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Abstract. We introduce a novel algorithm for the efficient
detection and tracking of features in spatiotemporal atmo-
spheric data, as well as for the precise localization of the
occurring genesis, lysis, merging and splitting events. The
algorithm works on data given on a four-dimensional struc-
tured grid. Feature selection and clustering are based on ad-
justable local and global criteria, feature tracking is predom-
inantly based on spatial overlaps of the feature’s full vol-
umes. The resulting 3-D features and the identified corre-
spondences between features of consecutive time steps are
represented as the nodes and edges of a directed acyclic
graph, the event graph. Merging and splitting events appear
in the event graph as nodes with multiple incoming or out-
going edges, respectively. The precise localization of the
splitting events is based on a search for all grid points in-
side the initial 3-D feature that have a similar distance to two
successive 3-D features of the next time step. The merging
event is localized analogously, operating backward in time.
As a first application of our method we present a climatol-
ogy of upper-tropospheric jet streams and their events, based
on four-dimensional wind speed data from European Centre
for Medium-Range Weather Forecasts (ECMWF) analyses.
We compare our results with a climatology from a previous
study, investigate the statistical distribution of the merging
and splitting events, and illustrate the meteorological signif-
icance of the jet splitting events with a case study. A brief
outlook is given on additional potential applications of the
4-D data segmentation technique.

1 Introduction

In this introductory section we will first explain the need for
and usefulness of developing efficient automated algorithms
for identifying and tracking specific features of the highly
variable atmospheric flow. In a second subsection, a brief
review is provided of previously developed feature detection
and tracking algorithms, which will serve as a basis for mo-
tivating the novel approach developed in this study.

1.1 Identification and tracking of atmospheric flow
features

Albeit highly variable, the atmospheric flow can be described
by characteristic and frequently recurring flow features, like
for instance tropopause-level jet streams, and surface cy-
clones and anticyclones. These flow features are particu-
larly important since they are typically associated with cer-
tain weather conditions (e.g. sunny and dry weather with sub-
tropical anticyclones; stormy weather and intense precipita-
tion with extratropical cyclones) and with specific dynamical
processes (e.g. cyclogenesis on the poleward side of intense
upper-level jet exit regions).

Therefore, several algorithms have been developed during
the last decades to objectively and efficiently identify atmo-
spheric flow features from large datasets. These algorithms
make it possible, for instance, to produce synoptic climatolo-
gies of specific features and, if applied to homogeneous cli-
mate datasets, to quantify potential trends in the frequency of
these features.

Early examples of such algorithms are the cyclone iden-
tification techniques byLambert(1988), Murray and Sim-
monds(1991), andKönig et al.(1993). The earliest of these
approaches considers cyclones as point objects and provides
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climatological density maps of these features. They are typ-
ically identified as local extrema of a particular field (e.g.
minimum sea level pressure). The later techniques also con-
sidered the temporal coherency of the features, which led
to the computation of feature tracks, and feature genesis
and lysis points. For a concise review on cyclone identi-
fication and tracking methods, the reader is referred toUl-
brich et al.(2009). The algorithm introduced byWernli and
Schwierz(2006) considers cyclones explicitly as finite-size
two-dimensional features (instead of point objects). Sim-
ilar approaches have been used to identify, for instance,
upper-tropospheric jet streams (Koch et al., 2006) and upper-
tropospheric cut-off cyclones (Wernli and Sprenger, 2007)
as two-dimensional features. The objective identification of
these features was based upon either the topology of the two-
dimensional field (e.g. considering the outermost closed con-
tour surrounding a local extremum) or a simple threshold
(e.g. considering the region where a field exceeds a certain
value). So far, all these two-dimensional feature identifica-
tion algorithms have been applied to individual time steps of
climatological atmospheric data (e.g. every 6 h if using re-
cent reanalysis datasets) and additional tracking algorithms
have been used to meaningfully connect the identified fea-
tures in time. As a consequence, these feature identification
and tracking algorithms treat the spatial and temporal dimen-
sions of atmospheric data very differently.

In this current study we will introduce a novel approach
to the identification and tracking of atmospheric flow fea-
tures as full 3-D objects developing over time. In addition,
our method estimates the location of the detected merging
and splitting events in grid point space. The output of our
segmentation method allows performing specific analyses of
the interaction and development of the observed atmospheric
features. For instance, a precise event localization is useful
for the computation of climatologies of events and for a sta-
tistical analysis of the lifetime and stability of an atmospheric
feature. In addition, the location of feature events (e.g. the
merging of two jet streams or the splitting of an extratropical
cyclone) can objectively pinpoint important atmospheric pro-
cesses. In Sect. 4.1, we will present a case study to illustrate
this point.

1.2 Conceptional view on feature identification
and tracking

Feature extraction and tracking are common tasks in different
scientific areas, for example in image processing and com-
puter vision (Zucker, 1976; Pal and Pal, 1993; Jain et al.,
1995), as well as in flow visualization (seePost et al.(2003)
for an overview). An important goal of feature extraction
and tracking is the creation of reduced datasets and derived
attributes characterizing the parts of interest of the original,
often much larger input dataset. Such a reduced representa-
tion allows for a statistical evaluation of the features and for
an efficient visualization.

Several methods for theextractionof flow features exist.
The choice of a method depends considerably on the char-
acteristics of the input datasets as well as on the features of
interest. InPost et al.(2003), feature extraction approaches
are classified into three groups: based on image processing,
on topological analysis, and on physical characteristics. In
our current application, we are not aiming for a topological
analysis but focus on the physical characteristics of the un-
derlying dataset, and on the adaption of image processing
methods for our purpose.

Van Walsum(1995) proposed a feature extraction method
called “selective visualization”. This method uses a boolean
selection criterionfor deciding whether a single grid point
belongs to a feature or not, and aconnectivity criterionin or-
der to cluster neighboring selected points. Other approaches,
for example byReinders(2001), use this selective visual-
ization method for feature extraction.Silver and Zabusky
(1993) propose to apply region growing techniques for de-
tecting features. Region growing is a well-known image seg-
mentation technique, see, e.g.Zucker(1976). The basic idea
is to start the segmentation at an initial grid point, commonly
representing an extremal value of the dataset, and then to iter-
atively add new neighboring grid points, as long as they can
still be associated with the phenomenon to be detected. The
usage of a spatial data structure, for example an octree (Silver
and Zabusky, 1993; Wilhelms and Van Gelder, 1992), can be
effective for speeding up the data processing.Siegesmund
(2006) applied a region growing method for the segmen-
tation of ozone holes from time-series of two-dimensional
ozone data.Muelder and Ma(2009) let an approximation
of the boundary grid points of a feature successively shrink
and grow, until they obtain a new boundary representation
of the feature at the next time step. Their initial approxima-
tion is based upon an extrapolation of the results of previ-
ous time steps. For the detection of new features that may
have formed, they perform a search over all unassigned grid
points.

Post et al. (2003) proposed three different basic ap-
proaches towards featuretracking. The first approach is to
extend a three-dimensional feature detection method to the
full spatiotemporal domain, as it is done for example byWei-
gle and Banks(1998), Bauer and Peikert(2002), andJi et al.
(2003). The second approach is to test features for region
correspondence on a cell-to-cell basis, as proposed bySilver
and Zabusky(1993), andSilver and Wang(1997, 1999). The
third type of feature tracking covers methods which compare
attributes of the features of consecutive time steps (for ex-
ample total mass, center of mass, or moments).Samtaney
et al. (1994) performed feature tracking by testing whether
the differences of the observed attributes of the features stay
within preassigned tolerances.Reinders(2001) used corre-
spondence functions, which estimate the similarity of the at-
tributes of different features for feature tracking.

Taking into account the huge amount of atmospheric
data we want to process (e.g. a multi-decadal period of
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atmospheric reanalysis data), we aimed for a method that ap-
plies feature extraction, clustering, attribute calculation and
tracking in one sequential pass over the dataset. Our method
for feature extraction uses ideas from many of the approaches
mentioned above. Single grid points are selected based on a
local selection criterion. Clustering is performed based on
a local homogeneity criterion. We decide to keep or discard
single segments afterwards based on aglobal selection crite-
rion. This compensates, to a certain extent, for the selection
of a seed-point as in traditional region growing techniques.
During the iteration over the data, we represent intermediate
features using a union-find data structure (see, e.g.Knuth,
1997andCormen et al., 2009) to guarantee efficient opera-
tions on the features (for example merging multiple features
as soon as a connection is detected). Since we aim for the
precise localization of the features and their events, we keep
track of all grid points of every feature at all steps of the al-
gorithm.

We realize feature tracking by testing for spatial overlap
on a cell-to-cell basis. This was an obvious decision since it
corresponds to a plain extension of our algorithm from three
to four dimensions. We initially designed our algorithm for
the detection and tracking of atmospheric features such as
jet streams, which are relatively large and slow-moving with
respect to the temporal resolution of our datasets. However,
even in case of such features we have to deal with continua-
tions of small, fast-moving features that can not be identified
by spatial overlaps. To cover these cases as well, we perform
additional tests for continuation based on comparisons of the
center of mass and volume attributes of the features.

Our algorithm represents the temporal relations between
features detected during the feature tracking in form of an
event graph. An event graph is a directed acyclic graph as
proposed bySamtaney et al.(1994). They identified four
different events:creation, dissipation, bifurcation, andamal-
gamation. In order to stay in line with the terminology used
in atmospheric sciences, we call these eventsgenesis, lysis,
splitting, andmerging. Our algorithm puts no additional con-
straints on the detection of events and does not detect unre-
solved events, in contrast to, e.g. the method byReinders
(2001).

We implemented the algorithm as part of a novel software
tool for the analysis and segmentation of atmospheric data
(Limbach et al., 2009). As one of our first applications, we
computed a climatology of upper-tropospheric jet streams
and their events, as documented in this study. The data basis
of the jet stream segmentation were operational meteorolog-
ical analyses from the European Center for Medium-Range
Weather Forecasts (ECMWF) for the years 2007 and 2008.

In the upcoming section, we provide definitions of some
fundamental terms and structures required for a formal de-
scription of our algorithm. In Sect.3, the different steps
of the novel segmentation algorithm are described in detail.
While these two sections cover the general ideas and mech-
anisms of our segmentation algorithm, Sect.4 deals with the

setup and the results of a concrete application of the algo-
rithm for the identification of jet streams. The section starts
with an example case study of a Rossby wave breaking and
an associated jet stream merging event. Then, results are
presented from the computation and analysis of a two-years
climatology of jet streams and their merging and splitting
events. The last section provides a summary of the results
and a short outlook on future developments and applications
of the novel algorithm.

2 Foundations of the algorithm

2.1 Input

Segmentation algorithms, such as the one presented here,
usually require a discretized, sampled signal as input data.
In our applications, the input data consists of a series of dis-
cretized 3-D datasets representing the state of one or more
atmospheric parameters at fixed time instants. The resolu-
tion of the three spatial dimensions (longitude, latitude and
pressure) and of the time dimension may vary with respect to
the concrete application and the available data sources. The
underlying continuous domain of our data, however, remains
the same:

Definition 1 (Data domain) The atmospheric data we are
interested in is defined on the domain� := [−180,180)×

[−90,90]×R×R ⊂ R4. The first two components of the do-
main represent the geographic longitude and latitude in de-
grees, respectively. The third component represents the ver-
tical dimension, either Cartesian height (in m) or more com-
monly pressure (in hPa), and the last component represents
time.

In their idealized, continuous form, the atmospheric pa-
rameters we are interested in can be seen as the mapping
p : � → V . The co-domainV of this mapping depends on
the actual features we want to track. Most of the time we
are interested inn real-valued atmospheric variables, so our
co-domain has the formV ⊆ Rn. If we are, for example,
interested in the segmentation of jet streams, a valuex ∈ V

could represent the horizontal wind speed as a single scalar,
or it could represent a horizontal wind vector(u,v) ∈ R2.
Some more complex atmospheric structures may require the
combination of several other, distinct measures.

In our practical application, the input data is a sampled
set of discretized values of the continuous atmospheric data
lying on a point lattice within the data domain�. The exact
form of a single sample depends on the concrete application
and the objects we want to identify and track.

Definition 2 (Input data) Our input data consists of the set
of samplesX := {xi,j,k,t | i = 1,...,imax; j = 1,...,jmax; k =

1,...,kmax; t = 1,...,tmax}. Indicesi,j,k specify the spatial
position of the sample on the point lattice, indext indicates
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the time step. The setXt denotes all samples of a single time
stept .

Although we impose no constraints on the actual form of
the point lattice, for the sake of reasonable results the in-
dices of the samples should reflect the sample’s adjacencies,
that is, neighboring samples should only differ by±1 in one
index. So far we have worked with data on regular longi-
tude/latitude grids (represented by indicesi and j , respec-
tively), with varying pressure given as a hybrid combination
of the layer of the dataset (indexk) and the surface pressure
(depending oni, j andt). In meteorological terms this corre-
sponds to hybridσ −p coordinates. When using such a non-
isotropic lattice, one has to take care as soon as additional
attributes are derived from the results of the segmentation,
such as the size of a segment or its centre of mass. Approx-
imations of volume integrals, as proposed byVan Walsum
(1995), can be used for the calculation of attributes on curvi-
linear grids. The handling of the indices at the poles and at
the−180◦/180◦ longitudinal transition (i.e. at the date line)
requires particular attention as well.

2.2 Output

The goal of a segmentation algorithm is to partition the set
of input data into connected subsets of samples, where each
subset ideally corresponds to the exact location of the phe-
nomenon one wants to identify (cf.Zucker, 1976; Jain et al.,
1995). In our case, since our set of input samplesX is four-
dimensional, the resultingsegmentswill be four-dimensional
objects as well. The construction of these 4-D-segments is
accomplished in two steps:

1. We iterate over all time steps of the input data and par-
tition the three-dimensional set of samplesXt into 3-D-
subsets of samples corresponding ideally to exactly one
instance of the atmospheric phenomenon we want to
track at the given time step. We call these subsets three-
dimensionalfeatures(see Fig.1). This step is called the
feature detectionstep.

2. We track and group the features of different time steps,
such that we obtain information about the development
of the atmospheric phenomena over time. This step is
called feature tracking, and the resulting sets of con-
nected three-dimensional features are our final four-
dimensionalsegments.

More formally, we define the three-dimensional features
as follows:

Definition 3 (Features) The pairwise disjoint sets of con-
nected samples representing one occurrence of the detected
atmospheric phenomenon at a single time step are called fea-
tures. We denote theith feature of time stept asFt,i ⊆ Xt .
Ft is the set of all features at the time stept . F is the set of
all features at all time steps.

Fig. 1. Example illustration showing all detected three-dimensional
features at a single time step of a segmentation of jet streams in
the Northern Hemisphere (perspective projection, vertically exag-
gerated). Different colors indicate different features.

Our algorithm outputs the information obtained during
feature tracking in form of anevent graph, a directed acyclic
graph (cf.Samtaney et al., 1994; Reinders, 2001). The set of
nodes of the event graph corresponds to the set of all detected
3-D-features. If a connection between two 3-D-features of
two consecutive time steps is detected within the feature
tracking step, this connection is represented as an edge in our
graph. The formal definition of the event graph is as follows:

Definition 4 (Event graph) The graphG := (F,E), where
F is the set of all detected features andE ⊆ {(a,b) | a ∈ Ft ;
b ∈ Ft+1; t = 1,...,tmax−1} is the set of all edges represent-
ing a direct connection between features of two consecutive
time steps, is called event graph.

Note that there are several ways to define what “direct
connection between features of two consecutive time steps”
means. We discussed several different feature tracking ap-
proaches in Sect.1.2, and discuss the details of the methods
used by our algorithm in Sect.3.2.

Our final four-dimensional segments, each representing
one atmospheric phenomenon and its development over time,
are already contained in the event graphG as the connected
sets of 3-D-features (see schematic example in Fig.2). Such
distinct sets of connected nodes of a graph, together with the
connecting edges, are calledconnected components.

Definition 5 (Segment) Let GS = (S,ES) denote a con-
nected component ofG. ThenS is called a segment, rep-
resenting all features associated with one atmospheric phe-
nomenon as it develops over time andGS is called the event
graph ofS containing all edgesES between connected fea-
tures ofS.

From the connectivity information provided by each event
graphGS, we can derive information about the occurring
genesis, lysis, merging, and splitting events of each segment.
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Fig. 2. Part of an example event graph of a single 4-D-segment.
Nodes are depicted by ellipses including shapes of the correspond-
ing 3-D-features. Connecting edges are depicted by arrows, dashed
lines indicate the border between features of different time steps.
The green ellipse indicates a genesis event, and the red ellipse a
lysis event.

The events can be detected through an inspection of the con-
necting edgesES of GS in the following way:

– A genesis eventis detected if a node in the event graph
has no incoming edges. For example, there is a genesis
event at the node depicted by the green ellipse in Fig.2.

– A lysis eventis registered at nodes without outgoing
edges. See the red ellipse in Fig.2 for an example.

– If a node has more than one incoming edge, we register
a merging event. This is the case at the node with the
red incoming edges in Fig.2.

– A splitting eventexists at nodes with multiple outgoing
edges. All nodes with green outgoing edges in Fig.2
are associated with a splitting event.

Since features at the first time step have no incoming
edges, we cannot tell genesis events, defined the way de-
scribed above, apart from situations where a phenomenon

simply enters the sampled data domain. In order to avoid
spurious results, we exclude the first time step from the de-
tection of our genesis events. We have an analogous situation
regarding lysis events at the last time step and we therefore
exclude them as well. Note that for some applications it
can be reasonable to replace genesis events at the first time
step and lysis events at the last time step byentry andexit
events, respectively.Reinders(2001) detected entry and exit
events as well, but with respect to the spatial, not the tempo-
ral boundaries of the observed system.

Our algorithm is capable of estimating the locations of
the occurring events not only on a per-feature but on a per-
sample basis. In case of genesis and lysis events, all sam-
ples of each single involved feature are associated with the
respective event. The detection of the locations of merging
and splitting events is more involved, as described in detail
in Sect.3.3. In all cases, we denote the result of these attri-
butions as follows.

Definition 6 (Event locations) The localization of the oc-
curring events is represented by the setT ⊂ X ×

{“ genesis” ,“ lysis” ,“ merging” ,“ split ting” }. This set
contains all involved samples together with an annotation in-
dicating the event types that occur at the respective positions
of the samples on the point lattice.

2.3 Feature detection predicates

The way in which our algorithm selects and clusters the
samples of the input dataset to create the relevant three-
dimensional features depends on the formulation of three dif-
ferent predicates. We incorporated ideas from region grow-
ing and other segmentation methods that use different types
of binary predicates for feature detection. The “selective vi-
sualization” method proposed byVan Walsum(1995) uses
a selection criterionand aconnectivity criterionin order to
select and cluster samples from the input dataset. In other
methods, aglobal homogeneity criterionis used for the iden-
tification of connected regions of interest, seeZucker(1976),
Jain et al.(1995), andPal and Pal(1993).

Our method selects single samples of our input dataset us-
ing a local selection criterion(l). Samples are clustered by
means of alocal homogeneity criterion(h). A global selec-
tion criterion (g) is used to select the final segments at the
end of the segmentation process. The main task to be ful-
filled before the algorithm can be applied to different types
of atmospheric phenomena is to find adequate and applicable
predicatesh, l andg.

Definition 7 (Local selection criterion) The local selection
criterion l : X → {TRUE,FALSE} decides whether or not a
single sample belongs to a potential three-dimensional fea-
ture, based on any of its local characteristics.

This criterion can be applied to discard unsuitable samples
right from the start. Depending on the objects to be detected,
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the formulation of a local criterion may be sufficient for a
full classification of the features we want to identify. A sim-
ple but nevertheless powerful formulation of such a selection
criterion is to test whether the values of the samples lie above
or below a given fixed threshold. In our case study on jet
streams, for example, we used a height-dependent threshold
on the wind speed.

For the clustering of the selected samples, we use a binary
predicate called thelocal homogeneity criterion. We define
it as follows:

Definition 8 (Local homogeneity criterion) The local ho-
mogeneity criterionh : X × X → {TRUE,FALSE} decides
whether a given pair of neighboring samplesx := xi,j,k,t ∈

X and x′
:= xi+i′,j+j ′,k+k′,t+t ′ ∈ X with i′,j ′,k′,t ′ ∈

{−1,0,1}; |i′|+|j ′
|+|k′

|+|t ′| = 1 belongs to the same seg-
ment, or not.h has to be commutative.

For scalar sample values, an obvious formulation of such
a predicate could be a threshold on the difference between
the sampled values ofx and the adjacent samplex′. If we
analyze a vector field, we could impose a threshold on the
angle between the directions ofx andx′. In many of our
applications, however, we know in advance that our input
data field will be homogeneous, such that we may assume
h(x,x′) := TRUE for all pairs of adjacent samplesx,x′.

Many applications based on region growing methods, for
exampleSilver and Zabusky(1993), start the segmentation
with sets containing single seed points. Neighboring sample
points are added iteratively to these sets, as long as they are
still associated with the same features (for example based on
thresholding or on a global homogeneity criterion). The ini-
tial seed points often correspond to extremal points, such as
local minima or maxima, of the underlying data. Since we
aim for a segmentation in only one iteration over the dataset,
we cannot know in advance whether a connected set of sam-
ples will contain any such extremal point or not. To compen-
sate this, we use an additional predicate for discarding seg-
ments at the end of the iteration based on any of their global
attributes. This predicate is theglobal selection criterion:

Definition 9 (Global selection criterion) The global selec-
tion criterion g : P(F ) → {TRUE,FALSE} decides whether
or not to keep a candidate four-dimensional segment based
on any of its global characteristics.

For the segmentations of jet streams, we decided to use
the global selection criterion as a filter on the lifespan of the
detected wind events. In order to exclude short-lived peaks of
wind speed, we decided to discard segments with a lifespan
of less than 24 h.

3 Segmentation algorithm

In the previous section, we conceptually defined the input
and output of our algorithm, as well as all required predicates

Algorithm 1
Input: The set of sampled atmospheric dataX, the homogeneity
criterion h, the local selection criterionl and the global selection
criteriong. Output: The event graphsGSi

containing all segments
S1,...,Sn corresponding to the detected atmospheric phenomena to-
gether with the precise event locationsT .
1: F := ∅;E := ∅;T := ∅ F The sets of all features, connecting

edges and event locations
2: c := ∅ F An array of all candidate features.
3: for t := 1,...,tmax do
4: for eachxi,j,k,t with l(xi,j,k,t ) == TRUE do
5: ci,j,k,t := newcandidatefeature(xi,j,k,t )

6: for eachalready visited neighborxi′,j ′,k′,t do
7: if h(xi,j,k,t ,xi′,j ′,k′,t ) == TRUE andci′,j ′,k′,t ex-

ists then
8: merge(ci,j,k,t ,ci′,j ′,k′,t )

9: end if
10: end for
11: if t > 1 and ∃m : xi,j,k,t−1 belongs toFt−1,m then
12: E := E∪(Ft−1,m,ci,j,k,t ) F these edges are later

replaced by real edges
13: end if
14: end for
15: F := F∪ get real features(c,t)
16: replacecandidateedges(E)

17: if t > 1 then
18: E := E ∪ extendedfeaturetracking(Ft−1,Ft )

19: T := T ∪ find eventlocations(Ft−1,Ft )

20: end if
21: end for
22: return all connected components(Si ,ESi

) of (F,E) with
g(Si) == TRUE andT

for the characterization of the features we want to detect.
This is the basis for describing now in detail (and more tech-
nically) the implementation of our algorithm, whose general
outline is shown in Algorithm1. In the following subsec-
tions, we will investigate in detail the important steps of the
algorithm.

3.1 Feature detection

Feature detection is the process of constructing all sets of
samples corresponding to the features of interest. Single
samples are selected by means of the local selection criterion,
and clustered based on the homogeneity criterion. During
execution, the algorithm successively adds samples tocandi-
datefeatures and merges multiple candidate features as soon
as a connection is detected.

The algorithm iterates sequentially over all time stepst .
At each time stept , the algorithm investigates all samplesXt

starting atx1,1,1,t and traversing the remaining samples by
increasing the first three indices lexicographically. As soon
as a samplex := xi,j,k,t fulfills the local selection criterionl,
we know that it belongs to a candidate feature. It remains to
check if there are any connections to neighboring samples.
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For this, we examine the up to three already visited adja-
cent samplesxi−1,j,k,t , xi,j−1,k,t , andxi,j,k−1,t . From these
samples we select those which are already associated with a
candidate feature and fulfill the homogeneity criterionh. We
then merge these candidate features into one.

The algorithm represents the candidate features using a
union-find data structure (cf.Knuth, 1997; Cormen et al.,
2009). Each candidate feature is stored internally as a tree.
The root of each tree is the unique representative of the can-
didate feature. Different candidate features are merged by
transforming the root of the tree with smaller height into a
child node of the root of the other tree. In our implementa-
tion, each candidate feature internally stores a list of indices
of all samples associated with the corresponding feature, as
well as a set of attributes, such as the center of mass and an
approximation of the volume. The list of sample indices and
the set of attributes are updated each time two candidate fea-
tures are merged. To keep the number of nodes low, we add
single samples with only one neighboring candidate feature
directly to the existing feature instead of adding a new node
to the tree. For the sake of simplicity, we omitted the dis-
tinction of this additional case in our algorithm outline. The
performance of the union and find operations is further im-
proved by using path compression. For a direct access to the
candidate features associated with each sample, we store the
references in a three-dimensional array. At the end of each
time step, the set of all remaining candidate features corre-
sponds to the set of real featuresFt .

3.2 Feature tracking

The goal of feature tracking is to identify at every time stept

the relations between features of the previous time stepFt−1
and features of the current time stepFt . This corresponds
to a grouping of features belonging to the same instance of
an atmospheric phenomenon. There are many possible ap-
proaches to achieve this goal, depending primarily on the at-
tributes such as shape, size and speed of the objects to track.
Relatively big and slow-moving features, with respect to the
sampling frequencies of the data domain, such as jet streams,
require a different approach than the tracking of, e.g. po-
tential vorticity cut-offs, which in comparison are typically
smaller and move faster. Different general approaches for
feature tracking have been discussed in Sect.1. For most
of our current applications, it is sufficient to track features
based on spatial overlaps of the samples that are associated
with the features. This approach is valid since the spatial
and temporal sample frequencies are generally high enough
with respect to the expected size and speed of the features to
track (cf.Samtaney et al., 1994). We keep track of the spa-
tial overlaps by maintaining a set of candidate edges, which
represent connections from the features of the previous time
step to the candidate features of the current time step. An
edge is added to the set whenever a samplexi,j,k,t is asso-
ciated with a candidate feature and the sample at the same

location of the previous time step,xi,j,k,t−1, is associated
with a feature. For a direct lookup of the candidate fea-
tures of samples of the previous time step, we use another
three-dimensional array. As soon as the final features are
known, the replacement of candidate edges by real edges is
straightforward. In the algorithm outline, it is denoted as the
replacecandidateedges(E) function call.

Despite the fact that in our applications so far, the major-
ity of continuations could be handled by testing for spatial
overlap, we also identified rare cases where a feature was too
small and fast moving, compared to the spatial and temporal
resolution of the grid, to be tracked by spatial overlaps only.
We therefore apply an additional feature tracking step, in-
dicated by theextendedfeaturetracking(Ft−1,Ft ) function
call in the algorithm outline. In this extended feature track-
ing step, we compare attributes (currently centers of mass
and volumes) of pairs of unconnected features. If the differ-
ences of the attributes are below a fixed threshold, the two
features are regarded as an additional continuation. This is
similar to the approaches described inSamtaney et al.(1994)
andReinders(2001), but without predicting the future state
of attributes by means of extrapolation.

3.3 Event localization

As soon as all connections between the three-dimensional
features are established, we are ready to estimate the loca-
tions of the occurring events on a per-grid-point basis (in-
dicated by thefind eventlocations(Ft−1,Ft ) function call in
the algorithm outline). The localization of events allows us to
gain important additional insight in the development of atmo-
spheric phenomena. As illustrated in Sect. 4 below, one pos-
sible application is the calculation of climatologies of events
in order to find areas where events are particularly frequent or
rare/absent. The number of events in a certain region can be
a measure for the stability of the identified features in this re-
gion. In some cases specific event locations can be related to
particularly interesting atmospheric processes. An example
case study where the location of a single jet stream merging
event could be associated with the breaking of a Rossby wave
will be presented in Sect.4.1. Previous methods, including
those operating on the full set of samples in grid space, for
example bySilver and Zabusky(1993) andMuelder and Ma
(2009), only detected the existence of events, but not their
precise location in grid space.

The localization of the genesis and lysis events is straight-
forward: we associate all samples of features without a pre-
ceding feature with a genesis event, and all samples of fea-
tures without a successive feature with a lysis event. We ex-
clude genesis events at the first time step and lysis events at
the last time step because we have no information about the
history or continuation of these features.

In case of the merging events, the estimation of the po-
sition is more involved. We now describe the method for
merging events in detail; the localization of a splitting event
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Fig. 3. Two-dimensional example of the applied steps for localizing a merging event. In the top-left picture, gray grid points indicate the
location of the merged feature at time stept . Red and green grid points indicate the initial location of the separated features at the previous
time stept −1. Grid points with the tag “1” mark the positions where the red and gray features overlap. Grid points with the tag “2” indicate
positions where the green and gray features overlap. The pictures to the right and below show the second step of the first growing phase and
the final tagging, respectively. Newly tagged regions are depicted in red and green, the positions where both regions touch are indicated by
the tag “M” on yellow background. The picture at the bottom-right shows the final state at the end of the second growing phase.

is done analogously by running the procedure in the inverse
time direction. The estimation of the position where multi-
ple features merge into a new feature is based on a search
for grid points that have a similar distance to any two of the
single features (this corresponds to grid points lying on the
bisectors of the Voronoi regions of the single features). To
find these points, we apply a process similar to region grow-
ing. We use the sets of grid points of the single features as
seed points and let these regions “grow” by tagging all grid
points adjacent to the boundaries iteratively. The positions
we are interested in are the grid points where these growing
regions first touch. Figure3 provides a two-dimensional il-
lustrative example. We limit the growing to the grid points
covered by the new feature. Of course, it is very unlikely
that the merging occurred exactly at the position of the thin
border detected by this growing process. To compensate for
this, we enlarge the border into an area allowing for a cer-
tain, controllable amount of fuzziness. This enlargement is
realized by letting the borders grow for a fixed number of
steps in a second growing phase. The choice of the number
of steps for this second phase depends on the desired output
and on the intended further processing of the event locations.
Choosing a greater number of steps leads to a more fuzzy and
larger representation of the events.

More formally, the procedure can be described as follows:
Assume there is a merging of featuresFt−1,1,...,Ft−1,m into
featureFt,1. At first, we initialize an empty setN in which
we will insert elements of the form(i,j,k,n) ∈ N4. We use
these tuples in order to relate certain positions on the point

lattice of our samples, specified by means of indicesi,j,k,
to different integer tagsn. Initially, for each existing pair
of spatially overlapping samples(p,q) := (pi,j,k,t−1,qi,j,k,t )

with p ∈ Ft−1,g andq ∈ Ft,1, we add the tuple(i,j,k,g) to
N . In other words, we associate all overlapping sample po-
sitions with the number of the respective feature from the
previous time step, see the top-left panel of Fig.3 for a two-
dimensional example of this process. Next, we iteratively
let these tagged regions grow by tagging all untagged posi-
tions adjacent to these regions with the respective numbers.
This growing is limited to positions ofFt,1, see the top-right
panel of Fig.3. If in any growing step a single position is
to be tagged by two or more different numbers, or if an al-
ready tagged position is to be additionally tagged by a dif-
ferent number, we found a position where multiple growing
regions touch. We add a special event tag toN , replacing all
other tags at this position, which indicates a merging. This
special tag is excluded from any future growing steps. The it-
eration ends as soon as all positions corresponding toFt,1 are
tagged, see the bottom-left image of Fig.3. In a final grow-
ing phase, we let the regions marked by the special event
tag grow for a fixed small number of steps. As before, this
region growing is limited to the positions covered by sam-
ples ofFt,1. The bottom-right picture of Fig.3 shows the
final result of a two-dimensional example event localization.
A real example of the three-dimensional merging localiza-
tion from our jet stream segmentation is depicted in Fig.5
and discussed later in Sect.4.1.
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3.4 Efficiency

In terms of computational efficiency, our method profits
from simplifications made on the basis of the prior knowl-
edge about the atmospheric features we want to identify and
track. Therefore feature identification, tracking, and event
localization can be performed within a single iteration over
the dataset. Other methods, for example the approach by
Muelder and Ma(2009), require at least one iteration over
the whole dataset, if all new features and holes in existing
features are to be detected. Related approaches, for example
Silver and Zabusky(1993), use octrees or other spatial data
structures to achieve speedups. Since our algorithm selects,
clusters and tracks features during a single iteration over the
dataset, there would be no benefit from the additional main-
tenance of a spatial data structure. The only exception would
be if the available memory was very limited, such that the
two additional three-dimensional arrays we use for storing
the links to the candidate features of the current time step,
and to the features of the previous time step, could not be
allocated. In such cases, it would be reasonable to replace
these two arrays by an appropriate spatial data structure, in
order to save memory at the expense of speed.

4 A climatology of upper-tropospheric jet streams and
their events

The new segmentation algorithm has been implemented and
tested for different types of atmospheric phenomena. By
now, these phenomena were ozone holes, jet streams, cy-
clones, and filaments of potential vorticity. In this section
we present results from the most extensive of these applica-
tions, which was the computation of a two-years climatol-
ogy of three-dimensional upper-tropospheric jet streams and
their merging and splitting events. Wind fields were taken
from the operational ECMWF analyses for the years 2007
and 2008, available every 6 h on 60 vertical levels interpo-
lated to a regular longitude/latitude grid with a resolution of
1 degree.

For the detection of upper tropospheric jet streams, we
choose the local selection criterion to be a height-dependent
wind speed threshold. We accept all samples below 100 hPa
(i.e. grid points with pressure larger than 100 hPa) with a hor-
izontal wind speed exceeding 40 m s−1. This criterion is mo-
tivated by the wind speed threshold criterion used byKoch
et al.(2006), who considered jet streams as two-dimensional
features of the vertically integrated wind speed between 100
and 400 hPa. Strong winds in the stratosphere, that is at lev-
els above 100 hPa, are excluded to focus on jet streams in
the upper troposphere. Compared toKoch et al.(2006) we
use a 10 m s−1 larger threshold, due to the extension of con-
sidering jet streams as fully 3-D features instead of 2-D fea-
tures of the vertically averaged wind speed. As a side remark,
note that recently alsoSchiemann et al.(2009) andManney
et al.(2011) introduced alternative jet identification schemes,

which focus on the jet axis (i.e. the location in meridional
vertical cross-sections where the horizontal wind speed is
maximum) and therefore avoided the vertical averaging of
the wind speed as performed byKoch et al.(2006). As a
global selection criterion, we choose a threshold on the total
lifetime of a four-dimensional segment. The idea behind this
threshold is to separate real jet stream events from short-lived
wind events that exist for less than 24 h. Due to the general
homogeneity of the wind speed data from global analyses,
we do not state any explicit homogeneity criterion.

Before presenting the climatological results, we start with
a brief case study of an interesting episode of Rossby wave
breaking and an associated jet stream merging event over the
North Atlantic. The aim of this case study is to illustrate the
relevance of such jet merging events for atmospheric dynam-
ics.

4.1 A Rossby wave breaking event over the
North Atlantic

A prominent chain of events including rapid cyclogenesis,
an intense warm conveyor belt, the formation of a blocking
anticyclone, a subsequent Rossby wave breaking, and even-
tually a jet stream merging event occurred during the time pe-
riod 20–23 January 2007 over the North Atlantic. Isentropic
charts of potential vorticity (PV) on 315 K at 12:00 UTC 20
January reveal a prominent trough with stratospheric PV (i.e.
more than 2 pvu) over Eastern Canada and an equally promi-
nent ridge with tropospheric PV (i.e. less than 2 pvu) down-
stream, over the Western North Atlantic (Fig.4a). Rapid sur-
face cyclogenesis occurred during the previous day beneath
the upper-level trough leading to a mature cyclone with a
core pressure of less than 970 hPa situated over the Gulf of St.
Lawrence. Trajectory calculations (not shown) indicate that
the rapid cyclone evolution was associated with a prominent
warm conveyor belt (Browning, 1990; Wernli and Davies,
1997), which ascends from the cyclone’s warm sector almost
to the 310-K isentrope and enlarges the upper level ridge dur-
ing the following day (Fig.4b). In parallel, the trough over
the Western North Atlantic elongates into a filamentary “PV
streamer” (Appenzeller and Davies, 1992) and a downstream
trough evolves to the west of Europe. In between, the upper-
level ridge develops into a persistent atmospheric blocking.
At this time intense jet streams are present on 315 K (black
contours) along both flanks of the PV streamer and the down-
stream trough. On the 350-K isentrope, jets exist over the US
east coast, over Central Europe, and over Northern Africa.
Whereas the first two of these jets are partially aligned with
the jet systems on 315 K, the African jet is shallower and
only present on the higher isentrope.

During the following 30 h the blocking becomes more
prominent (reaching a maximum sea level pressure larger
than 1045 hPa), the downstream trough protrudes to the
Iberian Peninsula where it triggers the formation of a
Mediterranean cyclone (not shown), and the anticyclonically

www.geosci-model-dev.net/5/457/2012/ Geosci. Model Dev., 5, 457–470, 2012



466 S. Limbach et al.: 4-D feature detection, tracking and event localization

Fig. 4. Isentropic potential vorticity on 315 K (colors, in pvu) and wind speed on 315 K (black contours for 40, 50, and 60 m s−1) and
on 350 K (orange contours for 40, 50, and 60 m s−1) at (a) 12:00 UTC, 20 January 2007,(b) 12:00 UTC, 21 January 2007,(c) 18:00 UTC,
22 January 2007, and(d) 00:00 UTC, 23 January 2007. The 2-pvu contour denotes the dynamical tropopause.

curved jet stream to the north of the blocking on 315 K in-
tensifies (Fig.4c). Six hours later, at 00:00 UTC, 23 Jan-
uary (Fig.4d), the downstream trough reaches into the West-
ern Mediterranean and its associated jet stream on 315 K be-
comes vertically aligned with the northern extension of the
African jet on 350 K. A similar event has been described
by Martius et al.(2010) (their Fig. 5) who emphasized the
importance of such a jet merging event for a kinetic energy
transfer from the extratropical to the subtropical waveguide.
Recently,Martius and Wernli(2012) corroborated the rele-
vance of these extratropical wave breaking events (and asso-
ciated jet mergings) for the intensification of the subtropical
jet over Africa.

Figure5 shows the three-dimensional structure of the jet
streams associated with the jet stream merging event over
Gibraltar between 18:00 UTC, 22 January and 00:00 UTC,
23 January, as identified with the new segmentation algo-
rithm. The previously discussed jet streams to the north
of the blocking and over Europe, and the elongated sub-
tropical jet reaching from Northern Africa to the Western
North Pacific are clearly visible. The red region in the
second panel highlights the merging of the extratropical
and subtropical jets, as discussed above. This brief case
study illustrates that jet merging events can be associated
with prominent events of extratropical Rossby wave break-
ing and an associated momentum transfer from a midlati-
tude to a subtropical jet stream. According to climatolo-
gies of Rossby wave breakings (e.g.Wernli and Sprenger,

2007) such events are most likely to occur over the Eastern
North Atlantic/Western Mediterranean and Eastern North Pa-
cific/Western North America. It will be therefore interesting
to consider the climatological occurrence of jet streams and
their merging (and splitting) events in the following subsec-
tions.

4.2 Frequency of jets, jet merging, and jet splitting

With the results of the segmentation, we are able to compile
a climatology of the frequency of jet streams and their gene-
sis, lysis, merging, and splitting events. Figure6 depicts the
spatial distribution of all detected jet streams during the two-
year time period. In order to obtain a two-dimensional plot,
we calculated the jet stream frequency at each horizontal po-
sition as the ratio between the number of time steps at which
a jet stream was detected at any observed vertical level (i.e.
levels below 100 hPa), and the total number of time steps.

Our results agree favorably with the previous climatol-
ogy by Koch et al.(2006), despite the different time peri-
ods (2007–2008 vs. 1979–1993) and the slightly different jet
stream definition. The overall frequency maximum is located
over Japan (with values exceeding 70 %) and secondary max-
ima are located over Newfoundland and Libya/Egypt. The
general spiral-like shape of the region with high jet stream
frequencies is also well reproduced, corroborating the relia-
bility of the new approach.

In addition, with the aid of our new method it is straight-
forward to compute climatological frequency distributions of
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Fig. 5. Two successive time steps of a jet stream segmentation at 18:00 UTC, 22 January 2007 (left) and 00:00 UTC, 23 January 2007 (right).
The red highlighted region in the panel on the right indicates the location of a merging event. At the previous time step (see panel on the left)
the two jet stream features were still separated. All non-event samples are shaded according to the wind speeds at their respective positions.

Fig. 6. Two-year climatology of the spatial distribution of jets iden-
tified with the new segmentation method. Values indicate the fre-
quency of jet stream occurrences (in %).

merging and splitting events, as shown in Fig.7. These pat-
terns are obviously very different from the overall jet stream
frequency distribution. Clear maxima of both mergings and
splittings occur in the Western Northern Hemisphere, in

particular over North America. Secondary maxima are found
to the north of the Tibetan Plateau and over North Africa.
This indicates on the one hand that the very high jet stream
frequency over the Western North Pacific is associated with
very stable jets that experience comparatively little merging
and splitting events. On the other hand the much higher fre-
quency of these events in regions mentioned above is qual-
itatively consistent with a high frequency of Rossby wave
breaking (Wernli and Sprenger, 2007). Future studies will
be required to better understand the global linkage between
wave breaking and jet stream merging and splitting events.

4.3 Lifetime and stability of jet segments

The climatology indicates that jet merging and splitting is
particularly frequent in one half of the Northern Hemisphere
(from approximately 120◦ W to 60◦ E). We call this region
the “North Atlantic region”, in contrast to the “North Pacific
region” where the identified jet stream segments appear to be
more persistent. In order to get statistical evidence for the
differences in the stability of these segments in the two semi-
hemispheres, we further investigate the size and lifetime of
these jet segments.

As a direct consequence of the way we perform our fea-
ture tracking (see Sect.3.2), major jet streams that are first
separated, but merge at some later point in time, are associ-
ated with the same 4-D segment. Here we are interested in
obtaining the statistical distribution of the time span between
consecutive merging and splitting events of the identified 4-D
segments. This allows differentiating between, for instance,
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Fig. 7. Two-year climatology of the spatial distribution of (left) jet stream merging and (right) jet stream splitting events. Values indicate the
event frequencies (in %).

very stable, long-lived and maybe quasi-stationary jet stream
segments, and highly transient segments that break apart and
re-merge at frequent intervals. In order to achieve this goal,
it is useful to introducesub-segments.

A sub-segment is a subset of a 4-D segment without any
major merging and splitting event. The decision whether
or not a connection between two 3-D features of a segment
is considered a connection between nodes of the same sub-
segment is taken as follows: For each featureFt,i , we pick
the successorFt+1,j whose size is closest to the size ofFt,i

(if present). If now out of all ofFt+1,j ’s predecessorsFt,i

is the one with the closest size toFt+1,j , we register a valid
sub-segment continuation between these two features. Out
of these sub-segment continuations we are able to construct
the complete sub-segments of each 4-D segment.

Additionally, for every sub-segment, we compute its aver-
age center of mass, size and lifetime and use this information
to attribute the sub-segments to either the North Atlantic or
the North Pacific region. The size of the sub-segments is ap-
proximated by the number of respective grid points, weighted
with the cosine of the latitude of the corresponding position.
Figure8 shows the statistical results of this analysis for the
two semi-hemispheres. There are many relatively small and
short-lived segments in both regions. Large segments are less
frequent. Very large segments, which contain about 15 000
grid points or more, have a lifetime of only up to 400 h in the
North Atlantic. In contrast, segments of this size (or larger)
all have a lifetime of about 400–3500 h in the North Pacific.
Clearly, these huge and long-lived segments dominate the

jet stream pattern in the North Pacific area and contribute
essentially to the maximum jet stream frequency in this re-
gion. This finding is also consistent with the previously dis-
cussed results on the frequency of jet stream splitting and
merging events over the North Atlantic and North Pacific,
respectively.

5 Conclusions

We presented a new segmentation method with per-grid-
point localization of merging and splitting events. The
method is capable of efficiently detecting three-dimensional
atmospheric features and their development over time. We
adopted ideas from several methods from the field of flow
visualizations, as described in Sect.1. However, our method
is unique in that it is capable of estimating the locations of
merging and splitting events in grid space. In addition, we
could simplify the implementation to the point that we only
need a single iteration over the dataset. By selecting and clus-
tering the data during this iteration, we avoid the construction
of additional spatial data structures, as for example done by
Silver and Zabusky(1993). Muelder and Ma(2009) track
single features very efficiently by operating on the bound-
ary of the feature only. However, if new features (or holes
inside existing features) should be detected, a full iteration
over the dataset (except for the already detected boundaries)
is unavoidable.

We showed in a case study how the detection of event loca-
tions can be relevant in studies of atmospheric dynamics. We
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Fig. 8. Histograms relating the size to the lifetime of jet stream sub-segments in the North Atlantic (left) and North Pacific (right) region,
respectively. The colors represent the number of sub-segments of the years 2007 and 2008. The size of each sub-segment is approximated
by the sum of the cosines of the latitudes of the corresponding grid points.

applied our method to analyze upper-tropospheric jet streams
in the Northern Hemisphere and their stability in different re-
gions. So far, the analysis of jet streams was the most exten-
sive application of our algorithm. However, first experiments
with other atmospheric features, such as ozone holes, cy-
clones, and potential vorticity filaments also yielded promis-
ing results. Currently, we are working on the identification
of cyclones. In contrast to existing methods operating on 2-
D fields (e.g.Raible et al., 2008 and studies mentioned in
the introduction) we plan to detect and track the cyclones as
full 3-D objects. For the detection of 3-D cyclones it may
be helpful to perform an analysis of the topology of the un-
derlying 3-D wind field, similar to the methods ofMahrous
et al.(2004). Fuchs et al.(2008) proposed a different method
for performing combined extraction and tracking of vortices
from time-dependent flow data.

Some of the objects we plan to address in the future are
smaller and faster moving than the jet streams, although the
sampling rate of the input data remains comparable. This
requires some future improvements of our feature tracking
method. We could focus on more involved techniques that
make use of the features’ attributes, as proposed for example
by Reinders(2001), or on prediction-correction methods as
used byMuelder and Ma(2009). Another possible approach
is to apply an additional dilation of the samples after feature
detection, as proposed byVan Walsum(1995). This dilation
of selected samples could possibly be refined by taking into
account additional knowledge about the expected direction
of movement of the features. The localization of the merg-
ing and splitting events for non-overlapping features is an
additional issue which has to be addressed. If we are able to
use dilated features for tracking, the event localization could
work on the same set of dilated features.

So far our experience with the new segmentation method
in terms of computational costs is very positive. The analy-
sis of the 2-yr wind field dataset used in this study was per-
formed in about five hours on a standard Linux PC. Due to
the simple structure of the algorithm consisting mainly of
one iteration over the dataset, and due to the way the input
data is accessed, the algorithm seems well suited for a future
extension towards parallel processing. All this indicates that
the method is also capable of analyzing very large datasets,
for instance output of long-term climate simulations and/or
from ensemble simulations. This will offer novel pathways
for an in-depth analysis of flow features in very large climate
datasets.
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