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Abstract. A representation of the terrestrial nitrogen cycle
is introduced into the UVic Earth System Climate Model
(UVic ESCM). The UVic ESCM now contains five terrestrial
carbon pools and seven terrestrial nitrogen pools: soil, litter,
leaves, stem and roots for both elements and ammonium and
nitrate in the soil for nitrogen. Nitrogen cycles through plant
tissue, litter, soil and the mineral pools before being taken
up again by the plant. Biological N2 fixation and nitrogen
deposition represent external inputs to the plant-soil system
while losses occur via leaching. Simulated carbon and nitro-
gen pools and fluxes are in the range of other models and
observations. Gross primary production (GPP) for the 1990s
in the CN-coupled version is 129.6 Pg C a−1 and net C up-
take is 0.83 Pg C a−1, whereas the C-only version results in
a GPP of 133.1 Pg C a−1 and a net C uptake of 1.57 Pg C a−1.
At the end of a transient experiment for the years 1800–1999,
where radiative forcing is held constant but CO2 fertilisation
for vegetation is permitted to occur, the CN-coupled version
shows an enhanced net C uptake of 1.05 Pg C a−1, whereas in
the experiment where CO2 is held constant and temperature
is transient the land turns into a C source of 0.60 Pg C a−1 by
the 1990s. The arithmetic sum of the temperature and CO2
effects is 0.45 Pg C a−1, 0.38 Pg C a−1 lower than seen in the
fully forced model, suggesting a strong nonlinearity in the
CN-coupled version. Anthropogenic N deposition has a pos-
itive effect on Net Ecosystem Production of 0.35 Pg C a−1.
Overall, the UVic CN-coupled version shows similar charac-
teristics to other CN-coupled Earth System Models, as mea-

sured by net C balance and sensitivity to changes in climate,
CO2 and temperature.

1 Introduction

There is growing evidence that the availability of nitrogen
(N) in terrestrial ecosystems has an important effect on the
global carbon (C) cycle (Jain et al., 2009; Gerber et al., 2010;
Zaehle et al., 2010b; Bonan and Levis, 2010). Interactions
between the C and N cycles range from regulation of photo-
synthetic rate, autotrophic respiration and heterotrophic res-
piration to limitation on biomass growth and litter and soil
turnover rates (Lambers et al., 2008). Because of these in-
teractions N can influence the sensitivity of the terrestrial C
cycle to changes in temperature and atmospheric CO2 con-
centrations.

The sensitivity of the terrestrial carbon cycle is often ex-
pressed as the C sensitivity to CO2 concentration,βL in
Pg C ppm−1, and the C sensitivity to temperature,γL in
Pg C K−1 (Friedlingstein et al., 2006; Plattner et al., 2008).
TheβL value describes how vegetation responds to changes
in atmospheric CO2 concentrations, whereas theγL value is
mainly determined by the temperature dependent processes,
namely photosynthesis, heterotrophic and autotrophic respi-
ration rates.

C-only models estimateβL to be 1.4±0.5 Pg C ppm−1 and
γL to be −79± 45 Pg C K−1 (Denman et al., 2007). Mod-
els that include the interactions between the terrestrial C
and N cycles show a decrease inβL , i.e., a suppressed CO2
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Table 1.Pools and fluxes in the UVic CN-coupled model.

Variable Units Description

Carbon
CL kg C m−2 Litter C pool
CS kg C m−2 Soil C pool
Cleaf kg C m−2 PFT-dependent leaf C pool
Croot kg C m−2 PFT-dependent root C pool
Cwood kg C m−2 PFT-dependent wood C pool
CLF kg C m−2 a−1 C litterfall
CHUM kg C m−2 a−1 C humification, i.e., transfer from litter to soil
CRESPL kg C m−2 a−1 Litter C respiration, i.e., transfer from litter to atmosphere
CRESPS kg C m−2 a−1 Soil C respiration, i.e., transfer from soil to atmosphere

C/N ratios
CNleaf kg C (kg N)−1 PFT-dependent leaf C/N ratio
CNroot kg C (kg N)−1 PFT-dependent root C/N ratio
CNwood kg C (kg N)−1 PFT-dependent wood C/N ratio

Organic nitrogen
NL kg N m−2 Litter N pool
NS kg N m−2 Soil N pool
NV kg N m−2 Vegetation N pool
Nleaf kg N m−2 PFT-dependent leaf N pool
Nroot kg N m−2 PFT-dependent root N pool
Nstem kg N m−2 PFT-dependent stem N pool
NLF kg N m−2 a−1 N litterfall
NHUM kg N m−2 a−1 N humification, i.e., transfer from litter to soil
NMINL kg N m−2 a−1 Litter N mineralisation, i.e., transfer from litter to NH+4 pool
NMINS kg N m−2 a−1 Soil N mineralisation, i.e., transfer from soil to NH+

4

Mineral nitrogen

NH4 kg N m−2 NH+

4 pool

NHDEP
4 kg N m−2 a−1 NH+

4 deposition

NHUP
4 kg N m−2 a−1 NH+

4 uptake

NHIMM
4 kg N m−2 a−1 NH+

4 immobilisation

NHLEA
4 kg N m−2 a−1 NH+

4 leaching

BNF kg N m−2 a−1 Biological N2 fixation

NO3 kg N m−2 NO−

3 pool

NODEP
3 kg N m−2 a−1 NO−

3 deposition

NOUP
3 kg N m−2 a−1 NO−

3 uptake

NOIMM
3 kg N m−2 a−1 NO−

3 immobilisation

NOLEA
3 kg N m−2 a−1 NO−

3 leaching

NIT kg N m−2 a−1 Nitrification

fertilisation effect, andγL either becomes less negative or
switches from being negative to being positive (Thornton
et al., 2009; Sokolov et al., 2008; Bonan and Levis, 2010;
Zaehle et al., 2010a), i.e., a smaller release of C from the
soil and vegetation pools or even an increase in these pools
with increasing temperature. The overall effect of C/N inter-
actions on the terrestrial C balance is model-dependent and
ranges from less C storage to no change in C storage in the

future when compared to C-only models (Friedlingstein and
Prentice, 2010).

Due to the growing evidence that N potentially has an im-
portant impact on the terrestrial C cycle, it is necessary to
develop a suite of models that represent C/N interactions.
A good overview of the commonalities and differences be-
tween nine carbon-nitrogen cycle models can be found in
Zaehle and Dalmonech(2011, Table 1). The main differences
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between models include (i) the parameterisation of the effect
of N limitation on photosynthesis, (ii) the definition of C/N
stoichiometry (fixed or floating), (iii) how N is taken up by
the plants, (iv) the parameterisation of denitrification, and (v)
the parameterisation of N availability on stomatal conduc-
tance (Zaehle and Dalmonech, 2011). Even though five of
the models listed inZaehle and Dalmonech(2011) are con-
sidered “coupled carbon-nitrogen cycle climate models”, the
only two models that have been run in fully coupled mode in
terms of carbon-climate feedbacks areSokolov et al.(2008)
andThornton et al.(2009).

With this study, we add another model to the list of fully-
coupled models: we further develop the University of Victo-
ria Earth System Climate Model (UVic ESCM) through the
incorporation of terrestrial C/N feedback mechanisms. The
UVic ESCM falls in the category of Earth System Models
of Intermediate Complexity (EMIC) and is a fully coupled
model described inWeaver et al.(2001). In this paper, we
describe the N model incorporated into the UVic ESCM, we
show the fundamental diagnostics of the N and C cycle and
compare the results to existing models or data where appro-
priate.

2 Model description and datasets

Here we use the University of Victoria Earth System Cli-
mate Model (UVic ESCM) version 2.9 (Eby et al., 2009).
It consists of a primitive equation 3-D ocean general cir-
culation model coupled to a dynamic-thermodynamic sea-
ice model and an energy-moisture balance model of the at-
mosphere with dynamical feedbacks (Weaver et al., 2001).
The land surface and terrestrial vegetation components are
represented by a simplified version of the Hadley Centre’s
MOSES land-surface scheme coupled to the dynamic vege-
tation model TRIFFID (Meissner et al., 2003). Land carbon
fluxes are calculated within MOSES and are allocated to veg-
etation and soil carbon pools (Matthews et al., 2004). Ocean
carbon is simulated by means of an OCMIP-type inorganic
carbon-cycle model and a NPZD marine ecosystem model
(Schmittner et al., 2008). Sediment processes are represented
using an oxic-only model of sediment respiration (Archer,
1996).

An earlier version of the UVic ESCM (version 2.7) has un-
dergone extensive evaluation as part of international model
intercomparison projects including the Coupled Carbon Cy-
cle Climate Model Intercomparison Project (Friedlingstein
et al., 2006), the Paleoclimate Modelling Intercomparison
Project (Weber et al., 2007) and the coordinated thermoha-
line circulation experiments (Gregory et al., 2005; Stouffer
et al., 2006). The model has also been used for multi-century
climate projections in support of the IPCC Fourth Assess-
ment Report (Denman et al., 2007; Meehl et al., 2007). The
most significant changes to the model since version 2.7 are

the inclusion of ocean biology and sediments (Schmittner,
2005; Zickfeld et al., 2008).

Simulations include the following externally specified
forcing: historical CO2 and other non-CO2 greenhouse gases
(all applied as reductions in outgoing longwave radiation),
stratospheric volcanic aerosols (applied as reductions in in-
coming shortwave radiation), tropospheric sulphate aerosols
(applied as changes in local surface albedo), land use change
(also applied as a surface albedo change), and solar variation
due to changes in luminosity and the Earth’s orbit. Historical
land use change maps up to the year 1992 fromRamankutty
and Foley(1999) are used to determine when to change nat-
urally simulated vegetation (shrubs and trees) to agricultural
land use (grass). Emissions from land use change are, thus,
internally calculated and would not be part of any diagnosed
(external) anthropogenic carbon emissions for these simula-
tions.

For this study, carbon-nitrogen feedbacks in the terres-
trial biosphere were included in the UVic-ESCM. The main
changes in terms of mechanistic understanding include a
prognostic representation of leaf N concentration, which de-
termines the rate of photosynthesis. This implies that in the
case of an N deficiency, leaf N concentrations will decrease
and reduce photosynthesis rates and hence GPP. The calcu-
lation of autotrophic respiration is also affected in the new
version: N content in leaf, root and stem — on which au-
totrophic respiration depends — are now simulated based on
stoichiometry whereas in the C-only version the N content
of these tissues was derived allometrically. Another change
is the fact that N influences litter decomposition processes,
leading to faster decomposition under higher soil mineral N
concentrations. These changes are elaborated in detail below.

We keep the current structure of MOSES/TRIFFID, the
vegetation model within the UVic ESCM, generally the same
as described inMeissner et al.(2003). This allows us to in-
tegrate the model in a C-only mode (UVic C-only) and in
a CN-coupled mode (UVic-CN) in order to evaluate the dif-
ferences. The only major change to the model is the addition
of a litter C pool as a corresponding C pool for the N litter
pool.

2.1 Carbon and nitrogen pools and fluxes

The UVic-CN ESCM has five C pools (leaf, root, wood, litter
and soil) and seven N pools (leaf, root, wood, litter, soil, am-
monium (NH+

4 ) and nitrate (NO−3 )). The pools and the fluxes
between them are shown in Fig.1 and listed in Table1. The
concept for the N model is adopted fromGerber et al.(2010)
with modifications in order to fit the UVic ESCM structure
and with the exception of biological N2 fixation; wherever
we useGerber et al.’s approach, we mention it in the re-
spective section below. The time steps of the new processes
vary with the respective parallel processes used in the UVic
ESCM. Microbial processes, leaching, photosynthesis, leaf
turnover and N uptake are updated on an hourly basis. The
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Fig. 1.Schematic representation of the carbon (green boxes) and nitrogen (red boxes) pools and fluxes in UVic-CN. The C cycle in the UVic
ESCM is enhanced by adding a carbon litter pool. The nitrogen model is adapted fromGerber et al.(2010). Leaf, stem and root N content
depend on the size of the C pools and fixed C/N ratios. The UVic ESCM inherent leaf, root and stem turnover rates are used to calculate
litterfall with the only modification that N in leaves is partially reabsorbed before abscission. The litterfall goes first into the litter pool, which
is partially decomposed and enters the NH4 pool and part of it is humified and enters the soil N pool. The soil N pool is mineralised and adds
to the NH4 pool. Ammonium is turned into NO−3 via nitrification. Ammonium and NO−3 can be immobilised by the soil pool. Both of the
inorganic N species can be leached via runoff or taken up by plants. The plant uptake is set to meet the PFT’s requirement to achieve at least
the minimum N content.

values are accumulated over five days and fed into TRIFFID,
which calculates changes to the vegetation and soil C and N
pools and updates C/N ratios.

2.1.1 Organic pools

Litterfall for C (CLF) is determined for each plant functional
type (PFT) by the size of the carbon pools,Cleaf, Croot and
Cwood and by a pool specific turnover rate,ηroot andηwood
(Table2):

CLF =

∑
PFT

ηleafCleaf+ ηrootCroot+ ηwoodCwood, (1)

whereηleaf = η0
leaff (T )f (2); η0

leaf is given in Table2, f (T )

andf (2) are given in Eqs. (9) and (10).
Before plants drop their leaves, a fraction of the N is re-

absorbed. This is taken account of by the factorrleaf in the
calculation of litterfall for N,NLF:

NLF =

∑
PFT

ηleaf
C leaf

CNleaf
(1−rleaf)+ηroot

Croot

CNroot
+ηwood

Cwood

CNwood
,

(2)

where CNleaf, CNroot and CNwood are the C/N ratios of
leaves, roots and wood (see Sect.2.4.1). The C/N ratio of
litterfall, thus, differs from that of the plant source because
a portion of leaf nitrogen (rleaf) is reabsorbed by the plant
before abscission.

Litterfall (CLF, NLF) is added to the litter pools (CL, NL),
while humification (CHUM, NHUM) and litter respiration
(CRESPL) and mineralisation (NMINL ) are subtracted:

dCL

dt
= CLF − CHUM − CRESPL, (3)

dNL

dt
= NLF − NHUM − NMINL . (4)

Humification is the transfer of organic material from the litter
to the soil pool (Eqs.5 and6), litter respiration is the decom-
position of organic C in litter to form CO2 (Eq. 7) and litter
mineralisation is the decomposition of organic N in litter to
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Table 2. List of PFT-dependent parameters used in UVic-CN: leaf base turnover rate (η0
leaf), root turnover rate (ηroot) and wood turnover

rate (ηwood) are all taken from the UVic ESCM.rleaf is the PFT-dependent retranslocation of N before leaf abscission andνmax is the tuned
maximum N uptake rate. Minimum and maximum C/N ratios for leaves (CNLeaf,min, CNLeaf,max) and roots (CNRoot,min,CNRoot,max) for
each PFT are chosen as follows: CNLeaf,min are the inverted maximum leaf N concentrations used in the previous UVic ESCM (Meissner
et al., 2003) with the exception of the value for C3G which is raised from 18 to 25. CNLeaf,max are allocated in order to allow a wide range
of possible C/N ratios, CNRoot,min and CNRoot,max are set to be higher than CNLeaf,min and CNLeaf,max (White et al., 2000). Average leaf
nitrogen concentration,nl , is used in the C-only version to calculate Rubisco activityVc,max. BT= broad-leaved trees, NT= needle-leaved
trees, C3G= C3 grasses, C4G= C4 grasses, SH= shrubs.

Parameter Unit BT NT C3G C4G SH

η0
leaf a−1 0.25 0.25 0.25 0.25 0.25

ηroot a−1 0.25 0.25 0.25 0.25 0.25
ηwood a−1 0.01 0.01 0.20 0.20 0.05
rleaf – 0.5 0.4 0.5 0.5 0.5
νmax 10−9kg N (kg root C)−1 s−1 0.57 0.57 0.57 0.57 0.57
CNLeaf,min kg C (kg N)−1 28 33 25 37 37
CNLeaf,max kg C (kg N)−1 70 80 60 80 80
CNRoot,min kg C (kg N)−1 40 50 30 40 50
CNRoot,max kg C (kg N)−1 80 90 70 85 90
1/nl kg C (kg N)−1 37 46 25 46 37

Table 3.List of parameters used in the UVic-CN model that are either new or have changed values.

Parameter Value Units Description Used in Source

ξ 45 m3 kg N−1 Modifier of litter decomposition rate Eqs. (5)–(8) Gerber et al.(2010)
τ 0.42 – Fraction of decomposition transferred Eqs. (5)–(8) tuned1

to soil pool
kL 1.419 a−1 Litter turnover rate at 25◦C Eqs. (5)–(8) tuned1

kS 0.047 a−1 Soil turnover rate at 25◦C Eqs. (12)–(14) tuned1

kp,1/2 0.003 kg N m−3 Half-saturation constant for N uptake Eqs. (19)–(20) Gerber et al.(2010)
hS 1 m Soil depth Eqs. (19)–(20) UVic ESCM
kNit 51.6 a−1 Maximum nitrification rate adjusted Eq. (21) Xu-Ri and Prentice(2008)

to 25◦C
ε 0.0027 kg N (kg C)−1 Relationship between BNF and NPP Eq. (23) Derived from UVic-CN
bNH4 10 – Sorption/desorption buffer factor for NH4 Table4 Gerber et al.(2010)
bNO3 1 – Sorption/desorption buffer factor for NO3 Table4 Gerber et al.(2010)

1These three parameters are tuned together in order to obtain a similar value for the sum of soil C and litter C compared to the UVic ESCM v2.9 that has only a soil C pool.

form ammonium (NH+4 ) (Eq.8):

CHUM = f (T )f (2)kLCL(1+ ξ [Nmin,av])τ, (5)

NHUM = f (T )f (2)kLNL(1+ ξ [Nmin,av])τ, (6)

CRESPL= f (T )f (2)kLCL(1+ ξ [Nmin,av])(1− τ), (7)

NMINL = f (T )f (2)kLNL(1+ ξ [Nmin,av])(1− τ). (8)

Here the temperature dependencef (T ) is a function of soil
temperature (Cox, 2001, Eq. 17):

f (T ) = q
0.1(Ts−25)
10 , (9)

whereq10 = 2.0, Ts is the soil temperature in◦C andf (2)

is a function of soil moisture (Cox, 2001, Eq. 18):

f (2) =


1− 0.8(S − S0) for S > S0,

0.2+ 0.5
(

S−Sw
S0−Sw

)
for Sw < S ≤ S0,

0.2 for S ≤ Sw,

(10)

with S, Sw andS0 being the soil moisture, the wilting point
soil moisture and the optimum soil moisture, respectively
(Cox, 2001, Eqs. 19–21). Other terms used in Eqs. (5) and (8)
are a specific litter turnover ratekL (Table3), the litter pool
size (CL , NL) and the concentration of available, mineral N
[Nmin,av] (see Table4 for relationships between various min-
eral N pools and concentrations). The parameterξ (Table3)
describes the dependence of respiration and mineralisation
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Table 4.Relationship between different expressions of mineral N pools and concentrations. Values forhS, bNH4 andbNO3 can be found in
Table3.

Variable Derived from Units Description

NH4 kg N m−2 NH+

4 pool
NH4(av) NH4/bNH4 kg N m−2 Available NH+

4 pool
[NH4] NH4/hS kg N m−3 NH+

4 concentration
[NH4(av)] [NH4]/bNH4 kg N m−3 Available NH+

4 concentration
NO3 kg N m−2 NO−

3 pool
NO3(av) NO3/bNO3 kg N m−2 Available NO−

3 pool
[NO3] NO3/hS kg N m−3 NO−

3 concentration
[NO3(av)] [NO3]/bNO3 kg N m−3 Available NO−

3 concentration
Nmin(av) NO3(av) + NH4(av) kg N m−2 Available mineral N pool
[Nmin(av)] [NO3(av)] + [NH4(av)] kg N m−3 Available mineral N concentration

on available mineral nitrogen concentration and is taken from
Gerber et al.(2010). The fractionτ (Table 3) defines how
much of the litter is humified and transferred to the soil pool
and how much is decomposed (CRESPL, NMINL ).

Humified litter material is transferred to the soil pools,Cs
andNs, which are decreased by respiration (CRESPS) in the
case of C:

dCS

dt
= CHUM − CRESPS, (11)

where

CRESPS= f (T )f (2)kSCS, (12)

and by mineralisation (NMINS) in case of N. The organic N
soil pool,Ns, is further increased by the immobilisation of
ammonium and nitrate (NHIMM

4 ,NOIMM
3 ):

dNS

dt
= NHUM − NMINS + NHIMM

4 + NOIMM
3 , (13)

where

NMINS = f (T )f (2)kSNS. (14)

Both soil respiration and mineralisation depend on the tem-
perature function (Eq.9) and moisture function (Eq.10)
mentioned above, a specific turnover ratekS (Table3) and
the size of the pool (CS, NS). The addition of the immobili-
sation terms to the soil N pool,NS, ensures a stable soil C/N
ratio, and balances out any N deficit which may arise when
the incoming material via humification has a high C/N ratio.

The immobilisation of NH+4 and NO−

3 (NHIMM
4 , NOIMM

3 )
via microorganisms occurs when soil quality decreases, i.e.,
the soil C/N ratio (CNsoil) increases. In UVic-CN, immo-
bilisation happens when soil C/N is greater than 13; conse-
quently, soil C/N ratios in UVic-CN are kept more or less
constant. A soil C/N ratio of 13 is in the range used byGer-
ber et al.(2010) andZaehle and Friend(2010) and is also
supported by observations: soil C/N ratios were found to be

< 10 for tropical areas and> 20 for boreal areas (Global Soil
Data Task Group, 2000) and 14.2 for tropical areas and 13.2–
18.9 for boreal areas (Zinke et al., 1984; Esser et al., 2011).
Relating immobilisation rates to the C/N ratio is controver-
sial as biomass and the metabolic state of microorganisms
seem to be better predictors of immobilisation rates (Bengts-
son et al., 2003) than soil C/N ratios. However, microbial
biomass and metabolic state are not variables that are ready
to be included into a global Earth System Model. Further, we
do not know whether soil C/N ratios will change under CO2
fertilisation and higher N demands. Equations for immobili-
sation are modified fromGerber et al.(2010):

NHIMM
4 = f (T )f (2)kL(1+ ξNmin(av))τ

NH4(av)

Nmin(av)

CL

CNsoil
,

(15)

NOIMM
3 = f (T )f (2)kL(1+ ξNmin(av))τ

NO3(av)

Nmin(av)

CL

CNsoil
,

(16)

where NHIMM
4 and NOIMM

3 are in (kg N m−2 a−1), the tem-
peraturef (T ) and moisture functionf (2) are given by
Eqs. (9) and (10), kL is the specific litter turnover rate (a−1,
Table 3), ξ is a modifier of the N dependent litter decom-
position rate (m3 kg N−1, Table 3), Nmin(av), NH4(av) and
NO3(av) are the total, NH+4 and NO−

3 available mineral N
pools (kg N m−2, Table4), τ is the fraction of decomposi-
tion transferred to the soil pool (Table3), CL is the litter
C pool (kg C m−2) and CNsoil is the C/N ratio of the soil
(kg C (kg N)−1).

2.1.2 Mineral pools

The UVic-CN model has two separate N mineral pools, am-
monium (NH+

4 ) and nitrate (NO−3 ); for simplicity, the pools
are labelled NH4 and NO3 hereafter. The rates of change of

Geosci. Model Dev., 5, 1137–1160, 2012 www.geosci-model-dev.net/5/1137/2012/
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these two pools are given by

dNH4

dt
= NMINL + NMINS + BNF+ NHDEP

4

−NHUP
4 − NHLEA

4 − NHIMM
4 − NIT (17)

and

dNO3

dt
= NIT + NODEP

3 − NOUP
3 − NOLEA

3 − NOIMM
3 . (18)

Mineralisation of N from litter (NMINL ) and soil pools
(NMINS) are the autochthonous (i.e., from within the ecosys-
tem) inputs into the NH4 pool, whereas biological nitrogen
fixation (BNF; Sect.2.2) and deposition of NH+4 (NHDEP

4 ;
Sect.2.2) are the allochthonous (i.e., from outside the ecosys-
tem) input variables. Ammonium may be taken up by the
plant (NHUP

4 ), lost by leaching (NHLEA
4 ), immobilised by

microorganisms (NHIMM
4 ) or turned into NO−3 (nitrification,

NIT). Nitrification (NIT) represents the only autochthonous
flux for NO−

3 , the only other input being the allochthonous
input of atmospheric deposition of NO−3 (NODEP

3 ). Ni-
trate may be taken up by plants (NOUP

3 ), leached from the
soil (NOLEA

3 ) or immobilised by microorganisms (NOIMM
3 ).

Equations (17) and (18) follow Gerber et al.(2010) with the
modification that BNF is added to the NH4 pool, rather than
being put directly into a vegetation N pool.

The calculation of plant uptake, NHUP
4 and NOUP

3
(kg N m−2 s−1), is based onGerber et al.(2010):

NHUP
4 =

∑
PFT

(
νmaxCrootNH4(av)

hS(kp,1/2 + [Nmin(av)])
+ [NH4(av)]QT

)
,

(19)

NOUP
3 =

∑
PFT

(
νmaxCrootNO3(av)

hS(kp,1/2 + [Nmin(av)])
+ [NO3(av)]QT

)
,

(20)

and is separated into an active (first part of RHS in Eqs.19
and20) and a passive uptake (second part of RHS in Eqs.19
and20). Active plant uptake represents the part of the uptake
driven by exchange of ions between the roots and the soil,
i.e., for each NH+4 molecule taken up, a proton is exuded.
Passive uptake transports N contained in soil water via the
transpirational water stream.

Active plant uptake depends on the PFT-dependent
maximum uptake rate νmax per unit root mass
(kg N (kg root C)−1 s−1), Croot (kg C m−2), soil depth
hS (m), the half-saturation constantkp,1/2 (kg N m−3) (see
Tables2 and3 for values), the available ammonium NH4(av)
(kg N m−2) and the total concentration of available mineral
N, [Nmin(av)] (kg N m−3) (Table 4 lists the relationships
between different mineral N pools). Passive plant uptake
is expressed in terms of the PFT-dependent transpiration
rateQT (m s−1) and the available NH+4 [NH4(av)] or NO−

3

[NO3(av)] concentration (kg N m−3). We impose lower and
upper bounds for the plant uptake: the minimum plant uptake
rate is set to a value to meet the minimum N requirements
of each PFT and the maximum plant uptake rate is set so
that no excess N is stored in the plants. The minimum N
requirement is based on the current C contents in leaf, root
and wood and the maximum C/N ratios. For the maximum
N requirement, we use the minimum C/N ratios. Details of
how the bounds are imposed are given in Sect.2.4.1.

Nitrification (NIT) in kg N m−2 a−1 follows Gerber et al.
(2010):

NIT = f (T )f (2)kNitNH4(av) (21)

but uses the UVic ESCM inherent temperaturef (T ) (Eq.9)
and moisturef (2) (Eq. 10) functions, a maximum nitrifi-
cation rate,kNit (a−1, Table3) and the available NH+4 pool,
NH4(av) (kg N m−2, Table4).

2.2 Nitrogen input

External nitrogen inputs consist of biological nitrogen fixa-
tion (BNF) and atmospheric deposition of NH+

4 (NHDEP
4 ) and

NO−

3 (NODEP
3 ).

During model spin-up, we use the relationship between
BNF and evapotranspiration (ET) based onCleveland et al.
(1999) that has been used non-transiently in C/N models of
Zaehle and Friend(2010) andYang et al.(2009):

BNF = 0.1(0.0234 ET− 0.172)/1000, (22)

where the original units are modified to kg N m−2 a−1 for
BNF and mm a−1 for ET. However, using this approach for
transient simulations (1800–1999) in the UVic ESCM leads
to a significant reduction in NPP at the end of the 20th cen-
tury due to a reduction of ET with increasing CO2 concen-
trations. The changes in BNF associated with increases in
atmospheric CO2concentration represent a key uncertainty
in modelling future responses (Wang and Houlton, 2009).
We, therefore, opt for the apparently more robust relation-
ship used by the Community Climate Model CLM4 (Thorn-
ton et al., 2009) and relate total annual BNF to NPP. After the
UVic-CN model has come to equilibrium for the year 1800
using the relationship between evapotranspiration (ET) and
BNF following Eq. (22), we derive a coefficient,ε, relating
modelled BNF and net primary production (NPP):

BNF = ε NPP, (23)

where NPP is in kg C m−2 a−1 and ε is 2.73 g N (kg C)−1,
giving a BNF of 180 Tg N a−1 for an NPP of 66 Pg N a−1.
It must be borne in mind that using such a relationship be-
tween BNF and NPP has the potential disadvantage of in-
creasing BNF in concord with CO2 fertilisation in propor-
tion to any NPP increase. Modelling BNF is inherently dif-
ficult as it is not an easily observable flux and may depend

www.geosci-model-dev.net/5/1137/2012/ Geosci. Model Dev., 5, 1137–1160, 2012



1144 R. Wania et al.: CN feedback in the UVic ESCM

on phosphorous availability and perhaps also other factors
such as molybdenum (Zaehle and Dalmonech, 2011), nei-
ther of which are well known on a global scale. The vari-
ety of approaches used in CN-cycle models to estimate BNF
(see Table 1 inZaehle and Dalmonech, 2011) may be taken
as an indication of how little is known about modelling BNF.
For this study, we tried two approaches: the first was to re-
late BNF to ET, which led to rather strong N limitation over
the 20th century due to the effect of increased atmospheric
CO2concentration on stomatal conductance and, therefore,
on ET. The second, and also the option we chose to use,
was to relate BNF to NPP as is done in the CLM-CN model
(Thornton et al., 2007) and now also in the JSBACH model
(Goll et al., 2012).

Deposition of NH3 and NH+

4 (NHDEP
4 ) and oxidised nitro-

gen compounds (NODEP
3 ) occurs in both dry and wet forms

close to sources of pollution. Nitrogen deposition onto ter-
restrial ecosystems has increased by a factor of 3.6 since
the pre-industrial period and is projected to double again be-
tween 1990 and 2050 (Galloway et al., 2004). The main cen-
tres of deposition in the early 1990s are the Eastern United
States, Central Europe, India, Southeast Asia and Southeast-
ern Brazil, which are likely to intensify and spread in the fu-
ture (Galloway et al., 2004). Here, we use the global annual,
natural and anthropogenic, deposition rates of these species
from Dentener(2006) for the time slices of 1860, 1993 and
2050, which are regridded from the original 5◦

× 3.75◦ map
to the UVic ESCM’s resolution of 3.6◦ × 1.8◦ and linearly
interpolated between time slices in order to obtain annual de-
position rates for the years 1860–1999; deposition rates for
the year 1860 are used for the period 1800–1859.

2.3 Nitrogen loss

Mineral N in the UVic ESCM can be lost from the soil via
leaching:

NHLEA
4 = QD[NH4(av)], (24)

NOLEA
3 = QD[NO3(av)], (25)

and is related to the runoffQD (m a−1) and the concentra-
tion of available NH+4 and NO−

3 (kg N m−3). The available N
depends on the sorption factorbNH4 andbNO3 (Table3) and
makes NH+4 less available for leaching than NO−

3 due to the
cation binding capacity of soils. Gaseous losses of N are not
considered in the current model version.

2.4 Vegetation nitrogen

2.4.1 Allocation of N to plant organs

Nitrogen is allocated to leaves, roots and wood: the allocation
of N to wood follows a fixed C/N ratio of 330 kg C (kg N)−1

for broad-leaved and needle-leaved trees and for shrubs
(Sitch et al., 2003). While the C/N ratio of wood is fixed,

the C/N ratios of leaves and roots vary between a minimum
and maximum value (Table2). The change in total vegetation
N (NV) is estimated by

dNV

dt
= NHUP

4 + NOUP
3 − NLF, (26)

where NHUP
4 and NOUP

3 are the N that the plant takes up in
form of NH+

4 and NO−

3 (Eqs.19 and20) andNLF is the N
lost via litterfall (Eq.2). Vegetation N (NV) is spread over the
three plant N pools by first allocating N to wood following
the fixed C/N ratio, then allocating a minimum amount of N
to roots to meet the maximum C/N ratio and finally adding
the remaining N to the leaf N pool. The C allocation scheme
has not been changed in UVic-CN and the factor driving total
plant C is the leaf area index. Carbon is allocated equally to
leaves and roots and wood C is related to leaf area index via
two allometric parameters. If there is more N available than
needed to fill up theNleaf pool and CNLeaf < CNLeaf,min then
we set CNLeaf = CNLeaf,min and any excess N is added to the
roots. In that way, the N requirements for leaves are met be-
fore those for roots and only if there is sufficient N available
do root N levels increase. If CNRoot < CNRoot,min then we set
CNRoot = CNRoot,min and any excess N is added back to the
NO−

3 pool and subtracted from the uptake. If both CNLeaf
and CNRoot are at their minimum level, the plant N status
is at its maximum and will result in the highest modelled
Vc,max. The reason for choosing this setup is to allow flexible
root and leaf C/N ratios in order to avoid immediate N defi-
ciency stress when enhancing C acquisition rates. It has been
shown that root C/N ratios (Pendall et al., 2004; Gai-ping
et al., 2006) as well as leaf C/N ratios (Liu et al., 2005) can
increase in Free Air CO2 Experiments experiments (FACE),
though the interdependence between changes in root and leaf
C/N ratios still needs investigation.

2.4.2 N availability

Under N limitation in the model, i.e., when there is not
enough N available to meet the requirement (CNLeaf >

CNLeaf,max), leaching is first reduced by up to 100 %, then
if more N is needed immobilisation is reduced by up to 50 %
and added to the plant uptake. In both cases, NO−

3 fluxes are
adjusted before NH+4 . Reducing leaching and immobilisation
in favour of increasing uptake gives plants in the model pref-
erential access to mineral nitrogen pools. If plant uptake re-
quires even more N, it is taken directly from the NO−

3 or
NH+

4 at the same proportions as uptake happens and is added
to the leaf N pool. This setup ensures that, given the current
C stocks in the plant biomass, the minimal requirement for
N to fulfil the C/N ratios is always met. However, N limita-
tion in UVic-CN starts affecting photosynthesis as soon as
CNLeaf > CNLeaf,min.
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2.4.3 N effect on NPP

One of the determining factors in the rate of photosynthesis,
and, therefore, NPP, is the activity of the enzyme Rubsico,
which correlates well with leaf N concentration (e.g.,Evans,
1983). This relationship is reflected in the UVic ESCM
by linking the maximum rate of carboxylation by Rubisco,
Vc,max (mol CO2 m−2 s−1) to leaf N (nl):

Vc,max = λnl . (27)

wherenl , which is fixed for each PFT in the original equation
(Cox et al., 1999, Eq. 21), is replaced by the inverse of the
calculated average canopy leaf C/N ratio (CNleaf). The con-
stant of proportionalityλ is 0.004 for C3 and 0.008 for C4
PFTs (Cox et al., 1999). Equation (27) means that photosyn-
thetic activity and, therefore, plant productivity is reduced
when CNLeaf increases, but in the model it never falls to zero
because of N limitation as CNLeaf has a maximum value (Ta-
ble 2). We opt for using the average canopy leaf C/N ratio
rather than top leaf C/N ratio as done inCox et al.(1999)
as there is evidence that it is not the C/N ratio of leaves that
varies within a canopy, but the leaf mass area per unit area
and with it the N mass per unit area (Hollinger, 1996). Hence,
as long as N concentration is expressed in kg N (kg C)−1,
i.e. as the inverse of the C/N ratio, as is done in the UVic
ESCM, we can assume that there is no need to vary leaf C/N
ratios within the canopy (Thornton and Zimmermann, 2007).

Another determining factor of NPP is the rate of mainte-
nance respirationRm taken from the original MOSES model
(Cox et al., 1999):

Rm = 0.012Rd

(
S +

Nroot+ Nstem

Nleaf

)
, (28)

where 0.012 is a factor to convert units of mol CO2 m−2 s−1

to kg C m−2 s−1. Dark respirationRd is linked toVc,max and
aQ10 of 2 via

Rd =

{
0.015Vc,maxQ10 for C3 plants,
0.025Vc,maxQ10 for C4 plants.

(29)

S is the soil moisture andNroot, Nstem, Nleaf are the N con-
tents in root, stem and leaf in kg N( kg C)−1.

2.5 Model simulations

The model is integrated either with C/N feedbacks switched
on (labelled UVic CN-coupled mode or UVic-CN) or with
both the vegetation and soil C/N feedbacks switched off
(UVic C-only mode). To switch off the soil C/N feedbacks,
the term(1+ ξ [Nmin,av]) is omitted from Eqs. (5)–(8) and
to turn off the vegetation C/N feedback, the leaf N concen-
trations (nl) given as inverse (1/nl) in Table 2 are used in
Eq. (27) instead of the calculated leaf C/N ratios (CNleaf).

Values fornl in the UVic C-only mode are set so that
a comparable global GPP between the C-only and the CN-
coupled mode is achieved (R2

= 0.8, p < 0.001 for GPP

at grid cell level). At steady state, vegetation C pools are
544 Pg C (C-only) and 651 Pg C (CN-coupled) and soil C
pools are 1197 Pg C (C-only) and 1421 Pg C (CN-coupled).
The spatial differences between UVic C-only and UVic-CN
are the presence of greater vegetation C in UVic-CN mainly
in the boreal zone (by 2–4kgCm−2) and in some tropical ar-
eas (1–4kgCm−2). The soil C is also higher in UVic-CN by
5–7kgCm−2 in most of the boreal zone, by 3–6kgCm−2 in
mountainous temperate zones and by 1–3kgCm−2 in some
tropical and subtropical areas. Soil C losses in UVic-CN
occur in central Europe, eastern China and central United
States. A grid cell by grid cell comparison between UVic C-
only and UVic-CN yieldsR2

= 0.74, p < 0.001 for soil C
andR2

= 0.88, p < 0.001 for vegetation C.
Both model versions are spun-up until the soil C pool

changes by less than 0.5 % per century. The models are
then integrated transiently from 1800–1999 in either the
CN-coupled mode or the C-only mode. We use the usual
set of forcing for the UVic ESCM (orbital parameters, so-
lar constant, volcanic activity, sulphate concentrations, land
ice cover, atmospheric CO2 concentrations, non-CO2 green-
house gas concentrations and land use change). The only new
forcing for UVic-CN is nitrogen deposition derived as de-
scribed in Sect.2.2. Nitrogen deposition affects the C cycle
in the model only when C/N feedbacks are switched on.

As well as fully-forced control simulations for each model
version, five experiments are conducted, three with UVic-CN
(E1–E3) and two with UVic C-only (E4–E5). The experi-
ments are listed in Table5 and are similar to other studies that
used radiatively coupled/uncoupled runs (e.g.,Zaehle et al.,
2010b). The runs are transient runs for the time period 1800–
1999.

Fully forced simulations are conducted for UVic-CN
(FF1) and UVic C-only (FF2), in which all of the relevant
forcings are used. The experiments also include radiatively
coupled simulations, where the climate experiences the ra-
diative effect of increasing atmospheric CO2 concentrations,
but the vegetation experiences no CO2 fertilisation effect due
to atmospheric CO2 concentrations being held constant at the
1800 level (E1 and E4) and radiatively uncoupled simula-
tions, where the climate sees a constant CO2 concentration
at 1800 levels, but the vegetation experiences the transient
CO2 concentrations (E2 and E5). The third experiment for
UVic-CN held N deposition constant at 1800 levels, whereas
in E1 and E2 it is transient.

Sensitivities of the terrestrial C pool to CO2 concentration
(βL) and air temperature (γL) are calculated followingBonan
and Levis(2010, Eqs. 2a and 3a):

βL =
1C

(FF−Climate)
L − 1CFF

L

1CA
(30)

and

γL =
1C

(FF−Vegetation)
L − 1CFF

L

1TL
, (31)
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Table 5.Description of the UVic ESCM experiments and the forcings used. “FF” are the fully forced simulations and “E” are the experimental
simulations in which the forcings are modified. In the forcing column, “FF” indicates a fully forced model, using transient CO2 concentration
for the vegetation and climate and N deposition, “FF minus Vegetation” means that the CO2 concentration for the vegetation is held constant,
“FF minus Climate” means that the CO2 concentration for the climate is held constant and “FF minus Ndep” means that the N deposition is
held constant. “CN” indicates the use of UVic-CN and “C-only” indicates the use of UVic C-only, “CO2 for the vegetation/climate” gives
the year or period that is used and Ndep gives the year or period of natural and anthropogenic N deposition.

Label Forcing UVic ESCM CO2 for CO2 for Ndep
version for vegetation for climate

FF1 FF CN 1800–1999 1800–1999 1800–1999
FF2 FF C-only 1800–1999 1800–1999 –

E1 FF minus Vegetation CN 1800 1800–1999 1800–1999
E2 FF minus Climate CN 1800–1999 1800 1800–1999
E3 FF minus Ndep CN 1800–1999 1800–1999 1800
E4 FF minus Vegetation C-only 1800 1800–1999 –
E5 FF minus Climate C-only 1800–1999 1800 –

Table 6. Mean 1990s global fluxes and stocks of C and N as simulated by UVic C-only and UVic-CN driven by CO2 concentrations. The
arrows indicate increases (↗) or decreases (↘) when switching C/N feedbacks on.

Pool/Flux UVic C-only UVic-CN Other CN models results Reference

Vegetation C (Pg C) 538.5 ↗ 635.4 845 (C)↘ 766 (CN) Bonan and Levis(2010)
647.1 (C)↘ 537.0 (CN) Zaehle et al.(2010b)

Litter C (Pg C) 103.9 ↘ 81.9
Soil C (Pg C) 1255 ↗ 1471 729 (C)↗ 750 (CN) Bonan and Levis(2010)

1723.1 (C)↘ 1288.7 (CN) Zaehle et al.(2010b)
GPP (Pg C a−1) 133.1 ↘ 129.6 167 (C)↘ 163 (CN) Bonan and Levis(2010)

148.4 (C)↘ 132.6 (CN) Zaehle et al.(2010b)
NPP (Pg C a−1) 67.1 ↗ 75.2 58 (C)↘ 57 (CN) Bonan and Levis(2010)

65.9 (C)↘ 57.5 (CN) Zaehle et al.(2010b)
NEP (Pg C a−1) 1.53 ↘ 0.83 2.5 (C)↘ 1.8 (CN) Bonan and Levis(2010)
NEP no land-use (Pg C a−1) 3.66 ↘ 2.93 2.62 (C)↘ 2.38 (CN) Zaehle et al.(2010b),
Vegetation N (Pg N) – 2.94 3.8 Zaehle et al.(2010b)
Litter N (Pg N) – 1.00
Soil N (Pg N) – 113.0 100 Zaehle et al.(2010b)
N uptake (Tg N a−1) – 873.2 1126.9 Zaehle et al.(2010b)
N loss (Tg N a−1) – 222.8 118.1–155.3 Zaehle et al.(2010b)

where 1CFF
L , 1C

(FF−Climate)
L and 1C

(FF−Vegetation)
L are

changes in land C in the different experiments (Table5),
1CA is the change of atmospheric CO2 concentration and
1TL the change in 2 m land surface temperature between the
period 1800–1804 and the period 1995–1999.

3 Results and discussion

3.1 Nitrogen pools for 1980–1999

The spatial distribution of N stocks in vegetation (Fig.2a)
shows a similar pattern to C stocks (Fig.7a) with highest
N content of 30–50 g N m−2 in forest areas. Most tropical
forests fall in the 30–40 g N m−2 range, with lower values in
some parts of the Amazon. Boreal zones in North America

and Europe have higher N contents (30–40 g N m−2) than in
boreal Russia. Simulated vegetation N stocks are lower com-
pared toGerber et al.(2010) and much lower thanXu-Ri and
Prentice(2008) andYang et al.(2009). The latter two stud-
ies simulated plant N contents of 150–400 g N m−2 in trop-
ical forests, which results in vegetation C/N ratios of 37.5–
133 assuming a vegetation C stock in tropical forests of 15–
20 kg C m−2 (e.g.,Sitch et al., 2003). The vegetation C/N ra-
tios obtained by the UVic CN-coupled model are shown in
Fig. 3 and are between 250 and 300 in tropical forests. The
dominant factor for the overall C/N ratio of the vegetation
is the wood C/N ratio as wood contributes between 70–94 %
of tropical plant biomass (Vitousek et al., 1988; Malhi et al.,
1999). Observed wood C/N ratios for tropical trees vary from
95 to 730 (Martius, 1992) and any modelled vegetation N
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Fig. 2. Mean 1980–1999 nitrogen content in vegetation(a) and soil plus litter(b) simulated by UVic-CN and soil nitrogen content as given
by the IGBP-DIS data base (Global Soil Data Task Group, 2000) (c).

content will strongly depend on the value chosen for the PFT-
dependent wood C/N ratios. The global vegetation N pool
in the UVic-CN is 2.94 Pg N close to the estimate ofZaehle
et al.(2010b) (Table6), but much lower than the estimates of
Lin et al. (2000) (16 Pg N) andYang et al.(2009) (18 Pg N).
However, given that the current estimate of vegetation C is
between 560 and 652 Pg C (Saugier and Roy, 2001), a vege-
tation N pool of 16–18 Pg N would result in an — in our opin-
ion — unreasonably low average global vegetation C/N ratio
of 31–41. In this study, a vegetation C pool of 635.4 Pg C
combined with a vegetation N pool of 2.94 Pg N results in
a global vegetation C/N ratio of 216, values closer to what we
expect from the fact that vegetation biomass is dominated by
wood biomass with a high C/N ratio, but higher than found

in O-CN (537 Pg C and 3.8 Pg N gives a C/N ratio of 141)
(Table6; note that O-CN and O-C stand for the CN-coupled
and the C-only versions of the ORCHIDEE model according
to Zaehle and Friend(2010); Zaehle et al.(2010a,b)).

The sum of the simulated soil and litter N stocks are 0–
2 kg N m−2 (Fig. 2b) and, therefore, lower than the N val-
ues shown in the IGBP-DIS database (Fig.2c). Since soil
N content in the model is tied to soil C content via a fixed
C/N ratio, lower C stocks in UVic-CN (Fig.7) lead to lower
N stocks compared to the IGBP-DIS data (frequently over
30 kg C in the boreal zone) (Global Soil Data Task Group,
2000). The lack of permafrost and peatlands in UVic-CN is
the likely reason for the underestimation of boreal C stocks
(Wania et al., 2009). The global soil N stocks in UVic-CN
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Fig. 3.Mean 1980–1999 C/N ratios of vegetation(a), leaves(b) and litter(c) simulated by UVic-CN.

are 113 Pg N. This compares well withZaehle et al.(2010b)
(100 Pg N),Yang et al.(2009) (65 Pg N in for the top 30 cm
of soil) and the information from soil data bases byPost et al.
(1985) andBatjes(1996) (95–140 Pg N).

In general, tropical forests show the highest simulated veg-
etation C/N ratios (Fig.3a), with some extra-tropical excep-
tions such as in Chile, Mexico and South Africa where both
tree PFTs, broad-leaved and needle-leaved, occur. C/N ra-
tios in temperate forests in North America are between 200
and 250 and decrease northwards to 150–200 kg C (kg N)−1,
a value range also seen for the Eurasian boreal zone. In gen-
eral, simulated vegetation C/N ratios are lower in areas where
the percentage of leaf and root biomass is relatively high. In
boreal areas simulated leaves and roots constitute about 10 %

of total biomass, whereas in some tropical regions leaves and
roots constitute only 3 % of the total biomass compared to
observed 4.5 % in northern conifer ecosystems and 1.9 % in
tropical closed forests (Vitousek et al., 1988). Since leaves
and roots are richer in N than wood, areas with high percent-
ages of leaf and root biomass show lower C/N ratios (tem-
perate and boreal forests) than areas with low percentages of
leaf and root biomass (tropical forests). Litter C/N ratios fol-
low the vegetation C/N ratio closely (Fig.3c) and we find
some correspondence to observed values: comparing values
from UVic-CN with those fromWhite et al.(2000), all val-
ues in kg C (kg N)−1

± standard deviation, we find 78± 13
vs. 93± 28 for evergreen needleleaved forests, 87± 19 vs.
75± 37 for shrubs and 67± 18 vs. 45± 11 for grass.
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Fig. 4.Mean 1980–1999 ammonium(a) and nitrate(b) pools in the soil simulated by UVic-CN.

Ammonium and nitrate pools (Fig.4) show some similar-
ity to the results shown inXu-Ri and Prentice(2008, Figs. 12
and 13). BothXu-Ri and Prentice(2008) and UVic-CN simu-
late higher NH+4 in colder regions and higher NO−3 in desert
areas. High NO−3 concentrations have been observed in the
sub-soils of some deserts (Walvoord et al., 2003). The rea-
son for the high concentrations of NO−

3 in desert areas in
UVic-CN is the small but constant input of atmospheric NO−

3
which accumulates over time due to limited output such as
vegetation uptake and leaching. The higher NH+

4 concen-
trations in colder regions can be explained by lower leach-
ing and nitrification rates. The global soil NO−

3 and NH+

4
pools seem to be poorly constrained by data and are simu-
lated by our study to be 14.8 Pg N and 1.2 Pg N, respectively,
which is higher thanXu-Ri and Prentice(2008)’s estimates
of 0.58 Pg N and 0.36 Pg N for NO−3 and NH+

4 , close to the
estimate of 17 Pg N byEsser et al.(2011) and lower than the
25 Pg N of total mineral N estimated byLin et al. (2000). In
the absence of reliable observation-based estimates of NO−

3
in desert areas and better global constraints on mineral N in
soils, the evaluation of simulated N pools from any model
remains difficult.

3.2 Nitrogen fluxes for 1980–1999

Global annual rates of plant N uptake (873.2 Tg N a−1)
are lower than estimates from other models (1002 to
1126 Tg N a−1) (Xu-Ri and Prentice, 2008; Yang et al., 2009;
Zaehle et al., 2010b). As discussed above, the vegetation
C/N ratios in UVic-CN are higher compared to other models,
which reduces the demand for plant N uptake and explains
the lower uptake rates. Generally, uptake rates in UVic-CN
range from 3–9 g N m−2 a−1 in temperate and boreal regions
to 3–15 g N m−2 a−1 in tropical regions (Fig.5a). Higher val-
ues of 15–23 g N m−2 a−1 can be found in tropical grasslands
(in this case, in sub-Saharan Africa, India, Southern Brazil
and Northern Australia). Nitrogen uptake rates in the O-CN
model are estimated to be 4, 8 and 13 g N m−2 a−1 in boreal,
temperate broadleaved and tropical regions respectively with
maximal uptake rates of 30 g N m−2 a−1 found in grasslands
(Zaehle et al., 2010b).

The spatial distribution of leaching is similar to that
of runoff with highest values in the tropics and negligi-
ble values in drier and colder regions (Fig.5b). Global
annual N losses via leaching total 222 Tg N a−1 and
represent 84 % of N input. UVic-CN currently lacks al-
gorithms to simulate denitrification processes, which are
estimated to contribute naturally approximately 35 % to
global N losses from land (excluding river emissions)
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Fig. 5.Mean 1980–1999 plant uptake(a) and leaching(b) of nitrogen simulated by UVic-CN.

Fig. 6. Mean 1980–1999 gross primary production (GPP) (top row) and net primary production (NPP) (bottom row) for UVic C-only and
UVic-CN. The line graphs on the left hand side are zonal averages of the UVic C-only (black), the UVic-CN (solid red) data shown in the
maps per 1.8◦ latitude and the median data-driven zonally averaged GPP values taken fromBeer et al.(2010) (green).

(Bai et al., 2012; Gruber and Galloway, 2008). There are
two reasons for not including denitrification in this first
version of UVic-CN: (i) we followed the approach by
Gerber et al.(2010), who also omitted denitrification and (ii)
while denitrification is a microbial process that depends on

small-scale environmental conditions, the UVic ESCM has
a coarse resolution of 3.6◦

× 1.8◦. Including such a small-
scale process into a coarse resolution model would therefore
add a significant uncertainty.Zaehle and Dalmonech(2011)
discuss the difficulty of modelling denitrification in global
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Fig. 7.Mean 1980–1999 carbon content in vegetation(a) and soil plus litter(c) for the UVic-CN simulation (left) and the difference between
UVic-CN and UVic C-only (right) for vegetation(b) and soil plus litter(d).

Fig. 8. Changes of carbon fluxes from 1800 to 2000:(a) GPP= gross primary production,(b) NPP= net primary production and(c)
HR= heterotrophic respiration and changes of carbon pools(d) vegetation,(e) litter plus soil and(d) total, i.e., the sum of(d) and (e)
for UVic-CN (grey solid line) and UVic C-only (black dashed line) simulations.
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models and identify denitrification as both the most uncer-
tain and most poorly constrained part of C/N cycle models.
Both leaching and denitrification depend, amongst other
factors, on the concentration of nitrate in the soils. Since
denitrification is omitted in our model, it can be assumed
that nitrate concentrations in the current version are slightly
overestimated. However, if nitrate concentrations rise in the
model, leaching rates will consequently increase and more
or less counterbalance the lack of denitrification. Therefore,
due to the lack of gaseous N losses in the UVic-CN, the
model’s leaching flux needs to be compared to the sum of
leaching and gaseous fluxes in other models.Zaehle et al.
(2010b) estimate total N losses of 118.1–155.3 Tg N a−1 in
the O-CN model andGruber and Galloway(2008) estimate
the rate of N losses via leaching and gaseous losses to be
308 Tg N a−1 without and 397 Tg N a−1 with anthropogenic
perturbations.

3.3 Effect of C/N feedbacks on carbon pools and fluxes

Before integrating the UVic model versions transiently, ex-
periments are used to re-adjust the leaf nitrogen values (nl)
used in UVic C-only in Eq. (27) in order to achieve a compa-
rable annual gross primary productivity (GPP) in both model
versions for the pre-industrial simulations (Table6). The re-
sulting GPP values for 1800–1849 are 115.8 Pg C a−1 for the
C-only and 117.2 Pg C a−1 for UVic-CN. Despite the fact
that GPP of UVic C-only is slightly lower at the beginning
of the transient simulation, by the 1990s the GPP of UVic C-
only is 133.1 Pg C a−1 and, therefore, higher than in UVic-
CN (129.6 Pg C a−1) (Table 6). This indicates that N avail-
ability has already led to the limitation of GPP in UVic-CN
by the end of the 20th century. This N limitation of GPP
around the end of the 20th century is also found in the CLM4
(Bonan and Levis, 2010) and O-CN (Zaehle et al., 2010b)
models.

Despite similar GPP between UVic C-only and UVic-CN
for the pre-industrial period, NPP differs between the two
versions: 56.4 Pg C a−1 (C-only) versus 66.0 Pg C a−1 (CN)
for the 1800–1849 period and 67.1 Pg C a−1 (C-only) versus
75.2 Pg C a−1 (CN) for the 1990s. The reason for the differ-
ence in NPP values is the dependence of autotrophic respira-
tion on N content in leaf, root and stem in the UVic model
(Eq. 28), which follows the original MOSES/TRIFFID ver-
sion (Cox et al., 1999).

In UVic C-only, as in the original MOSES/TRIFFID code,
N contents in root and stem are calculated in relation to the
leaf N content (Cox et al., 1999, Eqs. 31–33), but not in rela-
tion to wood C content, which can result in unrealistically
high wood C/N ratios. In UVic-CN, wood C/N ratios are
fixed at 330 kg C (kg N)−1, which leads to higher wood N
content. Further, leaf N contents vary between a lower and
an upper boundary modulated by the actual availability of N
to the plant, which leads to higher leaf N levels in UVic-CN
compared to the UVic C-only. From Eq. (28) it can be seen

that increasing stem N (Nstem) increases maintenance respi-
ration,Rm, and increasing leaf N (Nleaf) decreasesRm. The
overall effect of changing (Nstem) and (Nleaf) in UVic-CN
is thatRm is reduced by approximately one third, which re-
duces total autotrophic respiration and, therefore, increases
NPP.

The effect of the reduction of autotrophic respiration can
also be seen in the zonal averaged NPP values in Fig.6d.
NPP in UVic-CN is higher than in UVic C-only at lati-
tudes where the vegetation is dominated by trees, i.e., the
tropics and boreal regions (not considering the 30◦ S to
60◦ S latitudinal band, where GPP differs between the C-
only and the CN-coupled mode, but where the land mass
is very low). Although NPP in UVic-CN is higher than in
CLM4 and O-CN (Bonan and Levis, 2010; Zaehle et al.,
2010b), it is still within the range of other model estimates of
55.4–83.8 Pg C a−1 (Arora and Matthews, 2009). The ratio
of NPP:GPP increased from 0.50 to 0.58 from when intro-
ducing C/N feedbacks into the UVic ESCM and is difficult
to reconcile with current ecological knowledge. CLM4-CN
has an NPP:GPP ratio of 0.35 (Bonan and Levis, 2010) and
O-CN of 0.43 (Zaehle et al., 2010b). A data-based analy-
sis suggests NPP:GPP ratios of 0.24 in the tropics and 0.53
in temperate regions (Luyssaert et al., 2007). This points to-
wards the necessity of re-visiting the autotrophic respiration
calculation in MOSES/TRIFFID, which strongly influenced
the NPP:GPP ratio in UVic-CN.

The increase in NPP in UVic C-only from 1800 to 1999
is 19 %, compared to 12 % in UVic-CN. It is still uncer-
tain how much of an CO2 fertilisation effect we can expect.
Early results from Free Air CO2 Enrichment (FACE) experi-
ments suggest an increase in productivity of temperate forest
ecosystems by 23± 2 % for approximately 550 ppmv CO2
(Norby et al., 2005), which is also reproduced in a mod-
elling study (Hickler et al., 2008). However, the modelling
response to CO2 fertilisation varied from an enhancement by
15.1 % for boreal forests to 35.1 % for tropical forests (Hick-
ler et al., 2008). More recent results from one of the FACE
experiments show that the initial increase of NPP of decidu-
ous sweetgum trees due to enhanced CO2 wore off after an
initial 4–5 yr period and dropped from an enhancement ef-
fect of 24 % in 2001–2003 to 9 % in 2009, which is hypothe-
sised to be caused by N-limitation (Norby et al., 2010; Garten
Jr. et al., 2011), supporting the N limitation seen in mod-
els. However, the decrease in NPP in the deciduous sweet-
gum is not reproduced in the evergreenPinus taedaat the
Duke FACE experimental site, which showed a continuous
enhancement of NPP by 22–30 % (McCarthy et al., 2010).

Over the 1980–1990 period, the zonally averaged GPP
values from both model versions are comparable (Fig.6).
The main difference between the two model versions arises
between the latitudes 30◦ S and 60◦ S. UVic-CN simulates
lower average GPP values for this part of the Southern
Hemisphere than UVic C-only, which fit the observed, data-
derived median GPP values fromBeer et al.(2010) better.
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Fig. 9. Mean 1990–1999 Net Ecosystem Production (NEP); positive values indicate a C sink, negative values a C source. Zonal averages of
NEP for UVic-CN (solid red) and UVic C-only (dashed black) in 10◦ increments(a, d, g)and spatial distribution of NEP for UVic-CN(b,
e, h, k)and UVic C-only(c, f, i). In plot (j) the UVic-CN “Fully Forced-N dep” (solid red, “CN-No N”) is compared to the UVic-CN “Fully
Forced” (blue dashed, “CN cntrl”). Four sets of experiments are shown: “Fully Forced” (FF1 and FF2), “Fully Forced-Vegetation” (E1 for
UVic-CN and E4 for UVic C-only), “Fully Forced-Climate” (E2 for UVic-CN and E5 for UVic C-only) and “Fully Forced-N dep” (E3). See
Table5 for the description of the experiments.

Both UVic model versions simulate a lower but broader peak
around the tropics than the data ofBeer et al.(2010) (Fig.6a).
The global simulated GPP of UVic-CN (129.6 Pg C yr−1) is
in good agreement with the most recent, observation-based,
estimate of 123±8 Pg C yr−1 (Beer et al., 2010).

Vegetation C stocks are driven by wood density and are
highest in tropical forests followed by temperate and boreal
forests in UVic-CN (Fig.7a). Simulated vegetation C stocks
are 12–16 kg C m−2 for tropical forests and 4–12 kg C m−2

for temperate and boreal forests, which is close to observa-
tions that show mean values of 12.1 kg C m−2 for tropical
and 5.7–6.4 for temperate and boreal forests (Malhi et al.,
1999). Soil C stocks are highest in cold regions where de-
composition rates are low (Fig.7c). The differences between

UVic-CN and UVic C-only are shown on the right hand side
of Fig. 7. The largest vegetation C gains in UVic-CN com-
pared to UVic C-only are in the range of 3–5 kg C m−2 found
in the circumpolar region, while tropical regions gain less
C. The largest gains are found in the circumpolar regions be-
cause NPP is higher for UVic-CN than for UVic C-only. This
seems counterintuitive as boreal ecosystems are thought of as
being N-limited (Tamm, 1991) and we would expect a reduc-
tion of NPP when introducing N as a limiting factor. The fact
that NPP of UVic-CN is higher in those regions (Fig.6d) is
due to the reduced autotrophic respiration in UVic-CN dis-
cussed above. However, when looking at GPP in Fig.6a,
we see that GPP values for both versions are very similar
and very close toBeer et al.(2010)’s values. One reason for
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the similarity between UVic-CN and C-only is that the N in-
put/output ratio in the boreal zone is greater than one, which
means that there is no N limitation for boreal forests, sug-
gesting that N input via BNF is too high. In fact, BNF in
UVic-CN is 1-2 g m−2 yr−1 in boreal forests, a factor of ten
higher than estimates byCleveland et al.(1999). Global BNF
in the year 1999 for UVic-CN is 207 Tg N a−1, derived as de-
scribed in Sect.2.2, and depends on estimates byCleveland
et al.(1999) whose best estimate is 195 T N a−1 with a range
of 100–290 N a−1.

Soil C gains are highest in cold areas including the circum-
polar region and the Tibetan plateau area, which decreases
the discrepancy between modelled soil C stocks in the bo-
real region in UVic-CN and observations, e.g.,Malhi et al.
(1999) report an average of 34.3 kg C m−2 for boreal soils
and the IGBP-DIS data shows high abundance of gridcells
with a soil C content of 30 kg C or more (Global Soil Data
Task Group, 2000). Soil C in extra-boreal regions in UVic-
CN is generally higher than in UVic C-only, which brings the
model results closer to observations, which are in the range
of 9.6–12.3 kg C m−2 for the temperate and tropical regions,
respectively (Fig.7c, d). The differences in the C pools be-
tween UVic-CN and UVic C-only are almost the same for
both steady state conditions, i.e., pre-industrial, and at the
present day. The main reason for the increases in vegetation
as well as soil C pools in UVic-CN especially in the boreal
region is – as mentioned above – the enhanced NPP in UVic-
CN, which leads to higher C accumulation rates.

Total global vegetation stocks are higher in UVic-CN than
in UVic C-only due to higher NPP (Table6), for which the
reasons are discussed above. This is in contrast toZaehle
et al.(2010b) andBonan and Levis(2010), who found a de-
crease in vegetation productivity when including C/N inter-
actions in their models and, therefore, lower vegetation C
stocks. Soil C stocks are higher in UVic-CN than in UVic
C-only – likely due to higher NPP values in UVic-CN – and
are in agreement withBonan and Levis(2010) but in dis-
agreement withZaehle et al.(2010b). In our case, soil C
stocks increased when including C/N interactions because
the consideration of mineral N concentration in Eq. (5) leads
to a faster humification process than when not including C/N
interactions, but it does not increase soil C turnover rates.
Higher humification rates result in increased input into the
slow overturning soil C pool at the expense of litter decom-
position to CO2, thereby increasing the total C storage of the
soil. The faster humification process and with it the faster lit-
ter decomposition (Eq.7) lead to a smaller litter C pool in
UVic-CN (Table6).

3.4 Historical changes of C fluxes and pools

In Fig. 8 we compare how C fluxes and pools in UVic-CN
and UVic C-only have evolved over the 19th and 20th cen-
tury. GPP values of both versions increase over the last two
centuries, remaining comparable up to the 1880s, but diverg-

ing from then on with UVic C-only increasing faster than
UVic-CN (Fig. 8a). The point of divergence coincides with
a change in radiative forcing caused by volcanic eruption of
Krakatoa in 1883. Around 1883, both model versions show
an increase in GPP followed by a decrease, though the de-
crease for UVic C-only is much smaller than that for UVic-
CN. This difference in GPP fluctuations following volcanic
eruptions can also be seen between 1800 and 1840. After
each of the volcanic events, GPP first increases and then
drops again. For UVic C-only, GPP rates drop back to the
value observed before the volcanic event, but the GPP in
UVic-CN shows a much stronger decrease after a preceding
spike.

The reason why the UVic ESCM simulates an increase
in GPP directly after volcanic eruptions is twofold. First,
air temperature drops after volcanic eruptions due to an in-
crease in aerosols (e.g.,Harris and Highwood, 2011), which
causes higher carbon assimilation rates in MOSES/TRIFFID
(Cox et al., 1999, Eq. 15). Second, soil moisture increases
due to a decrease in evaporation that exceeds the decrease
in precipitation. Following (Cox et al., 1999, Eq. 18), an in-
crease in soil moisture leads to higher C assimilation rates.
The difference between UVic-CN and UVic C-only arises
from the accumulation of C biomass through increased GPP;
UVic-CN lags behind in acquiring enough N to maintain
stable C/N concentration ratios within the plant tissue and
the increase in C/N ratios negatively affects photosynthesis
(Eq.27). Global average C/N ratios in leaves increase during
each volcanic event and return to pre-event values afterwards.
When comparing NPP (Fig.8b) to heterotrophic respiration
(HR) (Fig.8c) we can see complementary patterns, i.e., when
NPP shows a positive anomaly after a volcanic eruption, HR
shows a negative one due to the opposite effect of temper-
ature on those two variables. Lower temperature increases
GPP and, hence, NPP in the UVic model, but it decreases soil
and litter respiration rates. UVic-CN and UVic C-only show
very similar trends up to 1960, when they start diverging for
both NPP and HR due to the higher GPP values.

The total land C pool shown in Fig.8f is determined by
the soil and litter C pools (Fig.8e) which are much larger
than the vegetation C pool (Fig.8d). The vegetation C pools
of UVic-CN and UVic C-only follow each other until 1960;
the strong decrease between 1900 and 1960 is due to land
use change. The difference between the two model versions
is that the vegetation C pool in UVic C-only recovers from
land use change at the beginning of the 1980s whereas UVic-
CN does not show a recovery at that point. By the year 1999,
UVic-CN had lost 13.8 Pg C compared to the year 1800,
whereas UVic C-only had only lost 4.5 Pg C. The main mech-
anism underlying the difference between the vegetation C
pool in UVic C-only and UVic-CN after 1960 is that the
growth rate of NPP in UVic C-only is greater than the growth
rate of NPP in UVic-CN (Fig. 8b). The higher NPP growth
rate permits recovery of the vegetation C after 1980 in UVic
C-only. The lower NPP growth rate in UVic-CN is caused
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Table 7. Climate sensitivitiesβL in (Pg C ppmv−1) and γL in
(Pg C K−1) of the land C pool in UVic C-only and UVic-CN com-
pared to other models.

Model βL γL Period Reference

UVic C-only 1.2 −103 1800–1999 this study
UVic-CN 0.8 −87 1800–1999 this study
O-C 1.9 −48 1860–2000 Zaehle et al.(2010a)
O-CN 1.2 −35 1860–2000 Zaehle et al.(2010a)

1: This is the value for the simulation labelledCNndep+ (11CNDEP
L ) in

Bonan and Levis(2010).

by the limiting effect of N availability which can be inferred
from the increasing leaf C/N ratios (data not shown).

The soil and litter C pool anomaly for UVic-CN is higher
during the the first 150 yr of the simulation, but even though
it increases after 1960, it does not increase as fast as in UVic
C-only, and the anomaly by the year 1999 is therefore higher
for UVic C-only (72 Pg C) than for the UVic-CN (60.5 Pg C)
(Fig. 8e). This pattern also dominates the total C shown in
Fig. 8f, which shows that between 1800 and 1960, the terres-
trial biosphere gained up to 20 Pg C and between 1960 and
1999 it gained another 26–47 Pg C depending on the model
version. A difference of 21 Pg C in total C accumulation by
the year 1999 compares well to the O-CN model, in which
the O-C version gained 25 Pg C more than the O-CN version
in the period 1860–2000 (Zaehle et al., 2010a, Table S1).

3.5 Sensitivity of land C uptake

The climate sensitivities,βL and γL , for the period 1800–
1999 are listed in Table7. The current version of the UVic
model simulates aβL value of 1.2 for UVic C-only and
0.8 Pg C ppmv−1 for UVic-CN. A similar magnitude of re-
duction of theβL sensitivity when including C/N interactions
is also found in the O-CN model (Table7). TheβL for UVic-
CN is 0.4 Pg C ppmv−1 (−33 %) lower than for UVic C-only,
whereas for O-CN the respective change is 0.6 Pg C ppmv−1

(−32 %). This means that introducing C/N feedbacks into
those two models had a similarly strong effect on the C sen-
sitivity to CO2 fertilisation.

The C sensitivity to temperature,γL , is−103 Pg C K−1 for
UVic C-only and−87 Pg C K−1 for UVic-CN, which makes
it more sensitive to temperature than the O-CN model, whose
C sensitivity to temperature is only−48 Pg C K−1 for the
C-only version and−35 Pg C K−1 for the CN version (Ta-
ble 7). The greater sensitivity of the UVic model is not sur-
prising, as in a multi-model comparison of climate sensitivi-
ties,γL of the UVic ESCM was−98 Pg C K−1 for the period
1850–2100, which was greater than the multi-model average
of −79 Pg C K−1 (Friedlingstein et al., 2006). The relative
change ofγL when switching from the C-only to the CN ver-
sion in the UVic ESCM (−25 %) is comparable to the one
in O-CN (−27 %), whereas, the absolute change of the UVic

ESCM is twice as high as the change of the O-CN model
(26 vs. 13 Pg C K−1), which can be explained by the higher
sensitivity of the UVic C-only.

In order to evaluate the sensitivity of the land C uptake to
the introduction of N into the UVic model, we compare the
spatial distribution and the zonal averages of Net Ecosystem
Production (NEP), i.e., the CO2 flux from the atmosphere to
the land, of UVic-CN to UVic C-only under different forc-
ing regimes for the 1990s (Fig.9). UVic C-only simulates
a strong C sink in tropical regions and a less strong C sink
for the extra-tropical regions for the 1990s under the “Fully
Forced” experiment (Fig.9c). Almost all of the Amazon,
tropical Africa and parts of Southeast Asia take up C at a rate
of over 20 g C m−2 a−1. A large proportion of these tropical C
sinks disappears in UVic-CN (Fig.9b), whereas the boreal C
sinks remain. The disappearance of the tropical C sinks is not
caused by N limitation in the model, given that zonally aver-
aged GPP values of UVic-CN and UVic C-only do not differ
much (Fig.6a) and NPP values in the tropics are actually
higher in UVic-CN than in UVic C-only (Fig.6d). The neu-
tral NEP in the tropics is due to an increase in heterotrophic
respiration in the tropics in UVic-CN. This increase is caused
by a faster rate of litter decomposition due to the inclusion of
the effect of N on humification discussed above, but also by
the increase of the soil C pool in UVic-CN (Fig.7).

Expressed as zonal averages, NEP around the equator
shows a reduction from about 0.35 Pg C a−1 per 10◦ latitude
in UVic C-only to 0.1 Pg C a−1 in UVic-CN (Fig. 9a). An-
other reduction in the C sink strength is seen in the mid-
latitudes, between 40◦ N and 60◦ N; here, a drop from about
0.2 Pg C a−1 in UVic C-only to < 0.1 Pg C a−1 in UVic-CN
is observed. A reduction in NEP in the tropics and the mid-
northern latitudes is also observed in the MIT CN-TEM
model when compared to the MIT C-TEM model (Sokolov
et al., 2008). When comparing our results to those of the O-
CN model, we find two main differences: first, zonally av-
eraged NEP in both, the O-C and O-CN versions, for the
1990s is larger in mid-latitudes (> 0.4 Pg C a−1) than in low
latitudes (< 0.4 Pg C a−1), and second, the zonally averaged
NEP south of 50◦ N in O-CN is higher than in O-C (Zaehle
et al., 2010b), which contrasts with the results of the UVic
C-only and CN-coupled versions. The effect that N has on
the NEP in Fig.9a is caused by an increase in heterotrophic
respiration due to mineral N availability. This increase leads
to lower NEP despite equal or higher NPP in the tropics as
shown in Fig.6d.

In the “Fully Forced minus Vegetation” experiment, where
the vegetation experiences constant atmospheric CO2 con-
centrations at 1800 levels, whereas climate and N deposi-
tion are transient, almost all of the land area turns into a C
source (Fig.9d–f). In UVic C-only the Amazon is a stronger
C source than in UVic-CN, but the opposite is true for South-
east Asia. When comparing the “Fully Forced” to the “Fully
Forced minus Vegetation” experiments a larger decrease of
tropical NEP is observed in UVic C-only than in UVic-CN,
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Table 8.Global NEP (Pg C a−1) values for the 1990s.

Forcing Experiment CN-coupled Experiment C-only

Fully Forced FF1 0.83 FF2 1.57
Fully Force minus Vegetation E1 −0.60 E4 −0.63
Fully Force minus Climate E2 1.05 E5 2.17
Fully Force minus N deposition E3 0.48

bringing the NEP values of UVic C-only and UVic-CN closer
to each other between 50◦ S and 20◦ N (Fig. 9d). Tropical
NEP in UVic C-only decreases by 0.39–0.43 Pg C a−1 per
10◦-latitude band, whereas in UVic-CN, it decreases by only
0.20–0.23Pg C a−1. The stronger reduction in NEP in UVic
C-only compared to UVic-CN has also been found in O-CN
(Zaehle et al., 2010b). In our model, this difference is due to
a reduction in NPP that averages 16.4 % between 30◦ S and
30◦ N in UVic C-only but only 12.9 % in UVic-CN.

The “Fully Forced minus Climate” experiment, basically
a CO2 fertilisation experiment, results in an increase of NEP
compared to the “Fully Forced” experiment in UVic C-only
between 30◦ S and 60◦ N, with the strongest increase around
the equator of 0.12 Pg C a−1 per 10◦-latitude band (Fig.9g–
i). In contrast, UVic-CN does not show increases of NEP
around the equator, but rather in mid-latitudes, i.e., 10◦ S–
30◦ S and 40◦ N–50◦ N.

The last experiment, “Fully Forced minus N deposition”
is similar to the Fully Forced experiment, except that N de-
position is excluded from the model. As the zonal average
shows, the simulation without N deposition has a reduced C
sink strength between 10◦ S and 60◦ N, in the areas where
N deposition occurs (Dentener, 2006). Zaehle et al.(2010b)
found that the latitudes between 35◦ N and 65◦ N are most
affected by N deposition in the O-CN model. The sensitiv-
ity of the UVic model to N deposition in the tropics together
with the lack of increase in NEP in the “Fully Forced minus
Climate” experiment is likely to be related to changes in the
Amazon basin.

Throughout the figures, the Amazon basin differs from
other tropical regions, showing lower ammonium and nitrate
concentration (Fig.4), lower plant uptake (Fig.5a), partially
in GPP and NPP (Fig.6). One difference between the Ama-
zon and the rest of the tropics that we have found is a much
higher simulated soil moisture. Higher soil moisture leads to
higher runoff and despite lower ammonium and nitrate con-
centrations, leaching rates of mineral N are about the same
in the Amazon as in other tropical regions (Fig.5b), which
means that in our model relatively more mineral N is lost via
leaching in the Amazon than in other regions. Lower soil am-
monium and nitrate concentrations cause lower plant uptake
rates, leading to higher leaf C/N ratios in the northern part
of the Amazon (compare Figs.3b, 4a and5a), which limits
photosynthesis.

Global numbers for NEP shown in Fig.9 are given in Ta-
ble8. The difference in NEP between UVic C-only (FF2) and
UVic-CN (FF2) is 0.74 Pg C a−1 in the “Fully Forced” simu-
lations. This drop in NEP is simulated despite the increase in
NPP in UVic-CN discussed above; the lower NEP is caused
by higher soil and litter respiration rates reducing the C sink
strength in UVic-CN. A drop of 0.7 Pg C a−1 from the C-
only to the CN-coupled version is also found in the CLM4
model (Bonan and Levis, 2010). The model experiments
“Fully Forced minus Vegetation” result in the land becoming
a strong C source in both model versions. Land in UVic C-
only represents a slightly stronger C source (−0.63 Pg C a−1)
than in UVic-CN (−0.60 Pg C a−1). The difference between
the CN-coupled version and the C-only version in the UVic
model is smaller than that found byZaehle et al.(2010b,
approximately−0.7 Pg C a−1 for the O-C and−0.3 for O-
CN). The smaller difference between the two UVic versions
may be the result of the absence of N limitation in the boreal
zone (Fig.9a) due to high rates of BNF in the UVic-CN as
discussed above. The lack of boreal N limitation will cause
global C storage to appear higher than they may be in reality
and a reduction of NEP as seen in the O-C/O-CN versions is
more likely.

When the model is integrated in the “Fully Forced minus
Climate” mode, we observe a larger increase in global NEP
in UVic C-only (from 1.57 to 2.17 Pg C a−1) than in UVic-
CN (from 0.83 to 1.05 Pg C a−1) compared to the “Fully
Forced” simulations (Table8). The global effect of exclud-
ing N deposition is a reduction of the annual NEP from
0.83 Pg C a−1 to 0.48 Pg C a−1 or, expressed as the positive
effect of anthropogenic N deposition, we find an enhance-
ment of NEP of 0.35 Pg C a−1, which falls in the range of the
estimates byZaehle et al.(2010b) of 0.2–0.5 Pg C a−1.

Comparing the additive effect of the climate experiments
(E1+ E2 and E4+ E5) with the fully forced simulations
(FF1 and FF2), we find a strong nonlinearity in UVic-CN
(FF1 6= E1+E2, i.e., 0.83 6= 0.45 Pg C a−1), but only a weak
nonlinearity in UVic C-only (FF2≈ E4+ E5, i.e., 1.57≈

1.54 Pg C a−1) (Table 8). A similar nonlinearity has been
found in O-CN byZaehle et al.(2010b), who compared their
“Fully Forced” version to the “Fully Forced minus Vegeta-
tion” + “Fully Forced minus Climate” (all three versions are
without N deposition) and found a difference of 0.4 Pg C a−1,
i.e., the NEP of the “Fully Forced” is 0.4 Pg C a−1 higher than
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the arithmetic sum of the other two simulations. In our case,
that difference is 0.38 Pg C a−1.

4 Conclusions

The UVic ESCM joins a suite of other Earth System Models
that have included terrestrial C/N feedbacks. There is large
uncertainty around some of the relevant pool sizes (e.g., N
pool in vegetation, NO−3 pool in soils) and flux strengths
(e.g., N uptake or leaching), which cannot be eliminated until
we have gathered better data. The UVic ESCM agrees with
some models and disagrees with others, but shows, in gen-
eral, similar behaviour to other CN-coupled models; where
disagreement occurs, there exists a reasonable explanation
for differences between our model and others. One of the
main attributes of the UVic CN-coupled ESCM is that the in-
clusion of N leads to an increase in the NPP:GPP ratio which
is caused by a reduction in autotrophic respiration due to its
relationship with plant N content. Even though the current
formulation of the autotrophic respiration served the C-only
version of the model well, the shift in NPP:GPP ratio from
UVic C-only to UVic-CN suggests that it may be unrealis-
tic for a CN-coupled version and should be reconsidered in
a future version.

The high soil moisture content in the Amazonian basin
are the reason why this region stands out compared to other
tropical areas. Higher soil moisture content leads to faster
microbial processes, causing low mineral N concentrations.
The Amazonian basin shows lower productivity values and
a nearly neutral NEP and only minor changes in our forcing
experiments. The overall cause for the high soil moisture val-
ues in the Amazon is a bias towards high precipitation in that
region in the UVic ESCM. The absence of N limitation in the
boreal forest appears to be due to too much N input via BNF
in those regions.

Despite these limitations, the changes of climate sensitiv-
ity to CO2 and temperature when introducing C/N feedbacks
to the UVic model compares well to the more sophisticated
O-CN model. Similar to other models, we find that the cou-
pling of the C and N cycle leads to reductions in NEP under
fully forced conditions and introduces a strong nonlinear be-
haviour in NEP. This nonlinearity arises either from a miti-
gated negative effect of temperature on NEP or a suppressed
positive effect of CO2 on NEP.
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