
Geosci. Model Dev., 5, 245–256, 2012
www.geosci-model-dev.net/5/245/2012/
doi:10.5194/gmd-5-245-2012
© Author(s) 2012. CC Attribution 3.0 License.

Geoscientific
Model Development

Mapping the climate: guidance on appropriate techniques to map
climate variables and their uncertainty

N. R. Kaye, A. Hartley, and D. Hemming

Met Office Hadley Centre, Exeter, EX1 3PB, UK

Correspondence to:N. R. Kaye (neil.kaye@metoffice.gov.uk)

Received: 28 July 2011 – Published in Geosci. Model Dev. Discuss.: 10 August 2011
Revised: 27 January 2012 – Accepted: 12 February 2012 – Published: 17 February 2012

Abstract. Maps are a crucial asset in communicating cli-
mate science to a diverse audience, and there is a wealth of
software available to analyse and visualise climate informa-
tion. However, this availability makes it easy to create poor
maps as users often lack an underlying cartographic knowl-
edge. Unlike traditional cartography, where many known
standards allow maps to be interpreted easily, there is no
standard mapping approach used to represent uncertainty (in
climate or other information). Consequently, a wide range
of techniques have been applied for this purpose, and users
may spend unnecessary time trying to understand the map-
ping approach rather than interpreting the information pre-
sented. Furthermore, communicating and visualising uncer-
tainties in climate data and climate change projections, us-
ing for example ensemble based approaches, presents addi-
tional challenges for mapping that require careful consider-
ation. The aim of this paper is to provide background in-
formation and guidance on suitable techniques for mapping
climate variables, including uncertainty. We assess a range of
existing and novel techniques for mapping variables and un-
certainties, comparing “intrinsic” approaches that use colour
in much the same way as conventional thematic maps with
“extrinsic” approaches that incorporate additional geometry
such as points or features. Using cartographic knowledge and
lessons learned from mapping in different disciplines we pro-
pose the following 6 general mapping guidelines to develop
a suitable mapping technique that represents both magnitude
and uncertainty in climate data:

– use a sensible sequential or diverging colour scheme;

– use appropriate colour symbolism if it is applicable;

– ensure the map is usable by colour blind people;

– use a data classification scheme that does not misrepre-
sent the data;

– use a map projection that does not distort the data

– attempt to be visually intuitive to understand.

Using these guidelines, we suggest an approach to map cli-
mate variables with associated uncertainty, that can be easily
replicated for a wide range of climate mapping applications.
It is proposed this technique would provide a consistent ap-
proach suitable for mapping information for the Fifth As-
sessment Report of the Intergovernmental Panel on Climate
Change (IPCC AR5).

1 Introduction

Visualisation of geographical information has a long tradi-
tion in meteorology and climatology (Nocke, 2008), going
back at least as far as Galton’s “Methods of Mapping the
Weather” (Galton, 1863). Maps are a crucial asset in com-
municating climate science to a diverse audience, and ge-
ographic information systems (GIS) are frequently used to
store, process, and visualize climate data (Nocke, 2008).

In recent years, map making has moved from the domain
of the expert cartographer to any scientist or practitioner
with access to GIS or other mapping software. Because to-
day’s mapmakers often do not have specialised education or
training in the principles of cartographic design (Light and
Bartlein, 2004) they often emulate published examples that
have been produced with little mapping expertise input. As
a result, maps made by non-cartographers vary in quality
and are often poorly designed. This issue is highlighted in
a critique by McKendry and Machlis (2009) of a map pub-
lished in the “Summary for Policymakers” of the Intergov-
ernmental Panel on Climate Change (IPCC) Working Group
II Fourth Assessment Report (AR4) (IPCC, 2007). The map
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(Fig. SPM.1. in IPCC, 2007) is titled “Changes in physi-
cal and biological systems and surface temperature between
1970 and 2004”. They assess the map for eight categories of
generally accepted cartographic principles on a scale that in-
cludes good, satisfactory or poor, and rate it as poor in four of
the categories and satisfactory in the remaining four (McK-
endry and Machlis, 2009).

As the quality of graphic design can directly impact
decision-making by revealing or obscuring information
(Tufte, 1997), it is vital that suitable consideration is given
to map design. With poorly chosen colour schemes and map
projections, data from individual climate variables or mod-
elling centres can be distorted or misrepresented. This is-
sue is exacerbated by the progression from single models
to the now widely accepted ensemble-based approaches that
explore uncertainties in climate model projections (Collins
et al., 2006; Murphy et al., 2007, 2004). Such ensembles
come in various flavours. These include “multi-model en-
sembles” that explore uncertainties across different climate
models, (Collins et al., 2011; Tebaldi and Knutti, 2007),
“perturbed physics ensembles” that explore uncertainties as-
sociated with the physical parameterisations within a model
(Tebaldi and Knutti, 2007; Collins et al., 2011), and future
emissions scenario uncertainties which explore differences
among climate models forced by a range of future emissions
scenarios (Nakicenovic and Swart, 2000). These ensemble-
based approaches present additional challenges for the way
in which climate projections are visualised and communi-
cated, because the additional dimension of uncertainty is
added to the information to be mapped.

In the IPCC AR4 (IPCC, 2007) a “multi-model ensem-
ble” of precipitation projections is visualised using a black
dot stippling to indicate regions of greatest agreement and a
whiteout to indicate least agreement (see Sect. 2.2). However
this technique requires additional symbology to be added to
the map which makes it more difficult to implement and it
also only allows one level of agreement to be shown with the
stippling. Recent work by Teuling et al. (2010) has attempted
to map 2 climate variables (e.g. precipitation and temper-
ature) on one map using a bivariate (defined in Sect. 2.1)
mapping technique (Teuling et al., 2010). In principle this
technique could be adapted so that uncertainty is the second
variable. However the maps in the paper use up to 25 differ-
ent colours, which make the maps very difficult to interpret
and visually confusing for colour blind people. In a differ-
ent discipline Hengl et al. (2006) (see Sect. 2.1) use different
colours to show topsoil thickness and whiteness to indicate
uncertainty of the value. However, the use of a smooth colour
scheme and many different hues could make the maps diffi-
cult to interpret and confusing for colour blind people.

It is suggested the method outlined in this paper is an im-
provement on the techniques briefly described above. This is
because it attempts to use standard cartographic principles to
increase the clarity of the resulting maps. The approach de-
scribed allows more than one level of uncertainty to be shown

and is very easy to implement for gridded climate data. This
method could provide a consistent approach for mapping in-
formation for the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change (IPCC AR5).

The paper is structured so that Sect. 2 reviews the literature
on mapping uncertainties across a wide range of disciplines,
highlighting key features that are applicable for mapping of
climate variables and uncertainties. Section 2 also provides
guidance on the appropriate use of colour on maps, how to
use colour symbology and how to cater for colour blindness.
Section 3, highlights key issues relating to mapping climate
variables and their uncertainties. It shows how to create an
appropriate palette that combines a variable with its uncer-
tainty and how to apply it for maps of precipitation and tem-
perature. Finally, Sect. 4 discusses some of the limitations of
the technique and discusses future work that could be under-
taken to further visualise uncertainty.

2 Mapping and interpreting uncertainty

There is considerable literature outlining methods to repre-
sent uncertainty in general, and a number of recent review
papers have described these (MacEachren et al., 2005; Aerts,
2003; Kardos et al., 2007; Kardos, 2005). While much of
the work described has focussed on dynamic methods of un-
certainty visualisation (for example, animation and sound;
Fisher, 1996, or interactive tools; Howard and MacEachren,
1996), this paper focuses on visualisations using static tech-
niques that can be printed and distributed as hard copies
(Hengl and Toomanian, 2006). This static mapping tech-
nique is by far the most common method currently used to
communicate climate science through peer reviewed papers
and scientific reports.

One of the most frequently used methods to map uncer-
tainty (if uncertainty is shown at all) is a map pair strategy
in which magnitude data are presented in the left portion of
the display and a measure of uncertainty in the right portion
(MacEachren, 1992; Aerts, 2003). These maps provide the
user with an unobstructed visualisation of both the map value
information and the uncertainty information, but not simul-
taneously (Kardos, 2005). A common criticism of this ap-
proach is that a user must look from side-to-side between
the maps to link the variable with its uncertainty, mean-
ing mentally overlaying the maps is difficult (Muehrcke and
Muehrcke, 1992). A solution, when the maps are related in
some way and the goal is to show the relationship between
them, would be to combine the variables onto a single map
(Tyner, 2010).

It has been proposed that map data with its associated un-
certainty can be presented in two basic ways; intrinsically
and extrinsically (Howard and MacEachren, 1996; Gershon,
1998). These approaches are considered in the following sec-
tions.
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Fig. 1. Spatial patterns of changes (%) in precipitation by the period 2090 to 2099 relative to 1980 to 1999 based on the SRES A1B scenario.
December to February means are in the left column, June to August means in the right column. Changes are plotted only where more than
66 % of the models agree on the sign of the change. The stippling indicates areas where more than 90 % of the models agree on the sign of
the change. (Map and legend of Fig. TS.30., reprinted from IPCC Working Group I “Summary for Policymakers” (2007a, p. 76).

2.1 Intrinsic approach

The intrinsic approach changes an object’s appearance by, for
example, altering the colour of a quantitative dataset, using
colours in much the same way as conventional thematic maps
(Tyner, 2010). A common intrinsic option is to use bivari-
ate representations that depict data and uncertainty together,
treating uncertainty as a second variable (MacEachren et
al., 2005). Bivariate maps can be defined as a variation of
a simple thematic map that portray two separate phenom-
ena simultaneously, this is achieved by covering each aerial
unit by a tone (or pattern) representing a combination of
values for two variables (Leonowicz, 2006). For example,
colour hue can be used to convey quantitative information
while intensity and/or saturation represents quality informa-
tion (Drecki, 2002). This has been done with some success
by Evans (1997), for example, who looked at the reliability
of land use/land cover classification. She created a “static”
map where all pixels were shown, but with those having
high classification certainty depicted with highly saturated
colours (Evans, 1997; MacEachren et al., 2005). Similarly,
Hengl (2003) describes an approach where whiteness or pale-
ness is used to visualise uncertainty of topsoil thickness in-
terpolated using regression kriging (Hengl, 2003). In this
approach a fully saturated colour is used when relative uncer-
tainty is equal to or less than 40 %, and a completely white
colour shown when relative uncertainty is equal to or higher
than 80 %. In a later paper, Hengl and Toomanian (2006)
use this approach to compare detection of sand, silt and clay
where the dominance of white on the map indicates that clay
is the least confidently predicted variable (Hengl and Tooma-
nian, 2006).

2.2 Extrinsic approach

The extrinsic approach uses additional geometry to por-
tray information about the object (Slocum et al., 2003),

representing extra variables with, for example, additional
graphs or point symbols (Tyner, 2010). A simple example of
an extrinsic approach is outlined by MacEachren et al. (1998)
who create maps where a colour fill represents mortality data
and a hatching is overlaid over less reliable data. A similar
approach was employed in the IPCC AR4 (shown in Fig. 1)
with maps illustrating both the ensemble-average precipita-
tion change and the level of agreement in the direction of the
change across a multi-model ensemble. In this approach a
stippling effect is used to highlight areas of high agreement
(>90 %) among ensemble members, and a whiteout shows
areas of low agreement (<66 %).

2.3 Using colour saturation to show uncertainty

It is suggested that two graphic variables that are intu-
itively appealing for representing uncertainty are colour sat-
uration and focus (MacEachren, 1992; MacEachren, 1994).
Highly saturated colours are intense with no doubt about
their colour hue. Unsaturated colours appear greyish due
to the mixture of several hues and could indicate less cer-
tain data (MacEachren, 1992, 1994). Using a pale or grey
colour to show uncertainty has been used in seasonal fore-
casting (WMO, 2008), and guidelines have been provided
by the World Meteorological Organization (WMO) on how
to communicate forecast uncertainty (WMO, 2008). The
WMO (2008) report describes an initial poorly thought-out
colour scheme to visualise probability of exceeding the cli-
matological seasonal rainfall median. The original maps em-
ployed a rainbow colour scheme, where a 45 to 50 % chance
of exceeding the average is shown in yellow and a 50 to 55 %
chance in green. Despite both probability categories being
defined as “equally likely as not”, the green gives the visual
impression of a wetter than average season and the yellow a
drier than average one. To improve on this, the scheme was
changed so that values between 40 % and 60 % (less certain
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whether the season will be wetter or drier than average) are
depicted with white and grey, and more intense colours are
reserved for the more extreme ends of the scale, less than
30 % or more that 70 % (WMO, 2008).

2.4 Interpreting maps that incorporate uncertainty

Teuling et al. (2010) suggest that bivariate maps (as discussed
in Sect.2.1) are more difficult to interpret than their univari-
ate counterparts (Teuling et al., 2010). Whilst it is true that
the extra variable (uncertainty) means that careful attention
should be paid to production of bivariate maps (Teuling et al.,
2010), it does not necessarily follow that merging data with
their quality information make maps more complex and dif-
ficult to read. For example, a study where participants were
asked to locate the most suitable site for an airport and park
after being shown certain land classification data with vary-
ing reliability, found that inclusion of certainty information
appeared to clarify map patterns without taking additional
time to reach a decision (Leitner and Buttenfield, 1997). This
finding agrees with MacEachren et al. (1998) who showed
that map readers can cope with the added visual burden of
distinguishing between 7 different map categories.

The ability to interpret a visualisation incorporating un-
certainty depends on a number of factors. Work by Slocum
et al. (2003) showed that decision makers tend to prefer in-
trinsic methods when they want to get the “big picture”, but
find them awkward for getting specific information. In con-
trast, they note that extrinsic methods appear very compli-
cated when a large area is shown, but are useful for gleaning
detailed information. This suggests that different methods
are suitable for different scales and indeed ability to interpret
different visualisation methods has been shown to vary with
scale (MacEachren et al., 1998).

Familiarity with the mapping approach can also affect the
user’s interpretation or understanding of mapped data. Data
quality information is rarely incorporated into map displays
(Leitner and Buttenfield, 1997), and therefore no standard
approach exists. This results in the user spending time try-
ing to understand the mapping approach rather than inter-
preting the information presented. This contrasts with tradi-
tional cartography, where standard conventions are in place,
which once learned, allow the reader to make full use of a
map (Hearnshaw et al., 1994). This means that although it
would be possible to develop very sophisticated multivariate
mapping techniques, there is a danger of creating a cluttered,
hard to read map if too many variables and symbols are used
(Tyner, 2010). Tufte advises that graphics should be experi-
enced visually and not verbally (Tufte, 1983), so readers do
not have to keep running sentences through their head to try
and “remember” what each individual colour or symbol rep-
resents. It makes sense then to create a technique to visualise
uncertainty that already includes many of the standard and
known conventions of traditional cartography.

Fig. 2. (a) Variation in the hue of a colour;(b) variation in the
saturation of a colour.

2.5 Use of colour on maps

Surprisingly perhaps, under the right conditions perceiving a
million separate colours is conceivable (Bertin, 2011). For
the purpose of this paper, colour will be defined with 2 at-
tributes; hue and saturation. Hue is the property of colours
by which they can be perceived as ranging from red through
yellow, green, and blue (Ramanath et al., 2002). Saturation
(for our purposes) is the amount of white apparently mixed
with a pure colour, for example, red can have white added to
create pink. These properties are illustrated in Fig. 2.

When visualising categorical data, such as for soil types
or geology, using a variety of contrasting hues can be useful,
as long as similar hues represent similar categories (Mon-
monier, 1996). However, using hue to represent continuous
data is deeply flawed. In this situation, map users cannot eas-
ily and consistently organize colours into a logical sequence
(see Fig. 3a) (Monmonier, 1996). When used to represent
continuous data, viewers could perceive the sharp transitions
between these colours as sharp transitions in the data, even
when this is not the case (Borland and Taylor, 2007). This
contrasts well with the greyscale sequence in Fig. 3c. There
are only two sensible orders, white to black or black to white.
In cartography, darker usually means more and lighter means
less (Monmonier, 1996), and a logical, consistent sequence
of grey tones describes intensity variations more reliably than
a complex, graphically illogical sequence of spectral hues
(Monmonier, 1996; Tufte, 1983).

Not only is the sequence of colour in Fig. 3a illogical
as a progressive scale, it also limits the ability of colour-
vision impaired readers to interpret visualisations presented
to them. Colour-vision impairment, or “colour-blindness,”
affects over 4 % of the population, and is as high as 8 % for
Caucasian men (Light and Bartlein, 2004). Colour-blind in-
dividuals see some colours quite differently from the general
population (Light and Bartlein, 2004). Using a plug-in to
the image software package Paint Shop Pro, obtained from
http://www.vischeck.com/it is possible to simulate this con-
dition. Figure 3b shows such a “Deuteranope” colour-blind
simulation of the colours in Fig. 3a. Also known as Dalton-
ism (Dalton, 1798), this is the most common form of colour-
blindness in which red and green are confused. The simula-
tion (Fig. 3b) shows that the orange and green appear almost
identical in colour as do the blue and purple.
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Fig. 3. (a)A demonstration that six colours of different hue have no
natural order and are unsuitable for continuous data;(b) a Deutera-
nope colour blind simulation of the colours shown in(a), this shows
orange and green and blue and purple look almost identical to colour
blind people;(c) a greyscale sequence is easily ordered and there-
fore very suitable for sequential data. Adapted from Borland and
Taylor, 2007.

Unlike in some disciplines of science, climate science does
have some symbolic colour associations that can and should
be used. As Bertin (2011) states “throughout the entire
world, water, seas and rivers are never red; fire, heat, and dry-
ness are not generally accompanied by a blue sensation; veg-
etation is most often green.” (Bertin, 2011). For the readers
of colour weather maps, the useful association of blue with
cold and red with hot is reinforced by the daily exposure of
such a scheme (Monmonier, 1996; Tyner, 2010). This colour
symbolism applies to other climate variables such as precip-
itation where blue implies wetter and red or brown drier. It
would be illogical to ignore this symbolism when it is avail-
able, although it must be recognised that it does not exist for
all climate-related variables.

There are two types of colour schemes that are appropri-
ate for displaying continuous climate data variables. When
the variable does not have a natural break point (e.g. varying
about zero) such as absolute precipitation or absolute tem-
perature it makes sense to use a sequential scheme. Light-
ness steps dominate the look of these schemes, usually with
light colours for low data values and dark colours for high
values (Harrower and Brewer, 2003). This allows perceptual

Fig. 4. Appropriate diverging and sequential colour schemes for
the following climate data(a), absolute temperature(b), absolute
precipitation(c), temperature anomaly(d), precipitation or runoff
anomaly (e andf) other climate variables with no symbolic associ-
ation. Schemes in this figure are 7 class ones designed by Cynthia
Brewer, (Brewer et al., 2003).

ordering like the greyscale legend in Fig. 3c. Figure 4a shows
a yellow-orange-red scheme which is appropriate for abso-
lute temperature and a yellow-green-blue scheme (Fig. 4b)
that could be used for absolute precipitation.

Diverging colour schemes should be used when a critical
data class or break point needs to be emphasized (Harrower
and Brewer, 2003). So, for example, the scheme in Fig. 4c
could be used for temperature anomalies where blue means
cooler than average and red warmer than average, the pale
yellow in the middle would be for areas of little change.
Another scheme uses brown to green-blue, with a dry and
wet association (Fig. 4d) and would be suitable for precipi-
tation or runoff anomalies. When there is no specific subjec-
tive colour association to a climate variable then the palettes
shown in Fig. 4e could be used; purple to orange, and Fig. 4f;
magenta to green. All of these schemes are also suitable for
people with colour vision impairment (Gardner, 2005).

Hearnshaw et al. (1994) report that the ability to discrim-
inate between saturation levels of fixed hues depends on the
area of a coloured image and on its spatial separation of other
coloured images. This means that, for example, if two blues
of slightly different saturation are placed adjacent on a map
legend they will be easier to distinguish than if they are small
areas separated by a large distance on a map. The implica-
tion of this for mapping is that choosing colours is not sim-
ple, since it depends at least on the resolution of the map and
the distance between pixels of the same colour (Hearnshaw
et al., 1994).

A well-known problem with thematic maps is simultane-
ous contrast (Brewer, 1997). This effect causes a grid cell
of medium lightness that is surrounded by darker grid cells
to appear lighter than it actually is (Harrower and Brewer,
2003). This prevents the map-reader accurately matching
grid cells on a map with colours in the legend because they
appear lighter on the map than they do on the legend (Har-
rower and Brewer, 2003). This is illustrated by Fig. 5, where
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Fig. 5. Simultaneous contrast illusion means that the grid cell cir-
cled on the right hand side does not appear the same colour as the
one on the left. Also the grid cell on the right does not match the
legend (even though they are both in the 1–2 category).

both the cells circled are the same colour and belong to the “1
to 2” category. However, the right hand cell appears lighter
than the left hand cell and does not appear to match the leg-
end. As a general rule, the more complex the spatial patterns
of the maps, the harder it is to distinguish slightly different
colours (Harrower and Brewer, 2003).

3 Standardising an approach to visualising uncertainty
of climate variables

“A single map is but one of an indefinitely large number that
might be produced in the same situation from the same data”
(Monmonier, 1996). It is essential when creating maps that
illustrate aspects of climate and climate change that we do
not (either from ignorance or with intent) create maps that
give an unnecessarily distorted view of the data. To prevent
this, careful attention must be given to different aspects of
map creation.

Map readers automatically give regions with larger ar-
eas more weighting whether or not area is appropriate as a
weighting factor (Carr et al., 2005). This is an issue when
choosing a map projection to display climate data. For ex-
ample, many climate projections have large Arctic warming,
which may be perceived as larger or more significant than
the actual mapped information. To avoid such polar distor-
tions that occur in many projections of the globe, it is rec-
ommended that global maps are presented using an equal
area projection (for example Mollweide), as is the case for
all global maps presented in this paper.

As well as map projections, the selection of class inter-
vals can strongly affect the visual impression given by a
map (Evans, 1977), and there are complexities in assign-
ing classes to data (Brewer and Pickle, 2002). For exam-
ple selecting the value for the maximum and minimum class
boundary can impact how the map is perceived. However,
from the wide literature on the subject of data classification
it is clear there is no consensus on the best way to classify

data (Brewer and Pickle, 2002), and it varies from map to
map. For this reason, the data classification presented in this
paper is done manually and in a way that attempts to avoid
misrepresentation of the underlying data.

As mentioned earlier, we can use ensembles to explore
uncertainties in climate projections. This approach enables
the calculation of the percentage of ensemble members that
agree on the sign of change for a particular climate variable.
For example, for an ensemble with 20 members, if 10 project
an increase in temperature for a particular grid cell (or global
average) and 10 Project a decrease, then only 50 % of models
agree on the sign of change (the most uncertain outcome). If
all 20 members show an increase (decrease) in temperature
then 100 % of models agree (the most certain outcome).

Figure 6a and b shows changes for temperature and pre-
cipitation, respectively, for June-July-August between 1961–
1990 and 2070–2099 for the multi-model mean of the 22 cli-
mate models used in IPCC (AR4) for the A1B scenario
(IPCC, 2007). At first glance these maps show which re-
gions of the world are projected to warm the most and which
areas are projected to get wetter or drier. However, they only
provide a summary of the model means and as such do not
provide information on agreement across the ensemble of
models. To achieve this, one approach is the ensemble con-
sensus method. This is illustrated by Fig. 6c and d, which
show the percentage agreement in the sign of the mean tem-
perature and precipitation changes at each grid box location.
Figure 6c shows that across most of the globe (except regions
in the North Atlantic and Southern Ocean) more than 95 %
of the AR4 ensemble members agree on the sign of temper-
ature change (i.e. a warming). For precipitation (Fig. 6d),
the reverse is true, in most areas, less than 95 % of ensemble
members agree on a wetting or drying.

Another approach to highlight areas of model disagree-
ment is to use the signal-to-noise ratio. This shows how large
the ensemble mean projected change is compared to the un-
certainty (in this case standard deviation) across the ensem-
ble members (Hawkins and Sutton, 2009). The higher the
signal-to-noise ratio the less the uncertainty. This method
indicates more model consensus in temperature than pre-
cipitation across the ensemble (Fig. 6e and f), similar to
the ensemble-agreement approach. However, for tempera-
ture the signal-to-noise approach draws out more information
than simple agreement on sign of change. It shows that there
is more confidence across the ensemble in the temperature
projections in the tropics than the poles, whereas for precip-
itation the reverse is true. Note though that it is not easy to
compare the two variables using the same scale as both pan-
els in Fig. 6c and f do not provide useful information as most
grid cells occur in only one category. Comparing Fig. 6e
and d shows that temperature has a more homogenous signal
than precipitation. Knowing the uncertainty for precipita-
tion projections is crucial for decision makers, as knowledge
about whether an area is projected to get wetter or drier will
have significant impacts on decisions relevant to the ability
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Fig. 6. Change in temperature(a) and precipitation(b) between 1961–1990 and 2070–2099 for the mean of the IPCC AR4 ensemble based
on the SRES A1B scenario. Model agreement percentage across the ensemble for(c) temperature and(d) precipitation. Signal-to-noise
(µ/σ) across the ensemble for(e) temperature and(f) precipitation.

to assess water availability in different regions, for example
the Middle-East (Hemming et al., 2010).

Creating a single map combining climate projections with
their associated uncertainty is not a straightforward task.
Here we describe an approach detailed in Kaye (Kaye, 2010),
which has been used in a paper exploring uncertainty of cli-
mate model projections of water availability indicators across
the Middle East (Hemming et al., 2010). This technique ad-
justs the hue of a small palette of colours to show the mean or
median of a climate variable and the saturation of the colour
to indicate a measure of uncertainty in this value. This ap-
proach, therefore, synthesises two maps into one following a
number of guidelines:

– use a sensible sequential or diverging colour scheme;

– use appropriate colour symbolism if it is applicable;

– ensure the map is usable by colour blind people;

– use a data classification scheme that does not misrepre-
sent the data;

– use a map projection that does not distort the data;

– attempt to be visually intuitive to understand.
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Fig. 7. (a)Adding different proportions of white to the temperature legend shown in Fig. 6a and(b) adding different proportions of white to
the precipitation legend shown in Fig. 6b.

3.1 Creating a palette with different levels of saturation

The Red Green Blue (RGB) colour model is one in which
red, green and blue light is added together to make different
colours. In computing, each RGB value is normally stored
as a 1 byte integer in the range 0 to 255. This means that,
to create the secondary colour orange, which is 100 % red,
50 % green and 0 % blue, an RGB value of 255, 127, 0 is
used. In order to add different proportions of white to an
RGB colour, a technique called alpha blending is utilised. In
principle, this technique can combine any two RGB colours
together, however because white is the colour being added
this simplifies the technique and Eq. (1) is used to mix white
with any RGB colour.

outRGB=
(100−x)inRGB+255x

100
(1)

The percentage of white to be added is represented byx and
each RGB element is represented by inRGB. So, for exam-
ple, a colour with the RGB value 214, 47, 39 can be mixed
with 66 % white by substituting each RGB value into Eq. (1).
So for the red value it is:

241=
(100−66)×214+255×66

100

By substituting each RGB component we get a pink with
value 241, 184, 181.

Using Eq. (1) it is possible to desaturate a legend so that
it contains 100 %, 66 %, 33 % and 0 % white. So, taking the
legends used to show temperature and precipitation in Fig. 6a
and b (as shown in the 0 % column of Fig. 7a and b) it is
possible to create three more columns with 33 %, 66 % and
100 % white added.

Potentially these colours could then be used on a map with
the more saturated ones on the right illustrating regions with
more confidence in climate projections and the less saturated
ones showing regions with less confidence in the projections.
Unfortunately, although these colours can be distinguished
as unique on a legend, where they cover pretty large ar-
eas and are adjacent to each other, differentiating them on

a map where they may be smaller and separated by larger
distances is more difficult. For this reason, it is necessary to
make the palette for the unsaturated colours (0 % column) far
bolder, to enable differentiation of colours at different levels
of saturation. The palettes in Fig. 8a and b attempt to retain
the sequential and diverging characteristics of the palettes in
Fig. 7a and b, but use more visually distinctive colours. Note
that the palette in Fig. 8a is not a pure sequential one as it has
a sky blue added at the bottom. This is done to increase the
range of colours from those available with different shades
of yellow, orange and red. Also, these 2 palettes have been
designed using colour blind simulation software to attempt to
make them usable by people with colour vision impairment.

3.2 Applying the palette to climate variables

The application of this palette can be seen by referring to
Fig. 9a and b. Figure 9a is a plot of the global temperature
data for each model grid cell (Fig. 6a) on the y-axis and asso-
ciated ensemble signal-to-noise (Fig. 6e) on the x-axis. Like-
wise, Fig. 9b is a plot of global precipitation data (Fig. 6b)
on the y-axis and ensemble agreement percentage (Fig. 6d)
on the x-axis (note that because the model agreement % is a
number of discrete values (e.g. 72.7 %), the points on the x-
axis have been jittered to illustrate the density of points). In
each of these graphs, the percentage of the total grid cells in
each graph box is shown in the top left of the boxes. So, for
example, in Fig. 9a, 12.2 % of grid cells have a temperature
anomaly between 1.5 and 2.25◦C and a signal-to-noise ratio
between 3.5 and 5. This shows that the data points attached
to highest confidence values are rendered in the most satu-
rated colours, and those with least confidence are given less
saturated colours all the way to white for those data points
with the lowest confidence.

By using the 20 categories in Fig. 9a it is possible to com-
bine the signal of temperature (Fig. 6a) with a measure of
uncertainty (Fig. 6e), to create a dataset with 20 unique val-
ues. Each unique numerical category is represented by the
values bounded by the rectangles in Fig. 9a (for example a
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Fig. 8. (a)Alternative to the desaturated legend in Fig. 7a, suitable for showing temperature anomalies and associated uncertainty.(b) Alter-
native to the desaturated legend in Fig. 7b, suitable for showing precipitation anomalies and associated uncertainty.

Fig. 9. (a) Scatter plot of temperature data used for Fig. 6e on the x-axis and data used for Fig. 6a on the y-axis, and(b) scatter plot of
precipitation data used for Fig. 6d on the x-axis (randomly jittered so it does not appear as a series of straight lines) and data used for Fig. 6b
on the y-axis.

temperature anomaly between 1.5 and 2.25◦C and a signal-
to-noise ratio between 3.5 and 5). Once all categories have
been assigned a unique number it is possible to create the
map shown in Fig. 10a. Using the same technique for
the categories in Fig. 9b on the datasets of precipitation
(Fig. 6b) and ensemble agreement (Fig. 6d), the map shown
in Fig. 10b is produced.

This method produces maps that incorporate both the
value of the climate change as well as a measure of the un-
certainty associated with it. Using this approach illustrates,
for example, the contrast in areas such as Australia for tem-
perature and precipitation projections. While for temperature
(Fig. 10a), the strong oranges and red show there is high con-
fidence in a June-July-August warming of about 3◦C. For
precipitation (Fig. 10b) the pale oranges, yellows and white
show there is very low confidence in a slight drying but the
signal is very mixed between models. However, directly

comparing variables such as precipitation and temperature
is difficult, this is because the global mean signal-to-noise
ratio for temperature is about 4, compared to only about 1
for precipitation. For model agreement, the global average
is about 98 % for temperature compared to 80 % for precip-
itation. This means it is not possible to use one scale that
allows comparison without either temperature or precipita-
tion occurring in mostly one class. Of course this may be
the intended message, if for example projections of precipi-
tation are shown as almost entirely white it effectively shows
how low the confidence is in them. Nevertheless, for a mean-
ingful direct comparison, variables with similar uncertainties
should be used. So, for example, comparing precipitation
with runoff may be appropriate as these variables could also
use the same colour palette to make comparison easier.

The technique outlined here could also be used to com-
pare climate projections at different timesteps, for example,
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Fig. 10. (a)A synthesis of the maps shown in Fig. 6a and Fig. 6e,
the different hues represent change in temperature between 1961–
1990 and 2070–2099 for the mean of the IPCC AR4 ensemble
based on the SRES A1B scenario, the different saturations repre-
sent signal-to-noise (µ/σ) across the ensemble.(b) a synthesis of
the maps shown in Fig. 6b and d, the different hues represent change
in precipitation between 1961–1990 and 2070–2099 for the mean of
the IPCC AR4 ensemble based on the SRES A1B scenario, the dif-
ferent saturations represent percentage model agreement across the
ensemble.

comparing the 1961–1990 average to the 2020s, 2050s and
2080s. This would reveal whether uncertainty in climate pro-
jections increases or decreases over time and in which spatial
regions the uncertainty changes.

4 Discussion and future work

The technique used to create the maps in Fig. 10a and b
is a form of bivariate one. Leonowicz (2003) recommends
9 classes, i.e. a 3× 3 matrix, (Leonowicz, 2006) as the maxi-
mum number of classes to use in bivariate maps. The reason
for this is that maps with 16 (4× 4) classes have been shown
to be too complicated to be interpreted easily (Olson, 1981),
and are described by Tufte as “visual puzzles” that must be
interpreted through a verbal rather than visual process (Tufte,
1983). It would be possible to keep close to the 9 class rec-
ommendation if there were only 3 classes of the climate vari-
able mean, for example using blue, yellow and red. However,
this would limit the climate information presented to average,
above average and below average. An alternative would be
to keep the 5 climate classes but only have 3 classes of uncer-
tainty so the maps would include the fully saturated colour, a
50 % saturated version and white, i.e. 10 colours plus white.

The maps in Fig. 9a and b use 15 colours in each map (plus
white). However, because only five distinct hues are used
and the extra colours are created by varying the saturation of
these hues interpretation should not be too difficult.

Although it is recommended in Sect. 2.5 that hue should
not be used to represent continuous data, it is unavoidable
to some extent for the technique described in Sect. 3.1. The
reason for this is that it would be impossible to distinguish
between colours that are too similar in hue if the saturation
of these colours is also varied. This issue is described in
Sect. 3.1 and illustrated by Fig. 7. As a compromise, the leg-
end in Fig. 8 is in attempt to create a diverging and sequential
legend that also ensures all the colours are distinguishable
from each other. By using software to simulate colour blind-
ness, an attempt is also made in these figures to make the
map legends usable by colour blind people. However, colour
blindness varies from individual to individual so it is impos-
sible to guarantee that the colours used will be interpretable
by every colour blind individual.

As well as colour blind issues, reproduction of colour for
both print and computer displays is a complex problem in
its own right model (Light and Bartlein, 2004). While com-
puter monitors use the additive (RGB) colour model, printers
usually use a subtractive (CMYK) colour model (Light and
Bartlein, 2004). This means that the maps in Fig. 10 may ap-
pear quite differently on different monitors and printers and
the devised colour scheme may vary in its effectiveness. Be-
cause of this, it may be necessary to slightly alter the colours
used depending on the primary method for delivering the
map (e.g. digitally or hard copy). Also, because an attempt
was made to make the maps interpretable for colour blind
people, the palette of colours available is limited to those that
are not confused by colour blind people. By removing this
constraint there may be more contrast in the maps by adding
colours such as green.

The use of paleness or colour saturation as a method to il-
lustrate uncertainty has been questioned. In an extensive re-
view paper, (MacEachren et al., 2005) describe various stud-
ies that indicate that saturation is not the best method to indi-
cate uncertainty. However, work by Drecki (2002) who did
an empirical comparison of different methods (to visualise
uncertainty), based on 50, mostly student, users found that
whilst not the most effective of methods he studied, users had
a strong preference for the use of colour saturation (Drecki,
2002). This is supported by positive feedback the author has
had for the technique proposed here (Sect. 3.1) from col-
leagues in the climate science community (personal commu-
nication, 2010). Clearly, a more empirical study would be
useful to determine the effectiveness of the colour saturation
technique. It would be beneficial to compare this technique
with some of the other techniques described in the literature
for visualising uncertainty and assess how applicable they are
for visualising uncertainty in climate projections.

While this paper has intentionally described static meth-
ods to show uncertainty, with the increase in sophisticated
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web-based tools there is clearly massive scope for more in-
teractive approaches to be used with potentially a wide audi-
ence available to use them. This could include functionality
such as a slider bar that is set to a measure of uncertainty. So,
for example, it might only display regions of a map where
the signal-to-noise ratio is above 2, 3 or 4, depending on user
specification. It would also be possible to show multiple cli-
mate variables simultaneously. However, for the purpose of
static mapping, it is proposed that the mapping technique de-
tailed here (Sect. 3.1) would be suitable for most of the map-
ping required for the IPCC AR5 report, and adopting such a
technique would help communicate climate information, in-
cluding uncertainties in a clear and consistent way.
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