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Abstract. Complex numerical models of the Earth’s environ-
ment, based around 3-D or 4-D time and space domains are
routinely used for applications including climate predictions,
weather forecasts, fishery management and environmental
impact assessments. Quantitatively assessing the ability of
these models to accurately reproduce geographical patterns
at a range of spatial and temporal scales has always been
a difficult problem to address. However, this is crucial if
we are to rely on these models for decision making. Satel-
lite data are potentially the only observational dataset able to
cover the large spatial domains analysed by many types of
geophysical models. Consequently optical wavelength satel-
lite data is beginning to be used to evaluate model hindcast
fields of terrestrial and marine environments. However, these
satellite data invariably contain regions of occluded or miss-
ing data due to clouds, further complicating or impacting
on any comparisons with the model. This work builds on
a published methodology, that evaluates precipitation fore-
cast using radar observations based on predefined absolute
thresholds. It allows model skill to be evaluated at a range
of spatial scales and rain intensities. Here we extend the
original method to allow its generic application to a range
of continuous and discontinuous geophysical data fields, and
therefore allowing its use with optical satellite data. This
is achieved through two major improvements to the origi-
nal method: (i) all thresholds are determined based on the
statistical distribution of the input data, so no a priori knowl-
edge about the model fields being analysed is required and
(ii) occluded data can be analysed without impacting on the
metric results. The method can be used to assess a model’s
ability to simulate geographical patterns over a range of spa-
tial scales. We illustrate how the method provides a compact
and concise way of visualising the degree of agreement be-
tween spatial features in two datasets. The application of the
new method, its handling of bias and occlusion and the ad-
vantages of the novel method are demonstrated through the
analysis of model fields from a marine ecosystem model.

1 Introduction

Numerical models of the environment are now widely used
in a large number of applications. Recent topical examples
include modelling the movement of ash clouds (e.g.Jones
et al., 2007) from the 2010 eruption of the volcanoEyjafjal-
lajökull in Iceland which impacted on world wide air travel
and modelling the path of the Deep-water Horizon oil spill
in the Gulf of Mexico (e.g.Lehr et al., 2000), towards guid-
ing the environmental clean up operations. In the context
of marine ecosystems, models are used for a number of ap-
plications including climate predictions, fishery and coastal
management and environmental impact assessment. As these
models increase in complexity and our reliance on them in-
creases, so does the need to assess the accuracy of their pre-
dictions. The development of methodological approaches to
assess the skill of geophysical model predictions has been
a prominent subject for a number of scientific publications,
leading to a range of different techniques usually involving
the comparison of two independent datasets. Many works,
particularly in the context of precipitation forecasts and more
recently for hydrodynamic-ecosystem models, have shown
the importance of using a suite of metrics (Bougeault, 2003;
Ebert et al., 2003; Allen et al., 2007; Doney et al., 2009; Stow
et al., 2009) along with the need to study different temporal
and spatial scales (Tiedje et al., 2010; Shutler et al., 2011).
Many of these approaches have studied categorical and con-
tinuous verification approaches which include metrics related
to bias, variability and correlations between the two datasets
being studied. The use of multiple metrics aids the identifica-
tion of differences between the two datasets, while providing
insights into the causes of the observed differences. Many
of the published metric techniques are based on time series
analysis assessing the data using point to point comparisons
and aggregation using arbitrary or user defined spatial and
temporal scales. However, most applications of these models
require the representation of specific geophysical features,
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with specific space and time scales, which may vary consid-
erably between applications and will depend upon the data
that is being analysed. To fully assess these models the
identification of the model skill over a range of spatial and
temporal scales is crucial. Additionally, allowing the dis-
tribution of the data being analysed to guide the setting of
any aggregation levels would allow approaches to be more
generic. Relatively recent work in the field of precipitation
forecast analysis has seen the development of techniques for
studying two-dimensional binary difference maps using Haar
wavelets (Casati et al., 2004; Casati, 2010). This work is it-
self based on an earlier study fromBriggs and Levine(1997)
who used wavelet decomposition in field forecast verifica-
tion. The binary maps, defined for specific thresholds of the
geophysical dataset, are the result of differencing the two in-
put datasets, while the use of the Haar wavelet allows the
identification of the orthogonal spatial structures responsible
for any differences. Haar wavelets (Haar, 1910) are discon-
tinuous and are therefore suitable for handling spatially dis-
continuous data fields. The approach ofCasati et al.(2004)
was recently applied to analysing the performance of a hy-
drodynamic ecosystem model (Shutler et al., 2011). In both
situations, the thresholds of the different parameters used to
generate the binary difference maps were manually set, based
on user experience, and therefore the evaluation results are
likely to vary with respect to the thresholds chosen.

Satellite or Earth observation data provide an excellent
dataset to evaluate model fields. Indeed, Earth observation is
one of the few sources of data that can provide the required
spatially-continuous datasets needed to evaluate the outputs
of large spatial coverage geophysical models. Visible and in-
frared remote sensing data can be used to evaluate global ma-
rine hydrodynamic ecosystems models (Shutler et al., 2011)
through two major variables: chlorophyll-a surface concen-
tration and sea surface temperature. However, visible (spec-
tral wavelengths between 400–600 nm) and infrared (spec-
tral wavelengths between 700–1000 nm) fields of the oceans
measured from a satellite will invariably contain occluded or
missing data due to clouds (e.g. the optical sensor is unable to
see through cloud). This can present a problem when using
these data to evaluate model fields as (in contrast) the model
fields will be spatially complete. Removing the equivalent
data from the model data before comparison with the Earth
observation data (e.g. as done byShutler et al., 2011) is a
simple way of addressing that issue. However, dependent
upon the dataset, this can have a significant impact upon the
statistical distribution of the dataset being analysed, and thus
can potentially impact on any evaluation results.

In this paper, the original method ofCasati et al.(2004)
has been extended to handle regions of missing or occluded
data, while maintaining the orthogonality of the wavelet ap-
proach. Furthermore, to make the methodology more objec-
tive and to enable the generic application of the approach to
alternative applications (e.g. other geophysical models), the
thresholds are determined based on the statistical distribution

of each input dataset. This produces a comparison of the
spatial structures inherent to each dataset (as shall be illus-
trated below) comparing extremes of one set to extremes of
the other and average conditions to average conditions. To
illustrate its application this new approach has been applied
to assess the performance of important state variables of a
dynamic marine ecosystem model, comparing the output to
data derived from satellite Earth observation. The technique
is equally applicable to alternative scenarios including eval-
uating the performance of precipitation and climate forecast
models. The paper is structured as follows. Section2 gives
a description of the methodology developed as well as an
overview of the original methodology ofCasati et al.(2004),
highlighting the novel enhancements. Section3 illustrates its
application, followed by a discussion about the benefits of-
fered. Section4 gives a summary of the methodology along
with possible applications.

2 Methodology

The methodology we propose here evaluates the match of
two-dimensional representations of two datasets at distinct
spatial scales through wavelet decomposition. This section
gives a brief overview of the original methodology ofCasati
et al. (2004) and a detailed description of the novel exten-
sions.

2.1 Overview of original method

The original methodology was developed byCasati et al.
(2004) for verifying spatial precipitation forecasts. It con-
sists of a suite of simple operations carried out on a set of
user-defined thresholds of the variable of interest. A met-
ric comparing spatial maps based on these thresholds (or
cutoffs) then summarises the ability of a model to simulate
the geophysical structures under investigation. The different
steps of this process for a particular threshold are described
briefly:

– Computing the binary fields for the two datasets, respec-
tively: for a given thresholdt and a data fieldD, the bi-
nary imageI is defined by:I = 1 whereD ≥ t andI = 0
whereD < t .

– Computing the binary difference map: subtraction of
the corresponding binary fields.

– Performing a 2-D-Haar wavelet decomposition on the
binary difference map.

– Computing the mean square error and skill score for
each level of decomposition.
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2.2 Enhanced method

The method outlined above allowed the authors to evaluate
the forecast skill as a function of precipitation rate and spa-
tial scale.Shutler et al.(2011) applied the method for evalu-
ating the performance of a hydrodynamic-ecosystem model.
However, occluded data was handled very simply resulting
in a loss of orthogonality hence skills at scales subject to oc-
clusion were affected by smaller scale errors. Additionally,
the thresholds used to generate the binary maps were set at
arbitrary absolute levels.

A modified version of this wavelet analysis is hereafter
presented in generic terms.

2.2.1 Binary difference maps

The whole methodology is based on the concept of binary
difference maps. The degradation of the continuous field to
a binary map is a crucial step as it defines the patterns in
the datasets that are going to be compared. Instead of using
absolute thresholds to define the binary difference image (as
was used in the original methodology byCasati et al., 2004),
we apply the methodology over ranges inherent to the data
sets as suggested byYates et al.(2006). These ranges are
defined by the quantiles of the data distribution, evaluated
for each of the two datasets independently. For example, if
we consider the variableV , we may define quantilesV 0 %

=

Vmin; V 20 %; V 40 %; V 60 %; V 80 % andV 100 %
= Vmax. These

quantiles can then be used to define five intervals in each of
the datasets:[V 0 %,V 20 %), [V 20 %,V 40 %); [V 40 %,V 60 %);
[V 60 %,V 80 %); [V 80 %,V 100 %

]. The methodology allows for
any number of quantiles. However, here for simplicity we
have chosen to use the five ranges defined above.

Considering two 2-D spatial fieldsX andY, and follow-
ing the notation ofShutler et al.(2011) we define the binary
masks for the two data fields (IY ) and (IX) by:

IX =

{
1, Xq1 ≤ X < Xq2

0, else

IY =

{
1, Y q1 ≤ Y < Y q2

0, else
,

(1)

whereXq1, Xq2 (Y q1, Y q2 respectively) are two consecu-
tive quantiles for each dataset, defining what we will refer
to, in the following, asq, quantile range ([Xq1,Xq2) and
[Y q1,Y q2), respectively). We note here that if we chose
equally-spaced quantiles the number of data points attributed
to each range would be identical for both data fields. This
is an important improvement with respect to the original
methodology because it allows the study of inherent patterns
in the two images, removing the need for absolute thresholds
values.

From these two binary masks we then compute the bi-
nary difference mapZ, defined byZ = IY − IX, and noted
Zq when referring to the quantile rangeq.

Figure1 illustrates the process of creating a binary differ-
ence map for ocean chlorophyll-a data obtained from model
and satellite imagery. In the left column of Fig.1 are the
satellite estimates (top), and the model estimates (bottom).
From these two fields, quantile maps are derived (second col-
umn on the same figure), that show the patterns associated
with the quantile definition. By subtracting these two maps
we obtain the binary difference map (right-hand side map on
Fig.1) which is fed into the wavelet decomposition described
in the next section (Sect.2.2.2).

2.2.2 Wavelet decomposition

The binary difference map as defined above is decomposed
using an improved wavelet decomposition technique with re-
spect the original one presented byCasati et al.(2004). We
introduce into the wavelet decomposition a weight imageζ 0
that reduces the impact of heavily occluded areas on the dif-
ference metrics while preserving the orthogonality between
the scale components:

ζ 0 =

{
1 for valid data
0 for missing data

(2)

As described byCasati et al.(2004), a two-dimensional dis-
crete Haar wavelet decomposition can be performed by spa-
tially averaging over a 2l × 2l pixel region, wherel is the
level of decomposition. We define thel-th father (Wl

father)
and mother (Wl

mother) wavelet component by:

Wl
father(Zq) =

〈Zqζ 0〉2l×2l

〈ζ 0〉2l×2l

(3)

Wl
mother(Zq) = Wl−1

father(Zq)−Wl
father(Zq) (4)

where the notation〈·〉2l×2l refers to a 2l ×2l spatial averag-
ing. Thel-th father wavelet component is obtained by spa-
tial averaging over 2l ×2l pixels and is therefore a smoothed
representation of the original binary difference map. Thel-th
mother wavelet quantifies the differences between the origi-
nal binary difference map and the average generated by the
father wavelet.

This decomposition is done retaining the original resolu-
tion of the image, thus allowing to use the same weight im-
age for each aggregation level. This formulation maintains
the orthogonality and conserves the original signal contained
in the split components, i.e.

Zq = WL
father(Zq)+

L∑
l=1

Wl
mother(Zq) (5)

whereL is the upper level of decomposition.
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Fig. 1. Binary difference map creation. On the left: re-gridded satellite (top) and model (bottom) monthly fields of surface concentration of
chlorophyll-a for May 2004. In the centre: quantile maps of the same fields (top, satellite; bottom model). On the right: binary difference
map for the uppermost quantile range.

2.2.3 Mean squared differences and skill score

For each level of decomposition (l) and each quantile (q), the
mean squared difference of the mother wavelet (MSEl,q ) is
computed by:

MSEl,q =

∑[
(Wl

mother(Zq)ζ 0)
2
]∑

ζ 0
(6)

where
∑

means summation over the whole domain. The
inclusion of ζ 0 allows any missing or occluded data to be
accounted for.

The overall mean squared difference is maintained through
the decomposition and the following equation remains true:

MSEq =

L∑
l=1

MSEl,q (7)

where MSEq refers to the overall mean squared difference of
the binary difference map.

We then compute the skill score (SS) as defined inCasati
et al. (2004) which is more intuitive to interpret than the
MSE: 1 means a perfect match, 0 corresponds to the com-
parison of random data, below 0 represents a match worse
than due to random chance alone. The formulation of the
skill score is as follow:

SSl,q = 1−
MSEl,qL

2εq(1−εq)
(8)

whereεq is the fraction of data contained in the quantileq.
The skill score is in fact defined as the mean square error
relative to the means square error of a random no skill simu-
lation (seeCasati et al., 2004).

3 Results and discussion

In this section we demonstrate how the wavelet analysis can
be used to interpret the differences between model and satel-
lite fields. The methodology is applied to study the case of
chlorophyll-a and SST in the North East Atlantic European
shelf sea.

Geosci. Model Dev., 5, 223–230, 2012 www.geosci-model-dev.net/5/223/2012/
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3.1 Satellite data and hydrodynamic-ecosystem model

To accommodate the reader we give brief introductions to
the data sets used in the examples. We shall not go into the
details of the geophysical application and the implications of
the skill assessment, but rather provide a quick overview to
enable the reader to fully understand the methodology and
its benefits. The data shown serve simply as examples to
provide a show case for the methodology.

The model used in this work is an implementation of the
POLCOMS-ERSEM model (Allen et al., 2001, 2007) for the
dynamics of the lower trophic level of the marine ecosys-
tem. It provides full four-dimensional data for hydrody-
namic, organic and inorganic states of the marine ecosystem
at a horizontal resolution of roughly 12 km and at tempo-
ral scales of 15 min. In particular it provides fields for aver-
age chlorophyll-aconcentration and sea-surface temperature,
which were used in this study.

To evaluate these model data, two satellite datasets were
used:

– Globcolour chlorophyll-a global dataset. This dataset
consists of daily chlorophyll-a estimates at a spatial
resolution of∼4 km (based on data from three optical
wavelength satellite sensors).

– Pathfinder sea surface temperature (SST) global dataset.
This dataset consists of daily sea surface temperature
estimates at a spatial resolution of∼4 km (based on data
from a thermal infrared satellite sensor).

For a fair comparison, the region of interest (which is the
model domain) is first extracted from the satellite global
dataset. The extracted satellite data are then re-gridded to
the coarser model grid using a bilinear interpolation.

As suggested byShutler et al.(2011) we compute the op-
tical depth averaged chlorophyll-a concentration to compare
with satellite estimates of chlorophyll-a which are represen-
tative of a variable depth depending on the constituent in the
water. The model outputs are then cloud-masked on a daily
basis using the contemporaneous satellite masks. Finally,
monthly composites are created by averaging daily model
and satellite data.

We then analyse all data for 2003–2004. The analysis pre-
sented hereafter is based on the definition of five quantile
ranges as described in Sect.2.2.1. Each quantile range there-
fore holds 20 % of the distribution and in Eq. (8) we always
haveεq = 0.2.

3.2 Spatio/temporal evaluation of the North East
European shelf sea modelling

Figure 2 shows an example application of the methodol-
ogy for fields of sea surface temperature (Fig.2a) and
chlorophyll-a concentration (Fig.2b). Quantiles are reported
on the x-axis with the corresponding lower and upper values
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Fig. 2: Spatial scales versus quantile ranges plots for May 2004. Sea surface temper-
ature (a) and chlorophyll-a concentration (b) skill scores.
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Fig. 2. Spatial scales versus quantile rangesplots for May 2004.
Sea surface temperature(a) and chlorophyll-a concentration(b)
skill scores.

for the satellite and model data. The y-axis shows the spatial
scale in kilometres (km).

The methodology highlights scales and ranges of skill.
One can notice a lower skill score at small scales (24 km) for
both SST and chlorophyll-a for almost all ranges. One can
also note higher model skills for the lowest and the highest
quantiles at all spatial scales for SST.

This is less true for chlorophyll-a, where a low model skill
is observed at high spatial scale (of about∼700 km) for the
last quantile (high value of chlorophyll-a). This can be con-
firmed by looking at the corresponding binary difference map
(right-hand map on Fig.1) where large scale differences are
clearly visible in the north of the domain. An interpretation
for that observation is a spatial mismatch (or misplacement)
of a large summer bloom of chlorophyll-a in the north of the
domain.

This methodology also allows us to perform inter-
comparison of results for different variables and different
times (providing they refer to the same geophysical domain).

www.geosci-model-dev.net/5/223/2012/ Geosci. Model Dev., 5, 223–230, 2012
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Fig. 3: Spatial scales versus time plot for the 5th quantile (80-100%) 2003-2004. Sea
surface temperature (a) and chlorophyll-a concentration (b) skill scores.
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Fig. 3. Spatial scales versus timeplot for the 5th quantile (80–
100 %) 2003–2004. Sea surface temperature(a) and chlorophyll-a
concentration(b) skill scores.

Figure3 shows a time/space skill score plot. Time has been
reported on thex axis and spatial scale on they axis, the
shades of grey represent the skill score of the wavelet decom-
position for the 5th quantile. The 5th quantile corresponds to
the upper range of sea surface temperature and chlorophyll-
a, which in our example can be interpreted as extreme events
(i.e. an algal bloom or a temperature anomaly).

Figure3a shows that sea surface temperature skill score
has high values throughout the year at all spatial scales for
the 5th quantile. A small region of slightly lower skill score
can be observed during January–March at spatial scales of
about 200–400 km. We can also note a slightly lower skill
score at low spatial scale throughout the year.

The chlorophyll-a skill score (shown on Fig.3b) is gener-
ally lower than the one of temperature and shows some inter-
esting features. As for the sea surface temperature, we can
observe a poorer skill score at low scale (first level of aggre-
gation) throughout the year. However we can additionally
observe a consistent patch of low skill in June–August be-
tween 100 and 800 km. This pattern does not appear on the
temperature skill score.

3.3 Interpretation of the skill score in terms of model
evaluation

Low skill scores observed at small spatial scales (∼24 km) in
both chlorophyll-a and SST model output can be explained
by the high small scale variability in the satellite data that
is not reproduced by the model. It is indeed easier to cap-
ture low frequency variations and trends. Ocean colour and
infrared remote sensing are strongly impacted by various
sources of uncertainties including measurement noise, cali-
bration noise or atmospheric correction uncertainties. How-
ever, these results also illustrate the complexity of modelling
biological systems.

The generally higher skill scores obtained for SST, at
all scales and for all quantile ranges, (compared with
chlorophyll-a) highlight the strength of the hydrodynamic
model fed with high quality surface forcing and boundary
conditions (Siddorn et al., 2007). One should also note that
chlorophyll-a estimates from ocean colour data are represen-
tative of a variable and unknown depth: the water leaving ra-
diances (used to derive chlorophyll-a concentration) include
contributions from the surface to a finite depth which varies
with the optical properties of the water. For that reason, we
choose to average the model chlorophyll-a over the optical
depth (of the model), but an uncertainty still remains.

Finally, the consistent appearance of low skill scores in
chlorophyll-a (5th quantile) analysis during June–August at
large scale is correlated with the summer algal bloom off
Scotland and Ireland coast. On the satellite chlorophyll-a
field provided on the top-left map of Fig.1, one can see high
chlorophyll-a values (2–8 mg m−3) along the northwest coast
of Scotland and Ireland, whereas in the model field, the high-
est chlorophyll-a values are observed further in the northwest
direction and extend further toward the northwest coast of
Norway. This translates into the large scale misplacement of
pattern visible on the binary difference map (right map on
Fig. 1).

3.4 Discussion

When comparing model output to another dataset, one may
observe differences in the characteristics and possibly in the
shape of data distributions. However, the model can still
show some skill in representing relative patterns such as ex-
treme events for example. It is therefore important to use a
methodology which will be able to highlight the skill of the
model without being affected by the bias or the data distribu-
tion shape. The bias can be studied separately using simple
classical methods but it is worth noting that one can compare
the size and mean value of quantile ranges to study it in more
detail (for each quantile range separately).

The method presented here allows the comparison of in-
herent spatial structures within two data sets at different
scales. This process is not affected by the overall bias or re-
spective dispersion of the data, as was the case in the original

Geosci. Model Dev., 5, 223–230, 2012 www.geosci-model-dev.net/5/223/2012/
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Fig. 4: Illustration of the effect of a bias on the binary masks as defined in section
2.2.1. a and b are two sample data array where b displays a bias with respect to a.
c and d are the binary masks obtained considering an absolute threshold that is the
overall mean value of a and b. e and f are the binary masks obtained using the quantile
approach introduced in section 2.2.1.
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Fig. 4. Illustration of the effect of a bias on the binary masks as
defined in Sect.2.2.1. (a) and(b) are two sample data array where
(b) displays a bias with respect to(a). (c) and (d) are the binary
masks obtained considering an absolute threshold that is the overall
mean value of(a) and(b). (e)and(f) are the binary masks obtained
using the quantile approach introduced in Sect.2.2.1.

version when using absolute thresholds. This is illustrated
by Figs.4 and5. Starting from two 2-D data arrays that have
exactly the same patterns but a systematic difference (bias),
Fig. 4c and d illustrates how using absolute thresholds leads
to completely different binary masks. However, using rela-
tive thresholds (quantiles) enables the comparison of inherent
spatial structures of the data sets (Fig.4e and f).

Moreover, if we consider two data sets with the same pat-
terns but different distributions (Fig.5a–d), the binary masks
defined by absolute thresholds are very different (Fig.5e and
f) and do not represent comparable structures. The use of
quantile definitions provides a more robust definition of the
patterns (Fig.5e and f).

From the two illustrative examples described above, it is
clear that if one would use absolute thresholds as break-off
criteria for the binary maps, qualitatively similar patterns
may appear to be structurally different. An additional benefit
of the quantile definition is that it yields the same amount of
data points in each quantile range hence guarantees equiva-
lent structural maps.

The wavelet decomposition we described in Sect.2.2.2
also provides more confidence to the results especially at
the higher aggregation levels when comparing data sets with
gaps. Applying the original method ofCasati et al.(2004)
to masked data, a cell (at high aggregation level) that con-
tains very few valid values and a cell containing only valid
values would have had the same impact on the overall MSE.
The introduction of the weight imageζ 0 is a mathematical
solution that gives appropriate impact factors to each cell in
relation to the data gap contained within it, while preserv-
ing the fundamental characteristics of the decomposition, i.e.
the orthogonality between the wavelet components and the
conservation of the original signal (Eq.5).
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Fig. 5: Illustration of the effect of differences in distributions in the two datasets. a
and b are two sample data arrays where b is a power function of a. c and d are their
respective histograms. e and f are the binary masks obtained considering an absolute
threshold that is the overall mean value of a and b. g and h are the binary masks
obtained using the quantile approach introduced in section 2.2.1, i.e. the median in
this case
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Fig. 5. Illustration of the effect of differences in distributions in the
two datasets.(a) and(b) are two sample data arrays where(b) is a
power function of(a). (c) and(d) are their respective histograms.
(e) and (f) are the binary masks obtained considering an absolute
threshold that is the overall mean value of(a) and(b). (g) and(h)
are the binary masks obtained using the quantile approach intro-
duced in Sect.2.2.1, i.e. the median in this case.

This methodology is based on statistically robust metrics
and the choice of the threshold is driven by the data distribu-
tion, and hence is more objective (for example this allows the
study of patterns of extreme events of chlorophyll-a) in com-
paring the inherent structures of the datasets. This is partic-
ularly useful for temporal intercomparisons ie for situations
where the bias in different time series is potentially different.

4 Conclusions

The approach presented here has been developed to compare
the spatial structures in two datasets. It allows any spatial
differences to be decomposed into their orthogonal compo-
nents. The method is composed of two steps: (i) definition of
binary error map based on quantile classification (ii) wavelet
decomposition of the binary error map and computation of
a skill score for each level of decomposition. The approach
is generic in the sense that it requires no tuning or parame-
ter selection as thresholding to generate the binary difference
maps is determined based on the statistical distribution of the
input datasets. Furthermore, the approach is able to handle
data containing biases or occluded (missing) data, without
loss of orthogonality. We have demonstrated its application
by analysing a series of scenes of model output with opti-
cal wavelength satellite data. The methodology provides the
ability to identify the spatial scales of the features that the
model is able to reproduce focusing on the inherent structures
of the datasets independently of bias or normalised standard
deviation.
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The results can be visualised in two very synthetic ways: a
spatial scales versus quantile rangesplot, which can be used
to identify the overall match/mismatch of the features in two
2-D data fields; and aspatial scales versus timeplot, which
can be used to analyse extreme events. Alternatively, if one
is interested in a specific spatial scale, a time/quantile plot
would provide useful information over the whole data range.

This methodology, used in combination with other classi-
cal ways of comparing two datasets, is a powerful evaluation
tool (when comparing Earth observation data and model out-
put) because it is objective and independent of the dataset
distribution. It is therefore a very useful tool that can serve
to justify or guide the choice of a model for a specific ap-
plication. In the context of marine hydrological/ecosystem
modelling these can be carbon budget, harmful algal bloom
detection, ecosystem management.

One can also use this methodology as a way of comparing
outputs from two different model. The method provides a
synthetic way of representing the spatial effect of two differ-
ent parametrisations, or the effect of using different boundary
conditions or forcing data in terms of spatial features.

Future work will concentrate on extending the approach to
include the time dimension. This would enable a complete
picture of the model skill to be considered including sea-
sonal forecasts and the study of inter-annual or multi-decadal
trends.

Supplementary material related to this
article is available online at:
http://www.geosci-model-dev.net/5/223/2012/
gmd-5-223-2012-supplement.zip.
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