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Abstract. The high-order decoupled direct method in
three dimensions for particulate matter (HDDM-3D/PM) has
been implemented in the Community Multiscale Air Qual-
ity (CMAQ) model to enable advanced sensitivity analy-
sis. The major effort of this work is to develop high-
order DDM sensitivity analysis of ISORROPIA, the inor-
ganic aerosol module of CMAQ. A case-specific approach
has been applied, and the sensitivities of activity coefficients
and water content are explicitly computed. Stand-alone tests
are performed for ISORROPIA by comparing the sensitiv-
ities (first- and second-order) computed by HDDM and the
brute force (BF) approximations. Similar comparison has
also been carried out for CMAQ sensitivities simulated us-
ing a week-long winter episode for a continental US do-
main. Second-order sensitivities of aerosol species (e.g., sul-
fate, nitrate, and ammonium) with respect to domain-wide
SO2, NOx, and NH3 emissions show agreement with BF
results, yet exhibit less noise in locations where BF results
are demonstrably inaccurate. Second-order sensitivity analy-
sis elucidates poorly understood nonlinear responses of sec-
ondary inorganic aerosols to their precursors and competing
species. Adding second-order sensitivity terms to the Tay-
lor series projection of the nitrate concentrations with a 50 %
reduction in domain-wide NOx or SO2 emissions rates im-
proves the prediction with statistical significance.

1 Introduction

Airborne particulate matter (PM), or aerosol, is a major pol-
lutant in the atmosphere. Studies have shown that PM im-
pairs visibility (Watson, 2002), may cause harmful effects

on ecosystems (Galloway et al., 2004), and affects human
health (e.g., Zanobetti et al., 2000; Kaiser, 2005). In re-
sponse, control strategies are designed to lower the concen-
trations of anthropogenic PM in the atmosphere (US EPA,
2004). Historically, multiple air quality model simulations
using different sets of emissions have been used to evaluate
the expected benefit of different strategies (e.g., Bergin et al.,
2008). This approach is resource-intensive (Dunker, 1984),
and the numerical precision of models limits the size of emis-
sions changes that can be actually evaluated (Hakami et al.,
2004). An alternative approach is to use sensitivity analysis
tools integrated in the simulation.

Sensitivity analysis reveals the relationship of model out-
puts (e.g., pollutant concentrations) to model input param-
eters (e.g., emissions rates, initial or boundary conditions,
and chemical reaction rates). Several different sensitivity
analysis methods quantitatively express partial derivatives
as the “sensitivity coefficients”. One approach is the brute
force (BF) approximation; using central finite difference
approximation, first- and second-order sensitivities are ex-
pressed as:

S
(1),BF
ij =

Ci |pj +1pj
−Ci |pj −1pj

21pj

(1)

S
(2),BF
ijj =

Ci |pj +1pj
−2Ci |pj

+Ci |pj −1pj

(1pj )2
(2)

whereS
(1),BF
ij andS

(2),BF
ijj represent the brute force first-order

and second-order sensitivities, respectively of speciesi with
respect to parameterpj (e.g., emissions, initial or boundary
conditions, or reaction rates).Ci represents the concentra-
tion of speciesi. pj , pj + 1pj , andpj − 1pj represent
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the values of the input parameter at which the concentrations
are evaluated. Computational requirements for BF sensitiv-
ity analysis scale with the number of parameters investigated.
Obviously, BF becomes resource-intensive with an increas-
ing number of parameters of interest or with increasing or-
der (e.g., second order or higher) of sensitivities. In addi-
tion to being computationally inefficient, the BF sensitivities
are prone to considerable numerical noise. One reason for
the numerical noise is the truncation errors, which are in-
troduced by omitting the higher-order terms when deriving
Eqs. (1) and (2) from the Taylor series expansion. The trun-
cation error is a function of both the perturbation size (1p)

and the magnitude of higher-order sensitivities. If the system
is highly nonlinear, even a small perturbation can cause siz-
able truncation error (Hakami et al., 2004). Another reason
for the numerical noise of BF is due to the modeling accu-
racy and precision. For example, incomplete convergence in
iterative solvers will cause such errors. Both types of errors
for second-order BF sensitivities are amplified compared to
first-order BF sensitivities. Actually, as the order of sensitiv-
ities increase, BF approximations become significantly less
accurate (Hakami et al., 2004).

An alternative approach to BF is the decoupled direct
method in three dimensions (DDM-3D). This method op-
erates integrally within a chemical transport model (CTM)
and simultaneously computes local sensitivities of pollutant
concentrations to perturbations in input parameters (Dunker,
1984; Yang et al., 1997; Cohan et al., 2005, 2010; Napelenok
et al., 2006). DDM-3D sensitivities are calculated by solv-
ing sensitivity equations that are the derivatives of the partial
differential equations governing the CTM. DDM-3D is com-
putationally efficient for three or more sensitivity parameters
and is subject to considerably less numerical noise than BF.
The difference in numerical cost has been studied by Nape-
lenok et al. (2006). CPU time required by the two approaches
to compute the same set of sensitivities is compared, with
the number of sensitivity parameters ranging from 1 to 8.
The CPU time needed by BF is almost twice that needed
by DDM-3D if two or more parameters are considered. For
8 sensitivity parameters, the CPU time for BF is 27 min and
DDM-3D 15 min. DDM-3D has been implemented in CTMs
(e.g., CMAQ (Byun and Schere, 2006), CAMx (ENVIRON,
2005), URM (Boylan et al., 2002)) to conduct source impact
analysis for ozone and PM (Yang et al., 1997; Mendoza-
Dominguez and Russell, 2000; Odman et al., 2002; Nape-
lenok et al., 2006; Koo et al., 2007). Initially, DDM-3D was
applied to calculate first-order sensitivities, which are the lo-
cally linear responses of pollutant concentrations to changes
in model inputs and parameters (e.g., emissions, and initial
and boundary conditions) at the conditions currently mod-
eled.

DDM-3D has been extended to calculate high-order sen-
sitivities of gaseous species by Hakami et al. (2003) within
the Multiscale Air Quality Simulation Platform (MAQSIP)
(Odman and Ingram, 1996). They calculated second- and

third-order sensitivities using DDM-3D and showed that the
approach could accurately capture the nonlinear response of
ozone concentration to NOx and VOC emission changes.
They also investigated the efficiency of DDM-3D in calcu-
lating high-order sensitivities. An important outcome of that
work was that higher than second order sensitivities are not
necessary for the majority of potential applications. More re-
cently, the high-order approach for gaseous species has also
been implemented in the Community Multiscale Air Qual-
ity (CMAQ) model (Cohan et al., 2005) and the Compre-
hensive Air Quality with extensions (CAMx) (Koo et al.,
2010). High-order sensitivity calculations of gaseous species
have been applied to source apportionment and air qual-
ity model uncertainty analysis (Cohan et al., 2005; Tian et
al., 2010). Although nonlinear effects of aerosol precursors
on aerosol concentrations have been of concern in the past
decade (Ansari and Pandis, 1998; West et al., 1999), devel-
oping HDDM for PM has not yet been undertaken due to the
discontinuous, highly nonlinear solution surface of the inor-
ganic aerosol thermodynamics. Only now has the challeng-
ing task of extending high-order, direct sensitivity analysis
to particulate matter species been accomplished. HDDM-
3D/PM is implemented in the Community Multidimensional
Air Quality model, version 4.5 (CMAQ4.5).

2 Model description

CMAQ is an Eulerian air quality model (Byun and Schere,
2006) that simulates emissions, deposition, transport and
chemical transformation of atmospheric species primarily by
solving the advection-diffusion-reaction equations:

∂Ci

∂t
= −∇(uCi)+∇(K∇Ci)+Ri +Ei (3)

whereCi is the concentration of thei-th species,u the fluid
velocity, K the turbulence diffusivity,Ri the net chemical
reaction rate of all chemical reactions that affect the concen-
tration of theith species, andEi the emission rate for thei-th
species (Seinfeld and Pandis, 2006). The chemicals species
can be in gas phase or aerosol form.

In the modal treatment of aerosol in CMAQ, aerosol
species are tracked based on their size using three modes:
Aitken, accumulation, and coarse. The two smaller modes
(noted as Aitken and accumulation modes, respectively) ap-
proximately represent PM2.5, aerosols smaller than 2.5 µm in
aerodynamic diameter. CMAQ includes modeled processes
of secondary inorganic aerosol (i.e., sulfate, nitrate, ammo-
nium), anthropogenic secondary organic aerosol (SOA), and
biogenic SOA formation as well as primary emissions of el-
emental carbon and sea salt in the Aitken and accumulation
modes. PM2.5 changes in response to new particle produc-
tion from vapor phase precursors, coagulation of particles,
growth by condensation from gaseous species, transport and
deposition of particles, and emissions (Byun and Schere,

Geosci. Model Dev., 5, 355–368, 2012 www.geosci-model-dev.net/5/355/2012/



W. Zhang et al.: Development of the high-order decoupled direct method in three dimensions 357

2006). The concentration of PM2.5 is highly dependent on
gas phase species concentrations because of the significant
fraction of secondary aerosol in this size range. CMAQ4.5
assumes the secondary inorganic aerosols are in thermody-
namic equilibrium with surrounding gases, and uses ISOR-
ROPIAv1.7 (Nenes et al., 1998a; Fountoukis et al., 2007)
to simulate their condensation and evaporation. A dynamic
equilibrium approach has also been used by CMAQ4.7+ to
simulate the chemical interactions between coarse particles
and gas-phase pollutants (Kelly et al., 2010). CMAQ4.5
partitions SOA between gas and condensed phase based on
the two-product model of Odum et al. (1997) using empiri-
cally derived coefficients from chamber experiments (Schell
et al., 2001). The algorithm to compute SOA concentrations
is similar to that of photochemical reactions. Studies show
that the thermodynamic coupling between SOA and the inor-
ganic species can impact the total aerosol water content and
the aerosol nitrate concentrations (Ansari and Pandis, 2000).
This would result in a greater sensitivity of aerosol water
content and nitrate concentrations to SOA precursors (e.g.,
monoterpenes and xylene). However, such a coupling is not
parameterized in CMAQ4.5, so DDM sensitivities do not re-
flect these effects. Thus, this work mainly focuses on the sen-
sitivities of inorganic aerosol species to SO2, NOx, and NH3.
The SOA representations in CMAQ are being updated (Ed-
ney et al., 2007 and Carlton et al., 2010), and further inter-
actions between inorganic and organic aerosol fractions are
likely to be included in future updates. The implementation
of HDDM and DDM sensitivity analysis can be modified ac-
cordingly.

ISORROPIA assumes that equilibrium exists between gas
phases and aerosol species and uses thermodynamics to cal-
culate the composition of inorganic aerosols and concentra-
tions of surrounding gases. Inputs to ISORROPIA include
the total (gas and aerosol) concentrations of five inorganic
precursor species (i.e., sulfate, nitrate, ammonium, sodium,
and chloride), temperature, and relative humidity. To deter-
mine the aerosol composition at equilibrium, ISORROPIA
first identifies the solution regime of the given system based
on sulfate ratio (i.e., the ratio of total ammonium and sodium
to total sulfate). Then, the appropriate set of equilibrium
and mass and charge conservation relationships are solved to
calculate the phase state and equilibrium concentrations (Ta-
ble 1). Each of ten subcases has its own solution procedure
and a distinct set of possible species at equilibrium.

3 Development of HDDM-3D/PM

HDDM-3D/PM directly computes the high-order DDM sen-
sitivity coefficients of PM concentrations to input parame-
ters, such as emissions rates, and initial or boundary condi-
tions, by solving derivatives of the original equilibrium and

conservation equations. First- and second-order sensitivity
coefficients are defined as

s
(1)
ij =

∂Ci

∂pj

(4)

s
(2)
ijk =

∂2Ci

∂pj∂pk

(5)

wheres
(2)
ijkdenotes second-order sensitivity of speciesi to pa-

rametersj andk; Ci denotes the ambient concentration of
speciesi; andpj andpkdenote any two input parameters of
interest.

HDDM-3D/PM calculates semi-normalized sensitivity co-
efficients, expressed in the same units as concentration and
which allows for easier interpretation and application:

S
(1)
ij =

∂Ci

∂εj

(6)

S
(2)
ijk =

∂2Ci

∂εj∂εk

(7)

whereεj andεk are relative perturbations in parameterspj

andpk, and they are related to the absolute perturbation of a
parameter byδε =

δp
p

.
The fundamental steps to obtain high-order DDM-3D sen-

sitivities for PM from CMAQ are similar to those for the
gaseous species. Taking second-order derivatives of the gov-
erning equation results in a similar equation which can be
solved for second-order sensitivity of PM:

∂S
(2)
ijk

∂t
= −∇(uS

(2)
ijk)+∇(K∇S

(2)
ijk) (8)

+J iS
(2)
jk +f (Ci,S

(1)
ij ,S

(1)
ik ,u,K,Ri,Ei)

S
(2)
ijk is the second-order sensitivity of speciesi with respect

to parameterspj andpk; S
(1)
ij andS

(1)
ik are first-order sensitiv-

ities of speciesi to parameterspj andpk, respectively;J i is
the i-th row of Jacobian matrix defined asJik = ∂Rik/∂Ck.
k is thekth species in the concentration vector.S

(2)
jk is the

vector of second-order sensitivity coeffiients.f is a function
primarily of Ci , S

(1)
ij , andS

(1)
ik . It can also be related tou, K,

Ri , andEi , depending on the types of sensitivity parameters.
Details off can be found in Eq. (9) in Hakami et al. (2003).

Equation (8) can be directly propagated through most of
the processes associated with the formation and transport
of PM species, such as the oxidation of reactive organic
gases and the gas/particle partitioning of organic compounds
(Schell et al., 2001). However, the secondary inorganic
aerosol species are strongly coupled as they are assumed to
be in thermodynamic equilibrium with their precursors (i.e.,
NH3, HNO3, and HCl). The equilibrium is assumed to be
reached instantaneously, so the direct use of Eq. (8) is not
appropriate. Thus, a different treatment for inorganic aerosol
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Table 1. Equilibrium Relations, mass and charge balance of ISORROPIA.

Equilibrium Reactions Equilibrium Constants

HSO−

4 ↔ H+ + SO2−

4 K1 =
[H+

][SO2−

4 ]γH+γ
SO2−

4
[HSO−

4 ]γ
HSO−

4
wH2O

NH3(g)+ H2O(aq) ↔ NH+

4 + OH− K2 =
[NH+

4 ][OH−
]γ

NH+

4
γOH−

PNH3aww2
H2O

HCl(g)↔ H++ Cl− K3 =
[H+

][Cl−]γH+γCl−

PHClw
2
H2O

HNO3(g)↔ H++NO−

3 K4 =
[H+

][NO−

3 ]γH+γNO3
−

PHNO3w2
H2O

H2O(ag)↔ H+ +OH− Kw =
[H+

][OH−
]γ

NH+

4
γOH−

aww2
H2O

Na2 SO4(s) ↔ 2Na++SO2−

4 K5 =[Na+
]
2[SO2−

4 ]γ 2
Na+γSO2−

4
w−3

H2O
NH4 Cl(s)↔ NH3 + HCl K6 =PNH3PHCl

(NH4)2 SO4(s) ↔ 2NH+

4 + SO2−

4 K7 =[NH+

4 ]
2[SO2−

4 ]γ 2
NH+

4
γSO2−

4
w−3

H2O

NaCl(s)↔ Na++ Cl− K8 =[Na+][Cl− ]γNa+ γCl−w−2
H2O

NaNO3(s) ↔ Na++NO−

3 K9 =[Na+][NO−

3 ]γNa+ γNO3
− w−2

H2O
NH4 NO3(s) ↔ NH3(g) +HNO3(g) K10 =PNH3 PHNO3

NaHSO4(s) ↔ Na++HSO2−

4 K11 =[Na+][HSO−

4 ]γNa+ γHSO4
− w−2

H2O

NH4 HSO4(s) ↔ NH+

4 +HSO−

4 K12 =[NH+

4 ][HSO−

4 ] γ +

NH4
γHSO4

− w−2
H2O

(NH4)3 H(SO4)2(s) ↔ 3NH+

4 +HSO−

4 +SO2−

4 K13 =
[NH+

4 ]
3
[HSO−

4 ][SO2−

4 ]γ 3
NH+

4
γ

SO−

4
γ

SO2−4

w5
H2O

Mass Balance

[tNa]=[Na+]+2[Na2 SO4 ]+[NaCl]+[NaNO3 ]+[NaHSO4 ]∗

[tSO4 ]=[SO2−

4 ]+[HSO−

4 ]+[Na2 SO4 ]+[NaHSO4 ]+[(NH4)2 SO4 ]+[NH4 HSO4 ]+2[(NH4)3 H(SO4)2 ]

[tNH4 ]=[NH3 ]+[NH+

4 ]+2[(NH4)2 SO4 ]+[NH4 HSO4 ]+3[(NH4)3 H(SO4)2 ]+[NH4 Cl]+[NH4 NO3 ]

[tNO3 ]=[HNO3 ]+[NO−

3 ]+[NaNO3 ]+[NH4 NO3 ]

[t Cl]=[HCl]+[Cl − ]+[NaCl]+[NH4 Cl]

Charge Balance

[H+]+[Na+]+[NH+

4 ]=[NO−

3 ]+[Cl−]+2[SO2−

4 ]+[HSO−

4 ]+[OH−]

*All quantities in [ ] denote molar concentrations, the unit is mol m−3 air.

species is necessary to implement HDDM-3D/PM when us-
ing ISORROPIA.

The implementation of HDDM in ISORROPIA involves
differentiation of the equilibrium reactions that are involved
in determining the concentrations of each species. For exam-
ple, the equilibrium reaction for the balance between nitric
acid gas (HNO3(g)) and nitrate ion (NO−3 ) is

HNO3,(g) ↔ H+
+NO−

3 (9)

The corresponding equilibrium expression is

K =

[H+
][NO−

3 ]γH+γNO−

3

PHNO3w
2
H2O

(10)

whereK is the equilibrium constant; [A] denotes the mo-
lar concentration ofA; γH+ andγNO−

3
are the activity coef-

ficients ofH+ and NO−

3 ; PHNO3 is the partial pressure of
HNO3 gas;wH2O is the water content.

Sinceγ 2
HNO3

= γH+γNO−

3
andPHNO3 = [HNO3]RT,

K =
[H+

][NO−

3 ]γ 2
HNO3

[HNO3]w2
H2ORT

(11)

where γHNO3 is the mean activity coefficient ofH+ and
NO−

3 ; R is the universal gas constant; andT is temperature.
Taking the logarithmic derivative of Eq. (11) with respect to
the first parameter of interest (p1, where for brevity,T is
assumed constant) leads to the expression of first-order sen-
sitivity equation:

S
(1)

H+,p1

[H+]
+

S
(1)

NO−

3 ,p1

[NO−

3 ]
−

S
(1)
HNO3,p1

[HNO3]

+
2S

(1)
γHNO3,p1

γHNO3

−

2S
(1)
H2O,p1

wH2O
= 0 (12)
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Differentiating Eq. (12) with respect to the second parameter
of interest (p2) gives the equation for second-order sensitiv-
ity:

S
(2)

H+,p1,p2
[H+]

+

S
(2)

NO−

3 ,p1,p2
[NO3

−]
−

S
(2)
HNO3,p1,p2
[HNO3]

+
2S

(2)
γHNO3,p1,p2

γHNO3
−

2S
(2)
H2O,p1,p2
wH2O

=
S

(1)

H+,p1
S

(1)

H+,p2
[H+]2

+

S
(1)

NO−

3 ,p1
S

(1)

NO−

3 ,p2

[NO−

3 ]2
−

S
(1)
HNO3,p1

S
(1)
HNO3,p2

[HNO3]
2

+
2S

(1)
γHNO3,p1

S
(1)
γHNO3,p2

γ 2
HNO3

−
2S

(1)
H2O,p1

S
(1)
H2O,p2

w2
H2O

(13)

Repeating the same process with the other equilibrium re-
actions involved in the system gives similar expressions to
Eq. (13). Combining them with mass and charge balance
equations leads to a system of linear equations (Table 1) with
which second-order sensitivities can be calculated. In this
implementation, the available options for the two parameters
pj andpk are emission rates, reaction rate constants, initial
conditions, and boundary conditions. The approach can be
extended to parameters in ISORROPIA such as equilibrium
coefficients, which would require minor modification to the
right hand side of Eqs. (12) and (13).

Calculating second-order DDM-3D sensitivities depends
on the corresponding first-order sensitivities, so second-
order sensitivities are computed sequentially following the
first-order sensitivities in the same model run. Comparing
Eqs. (12) and (13), identical coefficient terms multiplying
the sensitivities are found on the left-hand sides, which re-
duces computational cost by allowing the two systems of lin-
ear equations to share the same coefficient matrix. Overall,
the computational cost of second-order sensitivities is very
close to that of first-order because the main computing pro-
cesses (mainly transport) are the same for each sensitivity.

In ISORROPIA, the mean activity coefficients are deter-
mined by Bromley’s formula (Bromley, 1973). Sensitivities
of the mean activity coefficients,S(1)

γ
,
HNO3

p1
andS

(2)
γ

,
HNO3

p1,p2
in

Eqs. (12) and (13), are calculated by directly differentiating
Bromley’s formulas. As the activity coefficients are func-
tions of the ion concentrations, their sensitivities are finally
expressed as the combinations of sensitivities of relevant ion
concentrations.

The liquid water content of aerosols is computed by the
Zdanovskii-Stokes-Robinson (ZSR) relationship (Stokes and
Robinson, 1966):

[H2O] =

∑
i

Ei

m0i
(14)

whereEi is concentration of thei-th electrolyte in the mul-
ticomponent solution; m0i is the molality of a solution with
only the i-th electrolyte and the same water activity as the
multicomponent solution. Sensitivities of the liquid water
content are obtained by differentiating Eq. (14). Because the

concentrations of electrolytes are calculated from the equi-
librium ion concentrations, both first- and second-order sen-
sitivities of liquid water content can be ultimately expressed
as a function of ion sensitivities:

S
(1)
H2O,p1

=

∑
i

1

moi

∑
j

∂Ei

∂Aj

S
(1)
Aj ,p1

(15)

S
(2)
H2O,p1,p2

=

∑
i

1

moi

∑
j

∂Ei

∂Aj

S
(2)
Aj ,p1,p2

(16)

whereAj represents thej th ionic species in the system.
ISORROPIA uses different algorithms to treat neutralized

and acidic aerosol, so this work applied a case-specific ap-
proach when implementing HDDM-3D sensitivity analysis.
Depending on the acidity of the aerosol, each subcase has
its own solution routine and assumptions. For example, the
neutralized aerosol algorithm assumes that bisulfate ions are
minor species, and its concentration is adjusted after solving
the equilibrium reactions of nitrate, nitric acid gas, ammo-
nium, and ammonia gas. Alternately, the acidic algorithm
assumes that either ammonia or nitric acid gas is a minor
species and resolves its final concentration after determin-
ing aerosol concentrations of their counterparts. This fea-
ture was usually neglected in previous implementations of
DDM in ISORROPIA, which caused discrepancies between
BF and DDM sensitivites. The problem is now solved by the
case-specific approach, which exactly follows the treatment
of ISORROPIA for different aerosols during HDDM imple-
mentation.

4 Results and discussion

The performance of HDDM-3D/PM is evaluated in both the
stand-alone ISORROPIA and the CMAQ model for inor-
ganic species. In the stand-alone ISORROPIA, the HDDM-
3D/PM sensitivities were compared to brute-force sensitivi-
ties (first- and second- order) calculated by Eqs. (1) and (2),
using a relative perturbation of 1 %. The input concentra-
tions of total sulfate, ammonium, and nitrate range from 0.1
to 10 µmol·m−3 with an incremental of 0.1 µmol·m−3. The
input concentrations of total sodium and chloride are 0.5 and
1 µmol·m−3, respectively (Table 2). These inputs are con-
sistent with the typical chemical composition of inorganic
aerosols (Nenes et al., 1998b) and are also over a wide range
allowing each subcase in ISORROPIA to be tested. The in-
organic aerosol species are assumed to be in metastable state
in CMAQ4.5, so the aerosols with the same chemical com-
position but different relative humidities are treated using the
same algorithm. Therefore, we used a fixed relative humidity
of 95 % for stand-alone testing.

We first compared the first-order DDM-3D and BF sen-
sitivities of the five major ions (i.e., H+, NH+

4 , SO2−

4 ,
HSO−

4 ,NO−

3 ) with respect to input total concentrations of
sulfate, ammonium, and nitrate (Fig. 1). Good agreement
is found between first-order BF and DDM sensitivities for all
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Table 2. Input cases for testing of HDDM-PM using stand-alone
ISORROPIA.

Parameters Values (µmol m−3)

Total Sulfate 0.1∼ 10
Total Ammonium 0.1∼ 10
Total Nitrate 0.1∼ 10
Total Sodium 0.5
Total Chloride 1.0
Relative Humidity 95 %
Temperature 298 K

species (slope = 1 andR2
= 0.99), which is essential for eval-

uating the second-order sensitivities due to the dependence of
second-order DDM-3D and BF sensitivities on the first-order
counterparts.

The same comparison was conducted for second-order
BF and DDM-3D sensitivities (Fig. 2). Although most of
the points fall on the one-to-one line (slope = 1,R2

= 0.95),
discrepancies were found for some second-order sensitivi-
ties (Fig. 2). This is due to the noisy behavior of BF. As
mentioned above, as the order of sensitivity coefficients in-
creases, the two types of errors of BF approximations can
become significantly larger. In other words, a lower degree
of agreement between DDM-3D and BF are expected for
second-order sensitivities. Our investigation into the noisy
behavior of second-order BF sensitivities shows that second-
order BF sensitivities vary dramatically with various sizes of
perturbation (1p) and the convergence criteria of the ISOR-
ROPIA solution algorithm (1η) (Fig. 3). This has also been
demostrated by Capps et al. (2012). Further investigation
into the charge balance for second-order BF and DDM-3D
sensitivities revealed that the charge balance for BF sensitiv-
ities is not satisfied when they exhibit a noisy behavior. On
the other hand, the charge balance is satisfied for DDM-3D
sensitivities. These results strongly suggest that the HDDM-
3D sensitivity coefficients are much more stable, while the
BF second-order sensitivity coefficients are subject to signif-
icant numerical noise.

HDDM-3D/PM is applied to simulate a winter episode:
1–7 January 2004. Winter episodes have higher nitrate
levels, which is a more stringent test of HDDM-3D/PM.
The modeling domain covers the entire continental United
States and portions of Canada and Mexico (Fig. 4) using
a 36-km horizontal grid-spacing and thirteen vertical lay-
ers extending about 16 km above the ground. The meteo-
rological fields were developed using the Fifth-Generation
PSU/NCAR Mesoscale Model (MM5) (Grell et al., 1994).
Emissions were prepared using the Sparse Matrix Op-
erator Kernel Emissions (SMOKE) model (CEP, 2003).
SAPRC99AE4 AQ was selected as the chemical mecha-
nism (Carter, 2000; Binkowski and Roseelle, 2003).

The sensitivities of aerosol sulfate, nitrate, and ammonium
to domain-wide SO2, NOx, and NH3 emissions are studied in
this simulation. During a single simulation, HDDM-3D/PM
provides all the sensitivities of interest for each grid at each
time step. The spatial patterns of first- and second-order
DDM sensitivities of aerosol sulfate to SO2 show that the
most sensitive area is the Eastern US (Fig. 4); since this re-
gion is the area with the highest SO2 emissions, these sen-
sitivities were expected. Spatial distributions of first- and
second-order sensitivities are found to be consistent. The
magnitudes of the second-order sensitivities are smaller, and
usually opposite in sign, but still indicate a significant contri-
bution to the total response.

Comparison of first- and second-order BF and HDDM-
3D/PM sensitivities of sulfate, nitrate, ammonium, and
PM2.5 to domain-wide SO2, NOx, and NH3 emissions find
similar results to the stand-alone version (Figs. 5 and 6).
First- and second-order BF sensitivities are calculated using
Eqs. (1) and (2) with a 50 % reduction of each emission of in-
terest, respectively. A choice of 50 % is made to minimize the
impact of noise for BF sensitivities when taking a small dif-
ference between two relatively large concentrations though
it is expected that nonlinearities may be of some importance
over this range. Using a smaller reduction leads to consid-
erably larger error, which has been identified when testing
HDDM-3D/PM in the stand-alone ISORROPIA. Most of the
DDM-3D and BF first-order sensitivities are in good agree-
ment with an overall slope of 0.9 andR2 of 0.91 (Fig. 5).
More statistics are provided in Table S1. The degree of
agreement between DDM-3D and BF sensitivities of PM2.5
to NOx and NH3 emissions is improved fromR2

= 0.63 to
R2

= 0.93 by the case-specific DDM approach in ISOR-
ROPIA. Sensitivity of aerosol nitrate to SO2 emissions is
of concern to policy makers since the nitrate levels may be
increased from SO2 emission controls (West et al., 1999).
A relatively low degree of agreement was found between
DDM-3D and BF sensitivities of nitrate to SO2 (Fig. 5c).
However, nitrate concentrations are usually expected to in-
crease with decreasing SO2 emissions, so the first-order sen-
sitivity should be negative, as is shown by DDM-3D. The BF,
however, is producing a significant amount of positive sensi-
tivities, which is due to the nonlinear dependence of nitrate
on SO2 emissions coupled with numerical noise. The com-
parison for sensitivity of sulfate to NOx has two branches that
are slightly off the one-to-one line. These disagreements are
caused by cloud processes as additional testing shows that
the discrepancies disappear when the cloud module is turned
off. The disagreement for the sensitivity of sulfate to NH3
also comes from the cloud module where SO2 is oxidized to
sulfate. The oxidation process is highly affected by the pH
value, and the response of sulfate to NH3 is quite nonlinear.
BF sensitivities of sulfate to NH3 are strongly affected by this
nonlinearity. Further investigation showed that they change
dramatically with the perturbation sizes as well as the BF ap-
proaches (i.e., forward and central finite difference). Overall,
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Fig. 1. Comparison of first-order DDM and BF sensitivity coefficients of the five major ions (i.e.,H+, NH4
+, SO2−

4 , HSO4
−, and NO−

3 )
to the change of total sulfate (TS), total ammonia (TA), and total nitrate (TN) in the stand-alone ISORROPIA. Each plot corresponds to the
comparison of one sensitivity coefficient that is labeled on the upper left of the plot. For example,(a) shows the comparison of first-order
sensitivity of hydrogen ion (H+) to total sulfate predicted by DDM and BF. The overall slope (i.e., correlation of DDM sensitivities with
stand-alone ISORROPIA BF first-order sensitivities) is 1, and the overall coefficient of determination (R2) is 0.99. The dashed line is the
one-to-one line for reference of perfect agreement.

Fig. 2. Comparison of second-order DDM and BF sensitivity coefficients of the five major ions (i.e.,H+, NH4
+, SO2−

4 , HSO−

4 , and NO−

3 )

to the change of total sulfate (TS), total ammonia (TA), and total nitrate (TN) in the stand-alone ISORROPIA. Each plot corresponds to the
comparison of one sensitivity coefficient that is labeled on the upper left of the plot. For example,(a) shows the comparison of second-order
sensitivity of hydrogen ion (H+) to total sulfate predicted by DDM and BF. The overall slope (i.e., correlation of HDDM sensitivities with
stand-alone ISORROPIA BF second-order sensitivities) is 1, and the overall coefficient of determination (R2) is 0.95. The dashed line is the
one-to-one line for reference of perfect agreement.
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Fig. 3. Second-order sensitivity coefficients of aerosol nitrate to total sulfate in stand-alone ISORROPIA calculated by(a) BF and(b) HDDM
under three conditions: (1) base case, where the perturbation used by BF (1p) = 1 % and the convergence criteria of ISORROPIA (1η) =
1×10−10; 2) control case 1 (blue squares) with1p= 1 % and1η = 1×10−3; and 3) control case 2 (red diamonds) with1p=0.1 % and
1η = 1×10−10. The default value of the convergence criteria for ISORROPIA is 1×10−6. Results from the two control cases are compared
to those from the base case. The dashed line is the one-to-one line.

Fig. 4. Spatial distribution of 24-h averages of(a) simulated con-
centration of sulfate,(b) first- and(c) second-order sensitivities of
sulfate to SO2 at surface layer on 3 January 2004.

first-order BF and DDM-3D sensitivities compared well. BF
sensitivities become less accurate when the system is quite
nonlinear. This also implies the significance of the nonlinear
response and the necessarity of performing high-order sensi-
tivity analysis.

Second-order DDM-3D sensitivities are also evaluated
using BF. Good agreement is found forS(2)

SO=

4 ,SO2,SO2
,

S
(2)
SO=

4 ,NOx,NOx
, S

(2)

NH+

4 ,NOx,NOx
, andS

(2)

NO−

3 ,NOx,NOx
(Fig. 6a, e,

f, and g) while the correlations are relatively low for some
sensitivities, such asS(2)

NO−

3 ,SO2,SO2
andS

(2)
SO=

4 ,NH3,NH3
(Fig. 6c

and i, Table S2). As mentioned above, second-order BF sen-
sitivities for stand-alone ISORROPIA are strongly affected
by the size of the perturbation. Here, we also investigated
the impact of perturbation size to second-order BF sensitiv-
ities. For each second-order sensitivity of interest, we com-
pared the BF results with 10 % and 50 % emission reduction.
The noisy behavior of second-order BF sensitivities is evi-
dent (Fig. 7). The two BF scenarios in particular show little
consistency for second-order sensitivity of sulfate to NH3,
which suggests that BF sensitivities directly computed from
Eqs. (1) and (2) may not be reliable (Fig. 7g). The plot for
second-order sensitivity of nitrate to SO2 also shows that the
BF results vary significantly (Fig. 7c). Thus, BF is not able
to accurately approximate second-order local sensitivities of
PM in CMAQ. Given the good performance of HDDM in
the stand-alone ISORROPIA, and the great scatter between
implementing BF with different perturbations, the direct ap-
proach is expected to provide more reliable results.

The average computational cost of calculating one second-
order sensitivity of PM is found to be very close to that of
one first-order sensitivity. For one day simulation, the aver-
age model time needed by the aerosol module for one first-
order and one second-order sensitivites are 9 and 11 min, re-
spectively, given that the second-order sensitivity calculation
uses the same solution algorithm as first-order sensitivity.
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Fig. 5. Comparison of first-order sensitivities of sulfate, ammonium, nitrate, and PM2.5 to SO2, NOx, and NH3 calculated by HDDM-
3D/PM and BF at surface layer on 2 January 2004. ASO4, ANH4, and ANO3 denote aerosol sulfate, aerosol ammonium, and aerosol nitrate,
respectively. Each plot represents one sensitivity coefficient that is labeled on the upper left of the plot. The dashed line is the one-to-one
line indicating perfect agreement.

Fig. 6. Comparison of second-order sensitivities of sulfate, ammonium, nitrate, and PM2.5 to SO2, NOx, and NH3 calculated by HDDM-
3D/PM and BF at surface layer on 2 January 2004. ASO4, ANH4, and ANO3 denote aerosol sulfate, aerosol ammonium, and aerosol nitrate,
respectively. Each plot represents one sensitivity coefficient that is labeled on the upper left of the plot. The dashed line is the one-to-one
line indicating perfect agreement.
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Fig. 7. Comparison of second-order BF sensitivities calculated with 10 % and 50 % perturbation in emissions using CMAQ simulation on
2 January 2004 at surface layer. ASO4, ANH4, and ANO3 denote aerosol sulfate, aerosol ammonium, and aerosol nitrate, respectively.

Fig. 8. Comparisons of model simulation and predictions using Taylor series expansions for concentrations of nitrate at 16:00 EDT on
2 January 2004, with(a) a 50 % reduction in NOx and(b) a 50 % reduction in SO2. The solid lines reflect the linear regression of the Taylor
series predictions against the CMAQ simulation results; the dotted lines represent the area of perfect agreement.
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Fig. 9. Comparisons of model simulation and predictions using Taylor series expansions with HDDM and BF sensitivities for concentrations
of nitrate with(a) 20 % and(b) 100 % reductions in domain-wide SO2 emissions rates and concentrations of sulfate with(c) 20 % and(d)
100 % reductions in domain-wide NH3 emissions rates at 16:00 EDT on 2 January 2004. BF sensitivities are from a 50 % perturbation. The
solid lines reflect the linear regression of the Taylor series predictions against the CMAQ simulation results; the dotted lines represent the
area of perfect agreement.

Therefore, the time required by matrix factorization and
transport-related computations is almost the same for first-
and second-order sensitivities. An indirect cost associated
with the second-order sensitivity calculation is that all rele-
vant first-order sensitivities should also be calculated, which
is generally of interest anyway in any application involving
high-order sensitivity (Hakami et al., 2003). On the other
hand, BF needs more than one simulation, and its computa-
tional cost increases directly with the order and the number
of sensitivity parameters. HDDM-3D/PM provides an effi-
cient approach to conduct high-order sensitivity analysis as it
computes high-order sensitivities at a similar computational
effort as first-order sensitivities.

HDDM-3D/PM has many practical applications, most of
which are based on Taylor series expansion (Hakami et al.,
2003):

C(1ε) = C(0)+1εS(1)(0)+
1ε2

2
S(2)(0)+higher order terms (17)

whereC(0) stands for the pollutant concentration at base
case emissions andC(1ε) with a perturbation of1ε in emis-
sions. With Eq. (17), one can quickly compute the impact of
emission perturbations on the ambient concentrations of pol-
lutants. Including the second-order term (i.e., the third term
on the right hand side of Eq. (17)) is expected to reduce the
error between the approximations using Taylor series expan-
sion and the model simulation. For example, assuming 50 %
of domain-wide NOx emissions are reduced in the simula-
tion above, we predicted the concentration of nitrate using
first- and second-order Taylor series expansion (Eq. (17)) and
compared them with model simulation (Fig. 8a). Predictions
using second-order Taylor series expansions are closer to the
model simulation than those using first-order Taylor series
expansions (Fig. 8a). A similar result is also found for ni-
trate concentration with a 50 % reduction in SO2 emissions
(Fig. 8b). Thus, including the second-order term in Taylor
series approximation improves the accuracy of prediction.
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Taylor series expansions derived using HDDM sensitivity
coefficients enable efficient evaluation of emission control
strategies. One CMAQ-HDDM simulation would be suf-
ficient to estimate the changes in pollutant concentrations
with respect to emission reductions. Predictions of nitrate
concentrations with 20 % and 100 % reductions in total SO2
emission using HDDM sensitivities compare well with the
CMAQ model simulation. The slope from linear regression
analysis is close to 1 (Fig. 9a and b). Predictions driven by
BF sensitivities are close to the CMAQ simulation at 20 %
reductions and are a little off the one-to-one line for 100 %
reductions (Fig. 9b). The BF sensitivities used here are re-
sults of a 50 % perturbation. BF sensitivities prepared us-
ing a 10 % perturbation were also tested (not shown here),
but suffered from more numerical noise. Simulated sulfate
concentrations with 20 % and 100 % reductions in total NH3
emissions also exhibit good agreement with model simula-
tion (Fig. 9c and d).

The reduction in concentrations that would occur if the
sources of interest did not exist is called the zero-out source
contribution (ZOC) (Cohan et al., 2005). The advantage of
using Eq. (17) to calculate ZOC is that it is based on an
air quality model with relevent physical and chemical pro-
cesses included. Indirect effects, such as source contributions
of SO2 emissions to nitrate and NH3 emissions to sulfate
(Fig. 9b and d), can be reasonablely evaluated. The ZOC can
also be applied to a combination of source emissions. Con-
sider two emission sources (pj and pk) that are perturbed
simultaneously. The expression of ZOC of speciesi (ZOCi)

can be obtained from Eq. (17) with multiple sensitivity pa-
rameters:

ZOCi(pj ,pk) ≈ (S
(1)
i,j −0.5S

(2)
i,j,j )+(S

(1)
i,k −0.5S

(2)
i,k,k)−S

(2)
i,j,k (18)

The cross sensivitity, the last term on the right-hand-side of
Eq. (18), is able to quantify the interactions between the two
emissions.

5 Conclusions

The high-order decoupled direct method in three dimen-
sions for particulate matter (HDDM-3D/PM) has been imple-
mented in the Community Multiscale Air Quality (CMAQ)
model. The implementation of HDDM-3D/PM into ISOR-
ROPIA applied a case-specific approach and explicitly com-
putes the sensitivity of activity coefficients. Comparisons of
the results with the traditional BF approach generally give
good agreement. The BF sensitivities are found to be depen-
dent on the perturbation sizes and the model accuracy, which
leads to noisy behavior, especially for high-order sensitivi-
ties (Figs. 3 and 7). The direct assessment of second-order
sensitivities with HDDM-3D/PM avoids the apparent pitfalls
of the BF approach that cause this noise.

HDDM-3D/PM has similar computational cost to the pre-
vious DDM-3D/PM. The CPU time required by the aerosol

module to conduct a one-day simulation with one first-order
and one second-order sensitivity parameter are 9 and 11 min,
respectively. This is another advantage over the BF approach,
for which computational time increases more with the order
of the sensitivities computed.

The implementation of HDDM-3D/PM provides a pow-
erful extension to the CMAQ model, as allowing efficient
assessment of control strategy effectiveness, source contri-
bution quantification, and model uncertainty analysis. Initial
studies show that Taylor series expansions with the second-
order term predict the model response to various emission
levels very well. HDDM-3D/PM can be easily implemented
into other versions of CMAQ, as well as other chemical
transport models that already include DDM.

Supplementary material related to this
article is available online at:
http://www.geosci-model-dev.net/5/355/2012/
gmd-5-355-2012-supplement.pdf.
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