nutrient uptake kN 0.1 mmolNnt3
Phytoplankton density-dependent mortality mq 0.05d 1 (mmol N m—3)~1
Phytoplankton specific respiration n 0.05d1

Maximum grazing rate gmax 0.8d71

Half-saturation conc. for grazing kg 0.5mmol N n13
Fraction of grazed material ingested Lo 0.77

Assimilation efficiency for phytoplankton Bp 0.9

Assimilation efficiency for detritus Bp 0.65

Zooplankton specific mortality mq 0.05d™1

Zooplankton density-dependent mortality — m» 0.3d 1 (mmolNm—3)-1
Detrital sinking velocity wp 10md1?

Parameters derived from C:N ratios (above):

Biomass-equivalent:N ratio for phytoplanktonBp 1
Biomass-equivalent:N ratio for zooplankton Bz 0.87
Biomass-equivalent:N ratio for detritus Bp 1.11

The carbon:chlorophyll ratio is given by the balanced
growth photo-acclimation model Geider et al(1997):

: achlEqd
Ochi = Min 9minc—, Omax |- (D3)
up(Bchn)

Downwelling PAR Ey is determined by the light at-
tenuation coefficient model gknderson(1993, with-
out the direct path adjustment Gfschlies and Gargon
(1999. A ratio of chlorophyll to total pigment concen-
tration of 0.8 is assumed ark}(0, ) is taken to be 43 %
of total downwelling solar radiation at the sea surface.
The chlorophyll-specific initial slopecy is determined
from model parameters,; using theAnderson(1993
chlorophyll light absorption model.

Zooplankton grazingphytoplankton and detritus losses
due to herbivorous zooplankton activity afi = h P
andGp = h D respectively, wheré is the grazing rate
per unit food concentration:

. _ BzZ F?2
- gmasz_i_Ké’

D4
Fiot (b4)

F =maxO, Fiot — Fthreshold, WhereFiot = BpP + Bp D
and Finreshola= 0.01 mmol N 3,

www.geosci-model-dev.net/5/471/2012/

Phytoplankton mortalityMp = m P%; m = 0 for P <=
0.01 mmol N n13, otherwisen = meq.

Zooplankton mortalityMz = m1Z + mZ2.

Detrital remineralization: » = 0.1d™! for z < 100m,
otherwiser = 8758 d-1.

Nitrogen equations:

SMS = jipP — Mp—nP —Gp (DS)
SMS = ¢1(BrGp+ BpGp) — Mz (D6)
SMS, = P (0.99Mp) + P2 (0.33M)

b (%>}

0
+9—F’aPDGp+ (aop —)Gp—AD (D7)
D

SM& = {0.0l—i— (1— Z—P> 0.99} Mp+nP

D
+ {0.67—1- (1— 9—Z> 0.33} M7z
75}
6
+0.11 - ¢1)(Gp+Gp) + (1 — 9—P> appGp
D
+2.D — jipP (D8)

whereapp = 0.9(1—¢))+(1—Bp)¢ andapp = 0.9(1—
¢+ (1— Bp)¢). The active vertical velocity of detritus
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relative to the water is equal to the sinking velocity pa- Dadou, |., Evans, G. and Gargon, V.: Using JGOFS in situ and

rameterwp. It is zero for all other tracers. ocean color data to compare biogeochemical models and esti-
mate their parameters in the subtropical North Atlantic Ocean, J.

Numerical configurationthe vertical grid has 63 levels Mar. Res., 62, 565-594, 2004.

with 35 levels in the top 1000 m. These upper ocean lev-Dowd, M. and Meyer, R.: A Bayesian approach to the ecosystem

els have boundaries at approximate depths 6, 12, 19, 25, inverse problem, Ecol. Model., 168, 39-55, 2003.

32, 39, 46, 54, 62, 71, 80, 90, 100, 112, 124, 137, 152 Evans, G. T.: The role of local models and data sets in the Joint

168, 187, 207, 229, 254, 281, 312, 347, 386, 429, 477, Global Ocean Flux Study, Deep-Sea Res. |, 46, 13691389,

531, 591, 656, 729, 809, 896 and 991 m, corresponding 1999-

: gEvans., G. T.: Defining misfit between biogeochemical models and
to those of the ORCA025 model. Levels spanning the data sets. J. Marine Syst., 40-41, 49-54, 2003.

mixed Iayer depth are pa_rtlally mlxed. The advectlt_)n Evans, G. T. and Parslow, J. S.: A model of annual plankton cycles,
scheme is an upstream differencing scheme. The time gi,; Oceanogr., 3, 327347, 1985.

stepis 1h. Fasham, M. J. R. and Evans., G. T.: The use of optimization tech-

nigues to model marine ecosystem dynamics at the JGOFS sta-
tion at 47 N 20° W, Philos. T. Roy. Soc. B, 348, 203-209, 1995.

Fasham, M. J. R., Boyd, P. W., and Savidge, G.: Modeling the rela-
tive contributions of autotrophs and heterotrophs to carbon flow
at a Lagrangian JGOFS station in the Northeast Atlantic: The
importance of DOC, Limnol. Oceanogr., 44, 80-94, 1999.
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