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Abstract. A generalized mass-flux formulation is presented,
which no longer takes a limit of vanishing fractional areas
for subgrid-scale components. The presented formulation is
applicable to a situation in which the scale separation is still
satisfied, but fractional areas occupied by individual subgrid-
scale components are no longer small. A self-consistent for-
mulation is presented by generalizing the mass-flux formu-
lation under the segmentally-constant approximation (SCA)
to the grid–scale variabilities. The present formulation is ex-
pected to alleviate problems arising from increasing resolu-
tions of operational forecast models without invoking more
extensive overhaul of parameterizations.

The present formulation leads to an analogy of the large-
scale atmospheric flow with multi-component flows. This
analogy allows a generality of including any subgrid-scale
variability into the mass-flux parameterization under SCA.
Those include stratiform clouds as well as cold pools in the
boundary layer.

An important finding under the present formulation is that
the subgrid-scale quantities are advected by the large-scale
velocities characteristic of given subgrid-scale components
(large-scale subcomponent flows), rather than by the total
large-scale flows as simply defined by grid-box average. In
this manner, each subgrid-scale component behaves as if like
a component of multi-component flows. This formulation,
as a result, ensures the lateral interaction of subgrid-scale
variability crossing the grid boxes, which are missing in the
current parameterizations based on vertical one-dimensional
models, and leading to a reduction of the grid-size depen-
dencies in its performance. It is shown that the large-scale
subcomponent flows are driven by large-scale subcompo-
nent pressure gradients. The formulation, as a result, further-

more includes a self-contained description of subgrid-scale
momentum transport.

The main purpose of the present paper is to appeal
the importance of this new possibility suggested herein
to the numerical weather forecast community with im-
plications for the other parameterizations (cloud fraction,
mesoscale organization) as well as resolution-dependence
of parameterizations.

1 Introduction

The present paper presents a generalization of the mass-
flux parameterization formulation for representing non-
convective processes as well as convection. As a side prod-
uct, we also provide an answer to the following question: Are
the subgrid-scale parameterized variables advected by large-
scale flows? This is one of the typical questions often asked
in a context of operational implementation of a subgrid-scale
process parameterization. The present paper shows that it is
the corresponding subcomponent large-scale flow that ad-
vects a given subgrid-scale component variable, but not the
whole large-scale flow. Importance of analogy of the mass-
flux based parameterization with the multi-component flows
is emphasized in order to better understand this conclusion.

Importance of the mass-flux convection parameterization,
originally introduced byOoyama(1971), Fraedrich(1973,
1974), andArakawa and Schubert(1974) is hardly overem-
phasized. This approach is adopted by a majority of cur-
rent global and regional atmospheric models both for op-
erational forecasts and climate studies. The present paper
considers a particular limit in subgrid-scale parameteriza-
tion under the mass-flux framework: whereas the individual

Published by Copernicus Publications on behalf of the European Geosciences Union.



1426 J.-I. Yano: Mass-flux subgrid-scale parameterization

Fig. 1. Spatial distribution of six subgrid-scale categories over
a domain of the sizes, 512 km× 512 km, simulated by a cloud-
resolving model (CRM). The categories are (1) precipitating con-
vection, (2) precipitating stratiform, (3) non-precipitating strati-
form, (4) shallow clouds, (5) ice anvils, and (6) environment.
The CRM simulation is from the TOGA-COARE (Tropical Ocean
Global Atmosphere Couple Ocean Response Experiment) period,
representing a typical fully-developed marine-type deep convective
system. See Yano et al. (2005) for details of the simulations as well
as the categorization scheme. (From Fig. 2a ofYano et al.(2005)
with modifications).

subgrid-scale elements remain much smaller than the grid-
box size, a fractional area occupied by each category of
subgrid-scale processes is no longer substantially smaller
than the grid-box size.

An example of such a situation is shown in Fig. 1 taken
from Fig. 2a ofYano et al.(2005) with modifications. Here,
we show a spatial distribution of five cloud categories over
a typical size of a grid box for global climate modelling,
512 km× 512 km, simulated by a cloud-resolving model
(CRM). The categories show (1) precipitating convection,
(2) precipitating stratiform, (3) non-precipitating stratiform,
(4) shallow clouds, and (5) ice anvils. The remainder, cate-
gory (6), is considered the “environment”. The CRM simu-
lation is from a TOGA-COARE (Tropical Ocean Global At-
mosphere Couple Ocean Response Experiment) period, rep-
resenting a typical fully developed marine-type deep convec-
tive system. We refer toYano et al.(2005) for details of the
simulations as well as the categorization scheme.

Individual precipitating convective elements (category 1)
occupy only very small fractional areas in the grid box, being
consistent with the scale separation principle as assumed in
the standard mass-flux parameterization. The stratiform-type
clouds, on the other hand, tend to take larger fractional areas
individually, and looking them as a whole category, the occu-
pied area is no longer substantially smaller than the grid-box
size. Even for precipitating convection, the total fractional

area is not as small as that for the individual convective ele-
ments, because they are numerous. Most importantly, the en-
vironment does not occupy the majority of the grid box at all,
but its fractional area is just comparable with any stratiform-
type cloud regions.

The present paper is going to present a formulation for
this type of situation in subgrid-scale parameterization un-
der a mass-flux based approach. The situation to be consid-
ered is a drastic departure from the approximations adopted
by the standard mass-flux subgrid-scale parameterization,
as established byArakawa and Schubert(1974): (1) frac-
tional areas occupied by individual subgrid-scale compo-
nents (convective-plume types) are much smaller than unity;
(2) the environment (non-convective area) occupies a major-
ity of the grid-box domain; and (3) all the subgrid-scale com-
ponents are exclusively surrounded by the environment.

In contrast, the situation considered in the present work
is (1) fractional areas occupied by individual subgrid-scale
components are no longer much smaller than unity; (2) the
environment (non-convective area) no longer occupies a ma-
jority of the grid-box domain; and as a result, (3) subgrid-
scale components are no longer exclusively surrounded by
the environment, but more than often adjacent with the other
subgrid-scale components.

Importance of such generalization in the mass-flux based
parameterization cannot be overemphasized. First of all, un-
der this situation, the traditional mass-flux formulation leads
to erroneous results.

In order to see this point, let us take the environmental
vertical velocity (typically an environmental descent),we,
as an example. The basic idea of mass-flux convection pa-
rameterization is to divide the grid-box domain into con-
vection and the environment. For simplicity, let us assume
only one type of convection is found within a given grid
box. Let a fractional area occupied by convection within the
grid boxσc, then the environment occupies a fractional area,
1− σc. As a result, for example, the vertical velocity,w, is
divided into the two parts, those coming from convection,
wc, and those coming from the environment,we. The total
vertical velocity is obtained by taking a weighted sum of the
two: w = σwc + (1− σc)we. Conversely, the environmental
vertical velocity is given by

we =
w − σcwc

1− σc
. (1)

Under the standard approximation, we takeσc � 1, thus
Eq. (1) reduces to

we ' w − σcwc. (2)

However, when the fractional area satisfiesσc ∼ 1, Eq. (2)
obviously underestimates the environmental subsidence
compared to the exact Eq. (1).

This is just one simple example to demonstrate why the
parameterization formulation must be rewritten whenσc � 1
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is no longer satisfied. All the formulations must be rewrit-
ten thoroughly. The most important consequence is that
the grid-box mean for the thermodynamic variables can no
longer be equated with the environmental values as assumed
in the standard formulation. Also for this very reason, the
substantial reformulation of the problem is required.

However, in order to enable such a reformulation, we also
require an appropriate general framework. For this purpose,
we take a unified approach for the subgrid-scale physical pa-
rameterization in terms of the mode decomposition proposed
by Yano et al.(2005). The basic idea of this approach is to
take a full physical system, such as a cloud-resolving model
(CRM) or a large eddy simulation (LES) for subgrid-scale
variables as a starting point, and apply a mode decomposi-
tion to these subgrid-scale variables in order to further sim-
plify the physical description (i.e. model “compressions”).

Under this unified approach, the mass-flux parame-
terization can be reinterpreted as a formulation under
the segmentally-constant mode decomposition. Under this
framework, the subgrid-scale variables are approximated by
a segmentally-constant approximation (SCA), as pointed out
by Yano et al.(2010a). Here, each subgrid-scale physical
component is assumed to be consisting of horizontally homo-
geneous distribution of physical variables within each sub-
component.

That is essentially a geometrical constraint imposed on an
ensemble of convective updrafts in developing the standard
mass-flux formulation (cf.Arakawa and Schubert, 1974).
Under the present generalization, not only the convective up-
drafts, but any subgrid-scale components can be represented
under this geometrical constraint, SCA. The mode decompo-
sition provides a basis for subgrid-scale physical representa-
tions, because the method can “compress” the physical sys-
tem a great deal when an appropriate set of decomposition
modes is chosen. SCA loosely corresponds to when the Haar
wavelet is chosen as a set of decomposition modes. The effi-
ciency of this choice, along with the other choices of wavelet,
is well demonstrated inYano et al.(2004b). See their Figs. 5
and 8 as graphical demonstrations for the efficiency of SCA.

In this respect, it is important to emphasize that the present
paper doesnot at all intend an improvement of any ex-
isting schemes, but it proposes a completely new parame-
terization formulation. A general applicability of the pro-
posed formulation cannot be overemphasized being based
on a very general framework without specifying any partic-
ular situations, although without doubt, the present author’s
motivation stems from the tropical atmospheric dynamics as
summarized by Fig. 1.

The present formulation is so general that it does not even
specify which physical processes must be represented un-
der the mass-flux framework. The choice is totally left to
the readers who are going to develop their own schemes un-
der the proposed general formulation. For this very reason,
though the proposed formulation is closed mathematically, it
is left open physically in order to maintain its generality.

Benefits of this kind of generalization is hardly overem-
phasized. It first of all enables us to to consider mesoscale
convective organization (cf.Moncrieff, 1995) under the
mass-flux framework. The mesoscale convective organiza-
tion is clearly a structure comparable in size with the grid
box even for a relatively low-resolution climate model. The
proposed formulation provides a way of incorporating these
processes as an integrated part of the mass-flux formulation.
The best effort so far towards this goal, in the best knowl-
edge of the author, is byDonner(1993), who indeed includes
the mesoscale effects as a part of his mass-flux convection
parameterization. However, the mesoscale effect itself is not
formulated by mass flux, but simply added as an appendix.

Applications of the proposed formulation are even not lim-
ited to the convective processes. The formulation can also be
applied to various non-convective processes such as strati-
form clouds, cold pools in the boundary layer. Thus, it in-
cludes the cloud-fraction parameterization within its scope,
for example. In short, any subgrid-scale physical processes
can be incorporated into the proposed framework so long as
the process in concern is associated with a geometrical entity
well represented under SCA.

However, as an important consequence of this modifica-
tion, the “environment” no longer represents a special status
but just reduces to one of many possible subgrid-scale com-
ponents. Under the present formulation, every subgrid-scale
component is described by a prognostic equation system akin
to the fully physical system taken as a starting point. The
grid-box averaged quantity is no longer equivalent to the en-
vironmental state, as the traditional parameterizations would
assume, but it is only available by taking a weighted average
of all the subgrid-scale component variables.

In order to perform a required modification and a gener-
alization to the mass-flux parameterization, a point of view
taken is one advocated byYano et al.(2005, 2010a) that
the mass-flux convection parameterization can be considered
as a consequence of an application of segmentally-constant
approximation (SCA) to a full physical system. The idea of
SCA consists in subdividing a grid box domain into a num-
ber of constant value segments in different sizes and shapes
as suggested by Fig. 1. SCA can be considered as a geo-
metrical constraint applied to a full physical system in order
to construct the mass-flux based parameterization in a more
general manner. Recall that the standard mass-flux formu-
lation is constructed by assuming SCA for convective up-
drafts and the remaining environment. Any subgrid-scale
components likely to be approximated by horizontal homo-
geneity inside each component (e.g. stratiform clouds, cold
pools in the boundary layer) can also be included into this
SCA formulation.

A full description of the SCA formulation is presented in
Yano et al. (2010a; see alsoLeVeque, 2002) by taking a two-
dimensional non-hydrostatic anelastic system as a full phys-
ical system. In this respect, the present paper generalizes the
SCA system to a fully three-dimensional case. For ease of
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developing a formulation, we take the hydrostatic primitive
equation system. Some justifications for this choice are given
in the beginning of Sect. 2.2. A full development of SCA un-
der a non-hydrostatic formulation is left for a future study
due to its associated extensive complexities.

The mass-flux parameterization developed under the
present formulation presents a special flavor with a close link
to a traditional description of multi-component flows. This
aspect is discussed in the first half of the next section. The
remainder of the next section is devoted to introducing the
primitive equation system that is taken as a starting point for
applying SCA. Section 3 is devoted to a stepwise reduction
of the full system under the application of SCA. The ob-
tained set of equations is discussed in Sect. 4. Discussions
include not only various formulational details and possible
applications, but further implications from the present work
including construction of a scale-independent parameteriza-
tion. The paper is concluded in Sect. 5. Some mathematical
details are deferred to the Appendix.

2 Preliminaries

2.1 Analogy with multi-component flows

The basic idea of mass-flux parameterization may be under-
stood as that of a multi-component system with each sub-
component designated by subscriptj . A colloidal system
such as milk is such an example. Milk consists of many “bub-
bles” of water and fats, which are not visible on a macro-
scopic scale (i.e. large scaleor grid scale), but which should
appear on the microscale (i.e. subgrid scale). Thus, in order to
describe the macroscopic evolution of milk (flow), we have to
specify the fractional volume occupied by water and fats, re-
spectively, at every macroscopic point. The fractional volume
is the counter concept for the fractional area,σj , occupied by
the j -th subcomponent in the mass-flux formulation. From
this perspective, a review on multi-component fluid systems
given, for example, byGyarmati(1970) is fruitful for better
understanding the principle of mass-flux parameterization.

The situation can be understood under a mathematical
symbolism as follows. Let the characteristic scales for the
macroscopic (resolved) and microscopic (unresolved) pro-
cesses be1X and 1x, respectively. Separation between
macroscopic and microscopic processes suggests

1X � 1x.

The key starting point for constructing a subgrid-scale
physical parameterization is to make a clear decision which
belongs to the resolved scale,1X, and which belongs to the
subgrid scale,1x. This distinction may be best made by tak-
ing an analogy with macroscopic and microscopic processes,
though the scale separation between these two scales may not
be as well separated as a typical multi-component flow. The
current subgrid-scale parameterizations often suffer from the

problems of resolution dependence. A part of the problem
may be attributed to the fact that there is no clear definition
of what the scale of the large scale flow represented by the
model, thus what must be parameterized.

Moreover, the meteorological subgrid-scale parameteri-
zation problem is more complex than a standard multi-
component flow, because there is an exchange of mass be-
tween the different subcomponents. For example detrained
air from a cumulus cloud can turn into a part of a strat-
iform cloud. This is a situation normally not expected in
fluid-mechanical multi-component flows: in milk, water al-
ways remains water and fats always remain fats. Chemi-
cal reactions are the only expected means that one subcom-
ponent turns into another in these multi-component flows
(cf. Gyarmati, 1970).

In order to fully take into account these complex pro-
cesses in the subgrid-scales, the most straightforward math-
ematical approach would be to adopt that of the multi-
scale analysis as pointed out byMajda (2007a, b) and as
applied byXing (2009). Under this approach, the coordi-
nates for the two scales are introduced, those, say,(x,y) de-
scribing the subgrid-scales and those(X,Y ) describing the
large-scale (grid-scale). General coordinates may be given
by (x+X/ε,y+Y/ε) with ε being a small parameter, which
may be taken as1x/1X. By taking an asymptotic limit,
ε → 0, the subgrid-scale variability described by the coordi-
nates(x,y) shrinks into a single “macroscopic” point in re-
spect to the large-scale (grid-scale) coordinates(X,Y ). That
is the basic notion behind the scale separation principle.

In the present paper, we take a slightly different approach,
in which all the physical variables are consistently consid-
ered under averaging over the grid box with a grid box size,
L. As a reminder for this averaging operation, we put a bar to
the nabla,∇̄, when the nabla operator is considered in terms
of the grid-box average.

From a numerical point of view, the grid-box size
must be sufficiently smaller than typical macroscopic pro-
cesses, because otherwise they are not numerically properly
represented. Thus,

1X � L. (3)

We have to realize that from the above argument that the
grid-box size,L, is not at all constrained by the subgrid-scale,
1x. Here, only for the sake of considering the grid-box size
as a reference scale for defining the “large scale”, or the grid
scale against the subgrid scale, we will implicitly assume

L � 1x

in reminder of the paper. Here,L in the above inequality may
better be interpreted as a virtual grid size rather an actual one.
As just stated, the actual grid size does not have to satisfy this
constraint.

An important issue to keep in mind from the multi-
component system point of view is that all the subgrid-scale
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component variables are also functions of large-scale (grid-
scale) coordinates. In other words, they should vary from one
grid box to another. Implication from the scale separation
principle (cf.,Yano , 2009) is that these subgrid-scale com-
ponent variables must, furthermore, vary smoothly from one
grid box to another, because otherwise smoothness of a large-
scale (grid-scale) solution is not guaranteed. This scale sep-
aration issue turns out to be key in properly developing any
parameterization.

2.2 A basic set of equations: hydrostatic primitive
equation system

In order to develop a generalized mass-flux formulation in
a heurestic manner from a basic set of equations, we adopt
the hydrostatic primitive equation system as the latter. This
choice may look hardly justifiable in light of the fact that
the subgrid-scale processes in concern could be highly non-
hydrostatic. However, here, we emphasize that parameteriza-
tion is only concerned with feedback of these subgrid-scale
variability to grid-box average. Most importantly, although
individual subgrid-scale processes may be much faster than
those of the grid scales, evolution of each subgrid-scale com-
ponent defined in terms of an “ensemble” average over the
grid box would have a characteristic time-scale compara-
ble to those of the grid-scale processes. As a result, we can
suppose that the non-hydrostatic effects, such as local accel-
eration of vertical velocity, would become small by taking
grid-box average. As will be emphasized below, the non-
hydrostatic contributions of the subgrid-scale processes will
be integrated into the entrainment-detrainment term under
the present formulation.

For these reasons as well as for simplifying the formula-
tion, we neglect the explicit non-hydrostatic effects from on-
set in the present study. Recall thatYanai et al.(1973) also
developed their mass-flux formulation for observational di-
agnoses from the primitive equation under pressure coordi-
nate. The use of the primitive equation system is also con-
sistent with the aim of applying the present formulation to
the numerical weather forecast and climate change. At the
same time, the ultimate importance of the non-hydrostatic
processes in many atmospheric subgrid-scale processes can-
not be overemphasized either. Unfortunately, those consid-
erations turn out be rather involved, thus they are left for a
future study.

Notice that this argument applies only when the total frac-
tional area,σj , occupied by aj -th category is the order of
unity. When the fractional area is small, a simple scale analy-
sis suggests that the subcomponent vertical velocity must be
scaled bywj ∼ σ−1

j , thus the local acceleration associated
with vertical motion would no longer be negligible. An obvi-
ous such process is deep convective towers (cf. Sect. 4.7).

The primitive equation system under the pressurep verti-
cal coordinate consists of the horizontal momentum equation

∂

∂t
u + [∇ · (uu)] +

∂

∂p
ωu = −∇φ + F u, (4a)

the hydrostatic balance

∂

∂p
φ = −α, (4b)

the mass continuity

∇ ·u +
∂

∂p
ω = 0, (4c)

and the heat equation

∂

∂t
θ + ∇ · (uθ) +

∂

∂p
ωθ + ω

∂θ0

∂p
= Q. (4d)

Note that the second term of the left-hand side of Eq. (4a)
is a short-handed expression with the exact form defined by
Eq. (A2) withσj = 1.

Here,u is a horizontal velocity,ω a vertical velocity (pres-
sure velocity),φ the geopotential, and∇ designates the gra-
dient operator over a constant pressure surface. In the hori-
zontal momentum equation (Eq. 4a), all the other forces (e.g.
Coriolis force) other than pressure gradient are simply desig-
nated together asF u.

In the hydrostatic balance, the perturbation specific vol-
ume α is related to the potential temperature perturbation
θ by

α = (R/p)(p/p0)
κθ,

where R is the gas constant,κ = R/Cp with Cp

the specific heat with constant pressure,p0 = 1000 hPa
a reference pressure.

In the thermodynamic equation (Eq. 4d),Q is the total di-
abatic heating rate,θ0 is the reference state for the potential
temperature, which is assumed to be a function of pressure
only. For economy of presentation, we omit the prime rep-
resenting a deviation from a reference state. As a result, for
example, the total potential temperature is given byθ0 + θ .

We may further consider, for example, the mixing ratios,
qµ, for various water types (vapor, liquid cloud, precipitating
water, etc.) with subscriptµ designating water types:

∂

∂t
qµ = −∇ · vqµ −

∂ωqµ

∂p
+ Sµ, (5)

whereSµ is a source for the given water type. In general, we
can write a prognostic equation for any physical variable, say
ϕ in the form

∂

∂t
ϕ = −∇ · vϕ −

∂ωϕ

∂p
+ F (6)

with F forcing (or source) of the given variable. Note
that this forcing term also includes subgrid-scale processes
(e.g. eddy transport in the boundary layer) not going to be
presented under the present formulation.
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3 A general formulation for the subgrid-scale processes
under SCA

Segmentally-constant approximation (SCA) represents an
ensemble of subgrid-scale components, marked by an in-
dexj (= 1,2, · · · ), within a grid box domain by approximat-
ing a full system with a corresponding ensemble of constant
value segments (cf.Yano et al., 2005, 2010a). Thej -th sub-
component occupies an area ofSj with a boundary desig-
nated by∂Sj . As a result, the original full system reduces
to a discrete set of equations describing evolution of these
constant-segment values at each vertical level. As a result,
each subgrid-scale component is described in an analogous
manner as the each subcomponent of a multi-component flow
is prognostically described.

These subcomponents may, for example, represent differ-
ent cloud types as shown in Fig. 1 above. Thus, in case of
Fig. 1, the six subcomponents are considered. Note that, as
illustrated by Fig. 1, a subcomponent does not usually con-
stitute a single enclosed element, but many enclosed sub-
elements. For the derivation of the generalized mass-flux for-
mulation under SCA, we focus on a generic prognostic equa-
tion (Eq. 6) and the mass continuity (Eq. 4c). Both the mo-
mentum equation (Eq. 4a) and the water mixing-ratio equa-
tion (Eq. 5) can be considered as special cases of Eq. (6).

3.1 Prognostic equations

The equation for any prognostic variableϕ for a j -th sub-
component is obtained by integrating Eq. (6) over an area
Sj occupied by thej -th subcomponent. The result is given
by Eq. (29) ofYano et al.(2005) when the boundary∂Sj

for the j -th subcomponent with the other components does
not move with time. A two-dimensional case with a mov-
ing subcomponent-boundary is given by Eq. (10) ofYano
et al. (2010a). By generalizing these results, under a three-
dimensional configuration with the moving subcomponent-
boundary, a system under SCA is defined by

∂

∂t
σjϕj +

∂σj (ωϕ)j

∂p
+

1

S

∮
∂Sj

ϕb,j (u
∗

b,j − ṙb,j ) · dr = σjFj , (7)

where the average over thej -th subcomponent (segmentally-
constant values) is given by e.g.

ϕj =
1

σjS

∫
Sj

ϕdxdy, (8a)

(ωϕ)j =
1

σjS

∫
Sj

ωϕdxdy, (8b)

and a fractional areaσj occupied by thej -th subcomponent
is defined by

σj =
1

S

∫
Sj

dxdy. (8c)

Here, note that the contour integral in Eq. (7) and hereafter
is performed in the counter-clockwise direction, andS is a
grid-box size.

Furthermore,̇rb,j designates the rate of the movement of
the subcomponent boundary,u∗

b,j is a normal velocity to the
boundary defined by

u∗

b,j = ub,j − ωb,j

∂rb,j

∂p
(9)

with rb,j designating the position of the boundary. The sub-
script b designates the values at the subcomponent boundary.

By following the standard mass-flux approximation (cf.
Yano et al., 2004a), we approximate the vertical flux by

(ωϕ)j ' ωjϕj .

Note that fluctuations within a subgrid-scale component-
segment can easily be included by re-writing it

(ωϕ)j = ωjϕj + (ω′′

j ϕ′′

j )j ,

where the double prime indicates a deviation of a variable
from SCA within the given subcomponent segment, i.e.

ϕ′′

j = ϕ − ϕj .

We refer toSoares et al.(2004), andSiebesma et al.(2007)
for the treatment of these fluctuation terms. Note that though
these contributions are not further considered in the present
paper, they are no doubt crucial in defining the vertical fluxes
in the boundary layer, and those should be included as a part
of a source term,Fj , for any subgrid-scale components in
Eq. (6) in the following.

3.1.1 Horizontal divergence term

The divergence (contour integral) term in Eq. (7) can be sep-
arated into the three parts:∮
∂Sj

ϕb,j (u
∗

b,j − ṙb,j ) · dr =

∮
∂S+

j

ϕb,j (u
∗

b,j − ṙb,j ) · dr

+

∮
∂S−

j

ϕb,j (u
∗

b,j − ṙb,j ) ·dr +

∮
∂Sb,j

ϕb,j (u
∗

b,j − ṙb,j ) ·dr. (10)

The first two parts (∂S+

j and∂S−

j ) are inside the grid box,
where the last part (∂Sb,j ) is a contribution from the grid-box
boundary.

The first two parts are furthermore separated into those
where outflows ((u∗

b,j − ṙb,j ) · drj > 0: ∂S+

j ) and inflows

((u∗

b,j − ṙb,j ) ·drj < 0: ∂S−

j ) are found at the subcomponent
boundary. The inflow part may be further divided by adjacent
subgrid-scale components as schematically shown in Fig. 2.
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As a result,∂S−

j is given by a sum of sub-segments∂S−

j,i

adjacent with subcomponents designated by the subscripti:

∂S−

j =

∑
i={i}j

∂S−

j,i . (11)

Here,{i}j ≡ {i1, i2, · · · } designates a set of the subcompo-
nents that are directly adjacent with thej -th subcomponent.

For both parts, we take an upstream approximation, as
adopted byAsai and Kasahara(1967: their Eq. 3.29) as well
as byArakawa and Schubert(1974), thus

ϕb,j =

{
ϕj , (u∗

b,j − ṙb,j )ϕ · drj > 0,

ϕi, (u∗

b,j − ṙb,j )ϕ · drj < 0.
(12)

Note that the choice of the upstream approximation is
purely a numerical issue. An equivalent formulation could
be developed with any advection scheme. Nevertheless,
we take the upstream approximation for the two princi-
pal reasons. First, because it leads to a formulation with
the closest analogy with the conventional mass-flux for-
mulation (cf. Arakawa and Schubert, 1974). Second, the
approach ensures the numerical stability of the horizontal
advection calculations.

As a result, we introduce the detrainment and the entrain-
ment rates by

dj =
1

S

∮
∂S+

j

(u∗

b,j − ṙb,j ) · dr, (13a)

ej,i = −
1

S

∮
∂S−

j,i

(u∗

b,j − ṙb,j ) · dr. (13b)

Substitution of Eqs. (12) and (13a,b) into Eq. (10) shows that
the inflow and outflow fluxes provide

1

S

∮
∂S+

j

ϕb,j (u
∗

b,j − ṙb,j ) · dr = djϕj , (14a)

1

S

∮
∂S−

j,i

ϕb,j (u
∗

b,j − ṙb,j ) · dr = −ej,iϕi, (14b)

respectively.
Note that the detrainment and the entrainment rates,dj and

ej,i , are only short-handed expressions for the more complete
expressions in the right-hand side of Eq. (13a,b). These pa-
rameters are also considered to express a contribution of non-
hydrostatic processes not explicitly considered in the present
formulation. At the same time, they remain the main param-
eters left undetermined under the present formulation (cf.
Sect. 4.4).

Fig. 2.Schematics for showing the definitions of the boundary seg-
ments for thej -th subgrid component. Here, the boundary is first
divided into the two parts: those associated with the outflow,∂S+

j
,

and those associated with the inflow,∂S−

j
. In the figure, the out-

flow segment,∂S+

j
, is shown by a thick curve. The inflow segment

is, in the present case, further divided into the four subsegments,
∂S−

ji1
, ∂S−

ji2
, ∂S−

ji3
, and∂S−

ji4
, adjacent to the subgrid components,

i1,i2,i3,i4, respectively. Note that this schematics focuses on a sin-
gle contour contribution to thej -th component. In general, aj -th
component is found everywhere over a grid box with similar subdi-
visions to the segment boundary.

An alternative possibility, which is potentially more self–
contained, but not further considered in the present paper,
is to evaluateu∗

b,j − ṙb,j explicitly as done inYano et al.
(2010a) under a two-dimensional framework. In the remain-
der of the paper, we simply treat these coefficients,dj and
ej,i , as if given, accepting the extensive issues behind (cf.
Sect. 4.4).

3.1.2 Contributions from the grid-box boundary

Calculation for the contribution from the grid-box boundary
(last term in Eq. 10) is slightly more complicated. A rela-
tively obvious constraint is that the total contribution of the
contour integral along the grid-box boundary is equal to the
total divergence by Gauss’s flux theorem: i.e.

1

S

∑
j

∮
∂Sb,j

ϕb,j (u
∗

b,j − ṙb,j ) · dr = (∇ ·uϕ), (15)

where the overbar suggests an average over a grid box.
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Another important constraint is that the grid-box boundary
is usually a rectangular shape without changing with height.
The grid-box boundary does not usually move (as we assume
here), either, so thatu∗

b,j = ub,j and ṙb,j = 0 at ∂Sb,j . The
contribution from the grid-box boundary for aj -th subcom-
ponent, as a result becomes∮
∂Sb,j

ϕb,j (u
∗

b,j − ṙb,j ) · dr =

∮
∂Sb,j

ϕb,jub,j · dr.

For further reductions, we note that all the subgrid-scale
variables,ub,j , ϕb,j are smooth function of the large-scale
coordinates, and the results of the integral should not change
regardless of where these subcomponents are placed within
the grid box. Consequently, the integral range can be modi-
fied into that over the whole grid box weighted by the frac-
tional area,σj , occupied by thej -the subcomponent without
loss of generality:∮
∂Sb,j

ϕb,jub,j · dr. =

∮
∂S

σjϕb,jub,j · dr.

The final result is obtained by taking the asymptotic limit,
L/1X → 0, recalling Eq. (3). Then the application of the
Gauss divergence theorem leads to

1

S

∮
∂Sb,j

ϕb,jub,j · dr. = ∇̄ · (σjϕjuj ). (16)

Here, recall that the overbar on the nabla suggests an opera-
tion performed over the “large sale”.

Note that Eq. (16) is consistent with Eq. (15) under the
relation:

∇ · vϕ = ∇̄ · vϕ = ∇̄ ·

∑
j

(σjϕjuj ).

However, note in generaluϕ 6= ūϕ̄ as an important feature of
a multi-component flow.

Finally, substitution of Eqs. (14a,b) and (16) into Eq. (10)
leads to

1

S

∮
∂Sj

(u∗

b,j − ṙb,j )ϕ · dr = djϕj −

∑
{i}j

ej,iϕi + ∇̄ · (σjujϕj ), (17)

and further substitution of Eq. (17) into Eq. (7) leads to

∂

∂t
σjϕj +

∂σj (ωϕ)j

∂p
+ djϕj −

∑
i={i}

ej,iϕi + ∇̄ · (σjujϕj )

= σjFj . (18)

This is the prognostic equation for any physical variable,ϕj ,
for thej -th subgrid-scale component.

3.1.3 Turbulence effects

The upstream approximation (Eq. 12) may still be too sim-
ple from a physical point of view. The convective plume in-
terface with the environment is often considered to be ex-
tremely turbulent associated by various fine-scale mixing (cf.
Turner, 1986). A generalization of the above formulation can
be made by adding a turbulent contributionϕ′′:

ϕb,j =

{
ϕj + ϕ′′

b,j , (u∗

b,j − ṙb,j )ϕ · drj > 0,

ϕj ′ + ϕ′′

b,j , (u∗

b,j − ṙb,j )ϕ · drj < 0.

As a result, we need to add a new term

1

S

∮
∂Sj

ϕ′′

b,j (u
∗

b,j − ṙb,j ) · dr

to the above definitions of the lateral mixing (Eq. 17).
A closed expression for this term is proposed, for example,
by Asai and Kasahara(1967: their Eq. 19) as

1

S

∮
∂Sj,i

ϕ′′

b,j (u
∗

H − ṙb) · dr = −kj,i(ϕi − ϕj )

with a constantkj,i .
However, this generalization is inconsequential because

the original formula (Eq. 17) is recovered by redefining
the detrainment and entrainment rates asdj +

∑
{i}j

kj,i and
ej,i + kj,i (cf. de Rooy and Siebesma, 2010). Thus, we no
longer consider the horizontal eddy mixing effect explicitly
in the following.

3.2 Horizontal momentum equation

Both the heat equation (Eq. 4d) and the water mixing-ratio
equation (Eq. 5) can be cast into the form (Eq. 18) in
a straightforward manner. The derivation for the horizontal
momentum equation (Eq. 4a) is, however, slightly more in-
volved due to the presence of the pressure-gradient force,
∇φ. For conciseness, we introduce an approximation

1

S

∫
Sj

(−∇φ)dxdy ' −∇̄σjφj . (19)

Here, recall thatφ is the geopotential, andφj is its value
for a j–th subgrid-scale component averaged over a given
grid box, as defined by Eq. (8).

This approximation is justified only if the boundary of the
j -th subcomponent is randomly inclined (or not at all in-
clined) within the grid box. Otherwise, the right-hand side
should take the form given by Eq. (A1). Note that when the
subgrid-scale structure is influenced by vertical wind-shear,
for example, this assumption would no longer be satisfied,
and the full formula (Eq. A1) may be considered.
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The effect of the vertical wind-shear on subgrid-scale
structures is difficult to estimate precisely, though a crude es-
timate can relatively be easily made in the following manner.
Assume that a subgrid-scale structure with a vertical scale
H is continuously tilted by a differential wind,1U . Clearly,
the tilt becomes noticeable after a time,1t , when the con-
dition H ∼ 1U1t is satisfied. WhenH ∼ 10 km ∼ 104 m
and1U ∼ 1 m s−1 are assumed, the tilt becomes noticeable
after 1t ∼ 104 s∼ 3 h. Of course, this estimate is extreme,
because no subgrid-scale structure would simply be tilted
like a rigid body twisted by a torque. Furthermore, a typical
subgrid-scale structure like a convective tower would typi-
cally has a life span less than 3 h.

With the help of Eq. (19), the horizontal momentum equa-
tion under SCA is given by

∂

∂t
σjuj +

∂

∂p
σjωuj + djuj −

∑
i={i}j

ej,iui + ∇̄ · (σjujuj )

= −∇̄σjφj + σjF u,j . (20)

Note that the last term of the left-hand side is a short-
handed expression with the exact form defined by Eq. (A2).

3.3 Hydrostatic balance

The exact form of the hydrostatic balance (Eq. 4b) under
SCA is given by Eq. (A3). We, again, propose to neglect the
effects due to inclination of the boundary,rb,j . Thus, it re-
duces to

∂

∂p
(σjφj ) = −σjαj . (21)

3.4 Mass continuity

Mass continuity under SCA is obtained by directly averaging
the mass continuity equation (Eq. 4c) over the subcomponent
Sj in a similar manner as for obtaining Eq. (18) from Eq. (6):

1

S

∮
∂Sj

u∗

b,j · dr +
∂

∂p
σjωj = 0. (22)

Another form of mass continuity is obtained by setting
ϕj = 1, Fj = 0 in Eq. (18):

∂

∂t
σj +

∂σjωj

∂p
= ej − dj − ∇̄ · (σjuj ), (23)

whereej =
∑

{i}j
ej,i is the total entrainment rate. Note that

the eddy effects at the subcomponent boundary does not af-
fect the mass continuity. Furthermore, a difference between
Eqs. (22) and (23) produces

∂

∂t
σj =

1

S

∮
∂Sj

ṙb,j · dr. (24)

This has a simple geometrical interpretation that the rate
of change of an area of a subgrid-scale component is defined
by a rate of the change of the position of the boundaries of
the given subgrid-scale component.

Equation (24) enables us to evaluateσj prognostically in
time, provided that the right-hand side is given in a closed
form. In obtaining such an expression, as it turns out, it is
a key first to re-write Eq. (24) more explicitly in Galilean
invariant form:

(
∂

∂t
+ uj · ∇)σj =

1

S

∮
∂Sj

ṙ ′

b,j · dr. (25)

whereṙ ′

b,j is a rate of change of the position of the subcom-
ponent boundary seen under a moving framework.

We first re-write this term with the help of Eqs. (9)
and (17), but under a transformed coordinate:

1

S

∮
∂Sj

ṙ ′

b,j · dr = −
1

S

∮
∂Sj

ω
∂r ′

b,j

∂p
· dr + ej − dj .

Substitution of the above into the previous equation leads
to

(
∂

∂t
+ uj · ∇)σj = −

1

S

∮
∂Sj

ω
∂

∂p
r ′

b,j · dr + ej − dj . (26)

As before, we assume that inclination of the boundary is
random over the grid box so that the integral term in the right-
hand side of Eq. (26) does not contribute. As a result, Eq. (26)
is approximated by

(
∂

∂t
+ uj · ∇)σj = ej − dj . (27)

Furthermore, substitution of Eq. (27) into Eq. (23) leads to

∂σjωj

∂p
= −σj (∇̄ ·uj ). (28)

Here, recall that the overbar on the nabla indicates that the
operation is performed over the large scale. Thus, by assum-
ing a random distribution of subgrid-scale components, we
succeeded in separating the mass continuity into two inde-
pendent equations for describingσj andωj .

4 Discussions

4.1 Summary

A full description for representation of subgrid-scale pro-
cesses under a mass-flux formulation in analogy with multi-
component flow is obtained in the last section. This represen-
tation is obtained by a systematic application of SCA to the
primitive equation system.
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Under this representation, the horizontal momentum equa-
tion, the hydrostatic balance, and the mass continuity for
the j -th subgrid-scale component under a framework of the
primitive equation system are given by Eqs. (20), (21), and
(16), respectively. The equation for any physical variable,
whose prognostic equation is given in the form (Eq. 6) in
the full system, is given by Eq. (18). This includes the poten-
tial temperature as well as any water components. Addition-
ally, this subgrid-scale representation includes an additional
prognostic equation (Eq. 27) for the fractional area,σj , oc-
cupied by the subcomponent. This set of equations (Eqs. 20,
21, 28, 18, 27) constitutes a closed set once the entrainment
and detrainment rates,ej,i , dj , defined by Eq. (13a, b), are
specified.

A unique nature of the present system must be fully un-
derstood: there is no “environment” that effectively represent
the evolution of the grid-box mean state, as found in standard
subgrid-scale parameterizations. In other words, there is no
single equation that describes an evolution of “large-scale”
variables. Rather, these are only given by taking a sum of all
the subgrid-scale components

ϕ̄ =

∑
j

σjϕj

once the latter are updated in time at each time step.
The given set of equations essentially consists of a trans-

formation of the original primitive equation system for de-
scribing the time-evolution of each subgrid-scale component.
It is important to realize that this systemdoes not at allcon-
stitute a vertically one-dimensional model as often the case
for the traditional subgrid-scale parameterizations (including
the standard mass-flux convection parameterization), but it is
a full equation system in its own right.

The unique aspect of the present formulation would be
best understood by fully taking an analogy with multi-
component flows. When entrainment and detrainment are
turned off, the system essentially reduces to non-interacting
multi-component flow system with the indexj designating
a subcomponent flow under the primitive approximation.

The computational cost of the given system isN times
of a single-component primitive equation system whenN

subgrid-scale components are considered. Here, the refer-
ence single-component system excludes the subgrid-scale
processes (convection, stratiform clouds,etc) already in-
cluded under the present generalized mass-flux representa-
tion. Furthermore, computations of some physical processes
are more simplified for an individual component. For exam-
ple, the radiative transfer calculation does not have to inde-
pendently take into account the cloud fraction and overlap-
ping, once the clouds are properly accounted as subgrid-scale
components under the present formulation. Thus, the com-
putational cost for the individual component is much less ex-
pensive than a standard primitive equation system. Some of
the physical processes (e.g. boundary-layer processes) may

be shared among the components, if the computational cost
is an issue.

4.2 Comparison with the standard mass-flux
formulation

It may be worthwhile to compare the present multi-
component analogue system with the standard mass-flux for-
mulation. The latter is simply given by

∂

∂p
σjωjϕj + djϕj − ej ϕ̄ = σjFj (29)

for any physical variable,ϕ, defined by Eq. (6), and with the
mass continuity

∂

∂p
σjωj = ej − dj (30)

(cf. Eqs. 27–30 of Yanai et al., 1973; Eqs. 8 and 17 of
Tiedtke, 1989). This set of equations are coupled with the
equations, for example, given by Eqs. (4)–(6) with grid-box
scale averaging, designated by the overbar above. Recall that
in the multi-component flow analogue, there is no corre-
sponding equation for the grid-box mean.

The most notable difference of the present multi-
component flow analogue from the standard formulation is
that all the equations are given in prognostic form except
for the hydrostatic balance (Eq. 21) and the mass continu-
ity (Eq. 28). This is in contrast with the standard mass-flux
formulation that all the variables are defined in diagnostic
manner, but except for the convective vertical velocity.

The standard formulation also depends only on the vertical
direction with no explicit dependence to a horizontal direc-
tion. As a result, the subgrid-scale variables do not interact
laterally, making the scheme prone to a grid-scale singular-
ity. This is considered a major weakness of the current pa-
rameterizations (cf.Yano et al., 2010b, see also Sect. 4.12).
Our multi-component flow analogue is a generalization of
the standard mass-flux parameterization in the sense that
Eqs. (18) and (23) reduce to Eqs. (29) and (30), respec-
tively, in the asymptotic limit toσj → 0 with the scaling,
σωj ∼ O(1).

The standard mass-flux formulation requires to introduce
a bottom boundary condition for the mass flux,σjωj , in order
to solve the mass continuity (Eq. 30). The condition is called
the closure. On the other hand, the present multi-component
flow analogue does not require a closure. The mass flux,
σjωj , is simply driven by the subcomponents large-scale di-
vergence,̄∇·(σjuj ). This version of mass continuity (Eq. 28)
can be vertically integrated simply by assuming the vanish-
ing mass flux at the surface. All the other equations are in-
tegrated simply in time. Note that though the present formu-
lation is prognostic, time integration can be performed with
the standard model time step without time splitting as long
as the fractional areas for subgrid-scale components remain
finite (cf. Sect. 2.2).
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4.3 Remaining problems: subgrid-scale component
division rule

A first step for constructing a running version of the present
formulation is to divide the full system into several subgrid-
scale components. In Sect. 3, in presenting a general for-
mulation, this choice is totally left for the individual model
designers. The author’s personal choice would be convec-
tive updrafts, downdrafts, stratiform clouds, boundary-layer
cold pools, and the remaining part (“environment”). Here,
updrafts and downdrafts may furthermore be divided into
various categories: shallow and deep, convective and meso
scales, for example.

The next step is to define a rule of interactions between
these components in terms of the entrainment-detrainment
matrix introduced by Eq. (14a, b). The full discussions on
this very issue will be deferred to the next subsection. How-
ever, it would be worthwhile to remark on a geometrical
aspect of this issue separately now.

Though the details of this designing is left for the individ-
ual model developers, we again see a clear advantage of the
present formulation against the traditional mass-flux based
convection parameterization, in which the updrafts are sim-
ply assumed to be surrounded by the environment. Though
some of the mass-flux schemes include downdrafts, they are
included more like an appendix rather than as a coherent part
of the whole formulation (e.g.Bechtold et al., 2001). As a
result, the updrafts and the downdrafts do not interact each
other by entrainment-detrainment processes.

The present formulation can overcome this difficulty
by introducing a matrix formulation for the entrainment-
detrainment rate, that allows direct interactions between the
updrafts and the downdrafts. The model designer may wish
to assume either that the updrafts are completely surrounded
by downdrafts, or alternatively that the updrafts are ad-
jacent with both the downdrafts and the environment by
entrainment–detrainment processes. Some of the detrained
updraft air may also be entrained into the stratiform cloud. As
suggested in the next subsection, extensive CRM/LES anal-
yses are likely to provide quantitative information on these
issues.

4.4 Remaining problems: entrainment and detrainment

Once the choice of the subgrid-scale components is decided,
the main remaining problem in the present formulation is
in defining the entrainment and detrainment rates. This is
crucial, because entrainment-detrainment is the sole process
that subgrid-scale components interact under the present for-
mulation. The determination of the entrainment-detrainment
rate, unfortunately, remains a major open question under the
present formulation.

However, it is also emphasized that this difficulty is of the
same degree as already encountered by the current param-
eterizations, as reviewed byYano and Bechtold(2009); de

Rooy et al. (2012). As these reviews clearly suggest, cur-
rently there is no agreed general principle for defining the
entrainment-detrainment rates even under the current con-
ventional framework. The latter review strongly advocates
for a need for performing massive CRM/LES analysis for
obtaining the better estimates numerically (cf.Siebesma and
Cuijpers, 1995). In this vein, we should realize that we do
not loose much by moving to a new formulation framework,
thanks to a lack of guiding principle. Adoption of a new
framework could be more beneficial, if it is more realistic.

For example, as we pointed out in the last subsection,
the current mass-flux formulation only lets the updrafts and
the downdrafts interact with the environment. However, the
updrafts and the downdrafts do not interact each other in
terms of the entrainment-detrainment processes. As pre-
sented herein, such a generalization is straightforward, and
all we need is an appropriate estimate of parameters by
CRM/LES analysis.

In developing a more general entrainment-detrainment for-
mulation, there is no doubt that existing knowledge for con-
ventional entrainment-detrainment formulation already de-
veloped for convective updrafts becomes very resourceful
even under the present generalization. On the other hand, in
defining the detrainment rate for some physical processes,
it may better simply be interpreted as a simple Rayleigh
damping process with a detrainment rate defined as a char-
acteristic time scale for dissipation, rather than being a tur-
bulent mixing process as for convection. For the stratiform
clouds, for example, such a characteristic dissipative time-
scale may simply be characterized by the drying rate of
the environment.

4.5 Remaining problems: subcomponent prescription

In principle, once the entrainment-detrainment rate is prop-
erly defined, the present formulation is closed. However, in
operational implementations, we may have to face a fur-
ther problem which may be called the “prescription”: how
to teach each subgrid-scale subcomponent to function with
the prescribed physical role?

Mathematically speaking, it is straightforward to integrate
the system consisting of Eqs. (18), (20), (21), (27) and (28) in
time from any initial conditions, by prescribing the subcom-
ponents as convective updraft, downdrafts, stratiform clouds,
etc. However, there is absolutely no guarantee that each sub-
component keeps behaving as we have initially prescribed.
For example, the convective-updraft subcomponent may sim-
ply die out after an initial convective event, and nothing hap-
pens afterwards. The stratiform cloud may simply remain
cloud free all through the simulation.

One key element is to define the entrainment–detrainment
rates in such manner that each subcomponent behaves as pre-
scribed. Furthermore, an additional assumptions may be in-
troduced in order to maintain the proper function of each sub-
component: e.g. the convective-updraft subcomponent must
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be convectively more unstable than the other subcomponents.
In order to maintain such a state, for example, the surface flux
may be preferably applied to the convective-updraft subcom-
ponent so that convective updrafts are indeed induced under
an favorable large-scale condition. A stratiform cloud could
be maintained by entraining cloudy air preferably into it from
the other subgrid-scale components such as convective up-
drafts.

4.6 Remaining problems: triggering

An advantage of the present formulation is that it requires
no closure. The present formulation allows a continuous de-
scription of the all subgrid-scale components, as long as it
remainsσj > 0, without any triggering condition to initiate
them. However, once it reachesσj = 0, such a continuous de-
scription is no longer possible. This component must some-
how be re-initiated back toσj > 0 by a certain “triggering
condition”.

In the author’s own opinion, the model formulation would
remain much simpler, if we introduce a minimum fractional
area for each subcomponent, and re-set the value whenever
the actual fractional area falls below this value so that the
“triggering” problem can be avoided. The minimum value
may be kept small enough so that such state can be prac-
tically considered as a deactivation of the corresponding
subgrid-scale process.

On the other hand, if a model designer refuses to accept
a very small, but finite fractional area as “unphysical”, one
has to introduce a rather artificial triggering condition. Here,
it is emphasized that there is no clear principle for introduc-
ing “trigger”. In this respect, keeping all the subgrid-scale
components with a very small, but non-vanishing fraction is
probably a better strategy. It may also be important to note
that there is no need to setσj = 0 in order to “deactivate” aj -
th subcomponent under the present formulation, but the sub-
component may simply become “inactive” even withσj > 0.
For example, a large-scale descent, explicitly included as the
second term in Eq. (18), may eventually “dry out” a strati-
form cloud without settingσj = 0 in the scheme.

Note that a similar issue is encountered with the UM cloud
scheme, PC2 (Wilson et al., 2008). Under the current PC2,
the cloud fraction occasionally turns into zero, as a result,
it suffers from an ill-posed “triggering” problem (C. Mon-
crette, personal communication, May 2011).

4.7 Remaining problems: deep convection

Finally, we may wish to treat deep convectionseparately
from the present framework. Deep convection is usually well
confined in space over a large-scale grid box. Thus, it could
be best to simplyretain a standard mass-flux parameteriza-
tion, before it could be fully reformulated under the present
formulation without hydrostatic approximation. Note that it
is straightforward to recover the limitσj → 0 to some of the

subgrid-scale component under the present formulation as al-
ready suggested in Sect. 4.2. The proposal here is to take
the limit only to the convection parameterization under the
present formulation. In this case, the mass continuity (Eq. 28)
would be replaced by a traditional one (Eq. 30).

It is emphasized that even by retaining the conventional
mass-flux formulation to the convection parameterization,
we can still couple convection with various different subgrid-
scale components such as downdrafts, stratiform clouds, only
by modifying the entrainment-detrainment formulation.

Alternatively, it may turn out that the present hydrostatic
formulation is not a bad approximation for deep convection.
The present formulation contains an advantage in the sense
that deep convection is explicitly coupled with “large-scale”
convergence described by the convective-component flows,
but not the “total” large-scale convergence as assumed in
the traditional wave-CISK (Hayashi, 1970, 1971; Lindzen,
1974). The new configuration is likely to give new insights
to this old idea. A linear stability analysis could be helpful
for further elucidations.

4.8 Possible applications: stratiform cloud
representation

The present formulation is rather general and in principle,
covers all types of subgrid-scale processes under a frame-
work of SCA (Yano et al., 2010a), which can be considered
a generalization of mass-flux formulation. However, proba-
bly the most practical first application would be to develop
a cloud fraction parameterization (stratiform-cloud represen-
tation) under the present formulation in a stand-alone man-
ner. The developed scheme is coupled with a existing deep-
convection scheme, by also removing the hypothesis that the
environment subcomponent covers majority of the grid box.

The cloud fraction is a major quantity to be evaluated
in global models both for radiation and microphysics. Ap-
proaches based on probably density function (pdf) are in-
creasingly becoming popular (e.g.Bony and Emanuel, 2001;
Tompkins, 2002). However, the main difficulty with this ap-
proach would be to find a formulation for pdf from a phys-
ical principle without going through too many heuristic ar-
guments and mathematical assumptions. The present formu-
lation, on the other hand, provides a cloud fraction more di-
rectly without introducing a pdf.

It may be worthwhile to note in this context thatTiedtke
(1993) lays down his basic formulation (his Eqs. 1–5) for
his cloud scheme in terms of SCA, but without explicitly in-
troducing cloud area in his space integrations, except in his
Eq. (4). Moreover, he does not pursue this SCA principle in
consistent manner as in the present study. For example, flows
associated with subgrid-scale clouds are not explicitly con-
sidered, as stated in the first paragraph of his Sect. 2.a.

Similarity of the two formulations may be seen by com-
paring his Eq. (7) with our Eq. (27). Various source and sink
terms in his Eq. (7) are defined in terms of entrainment and
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detrainment processes, being consistent with our more sys-
tematic derivation. Our formulation is more consistent by
considering the values of physical variables for each subcom-
ponent explicitly.Tiedtke(1993) only considers the grid-box
averaged quantities: see his Eqs. (6), (9), (10).

Generality of the formulation for the subgrid-scale com-
ponent fraction (e.g. cloud fraction) given by Eq. (27) cannot
be overemphasized. Ultimately, any cloud-fraction parame-
terization must be consistent with Eq. (27), being based on
a purely geometrical argument. It should, however, be no-
ticed that this formulation is not at all closed. The entrain-
ment and detrainment terms, introduced by Eq. (13a,b), are
even no longer necessarily the same physical processes as
those assumed in convective-plume dynamics. Instead, they
are merely a measure of lateral mixing over the cloud bound-
aries. However, the formulation gives an important point that
it is a dynamical mixing rather than a local physics (e.g.
cloud physics), against what is assumed inWilson et al.
(2008), that defines the evolution of the cloud fraction.

4.9 Possible applications: mesoscale organization

The most challenging and attractive application would be
the parameterization of mesoscale organized convection.
The strategy would be conceptually along the line of the
archetype model proposed byMoncrieff (1981, 1992). Un-
der the present formulation, the idea of archetype would be
implemented by dividing the archetype structure into several
subcomponents: mesoscale stratiform deck, mesoscale up-
draft and downdraft, etc., and apply SCA on each subcompo-
nents. By following the spirit of the archetype model, these
subcomponents must properly be coupled together geomet-
rically. The present formulation provides a necessary frame-
work in order to achieve this goal.

A proper coupling of deep-convection parameterization
and a SCA-based stratiform-cloud parameterization, as just
discussed in the previous subsection, could already provide
a reasonable representation of mesoscale convective organi-
zation. The SCA-based stratiform-cloud representation could
be physically consistent in such manner that it can spon-
taneously generate a mesoscale downdraft just underneath
under an appropriate environment. The role of the verti-
cal wind shear is already partially taken into account by
advecting each subgrid-scale subcomponent by the large-
scale subcomponent flow. A key for this parameterization
would be to mimic the shear intensification tendency over
the mesoscale stratiform region by properly defining the
entrainment-detrainment rates.

4.10 Possible applications: subgrid-scale momentum
transport

Parameterization of convective momentum transport always
remains difficult due to a need for estimating the aerody-
namic pressure influencing the convective-scale momentum

in a closed form (e.g.Zhang and Cho, 1991; Wu and Yanai,
1994; Kershaw et al., 1997). The present formulation pro-
vides a surprisingly clean solution to this problem of the
subgrid-scale momentum by solving the ensemble-averaged
subgrid-scale horizontal momentum equation (Eq. 20) ex-
plicitly. The ensemble-averaged subgrid-scale pressure,φj ,
can simply be evaluated by a hydrostatic balance (Eq. 21).
This is another attractive feature of the present formulation.

4.11 Further issues: towards the scale independence

It may be important to emphasize the present formulation
is presented in a manner independent of the model reso-
lution by strictly adhering to the scale-separation principle.
Absence of both the closure and triggering, which could be
scale dependent, is a particular advantage. More importantly,
advection of all the subgrid-scale components by their own
flows much alleviates the current syndrome of subgrid-scale
parameterization strongly depending on the model grid size.
Arguably, such grid-size dependence stems from the fact that
the traditional parameterizations operate totally independent
of neighboring grid boxes. Large-scale advection of subgrid-
scale components introduces direct interaction of subgrid-
scale processes with neighboring grid boxes, leading to much
less resolution-dependent behavior. A major remaining prob-
lem is the entrainment and the detrainment rates, which are
likely to be scale dependent. A much careful investigation on
this issue is warranted also for this reason (cf. Sect. 4.4).

4.12 Further issues: high-resolution limit

The present formulation does not directly address the more
challenging issues of subgrid-scale representation when the
scale separation breaks down (i.e. high-resolution limit). This
is an urgent issue to be tackled seriously with current ac-
celerating trend of further and further increasing horizontal
resolutions of operational forecast models (cf.Yano et al.,
2010b).

Nevertheless, the present formulation could also be con-
sidered as a first step for developing a subgrid-scale represen-
tation in high-resolution limit by already taking into account
the finite size of subgrid-scale components, but by strictly
adhering to the scale separation principle. Some important
ingredients for parameterizations in the high–resolution limit
are already included in the present formulation. Most impor-
tantly, the formulation must be fully prognostic as presented
under the present formulation.

As the horizontal resolution increases, furthermore, lateral
communication of subgrid-scale processes between the grid
boxes becomes increasingly important (Yano et al., 2010b).
At ECMWF (European Centre for Medium-Range Weather
Forecasts), for example, this difficulty is partially overcome
by artificially introducing a cellar automaton model (Shutts,
2005). The present formulation provides a more formal an-
swer to the issue of the horizontal lateral exchange: the
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subgrid-scale variables must be advected from one grid box
to another by following the subcomponent large-scale flow.
Clearly this is a key ingredient to be implemented into a
subgrid-scale representation in high-resolution limit.

A more strident parameterization formulation for high-
resolution limit would be derived by the same application
of SCA, but to a non-hydrostatic system. Unfortunately,
this formulation, to be presented in a separate paper, is
much more involved. For this reason, the present formula-
tion could be considered a good practical compromise for
alleviating issues arising with increasing resolutions of op-
erational models, with the key ingredients required for the
high-resolution limit already included, without facing a more
serious overhaul of the current parameterizations.

5 Concluding remarks

Implementation of the present scheme into an operational
model is beyond the scope of the present paper. The task is
so intensive that it would even be beyond the single author’s
efforts. The main reason for the publication of the present
formulation paper is to appeal to the numerical weather pre-
diction (NWP) community the need for extensive research
for a developing such a scheme. The major obstacle in nu-
merical implementation is a need for modifying the whole
dynamical core of a model in order to make it possible to ac-
commodate multiple-flow components as “large-scale” vari-
ables. However, the present work also suggests that this is
going to become a key ingredient for the parameterizations
as the model horizontal resolution increases.

It is emphasized that the main proposal of the present for-
mulation does notreside on simply advecting the subgrid-
scale variables by large-scale flows. Such a proposal would
be relatively easy to make, but the present careful formula-
tional analysis shows that we have to do it differently: each
subgrid-scale component must be advected by a large-scale
flow specifically associated with the given subcomponent
(i.e. the subcomponent flow,uj ). Unfortunately, that is ex-
actly where the major coding modification is required.

Many details are left out in order to suggest general
possibilities of the present formulation rather than being
too specific. The author strongly believes that general pro-
posal herein is an important step forward for including vari-
ous subgrid-scale physical processes under a unified single
framework. These processes include the convective down-
drafts, stratiform clouds, the cold pools in the boundary layer.
In this respect, the present paper provides a more specific
proposal based on a general methodology proposed byYano
et al.(2005).

The present formulation also proposes a consistent manner
for coupling all these subgrid-scale components in terms of
a generalized entrainment-detrainment formulation. Unfor-
tunately, the degree of coupling among those subgrid-scale
components is not well known. For this purpose, we re-

quire extensive CRM/LES analyses, as already emphasized
by de Rooy et al.(2012) in the context of the conventional
mass-flux parameterization. Here, the present author rather
advocates a need for moving to a more realistic formula-
tion proposed herein under a strong initiative at a level of
a operational research centre.

An alternative, and ultimately more robust approach
against the traditional entrainment-detrainment framework
is to evaluate subgrid-scale horizontal winds more directly
under a SCA formulation. Though the resulting formula-
tion would be more involved in the latter case (cf.Yano
et al., 2010a), it would contain much less assumptions
than a entrainment-detrainment based formulation. Sooner or
later, we would face a critical question of whether to retain
the entrainment-detrainment hypothesis or to move beyond.

The simplest first application would be to develop a strati-
form cloud scheme under the present formulation in a stand-
alone manner. In this case, the cloud fraction (3.21) would
simply be described in terms of the convective detrainment
to the stratiform cloud, which must be equated with the strat-
iform entrainment,εj,c, and the dissipation of the stratiform
cloud with a rate provided by the detrainment,δj . The latter
may simply be characterized by a characteristic cloud dissi-
pation time-scale, as already suggested in Sect. 4.4. Advan-
tage of developing a cloud scheme under the present frame-
work has already been extensively discussed in Sect. 4.8.

Appendix A

Mathematical details

A1 Horizontal momentum equation

The pressure gradient term under SCA without approxima-
tion is obtained with the help of Leibnitz’s theorem and it is
given by

1

S

∫
Sj

(−∇φ)dxdy = −∇̄σjφj . +
1

S

∮
∂Sj

φ


∂rb

∂x
∂rb

∂y

 · dr. (A1)

A short-handed expression in Eq. (20) is defined by

∇̄ · (σjujuj ) ≡


∂

∂x
σju

2
j +

∂

∂y
σjvjuj

∂

∂x
σjujvj +

∂

∂y
σjv

2
j .

 (A2)

with uj = (uj ,vj ).
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A2 Hydrostatic balance

The exact hydrostatic balance under SCA is given by

∂

∂p
(σjφj ) −

1

S

∮
∂Sj

φ

(
∂rb,j

∂p

)
· dr = −σjαj . (A3)
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