
Multi-Model-Driver (MMD)
User Manual

Version 1.1

Astrid Kerkweg1,

& Patrick Jöckel2

1 Institute for Atmospheric Physics
University of Mainz

55099 Mainz, Germany
kerkweg@uni-mainz.de

2 Deutsches Zentrum für Luft-und Raumfahrt (DLR),
Institut für Physik der Atmosphäre,

Oberpfaffenhofen, D-82234 Weßling, Germany
patrick.joeckel@dlr.de

This manual is available as electronic supplement of our article “The 1-way on-line coupled
atmospheric chemistry model system MECO(n): Part II: On-line Coupling ” in Geosci. Model
Dev. (2011), available at: http://www.geosci-model-dev.net

Date: November 11, 2011

2 Kerkweg and Jöckel: MMD user manual

Kerkweg and Jöckel: MMD user manual 3

Contents

1 Introduction 5

2 The run-scrip xmessy mmd 6

3 The MMDCLNT namelists 9

4 Basic coupling setup 14

5 The Client 16

5.1 Initialisation Phase . 19

5.1.1 mmdclnt setup . 19

5.1.2 mmdclnt init memory . 21

5.2 Integration Phase . 32

5.2.1 Data exchange, interpolation and supply . 32

5.2.2 Exchange of stop and restart triggers . 37

5.3 Finalisation Phase . 39

5.4 Grid definitions and parallel decomposition of INT2COSMO 39

5.4.1 Domains . 39

5.4.2 The parallel decomposition of the COSMO model grid and the INT2LM grid . 41

5.4.3 The parallel decomposition of the INT2COSMO grid 43

6 The Server 45

6.1 Initialisation Phase . 46

6.1.1 mmdserv initialise . 46

6.1.2 mmdserv init coupling . 46

6.2 Integration Phase . 50

6.3 Finalisation Phase . 50

7 Changes in INT2LM code required for the MESSy submodel INT2COSMO 50

7.1 data fields lm.f90 /data fields in.f90 . 51

7.2 data grid lm.f90 . 51

7.3 data int2lm control.f90 . 51

7.4 data int2lm io.f90 . 51

7.5 data int2lm parallel.f90 . 52

7.6 data parameters.f90 . 52

7.7 external data.f90 . 52

7.8 src 2d fields.f90 . 53

4 Kerkweg and Jöckel: MMD user manual

7.9 setup int2lm.f90 . 53

7.10 src cleanup.f90 . 53

7.11 src coarse interpol.f90 . 54

7.12 src decomposition.f90 . 54

7.13 src lm fields.f90 . 54

7.14 src memory.f90 . 54

7.15 src namelists.f90 . 55

7.16 src read coarse grid.f90 . 56

7.17 src vert inter lm.f90 . 57

7.18 src vert interpol.f90 . 57

8 Changes in the COSMO code required for the on-line coupling 57

8.1 Application of the preprocessor directive I2CINC . 57

8.2 Application of the preprocessor directive MESSYMMD . 58

8.2.1 environment.f90 . 58

8.2.2 src setup.f90 . 58

9 Changes in the ECHAM5 code required for the on-line coupling 58

9.1 mo mpi.f90 . 58

9.2 scan1.f90 . 59

Kerkweg and Jöckel: MMD user manual 5

1 Introduction

This manual is one part of a detailed description of the on-line coupling via the Multi-Model-Driver
(MMD). MMD couples models following a client-server approach. It consists of three parts:

• The MMD library managing the data exchange between the different executables/models,

• the server MESSy submodel MMDSERV, providing the coarse grid data required by the client
and

• the client MESSy submodel MMDCLNT, requesting the input data from the server and subse-
quently interpolating these data for use in the model.

The MMD library is described in the MMD library manual, which is part of the same electronic
supplement this manual is published in. This manual, in contrast, is dedicated to the MMD MESSy
submodels MMDCLNT and MMDSERV. In the current implementation, the ECHAM5/MESSy gen-
eral circulation model is supported as server model, and the limited-area model COSMO/MESSy as
server and/or client model. While the coupling layout, (i.e., which and how many model instances are
run concurrently and which instance gets how many and which process entities (PEs)) is determined
within the MMD library, the client submodel MMDCLNT drives the coupling between the two models
of a client-server pair. Within the MMDCLNT namelist file the coupling frequency, i.e., how often
data is exchanged between the server and the client, and the exchange fields1 are specified.

After the data exchange MMDCLNT interpolates the coarse grid data to the COSMO model grid
using its submodel INT2COSMO. INT2COSMO is based on INT2LM as provided by the German
Weather Service (DWD) for the interpolation of the initial and boundary data for the COSMO model.
INT2COSMO and INT2LM contain basically the same code, but for distinction we hereafter refer to
the MMDCLNT submodel as INT2COSMO, i.e., the on-line preprocessing tool, and to INT2LM as
the standard off-line (or stand-alone) application. The basic tasks of the server are to impose its time
and date setting (except the time step length) on the client and to provide the requested data to the
client.

In the first part of the manual those files which have to be modified by a user of the system are
explained: Sect. 2 illustrates the run-script settings, Sect. 3 goes into detail about the individual
namelist entries in the MMDCLNT namelist file and, for an overview, Sect. 4 roughly summarises the
coupling work flow.

The second part of the manual is for those users, which want to expand the coupling or simply want
to know more details about the coupling implementation: in Sects. 5 and 6 these are described for the
client and the server, respectively. The superposition of the parallel decomposed COSMO model and
INT2COSMO grids poses a specific challenge, which solution is discussed in Sect. 5.4.

Last but not least, the code changes of the individual model codes, which are required in order to
enable the on-line coupling, are listed for the different code sources, i.e., INT2COSMO, the COSMO
model and the ECHAM5 model, in the Sections 7, 8 and 9, respectively.

1The Appendix contains a glossary explaining some terms repeatedly used here. The terms from the glossary are
written in italics throughout the article.

6 Kerkweg and Jöckel: MMD user manual

2 The run-scrip xmessy mmd

The run-script consists of three major sections:

1. The first section contains queueing system settings. All queueing systems MESSy was sofar used
with are listed in this run-script. New queueing systems can be added easily. The user has to
activated the appropriate setup for the computing system he/she is using.

2. The second section is the one which needs specifications according to the actual model simulation.
Thus this section is subject to changes by every user for a specific simulation.

3. The last section contains all MESSy and machine specific settings. These should not be changed
by a model user. Only, if a new system is added, changes are also required here.

Here, we focus on the second block of the run-script, i.e., that part that needs to be adapted by the
user for a specific model setup. Its start is indicated in the run-script by the comment:

###
USER DEFINED GLOBAL SETTINGS
###

The settings are described one after the other as they are aligned in the script:

• EXP_NAME: This is the name of the experiment. This variable is copied to the CHANNEL2

namelist. All CHANNEL output files will start with this experiment name. Its maximal length
is 14 characters.

• WORKDIR: This is the directory in which the simulation is actually performed. In this directory
subdirectories are created by the run-script and all data written during the simulation are placed
into these (sub-)directories. For each model instance (see below) a subdirectory named by the
instance number is created. Note: for most scheduling systems the log-file will be placed in the
directory from which the run-script is submitted.

• START_YEAR, START_MONTH, START_DAY, START_HOUR: These are the start date/time components.
They are copied to the TIMER3 namelist defining the start date/time of the simulation. Addi-
tionally, they are copied to all namelists which require start time dependent entries. For instance,
for an emission file containing monthly averaged emission fluxes the knowledge of the month in
which the simulation starts is required. Nudging is another important example depending on
the start date components.

• STOP_YEAR, STOP_MONTH, STOP_DAY, STOP_HOUR: These date components are copied to the
TIMER and nudging namelists to determine the end of a simulation.

• NML_SETUP: This variable determines which namelist setup is used. In the subdirectory
messy/nml/ within the MESSy distribution different namelist setups are available. NML_SETUP
selects the name of the subdirectory, which should be used. If an ECHAM5/MESSy-only simula-
tion is performed, the subdirectory contains only the namelists required for an ECHAM5/MESSy
simulation. For the coupled simulations the respective directory contains as many subdirectories
as coupled instances exist. The numbers in the coupling layout (see below) are the same as the
numbers of the namelist subdirectories.

2The CHANNEL submodel is described in detail in the electronic supplement of Jöckel et al. (2010).
3The TIMER submodel is described in detail in the electronic supplement of Jöckel et al. (2010).

Kerkweg and Jöckel: MMD user manual 7

• OFT (Output File Type): At the time being it can be chosen between netCDF4 and parallel-
netCDF5, if the latter is available. This flag is copied to the CHANNEL namelist.

• QWCH: This should be set to the available wall-clock hours in a queue and is copied to the
QTIMER6 namelist.

• INSTANCE: This gives the number and type of model instances running simultaneously in the MPI
environment. The letters “E” and “C” indicate whether in this instance an ECHAM5/MESSy
model or a COSMO/MESSy model is executed.

===
SELECT MODEL INSTANCES E=ECHAM5 (always first, if used), C=COSMO,
M=MPIOM
other = MBM
===
INSTANCE[1]=E
INSTANCE[2]=C
INSTANCE[3]=C

If ECHAM5/MESSy is the coarsest server (master server), this needs to be the first instance.
If ECHAM5/MESSy or COSMO/MESSy are run alone, only one instance is set. The run-
script can also be used to run other MESSy models, e.g., the MESSy basemodel BLANK
(INSTANCE[1]=blank), CAABA (INSTANCE[1]=caaba) or MPIOM (INSTANCE[1]=M) can be run
as autonomous model with the same run-script.

• MMDSERVID: For each model instance the server of the model needs to be determined. The server
of a model is defined by its instance number.

===
SET MMD SERVER IDs (-1: MASTER SERVER)
===
MMDSERVID[1]=-1
MMDSERVID[2]=1
MMDSERVID[3]=2

The master server is indicated by “-1” because the master server has no server itself. For the
above example, the server of instance number 2 is the first instance, i.e., the ECHAM5/MESSy
model. The second model itself is server to the third instance. MMDSERVID[3]=1 would imply
that the third model also gets its data directly from ECHAM5/MESSy.

• NPX, NPY and NPL: NPX and NPY determine the parallel domain decomposition of the processes in
x and y direction, respectively. For the COSMO model these are copied to nprocx and nprocy in
the COSMO namelist &RUNCTL in the INPUT_ORG.nml namelist file. For ECHAM5/MESSy these
entries are copied to NPROCA and NPROCB in the &RUNCTL namelist of the ECHAM5.nml namelist
file. NPL is only of importance for ECHAM5/MESSy, as the vector length NPROMA is set to NPL.

• ECHAM5 specific settings:
4http://www.unidata.ucar.edu/software/netcdf/
5http://www.mcs.anl.gov/parallel-netcdf
6The QTIMER submodel is described in Jöckel et al. (2010).

8 Kerkweg and Jöckel: MMD user manual

– ECHAM5_HRES,ECHAM5_VRES: Spectral and vertical resolution of ECHAM5. ECHAM5_HRES
is one of (T106, T85, T63, T42, T31, T21, T10), whereas ECHAM5_VRES is one of
(L19, L31ECMWF, L41DLR, L39MA, L90MA). Note that ECHAM5 always requires input
data which matches the chosen resolution.

– MPIOM_HRES, MPIOM_VRES: horizontal and vertical resolution of MPIOM, when it is cho-
sen as a submodel. (Note: this is not yet available.) MPIOM_HRES is one out of
(GR60, GR30, Gr15, TP04, TP40) and MPIOM_VRES one of (L3, L20, L40).

– ECHAM5_NUDGING: This LOGICAL is set to T, if nudging of the ECHAM5 model is requested.
The nudging coefficients in the ECHAM5 namelist file (namelist &NDGCTL) must be set
accordingly.

– ECHAM5_LAMIP: Switch on sea-surface temperature (sst) and sea-ice forcing via AMIP-like
data for ECHAM5.

– NML_ECHAM: name of the ECHAM5 namelist file. As the ECHAM5 namelists include some
resolution dependent entries, it is convenient to work with resolution dependent ECHAM5
namelist files.

• COSMO_SUBDIR, COSMO_EXTNAME and COSMO_EXTGRID: These entries are used to determine the
INT2COSMO namelist entries required to access the external data file. COSMO_EXTNAME fills
ylmext_lfn and COSMO_EXTGRID contains the sizes of the external data file, which naturally de-
pend on the external data file and are required as individual entries in the INT2COSMO namelist
&DATA. ylmext_cat is filled by COSMO_EXTDIR, which is composed of a general data input path
(INPUTDIR_COSMO_EXT) and a subdirectory (COSMO_SUBDIR) in this input path. COSMO_SUBDIR
has to be defined individually for each instance, while a default value (as part of the standard
MESSy input directory) exists for INPUTDIR_COSMO_EXT. However, INPUTDIR_COSMO_EXT can be
user-defined for each individual instance.

-> COSMO_EXTDIR[.] = ${INPUTDIR_COSMO_EXT[.]}/$COSMO_SUBDIR[.]
COSMO_SUBDIR[1]=
COSMO_EXTNAME[1]=
COSMO_EXTGRID[1]=

COSMO_SUBDIR[2]=climatology
COSMO_EXTNAME[2]=europe.nc
COSMO_EXTGRID[2]="ie_ext=101, je_ext=107,"

COSMO_SUBDIR[3]=external
COSMO_EXTNAME[3]=lm_d1_g0.165_463x383
COSMO_EXTGRID[3]="ie_ext=463, je_ext=383,"

The number in brackets is the instance number. In the example with ECHAM5/MESSy as first
instance the block with instance number 1 must be empty.

The above listed variables need to be set. Here, additional variables are listed, which can be set, if
the default settings should not be used:

• BASEDIR: This is the directory of the model distribution.

• DATABASEDIR: Base directory for model input data.

Kerkweg and Jöckel: MMD user manual 9

• INPUTDIR_ECHAM5_INI: Directory containing the input data for the ECHAM5 model.

• INPUTDIR_ECHAM5_SPEC: Directory containing the *_spec and *_surf files for the ECHAM5
initialisation. These depend on the resolution and start date. With INPUTDIR_ECHAM5_SPEC,
the user can put the initial files specific for the start date of his/her simulation into a private
directory and use the default directory for the others.

• INPUTDIR_AMIP: Directory of the sst and sea-ice data for ECHAM5.

• INPUTDIR_NUDGE: Directory of the nudging data files for ECHAM5.

• FNAME_NUDGE: Name of the ECHAM5 nudging data files. This differs dependent on the source
of the data. (ERA40 or analysis (ANALY))

• INPUTDIR_MPIOM: Directory containing MPIOM input data.

• INPUTDIR_COSMO: Directory containing COSMO input data.

• INPUTDIR_MESSY: Directory containing input data for the MESSy submodels.

• USE_PREREGRID_MESSY: It is possible to provide the MESSy input data on the specific horizontal
Gaussian grid, i.e., in pre-regridded form. This is used when USE_PREREGRID_MESSY = T. Note:
this only works for ECHAM5/MESSy, as the regridder only works on rectangular grids.

• SPECIAL MODES:

– MEASUREMODE: Measure memory use. This is only available on specific machines.

– TESTMODE: Test mode of the run-script, exits before starting the executable.

– TPROFMODE and TPROFCMD: A special mode, for performance monitoring, which is only avail-
able on IBM and on maximum 1 node.

The user specified block ends with the marker:

###
###
===
###
DO NOT CHANGE ANYTHING BELOW THIS LINE !!!
###
===
###
###

3 The MMDCLNT namelists

The namelist file mmdclnt.nml contains two parts:

I) a server independent part (the &CPL-namelist) and

II) the server dependent namelists &CPL_ECHAM and &CPL_COSMO.

10 Kerkweg and Jöckel: MMD user manual

! -*- f90 -*-

&CPL

CPL_IOEVENT = 10,’minutes’,’first’,0

READEXT_IOEVENT = 1,’years’,’none’,0

/

&CPL_ECHAM

! ###

!

! ###

! ### MANDATORY FIELDS

! ###

!**

FIELD(1) = ’g3b’,’aps’, ’COSMO_ORI’, ’PS’, ’’, F, F, F , ’’

!**

FIELD(2) = ’ec2cosmo’,’T_S’, ’COSMO_ORI’,’T_S’, ’’, T, T, F, ’’

!**

FIELD(3) = ’g3b’,’slf’, ’COSMO_ORI’,’FR_LAND’, ’’, T, F, F, ’’

!**

FIELD(4) = ’g1a’,’tm1’, ’COSMO_ORI’,’T’, ’’, T, T, F, ’’

!**

FIELD(5) = ’g1a’,’qm1’, ’COSMO_ORI’,’QV’, ’’, T, T, F, ’’

!**

FIELD(6) = ’g1a’,’xlm1’, ’COSMO_ORI’,’QC’, ’’, T, T, F, ’’

!**

FIELD(7) = ’g1a’,’xim1’, ’COSMO_ORI’,’QI’, ’’, T, T, F, ’’

!**

FIELD(8) = ’g2a’,’um1’, ’COSMO_ORI’,’U’, ’’, T, T, F, ’’

!**

FIELD(9) = ’g2a’,’vm1’, ’COSMO_ORI’,’V’, ’’, T, T, F, ’’

!**

FIELD(10) = ’g3b’,’geosp’, ’#XXX’,’FIS’, ’’, F, F, F, ’’

!**

FIELD(11) = ’g3b’,’wl’, ’COSMO_ORI’,’W_I’, ’’, T, F, F, ’’

!**

FIELD(12) = ’g3b’,’sni’, ’COSMO_ORI’,’W_SNOW’, ’’, T, T, F, ’’

!**

FIELD(13) = ’g3b’,’tsi’, ’COSMO_ORI’,’T_SNOW’, ’’, T, T, F, ’’

!**

FIELD(14) = ’ec2cosmo’,’W_SO_REL’, ’COSMO_ORI’,’W_SO’, ’’, T, F, F, ’’

! ###

! ### OPTIONAL FIELDS

! ###

FIELD(20) = ’Test’,’Test_Ar’, ’mmdclnt’,’Test_Ar’, ’’, F, F, F, ’’

!**

FIELD(21) = ’tracer_gp_m1’,’O3’, ’tracer_gp’,’O3’, ’QFTV’, T, T, F, ’’

!**

FIELD(22) = ’ptrac_gp’,’wetradius’, ’ptrac_gp’,’wetradius’, ’QTFV’, T, F, F, ’’

!**

FIELD(23) = ’jval_gp’,’J_O1D’, ’mmdclnt’,’J_O1D’, ’QFTV’, F, F, T, ’GP_3D_MID’

!**

FIELD(24) = ’import_rgt’,’RGT0012_CO’,’mmdclnt’,’RGT0012_CO’,’M’,F,F,T,’#UNKNOWN’

! ###

/

Figure 1: Example namelist file of MMDCLNT (mmdclnt.nml). Part I: CPL-namelist and CPL-
ECHAM namelist.

Kerkweg and Jöckel: MMD user manual 11

&CPL_COSMO

! ###

!

! ###

! ### MANDATORY FIELDS

! ###

FIELD(1) = ’COSMO’,’ps’, ’COSMO_ORI’,’PS’, ’’, F, F, F, ’’

!**

FIELD(2) = ’COSMO’,’t_s’, ’COSMO_ORI’,’T_S’, ’’, T, T, F, ’’

!**

FIELD(3) = ’COSMO_ORI’,’FR_LAND’, ’COSMO_ORI’,’FR_LAND’, ’’, T, F, F, ’’

!**

FIELD(4) = ’COSMO’,’tm1’,’COSMO_ORI’,’T’, ’’, T, T, F, ’’

!**

FIELD(5) = ’COSMO’,’qv’,’COSMO_ORI’,’QV’, ’’, T, T, F, ’’

!**

FIELD(6) = ’COSMO’,’qc’,’COSMO_ORI’,’QC’, ’’, T, T, F, ’’

!**

FIELD(7) = ’COSMO’,’qi’,’COSMO_ORI’,’QI’, ’’, T, T, F, ’’

!**

FIELD(8) = ’COSMO’,’um1’,’COSMO_ORI’,’U’, ’’, T, T, F, ’’

!**

FIELD(9) = ’COSMO’,’vm1’, ’COSMO_ORI’,’V’,’’, T, T, F, ’’

!**

FIELD(10) = ’COSMO’,’t_so’, ’COSMO_ORI’,’T_SO’, ’’, T, F, F, ’’

!**

FIELD(11) = ’COSMO’,’w_so’,’COSMO_ORI’,’W_SO’, ’’, T, F, F, ’’

!**

FIELD(12) = ’COSMO’,’t_snow’, ’COSMO_ORI’,’T_SNOW’, ’’, T, T, F, ’’

!**

FIELD(13) = ’COSMO’,’w_snow’, ’COSMO_ORI’,’W_SNOW’, ’’, T, T, F, ’’

!**

FIELD(14) = ’COSMO’,’w_i’, ’COSMO_ORI’,’W_I’, ’’, T, F, F, ’’

!**

FIELD(15) = ’COSMO’,’qv_s’, ’COSMO_ORI’,’QV_S’, ’’, T, T, F, ’’

!**

FIELD(16) = ’COSMO_ORI’,’FRESHSNW’, ’COSMO_ORI’,’FRESHSNW’, ’’, T, F, F, ’’

!**

FIELD(17) = ’COSMO_ORI’,’HSURF’, ’COSMO_ORI’,’HSURF’, ’’, T, F, F, ’’

!**

FIELD(18) = ’COSMO’,’ppm1’, ’COSMO_ORI’,’PP’, ’’, T, T, F, ’’

!**

FIELD(19) = ’COSMO_ORI’,’SOILTYP’, ’COSMO_ORI’,’SOILTYP’, ’’, T, F, F, ’’

!***

! ###

! ### OPTIONAL FIELDS

! ###

FIELD(20) = ’Test’,’Test_Ar’, ’mmdclnt’,’Test_Ar’, ’’, F, F, F, ’’

!**

!**

FIELD(21) = ’tracer_gp_m1’,’all’, ’tracer_gp’,’*’, ’QFTV’, T, T, F, ’’

!**

! ###

/

Figure 2: Example namelist file of MMDCLNT (mmdclnt.nml). Part II: CPL COSMO namelist.

12 Kerkweg and Jöckel: MMD user manual

I) The &CPL-namelist:
The &CPL-namelist (Fig. 1) contains two events7:

– the first (CPL_IOEVENT) determines the coupling frequency to the server model, i.e., how
often data is exchanged between server and client model,

– the second event (READEXT_IOEVENT) drives the update of the external data required by
INT2COSMO.

For the definition of the coupling event the user has to be aware of three limitations:

– To simplify the data exchange between the coupled models, the coupling interval is inter-
nally converted to seconds. As this conversion is not well defined for the units ’months’
and ’years’, the coupling interval must be specified in ’steps’, ’seconds’, ’minutes’,
’hours’ or ’days’.

– As for all other events, the user has to define a multiple of the model time step length,
otherwise the simulation is terminated.

– The user has to take care that the coupling interval is a multiple of the time steps of the
client and the server model.

II) The &CPL_ECHAM/&CPL_COSMO-namelist:
The second part of the namelist file contains a list of exchange fields required to fully initialise
and drive the client COSMO/MESSy model. The exchange fields are unambiguously identified
by their channel and channel object names. As these usually differ between ECHAM5/MESSy
and COSMO/MESSy, the namelists depend on the server.

Figure 1 shows a typical &CPL_ECHAM namelist for the coupling to ECHAM5/MESSy and Fig.
2 shows the namelist &CPL_COSMO used for the coupling to a COSMO/MESSy model as server.
The structure of the two namelists is identical. Each exchange field is defined by one namelist
entry of TYPE FIELD:

FIELD(.) = ’SERV_CHANNEL’, ’SERV_OBJECT’, ’CLNT_CHANNEL’, ’CLNT_OBJECT’
, ’INTERPOL_METHOD’, L_INITIAL, L_BOUND, L_INPUT, ’CLNT_REPR’

FIELD is a variable of TYPE T_EXCH_IO:

TYPE CHAOBJ_NAMES
CHARACTER(LEN=STRLEN_CHANNEL) :: CHA = ’’ ! CHANNEL NAME
CHARACTER(LEN=STRLEN_OBJECT) :: OBJ = ’’ ! OBJECT NAME

END TYPE CHAOBJ_NAMES

TYPE T_EXCH_IO
TYPE(CHAOBJ_NAMES) :: SERVER
TYPE(CHAOBJ_NAMES) :: CLIENT
CHARACTER(LEN=4) :: C_INTERPOL = ’’ ! INTERPOLATION METHOD
! Specify target field
LOGICAL :: L_INITIAL = .FALSE. ! INITIAL FIELD
LOGICAL :: L_BOUND = .FALSE. ! BOUNDARY FIELD

7The generic submodel TIMER and the definition and functionality of events are described in the manual about
TIMER within the electronic supplement of Jöckel et al. (2010).

Kerkweg and Jöckel: MMD user manual 13

LOGICAL :: L_INPUT = .FALSE. ! INPUT FIELD
CHARACTER(LEN=STRLEN_MEDIUM) :: C_REPR =’’ ! REPRESENTATION STRING

END TYPE T_EXCH_IO

! MAXIMAL NUMBER OF EXCHANGE FIELDS
INTEGER, PARAMETER :: NMAX_EXCH = 1000
TYPE(T_EXCH_IO), DIMENSION(NMAX_EXCH), SAVE :: FIELD

– The first two structure components of TYPE CHARACTER specify the channel and channel
object name of the exchange field on the server side. For instance, the surface pressure field
in ECHAM5/MESSy is defined in the channel ’g3b’ with the channel object name ’aps’ (see
FIELD(1) in Fig. 1).

– The third and fourth structure components of TYPE CHARACTER name the channel and
channel object of the exchange field in the client model. For FIELD(1) in Fig. 1 this is the
channel ’COSMO ORI’ and the channel object ’PS’.
For the client channel object names wildcards are allowed. A ’*’ replaces an arbitrary
number of characters or digits, whereas ’?’ replaces exactly one character or digit. Based
on wildcards, it is possible to address a number of channel objects of one channel with
one namelist entry. The only restriction for wildcard usage is that the name of the chan-
nel object on the server side must be identical to that on the client side8, because the
names for the server channel objects are overwritten by the client channel object names,
if wildcards are used. For instance, the entire tracer set can be coupled by setting
’CLNT_CHANNEL’, ’CLNT_OBJECT’ to ’tracer_gp’, ’*’ or all photolysis rates are coupled
by ’jval_gp’, ’J_*’. Due to the initialisation of prognostic variables at the beginning
of each time step in COSMO/MESSy in the subroutine initialize_loop in lmorg.f90
the server channel for the coupling of the tracers needs to be ’tracer_gp_m1’. In case of
ECHAM5 the fields in ’tracer_gp_m1’ and ’tracer_gp’ are identical at the beginning of
the time loop.

– The fifth structure component is a CHARACTER of length 4. It determines the interpolation
method. This is only required for the additional fields, as for the INT2COSMO inherent
fields the interpolation method is determined inside of INT2COSMO. Possible interpolation
methods are: ’Q’ for quadratic; ’L’ for linear and ’M’ for match interpolation. Thus the
first character must be set to one of ’Q’, ’L’, or ’M’. The second and the third character
demand monotonicity and positive definiteness, respectively, if set to T. The default value,
however, is F. If the fourth character is V, the field will be interpolated also in the vertical
direction. However, this is only possible for 3-D-or 4-D-fields of which the number of vertical
levels equals the number of vertical levels in the model. For instance, the fifth string of
FIELD(21) in &CPL_ECHAM determines that the ozone tracer is interpolated horizontally by
quadratic interpolation and in addition vertically. No care is taken to ensure monotonicity,
but positive definiteness is requested.

– The three logicals indicate the data destination (initial, boundary or input) of the interpo-
lated field. Mandatory fields can be initial and boundary fields. For the mandatory fields
the entries for the data destination types in the namelist can be omitted, as they are set
according to the COSMO variables yvarini and yvarbd. These variables list the initial
and boundary fields required for the chosen COSMO setup. If initial or boundary fields are
required according to yvarini or yvarbd and the data destination flags are not set .TRUE.

8This is usually not the case for the basemodels ECHAM5 and COSMO, but for the MESSy submodels.

14 Kerkweg and Jöckel: MMD user manual

in the namelist, the namelist settings are ignored. If a field destination is requested (in
addition to yvarini or yvarbd) as initial or boundary field, however, this request is not
overwritten.
For the optional fields the choice of initial and/or boundary and of input destination is
exclusive, as input already implies initial and the provision of boundary data is meaningless,
since the field is overwritten each coupling time step. For instance, for the prognostic
variables water vapour and cloud water (FIELD(5) and FIELD(6) in Fig. 1) the calculation
of the initial and boundary fields is requested, whereas for the land fraction (FIELD(3) in
Fig. 1) only the initial field is calculated. As tracers are prognostic variables, initial and
boundary fields are requested for Ozone (FIELD(21)). In contrast, the fields FIELD(23) and
FIELD(24) are input fields.

– The last component of the variable FIELD contains the client representation9. It is only
required for additional fields, for which L_INPUT is .TRUE.. In this case the memory for a
field is neither defined by a MESSy submodel nor by the basemodel itself and consequently,
MMDCLNT has to define the respective channel object itself, which is indicated by giving
’mmdclnt’ as client channel name in the third FIELD entry in the MMDCLNT namelist
file. For these fields the representation must be known as MMDCLNT needs to allocate
the memory for the respective field itself.
For instance, in FIELD(23) in the &CPL_ECHAM namelist, the photolysis rate of O1D from
the ECHAM5/MESSy submodel JVAL (channel name ’jval_gp’, channel object name
’J_O1D’) is defined as input field of the regional model. If JVAL is not switched on in
COSMO/MESSy, MMDCLNT needs to define the channel object itself. The photolysis
rates are defined at the center of the grid boxes. Thus the representation of a photolysis
rate is a priori known and the representation name for the client can be specified (here,
’GP_3D_MID’).
In cases where the representation is not a priori known, it is deduced from the representation
of the server channel object. This heuristic procedure, triggered by the entry ’#UNKNOWN’
(see FIELD(24) in Fig. 1), is described in detail in Sect. 5.1.2.

In addition to the coupling of standard 2-D and 3-D data fields, the coupling of 4-D data fields
is implemented. They are treated exactly in the same way. However, due to differences in the
implementation of tracers (Jöckel et al., 2008) and the implementation of prognostic variables in the
COSMO model, it is not possible to couple the 4-D tracer field directly. Nevertheless, each individual
tracer can be coupled, as the individual tracers are accessible as 3-D channel objects (e.g., FIELD(21)
in Fig. 1). To simplify the handling of large tracer sets, wildcards can be used for the client channel
object names in the namelist: ’*’ replaces an arbitrary number of characters, ’?’ replaces exactly one
character. For instance, FIELD(25) would request all tracers available in the channel ’tracer_gp_m1’.
Of course, wildcards in the channel object names can be used for other channels as well.

4 Basic coupling setup

The diagram in Fig. 3 sketches the sequence of operations in an on-line coupled simulation.

• MMD setup: Before any submodel specific initialisation takes place, the Multi-Model-Driver
(MMD) is set up. The MMD library routines setting up the message passing interface (MPI)

9For a description of representations see the CHANNEL manual, which is part of the electronic supplement of Jöckel
et al. (2010).

Kerkweg and Jöckel: MMD user manual 15

CLIENT SERVER

In
iti

al
is

at
io

n

 mmdclnt_setup mmdserv_initialize
 mmdclnt_read_nml_cpl_serv
 MMD_C_Init

 get_ServerTiming

 MMD_S_ALLOCATE_CLIENT

 MMD_S_Init

 mmdclnt_init_memory

mmdserv_init_coupling
 Setup_Client_Timer

 Setup_Client_Area exchange_grids

 mmdclnt_setup_int2cosmo

 mmdclnt_set_CPLDATA

 MMD_C_Set_DataArray_Name

 Setup_data_exchange_with_server

* MMD_C_Get_Indexlist

 Define_data_arrays

 mmdclnt_init_loop

Ti
m

e
Lo

op

 mmdclnt_free_memory

cl
ea

n
up org_cleanup

 MMD_testC_FreeMem
 MMD_C_FreeMem

 MMD_S_get_DataArray_Name

 Setup_data_exchange_with_client

 MMD_Inter_Bcast

 MMD_C_GetBuffer

 mmdclnt_prepare_external_data

 mmdclnt_interpolation

 Interpol_AddiArrays

 switch_par_utilities
(move_initial_arrays_to_COSMO)

 Define_data_arrays

mmdserv_global_start

 MMD_Inter_Bcast

 MMD_S_FillBuffer

mmdserv_free_memory

 MMD_testS_FreeMem
 MMD_S_FreeMem

 move_boundary_arrays_to_COSMO

* setup_int2lm
* MMD_testC_Setup

 (*MMD_C_GetRepr)

* MMD_C_Set_DataArray
* MMD_C_SetInd_and_AllocMem

* locate_in_decomp
* MMD_testS_Fill
* MMD_S_Set_Indexlist
* MMD_testS_FinishFill

* (MMD_ testS_GetTestPtr)

* MMD_S_Set_DataArray
* MMD_S_SetInd_and_AllocMem

* MMD_testC_Compare

* external_data

* org_coarse_interpol
* org_vert_inter_lm/org_vert_interpol
* org_2d_fields
* /org_lm_fields

* interpol_coarse_OneLayer

* interpol_vert_AddArray
+ vert_interpol / vert_interp
+ vert_int_lm | vert_z_lm /

+ interp_q_bs / interp_q / interp_q_lm / interp_l

 mmdclnt_read_nml_cpl

 interpret_namelist

 (*MMD_testC_GetTestPtr)

* MMD_C_GetNextArray

* org_read_coarse_grid

* MMD_testC_Setup

 exchange_interpol_data

 exchange_breakinfo

flag_fields

flag_fields

Figure 3: Call sequence of the on-line coupling routines in server and client in ECHAM5/MESSy
(→ COSMO/MESSy)n: The background colours indicate, whether the routines are called during the
initialisation (yellow), the time loop (cyan) or in the finalisation phase (lilac). The routine names are
also colour-coded: the MESSy entry points directly called by messy main control are written in lilac.
The MMD library routines are indicated in blue and the original INT2LM routines in orange. Arrows
depict the data exchange between client and server.

16 Kerkweg and Jöckel: MMD user manual

environment are called from the basemodel. The determination of the model topology and the
communicator definition are explained in an extra manual about the MMD library10, as these
routines work inside the MMD library. As model topology, we understand the layout of all server
and client dependencies and the distribution of the models on the available number of process
entities (PEs) or MPI tasks.

The topology is determined by the MMD library namelist MMD_layout.nml, which is writ-
ten by the run-script xmessy_mmd as determined by the user. The MMD library namelist file
MMD_layout.nml is read, broadcasted and interpreted within the MMD library. All commu-
nicators for intra- and inter-model communication are determined in accordance to the model
topology.

• Synchronisation: To ensure that all models start, restart and stop at the same date and time,
the date and time settings of all coupled models need to be synchronised. This is achieved if
one model determines the timing of all models. If in each server-client pair the server dictates
the timing, in the end the master server determines the timing of all models. Consequently,
the TIMER namelist of the master server determines the timing of all client models. However,
it is important to note, that each model uses its own time step length, as only the dates are
synchronised.

• Data exchange initialisation:

– In contrast to the timing, the data exchange during the coupling process is completely
controlled by the client model:

∗ The client requests data for its specific model domain from the server,
∗ the client namelists &CPL_ECHAM or &CPL_COSMO determine which data fields are ex-

changed and
∗ the client namelist &CPL determines the frequency of the data exchange.

These requests are processed by the server during the initialisation phase.

– The client and the server acquire POINTERs to the data fields required for the data exchange
and (on the client side) for the interpolation.

– Additionally, the buffers for the data exchange are allocated within the MMD library.

• The data exchange: During the time loop the exchange fields are made available by the server
submodel MMDSERV (subroutine MMD_S_FillBuffer). These fields are copied by the client
and interpolated according to the namelist settings.

• Finalisation phase: At the end of the integration coupling specific memory is deallocated.

5 The Client

All information required during the coupling process is contained within the variable CPLDATA, which
TYPE is a Fortran95 structure (T_COUPLE_DATA) and which is allocated to the actual number of coupling
fields.

10The MMD library manual is part of the same electronic supplement as this manual.

Kerkweg and Jöckel: MMD user manual 17

TYPE PTR_4D_ARRAY
REAL(DP), DIMENSION(:,:,:,:), POINTER :: PTR

END TYPE PTR_4D_ARRAY

TYPE CHAOBJ_NAMES
CHARACTER(LEN=STRLEN_CHANNEL) :: CHA = ’’ ! CHANNEL NAME
CHARACTER(LEN=STRLEN_OBJECT) :: OBJ = ’’ ! OBJECT NAME

END TYPE CHAOBJ_NAMES

TYPE T_COUPLE_DATA
! CHANNEL AND CHANNEL OBJECT NAMES IN SERVER AND CLIENT
TYPE(CHAOBJ_NAMES) :: SERVER
TYPE(CHAOBJ_NAMES) :: CLIENT
! ORDER OF AXES IN REPRESENTATION (’X’,’Y’,’Z’,’N’)
CHARACTER(LEN=4) :: AXIS= ’’
! DIMENSION LENGTH
INTEGER, DIMENSION(4) :: ldimlen=0
! INTERPOLATION METHOD (only valid for arrays not included in vartab)
! 1.CHAR ’Q’ quadratic; ’L’: linear and ’M’ match interpolation is possible
! 2.CHAR if ’T’ positive definiteness is required
! 3.CHAR if ’T’ monotonicity is required
! 4.CHAR if ’V’ vertical interpolation is required
CHARACTER(LEN=4) :: C_INTERPOL
! INPUT FIELD DELIVERED BY MMD
REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr_in
! INTERMEDIATE FIELD OF INT2COSMO
REAL(DP), POINTER, DIMENSION(:,:,::,) :: ptr_i2c
! POINTER(S) TO COSMO/MESSy FIELD(S): DIMENSION == number of time levels
TYPE(PTR_4D_ARRAY), DIMENSION(:), POINTER :: cosmo => NULL()
! POINTER TO COSMO/MESSy BOUNDARY FIELDs:
! (DIMENSION IS ALWAYS TWO FOR THE TWO BOUNDARY LAYER TIME LEVELS)
TYPE(PTR_4D_ARRAY), POINTER, DIMENSION(:) :: cosmo_bd => NULL()
! RANK OF CLIENT FIELD (WITHOUT TIME LEVEL DIMENSION)
INTEGER :: rank = 0
! INDICATOR, IF FIELD IS IN VARTAB
LOGICAL :: lvartab = .FALSE.
! NAME OF VARIABLE IN VARTAB
CHARACTER(LEN=10) :: vartab_name = ’’
! INDEX OF FIELD in var_lm
INTEGER :: vartab_idx = 0
! INITIAL FIELDS REQUIRED ?
LOGICAL :: L_INITIAL = .FALSE.
! BOUNDARY FIELDS REQUIRED ?
LOGICAL :: L_BOUND = .FALSE.
! INPUT FIELD REQUIRED ?
LOGICAL :: L_INPUT = .FALSE.
! NAME OF REPRESENTATION
CHARACTER(LEN=STRLEN_MEDIUM) :: C_REPR = ’’

18 Kerkweg and Jöckel: MMD user manual

END TYPE T_COUPLE_DATA

This structure contains

• the channel and channel object names of the exchange fields for the server
(TYPE(CHAOBJ_NAMES) :: SERVER) and

• the channel and channel object names for the client (TYPE(OCHOBJ_NAMES) :: CLIENT).

• information about the dimensions of the fields:

– The axis string (AXIS) indicates the order of the ’X’, ’Y’, ’Z’ and ’N’ direction and

– ldimlen contains the length of these four dimensions11.

• C_INTERPOL is the flag specifying the interpolation method.

• The structure contains four POINTERs or POINTER ARRAYs for the access to the different data
fields during the interpolation procedure and to the target fields. Depending on the source
(exchange field or from external data) and the target field (i.e., boundary or initial and input
fields) not all four POINTERs or POINTER ARRAYs are used for all coupling fields12:

– The first POINTER (ptr_in) is used for the in-fields, i.e., the raw data sent from the server
model.

– The second POINTER (ptr_i2c) is associated to the intermediate fields generated by the
horizontal (and vertical) interpolation within INT2COSMO.

– The POINTER ARRAY cosmo is associated with the target field in the COSMO/MESSy
model. For prognostic variables the dimension of the POINTER ARRAY is given by the
number of time levels. Each of the POINTERs in the POINTER ARRAY is associated to one
time level of the target field. For diagnostic variables the array dimension is always 1. For
instance, the prognostic field for the temperature in COSMO is dimensioned by the three
space dimensions and a time level dimension. Dependent on whether a two or three time
level integration scheme is used, this fourth dimension is allocated by 2 or 3. All time levels
have to be made accessible in MMDCLNT for the respective target field. Thus the POINTER

ARRAY cosmo is also dimensioned according to the number of the time levels required by
the integration scheme. This yields the POINTERs CPLDATA(ii)%cosmo(nt)%ptr, where nt
is an index ranging from 1 to the number of time levels used in the COSMO model allowing
to access the different time levels of the target field, i.e., nt is one of the time level indices
nnew, nnow and nold, respectively. In contrast, a diagnostic variable does not depend on
the integration scheme, thus one POINTER is sufficient to access a diagnostic target field.

11These are properties already defined and provided by the CHANNEL submodel. See the CHANNEL manual available
in the electronic supplement of Jöckel et al. (2010) for further information.

12Note: the different meaning of the different fields:

– exchange fields are those fields exchanged with the server, they are not necessarily associated to a target field, as
they might also be required for the interpolation and not as input for the client.

– coupling fields are all those fields contained in the variable CPLDATA, i.e., either exchange fields or fields additionally
provided by INT2COSMO, e.g., calculated from the external data.

– target field can be an input or initial field, or the respective boundary field for prognostic variables.

The meaning of the individual fields is clarified within the remainder of the client description and in the glossary.

Kerkweg and Jöckel: MMD user manual 19

– If boundary data is required for a field, the POINTER ARRAY cosmo_bd is allocated with
2 dimensions according to the two time levels required for the boundary data in the
COSMO/MESSy model. Each of the POINTERs is associated to one level of the bound-
ary data array.

To actually perform the coupling, additional information is required:

• The rank of the field,

• the information if a field is part of the variable table in INT2COSMO (LOGICAL lvartab), i.e.,
if the field is an INT2COSMO inherent field,

• the name in the variable table (vartab_name), if lvartab = .TRUE., and

• the index of the variable in the variable table of INT2COSMO (vartab_idx), if
lvartab = .TRUE.,

• the LOGICALs L_INITIAL, L_BOUND and L_INPUT indicating if initial, boundary or input data is
required and

• the string C_REPR.

The meaning of these variables was already illustrated in the section about the namelist (Sect. 3) and
will become clearer in the remainder of the client description.

5.1 Initialisation Phase

The main entry point for submodel initialisation in MESSy is messy_initialize. In contrast to this,
MMDCLNT uses an even earlier entry point, i.e., messy_setup (compare Fig. 3). This is necessary,
as the master server determines the timing of all models in the cascade. As the date and time setup is
an essential part of a simulation, it is performed very early during the model setup, thus a very early
entry point for MMDCLNT was required.

5.1.1 mmdclnt setup

This subroutine performs the basic setup of MMDCLNT and the timing of the client.

• At the beginning two LOGICALs need to be set, which determine the information flow in the
basemodel and the MESSy generic submodels:

– The LOGICAL variable L_IS_CLIENT defined in messy_main_data_bi is set to .TRUE.. It
is used in the COSMO model itself to switch off certain parts of the code dealing with the
import of initial and boundary data (in src_input.f90).

– lforcedtime, a second LOGICAL required for the synchronisation of the server and client
model is also initialised to .TRUE.. In timer_global_start the LOGICAL for the trigger of
the RERUN event l_rerun is only calculated, if lforcedtime is .FALSE.. If l_rerun were
determined in the client TIMER itself, the client may finish unnoticed by the server and a
dead lock in MPI would occur resulting in a model hang up.

• Subsequently, the MMDCLNT namelists are read:

20 Kerkweg and Jöckel: MMD user manual

– First, the &CPL-namelist is read (in subroutine mmdclnt_read_nml_cpl) and the two
IO_TIME_EVENTs CPL_IOEVENT and READEXT_IOEVENT are broadcasted.

– Second, the server specific coupling namelist is read in the subroutine
mmdclnt_read_nml_cpl_serv. Whether the ECHAM5/MESSy or the COSMO/MESSy
specific namelist is read, is determined with the help of the MMD library function
MMD_C_GetServerType (mmd_client.f90).

After reading the respective namelist, the subroutine prints the read values into the log-file.

• In addition to the client submodel setup, the client part of the MMD library has to be initialised.
This is done by the MMD library routine MMD_C_Init. Within this subroutine the C group
communicators are determined and the number of PEs covered by the server model is retrieved.
Parts of the MMD library internal information structure (Me), of which the dimensions depend
on the number of server PEs are allocated within MMD_C_Init13.

• get ServerTiming: To get a meaningful simulation, the timings of the coupled models need
to be synchronised. To achieve this, two important parts of information are exchanged between
the client and the server:

1.) The coupling interval determined in the client namelist is forwarded to the server:
In the subroutine get_ServerTiming first the time interval of the coupling event
CPL_IOEVENT is converted into seconds, as this is the unambiguous unit to exchange be-
tween the two models. The number of seconds equivalent to the coupling interval is sent
to the server, which accordingly defines a coupling event. If the coupling interval is not a
multiple of the server model time step length the simulation is terminated.

2.) The server sends the complete date settings to the client in order to initialise the dates of
the client basemodel:
The current_date, the resume_date, the start_date and the stop_date are sent from
the server to the client. The client re-initialises its date settings according to the server
dates. However, two cases are distinguished:

∗ In case of lstart = .TRUE. (for the client), the start_date is set to the resume_date
of the server. This is done, as it is possible, that the server performs a restart while
the client is started for the first time. In this case the resume_date of the server is
the start_date of the client. Note that, if lstart is also .TRUE. for the server, the
resume_date and the start_date are equal anyway.

∗ In case of a restart of the client, the current_date is not set at all, as it is set by the
TIMER later on anyway. More important, the client resume_date is calculated from
the server resume_date. This is necessary, as the restart files for client and server are
usually not output at the same time. They both stop after l_rerun was set .TRUE.,
thus the client resume_date is behind the server resume_date by the difference of
the server and the client time step lengths. Based on this, the client resume_date is
calculated from the two model time step lengths and the server resume_date.

The COSMO/MESSy time settings and counters are re-initialised within the subroutine
reinit_COSMO_time provided by messy_main_timer_bi.

13The MMD library routines are described in detail in the MMD library manual, which is part of the same electronic
supplement as the MMD user manual.

Kerkweg and Jöckel: MMD user manual 21

5.1.2 mmdclnt init memory

The second part of the initialisation takes place in mmdclnt_init_memory, as here the main memory
allocation and field definitions are conducted.

• Due to technical reasons, the events themselves can not be initialised before the MESSy entry
point messy_init_memory. Thus first of all, the TIMER events for the coupling (CPL_EVENT) and
for reading the external data (READEXT_EVENT) are initialised. Additionally, the BREAK_EVENT is
defined. This event is initialised to the length of the server time step. It is used to encounter
every server time step, whether the simulation is interrupted at the end of the time step. This is
inevitably necessary to ensure that the server and the client stop at the same time. Otherwise,
if the interruption information is not exchanged each server time step, one model hangs up in
MPI communication, because the other model was interrupted and does not answer the MPI
call anymore. This implies that the server time step length needs to be a multiple of the client
time step length.

• After these preparations, the contents of the MMDCLNT namelist are interpreted. The subrou-
tine interpret_namelist serves two purposes:

– The wildcards in the client channel object names are analysed and translated into individual
exchange fields.

– The namelist settings for the mandatory fields are cross-checked with the COSMO variables
yvarini and yvarbd:
The LOGICALs L_INITIAL and L_BOUND are set to .TRUE., if the field is required by the
COSMO variables. Furthermore, fields listed in yvarini or yvarbd are added to the variable
CPLDATA. These are data fields, which are calculated by INT2COSMO, but do not require
direct input from the server. For instance, the external parameters such as the root depth,
the leaf area index or the orography. Note: those mandatory fields requiring an input field
from the server side, have to be listed in the namelist. Otherwise the information about
the channel and channel object name on the server side is missing.

CPLDATA contains data of different sources. The first part of CPLDATA stems from the namelist
and lists the exchange fields, i.e., fields that are provided by the server. During the namelist
interpretation other fields are added to CPLDATA. These fields are calculated by INT2COSMO and
are required by the COSMO model. Both types of fields are summarised by the term coupling
fields. Therefore, two important numbers characterising CPLDATA are determined during this
analysis:

– NEXCH is the number of fields that need to be exchanged with the server.

– NCOPY is the dimension of the variable CPLDATA containing all coupling fields.

At the end of the subroutine the final list of all CPLDATA fields is output to the log-file.

• The MMD library includes the possibility to test the horizontal grid exchange. Therefore a chan-
nel object for the test_array (channel name = ’mmdclnt’, channel object name = ’Test_Ar’)
is created.

• The information set in the namelist relevant for the MMD library and the server model, i.e.,
the channel and channel object names and the representation of the exchange field, are for-
warded to the MMD library using the MMD library subroutine MMD_Set_DataArray_Name. The

22 Kerkweg and Jöckel: MMD user manual

subroutine is called for each of the exchange fields. Within the library, the MMD internal infor-
mation structure on client and server side are set up within this subroutine and its counterpart
(MMD_Get_DataArray_Name) on the server side. The end of the list is indicated by the presence
of the optional parameter LastEntry which must be set to .TRUE. to end the list.

• exchange grids: The server model automatically determines the segment of the server domain
required for the interpolation in INT2COSMO using the geographical information about the
client model domain. This is provided by the client within the subroutine exchange_grids.
The local fields rlon and rlat containing the geographical coordinates of the grid points are
gathered, yielding one non-decomposed field and sent to the server model. In addition, the
number of exchange fields is sent to the server. From the geographical information the server
model calculates the size of the domain, which is required to interpolate the initial and boundary
fields. The grid definition for the in-coming data fields is afterwards sent back from the server
to the client. The client uses this information to dimension the in-fields (ptr_in). The grid
definition received from the server replaces the grid_in namelist of INT2LM in case of the on-
line coupling. Consequently, the following (INT2COSMO) parameters are defined by the server
model and sent to the client:

– PARAMETERs describing the (rotated) server grid and the type of the soil water content
and soil temperature:
startlat_tot, startlon_tot, endlat_tot, endlon_tot , pollat, pollon, dlat, dlon,
ie_coarse , je_coarse, ke_coarse, ke_soil_coarse, itype_w_so_rel, itype_t_cl. For
the meaning of these variables see the server description Sect. 6.1.214.

– If the server is a COSMO/MESSy model (llm2lm = .TRUE.), additionally the information
about the vertical coordinate system and the reference atmosphere of the server COSMO
model setup are required: vcflat, p0sl , t0sl, dt0lp, delta_t, h_scal, svc1 , svc2,
ivctype, irefatm.

– The vertical coordinates (vct for ECHAM5/MESSy as server and vcoord_in, if
COSMO/MESSy is server) and the depth of the soil layers (czmls_in) are exchanged.

– Finally, the client receives two fields containing the longitude and latitude information for
the in-fields (latitude_in and longitude_in).

• mmdclnt setup int2cosmo: This subroutine performs the setup of INT2COSMO:

– At the beginning some switches originally determined in the INT2LM &CONTRL namelist
are defined:

∗ The LOGICALs indicating the driving model (lgme2lm, lec2lm, lhm2lm, lcm2lm and
llm2lm) are set to .FALSE.; if ECHAM5/MESSy is server lcm2lm is .TRUE.; if a
COSMO/MESSy model is server llm2lm is .TRUE..

∗ The LOGICAL ARRAYs lushift_in and lvshift_in indicating if and which
type of a staggered grid is used for the horizontal wind components are
set: For ECHAM5/MESSy as server all entries are .FALSE., for the
COSMO/MESSy model as server it is: lushift_in = (.TRUE. , .FALSE.) and
lvshift_in = (.FALSE., .TRUE.).

– The INT2COSMO LOGICAL variable linitial is set .TRUE. for the very first time step
of a simulation, as only for this time step initial data needs to be calculated, which is

14For further details about the namelist parameters see the INT2LM documentation: http://www.cosmo-
model.org/content/model/documentation/core/cosmoInt2lm.pdf

Kerkweg and Jöckel: MMD user manual 23

indicated by linitial in INT2LM. lcomp_bound is another INT2LM switch, indicating
that boundary data need to be calculated. It is .TRUE. except for the very first time step.

– Based on the “in”-grid definition and the longitudes and latitudes of the in-fields as re-
ceived in exchange_grids, the staggered longitudes and latitudes (slongitude_in /
slatitude_in) are calculated. As ECHAM5 does not use a staggered grid, slatitude_in
and slongitude_in are set to latitude_in and longitude_in.

– Subsequently, the original INT2LM subroutine setup_int2lm is called. The same code
is processed, apart from the initialisation and decomposition of the grid and the initial-
isation of many namelist parameters, which are determined directly by the setup of the
COSMO/MESSy model during the on-line coupling initialisation. The changes made to
the original INT2LM code in order to implement it as MESSy sub-submodel (i.e., directly
coupled to COSMO/MESSy) are described in Sect. 7.

– In setup_int2lm the INT2COSMO namelists are read, thus the INT2COSMO LOGICAL

switch lbd_frame_cur is set according to the namelist parameter lbd_frame after process-
ing setup_int2lm.

– Additionally, the dimensions of the parallel decomposed in-fields have been calculated in
setup_int2lm. Thus, the MMD test_array can be allocated by the MMD library sub-
routine MMD_testC_Setup with the corresponding dimensions.

– Finally, if ECHAM5/MESSy is the server, the hybrid coefficients for the interface levels
ak_in and bk_in are set from the vertical coordinate variable vct, which has already been
sent by the server in the subroutine exchange_grids. Subsequently, the hybrid coordinates
for the full levels (akh_in and bkh_in) and the differences of the interface level hybrid
coordinates (dak_in and dbk_in) are calculated.

At this point the initialisation of INT2COSMO is complete.

• Setup data exchange with Server: One of the crucial points of the efficient field exchange
by MMD is the index list, which directly associates for each client PE the grid points of the
parallel decomposed in-field with the grid points and PE of the parallel decomposed server grid.
The index list consists of six entries for each grid point of the local client “in”-grid15:

1.) the first horizontal index of the grid point in the local grid of the server PEs (is)

2.) the second horizontal index of the grid point in the local grid of PEs (js),

3.) the first horizontal index (ic) in the local client “in”-grid,

4.) the second horizontal index (jc) in the local client “in”-grid,

5.) the process entity (PEc) on which the local client grid point is located,

6.) the server PE (PEs) on which the respective grid point is located16.

This grid association is performed by the server model. Thus the client has to send the server
its grid definition and decomposition:

– On each client PE the longitudes and latitudes of the in-fields latitude_in and
longitude_in are written to the local fields my_lon and my_lat.

15i.e., the index list consists of 6 entries per number of coupled grid points: index list(6,number of grid points)
16A more detailed example is provided in the MMD library manual, which is part of the same electronic supplement

as this manual.

24 Kerkweg and Jöckel: MMD user manual

– These fields are gathered on one PE in the 3-D fields (all_lon(nx,ny,nPE) and
all_lat(nx,ny,nPE)) with nx, ny number of grid points in x and y direction and nPE
number of client PEs.

– Finally, the 3-D fields are sent to the server for further calculations.

Due to their structure, the fields inherently contain the information required to set up the index
list. The third index gives the number of the client PE and the first and second index are
equal to the indices in the local grid of the respective client PE, where the point of the given
geographical coordinates is located.

After receiving this list, the server associates the (local) source points for each local client
grid point to its own parallel decomposed grid and sends back the list containing the sextuples
associating the client and the server grid points with each other. This list is received and analysed
by the client part of the MMD library within the subroutine MMD_C_Get_Indexlist, which is
called at the end of this subroutine (compare Fig. 3).

• mmdclnt set CPLDATA: So far, only those parts of the variable CPLDATA have been ini-
tialised, which are set by the namelist. In the subroutine mmdclnt_set_CPLDATA the POINTERs

and POINTER ARRAYs to the data fields are set or allocated. Three different types of coupling
fields are distinguished:

A) fields, which require an in-field from the server, which is interpolated and afterwards copied
to the initial, boundary or input field;

B) fields exchanged with the server, which have no direct target variable: one example is the
surface geopotential, which is required for interpolation itself, but has no corresponding
target field in the COSMO/MESSy model. This is indicated by setting the corresponding
client channel name to ’#XXX’ (see FIELD(10) in the &CPL_ECHAM namelist in Fig. 1).

C) fields which result from the INT2COSMO interpolation/preprocessing routines but have no
corresponding in-field. For instance, all external data fields as orography, leaf area index
and so on. These fields are located at the end of the CPLDATA variable (indices NEXCH+1 to
NCOPY).

The subroutine contains one loop over all entries of CPLDATA. The individual entries are indicated
by the loop index ii in the following. The loop is split into five logical units:

1. association / allocation of the CPLDATA(ii)%cosmo POINTER ARRAY.
2. association / allocation of the CPLDATA(ii)%cosmo_bd POINTER ARRAY.
3. inquiry, if the coupling field is an INT2COSMO inherent field. If ’yes’,

– the structure component CPLDATA(ii)%lvartab is set .TRUE.;
– the CPLDATA(ii)%vartab_name is set and
– the index of the variable in the INT2COSMO variable table

(CPLDATA(ii)%vartab_idx) is set.
4. association / allocation of the intermediate fields (CPLDATA(ii)%ptr_i2c);
5. association / allocation of the in-fields (CPLDATA(ii)%ptr_in).

At the beginning of the loop, the POINTERs CPLDATA(ii)%ptr_i2c and CPLDATA(ii)%ptr_in
are NULLIF(Y)ied and the structure components CPLDATA(ii)%rank, CPLDATA(ii)%lvartab,
CPLDATA(ii)%vartab_name and CPLDATA(ii)%vartab_idx are initialised by the default values
0, .FALSE., ’’ and 0, respectively. In the following the allocation or determination of each of
the above listed CPLDATA entries is described in detail:

Kerkweg and Jöckel: MMD user manual 25

Does the
channel object exist?

C_REPR == '#UNKNOWN' ?

MMD_C_get_Reprget_representation_info

deduce/make
representation (ID)

new_channel_object

time dependent ?
 (prognostic / diagnostic)

allocate (CPLDATA(ii)%cosmo(1))

get_channel_object

allocate (CPLDATA(ii)%cosmo(nt))

get_channel_object

CONTINUE ...

NO (B2)

NO YES

YES (B1)

NO (A1) YES (A2)

1, ..nt

TRACER ?

get_tracer

allocate (CPLDATA(ii)%cosmo(2))

CPLDATA(ii)cosmo(1)%ptr => xt
CPLDATA(ii)%cosmo(2)%ptr=>xtm1

Figure 4: Flow-chart illustrating the association of the CPLDATA(ii)%cosmo POINTER ARRAY. The
lables in brackets (A1, A2, B1 and B2) refer to the respective cases listed in the text. The yel-
low boxes point to those subroutine calls in which the individual POINTERs of the POINTER ARRAY

CPLDATA(ii)%cosmo are finaly associated.

1. Determine CPLDATA(ii)%cosmo:
This part is skipped for entries with client channel name ’#XXX’ as this indicates that the
exchange field is only required in INT2COSMO.
For the determination of the data space for the COSMO/MESSy target field
(CPLDATA(ii)%cosmo) basically two times two different cases (in all combinations except
B2A2) have to be taken into account:
A) The fields can either be

A1) diagnostic or
A2) prognostic,
which require different memory allocation procedures.

B) The fields are
B1) either already allocated by another MESSy submodel or the basemodel , or
B2) required to be allocated within the MMDCLNT submodel itself.

Figure 4 comprises a flow chart showing the basic procedure for the association of the
CPLDATA(ii)%cosmo POINTER ARRAY

Regarding A) The nature of the respective variable (diagnostic or prognostic) determines the dimen-
sion of the POINTER ARRAY CPLDATA(ii)%cosmo:

A1) For a diagnostic variable the dimension is 1, as only one target field exists.
A2) For the prognostic variables the dimension equals the number of time levels of the

time integration scheme used. For instance, for the leap frog scheme the dimension
is 3, whereas for a two-time level scheme (e.g., Runge-Kutta) it is 2. This is due to
two reasons:
· For an integration scheme with more than 2 time levels, more than 1 time level

needs to be initialised by MMDCLNT.

26 Kerkweg and Jöckel: MMD user manual

· In the COSMO model prognostic variables are allocated with an extra rank for
the time level. For the sake of computational efficiency, the indices indicating
the different time levels (nnew, nnew and nold) are rotated instead of copying
the newly integrated value to the old field at the beginning of each time step.
Thus, it is not a priori known which time level (index in the prognostic field) is
required at a specific point in time. Hence, all time levels must be available for
the coupling.

Each of the POINTERs of the POINTER ARRAY CPLDATA(ii)%cosmo
(CPLDATA(ii)%cosmo(nt)%ptr, with nt being the index for a time levels) is
associated to one time level of the prognostic variable. Thus, the correct time level
can be addressed by the indices (nnew and nnow) usually used in the COSMO
model to access the correct time levels.

Regarding B) The client channel name includes the information, if MMDCLNT needs to allocate the
required memory itself (’mmdclnt’ as client channel name in the namelist), or if the
target field is already allocated by other COSMO/MESSy submodels or the basemodel
(all other cases). In the latter case the POINTERs of the CPLDATA(ii)%cosmo POINTER

ARRAY are associated to the already existing memory:
B1) The required channel object exists already:

First, the nature of the channel object is inquired by looking for the chan-
nel object attribute number_of_timelevels using the CHANNEL subroutine
get_attribute.

A1) If the attribute does not exist, the variable is of diagnostic nature and the
POINTER ARRAY CPLDATA(ii)%cosmo is allocated to the dimension 1 (as only
one POINTER is required for a diagnostic variable).
Afterwards, CPLDATA(ii)%cosmo(1)%ptr is associated to the respective memory
by calling the CHANNEL subroutine get_channel_object17.
Then, the rank (CPLDATA(ii)%rank) of the field is acquired by calling the MMD-
CLNT subroutine get_rank. In the subroutine get_rank, first, the channel
object representation ID is determined by calling the CHANNEL subroutine
get_channel_object_info with the input parameters channel and channel ob-
ject name. Second, with the representation ID, the rank of a channel object with
this representation is found out by calling get_representation_info with the
representation ID as input and the CPLDATA(ii)%rank as output parameter.

A2) If the attribute exists, the channel object is of prognostic nature and
CPLDATA(ii)%cosmo is allocated to the number of time levels as denoted by
the attribute (timelev is the return value of the subroutine get_attribute
containing the number of required time levels). Afterwards, a loop over the
number of time levels is executed associating for each time level one POINTER

of the POINTER ARRAY to one time level of the target field using the subrou-
tine get_channel_object. Note: for all prognostic variables individual channel
objects for the single time levels must exist. Finally, the CPLDATA(ii)%rank is
determined as in the diagnostic case.

XT) A special case exists for tracers:
In contrast to the prognostic COSMO variables, the tracer structure provides
individual variables for all time levels18, such that the index rotation instead of

17See the CHANNEL manual, which is part of the electronic supplement of Jöckel et al., 2010.
18Detailed information about the TRACER submodel are provided by Jöckel et al. (2008).

Kerkweg and Jöckel: MMD user manual 27

the copying of one time level to the other at the end of one time step is not
possible for the tracers. Consequently, tracers must be treated differently:

(a) First, the tracer index idt is inquired by the TRACER subroutine
get_tracer.

(b) Next, CPLDATA(ii)%cosmo is always allocated to 2 and the first POINTER of
the POINTER ARRAY always points to the current tracer field xt of that specific
tracer. The target of the second POINTER depends on the integration scheme.
For a 2 time level scheme it points to xtm1 and for a 3 level scheme to xtf.

(c) The rank of a tracer is always 3, thus CPLDATA(ii)%rank is set to 3 for tracers
and

(d) the flag in the TRACER meta-structure indicating that a tracer is already ini-
tialised (ti_gp(idt)%tp%meta%cask_i(I_MMD_INIT)) is set to ON at simula-
tion start (lstart = .TRUE.), otherwise the tracer field would be overwritten
by subsequent tracer initialisation routines.

B2) MMDCLNT needs to allocate the memory itself, as no other submodel provides the
memory for the exchange field. This field is calculated from an in-field provided by
the server and supplied to other MESSy submodels (e.g. emission fields could be
down-scaled from the coarse grid instead of being directly read in by IMPORT).
If the representation is named in the MMDCLNT namelist and stored in the struc-
ture component CPLDATA(ii)%C_REPR) this is an easy task. The representation ID
repr_input and the corresponding rank are inquired calling the CHANNEL sub-
routine get_representation_info. Knowing the representation ID, the new chan-
nel object can be defined calling the CHANNEL subroutine new_channel_object.
But the representation is not always a priori known. This is indicated in the
MMDCLNT namelist by setting the representation string to ’#UNKNOWN’. A clas-
sical example are emission fields provided as multi-level emissions. They are in
the Nx2D-format (see Kerkweg et al., 2006), i.e., N levels attributed to differ-
ent emission heights containing each 2-D emission information. If the number
of levels is not a priori known by the client model, the server model provides
additional information about the representation, when the representation string
(CPLDATA(ii)%C_REPR) is set to ’#UNKNOWN’. MMDCLNT acquires this informa-
tion by calling the MMD library subroutine MMD_C_Get_Repr which provides the
representation name (serv_repr), the axis string (serv_axis), the global dimen-
sions (serv_gdimlen) and the height attribute (serv_att) of the exchange field in
the server model. Based on this, MMDCLNT determines its own representation:
i) If the representation name is one of ’GP_3D_MID’, ’GP_3D_INT’ or

’GP_2D_HORIZONTAL’ using the same representation names in the client model
leads automatically to the correct result, as these are standard representations.

ii) In case of the representation ’GP_3D_1LEV’ the representation is converted to
’GP_2D_HORIZONTAL’.

iii) In all other cases MMDCLNT has to define a new representation:
For the definition of a new representation the dimensions need to be defined first:
This is done by looping over the 4 CHARACTERS of the axis string serv_axis.
Simultaneously,
- the rank of the array,
- the local dimension length dim_len and
- the axis string dim_axis

28 Kerkweg and Jöckel: MMD user manual

of the client array are determined. For instance, if the il’s component of serv_axis
is ’X’, the rank is increased by one, dim_ids(il) is set to DIMID_LON, which is
the dimension ID for the longitude of the client model and dim_len(il) is set to
ie, which is the local dimension length for the COSMO arrays.
· The horizontal dimensions of the fields are different between the server and the

client model, but are implicitly given by the definition of the COSMO grid. Thus
for the ’X’ and ’Y’ dimension the sizes are known and the COSMO definitions
can be used.

· This is different for the ’Z’ and ’N’ dimensions, which can basically adopt every
arbitrary value, but these dimensions have to be the same in the server and the
client model. Thus new dimensions are defined for the ’Z’ and ’N’ dimensions,
using the dimensions provided by the server model (serv_gdimlen). The newly
defined dimensions are named in a generic way:

(a) For the vertical dimension they start with ’DIM_’ followed by a string con-
taining the number of z-levels, and ending with ’LEV’. For instance, when the
number of z-levels is 5 this yields the name ’DIM_5LEV’. Before actually defin-
ing the dimension, it is tested if this dimension exists already. In this case, the
existing dimension ID is taken. This test prevents repeated definition of the
same dimension.

(b) For the number (’N’) dimension the same procedure takes place, only the
name of the dimension variable ends with ’N’ instead of LEV.

After the loop over the axis string, the rank, the local axis string and the local
dimension lengths have been determined. This allows for the definition of the
representation:
· If rank is 2 and the ’Z’ and ’N’ dimension lengths are zero, the representation

is equal to the standard representation GP_2D_HORIZONTAL.
· If the rank is larger than 2 and smaller or equal to 4, a new representation needs

to be defined,
· in all other cases the representation cannot be properly evaluated and the simula-

tion is terminated with the error message ’CANNOT IDENTIFY REPRESENTATION’.
The ECHAM5/MESSy model uses another order of dimensions as the
COSMO/MESSy model. Therefore the axis string characters, the dimension IDs
and the dimension lengths must be permutated, if ECHAM5/MESSy is server. For
instance, dim_axis = ’XZNY’ becomes dim_axis = ’XYNZ’ and the dim_len has
to be changed accordingly.
The new representations are constructed by the subroutine
make_cosmo_representation. Input to this subroutine are
· the lengths of the ’Z’ and ’N’ dimensions (these are zero if the corresponding

dimension is not required),
· the dimension IDs (dim_ids),
· the axis string (dim_axis) and
· the dimension length (dim_len).
Output of the subroutine is the representation ID of the newly created representa-
tion. Based on the incoming parameters, the respective representation is created.
The names of the representations are as generic as the dimension names. If ’Z’ and
’N’ dimensions are required, the representation is named ’REPR_4D_zzLEV_nnN’

Kerkweg and Jöckel: MMD user manual 29

where ’zz’ stands for the number of z-levels and ’nn’ for the number of n-
levels. The representation names for ’Z’-dimension only or ’N’-dimension only are
’REPR_3D_zzLEV’ or ’REPR_3D_nnN’, respectively. Using the CHANNEL subrou-
tine get_representation_info, it is inquired if the representation exists already.
In this case the return variable reprid is set to the ID of the matching representa-
tion, otherwise, the representation needs to be created via the channel subroutine
new_representation. In both cases the representation ID is handed back to the
calling subroutine. After the representation is identified or newly created, the new
channel object of the ’mmdclnt’ channel can be created as described above for the
case when the representation is known a priori. Additionally, a new attribute to
the channel object will be set, if it was sent from the server (serv_att). This is
required in case of Nx2D emission fields, as the layer heights have to be known in
addition to the amount given by the field itself.

2. Determine CPLDATA(ii)%cosmo bd:
As for CPLDATA(ii)%cosmo, this part is skipped, if the client channel name is ’#XXX’. If
L_BOUND is .TRUE., boundary data for the specific coupling field is required. In this case
CPLDATA(ii)%cosmo_bd is allocated to 2, as the boundary layer field always consist of two
layers. In the standard COSMO model, these contain the fields at the beginning and the end
of the time interval for which the boundary data is valid. During this interval the boundary
data is linearly interpolated according to the elapsed time. In the on-line coupled setup
the two time levels for the boundary data are filled with the same values. Otherwise the
server model needs to be fore-running by one boundary data time interval, which renders a
2-way nesting -as planned for the future- impossible. As the on-line coupling enables much
higher coupling frequencies, the error of this procedure is small.
Although the levels are filled with the same values and the linear interpolation in time is
not required anymore, the procedure is kept in order to leave untouched as many code of
the COSMO model as possible.
For a boundary field, the 4D-POINTER to the full boundary data field is ac-
quired with get_channel_object. Afterwards, the POINTERs of the POINTER ARRAY

CPLDATA(ii)%cosmo_bd(1:2)%ptr are set dependent on the rank of the data field. For
instance,

IF ((CPLDATA(ii)%rank == 3 .AND. &
(TRIM(CPLDATA(ii)%CLIENT%CHA) /= ’tracer_gp’)) THEN
CALL get_channel_object(status &

, TRIM(CPLDATA(ii)%CLIENT%CHA) &
, TRIM(CPLDATA(ii)%CLIENT%OBJ)//’_BD’ &
, p4=bdptr)

...

CPLDATA(ii)%cosmo_bd(1)%ptr =>bdptr (:,:,:,1:1)
CPLDATA(ii)%cosmo_bd(2)%ptr =>bdptr (:,:,:,2:2)
NULLIFY(bdptr)

For a rank=3 field the boundary field has 4 dimensions. Thus, the first boundary POINTER

is set to the first boundary time level and the second to the second one. Note: This proce-
dure does not work for 4-D data fields, for which boundary fields would be 5-dimensional.

30 Kerkweg and Jöckel: MMD user manual

However, a coupling to the individual boundary time levels would still be possible (and
easy implementable), if required. So far such fields are not part of the model system apart
from tracers.
Tracers are again processed differently. The two time levels of the boundary data are
channel objects of the two TRACER CHANNELS tracer_gp_x001 and tracer_gp_x002.
Thus, the POINTERs to the boundary data can be associated directly by

CALL get_channel_object(status &
, TRIM(CPLDATA(ii)%CLIENT%CHA)//’_x001’ &
, TRIM(CPLDATA(ii)%CLIENT%OBJ) &
, p4=CPLDATA(ii)%cosmo_bd(1)%ptr)

and

CALL get_channel_object(status &
, TRIM(CPLDATA(ii)%CLIENT%CHA)//’_x002’ &
, TRIM(CPLDATA(ii)%CLIENT%OBJ) &
, p4=CPLDATA(ii)%cosmo_bd(2)%ptr)

3. Determine CPLDATA(ii)%lvartab, CPLDATA(ii)%vartab name and CPL-
DATA(ii)%vartab idx:
Some data manipulations require a distinction between INT2COSMO inherent fields
and additional fields. INT2COSMO inherent fields are all listed in the variable table
structure (var_lm) in INT2COSMO. This table determines -among others- the inter-
mediate and the in-fields, as well as the interpolation method. CPLDATA(ii)%lvartab,
CPLDATA(ii)%vartab_name and CPLDATA(ii)%vartab_idx are set in a loop over the vari-
able table of INT2COSMO:

– The structure component CPLDATA(ii)%lvartab is .TRUE., if the variable is element
of the INT2COSMO variable table.

– Additionally, the name of the field in the variable table is stored in the structure
component CPLDATA(ii)%vartab_name. This is useful especially for one variable, the
roughness length, as only for this the names (and the meaning) of the variables are
different in INT2COSMO and in COSMO. In INT2COSMO the roughness length is
called ’Z0’ whereas the COSMO model treats the product of roughness length times
gravitational acceleration named ’gZ0’. These two need to be associated with each
other.

– Finally, the location, i.e., the index, of the field in the INT2COSMO variable table is
stored in the structure component CPLDATA(ii)%vartab_idx.

4./5. Determine CPLDATA(ii)%ptr in and CPLDATA(ii)%ptr i2c:
The information, if a coupling field is part of INT2COSMO, is required for the association
of the POINTERs CPLDATA(ii)%ptr_in and CPLDATA(ii)%ptr_i2c. If the field is part
of the variable table, the memory for the in-field and the intermediate field have been
already allocated in INT2COSMO. Otherwise the memory for these fields is allocated in
MMDCLNT itself.

a) The memory for the intermediate and in-fields exists already:
∗ The POINTER CPLDATA(ii)%ptr_in can be directly associated calling the subrou-

tine get_channel_object. For this call the object name is constructed by adding

Kerkweg and Jöckel: MMD user manual 31

the suffix _IN to the target field name and the name of the channel is ’MMDC4_IN’19.
When no object is found the simulation will be terminated.

∗ After the POINTER CPLDATA(ii)%ptr_in is associated, the representation ID of
this object is obtained by calling get_channel_object_info.

∗ This ID is used to acquire the axis string (CPLDATA(ii)%AXIS) and the local dimen-
sions (CPLDATA(ii)%ldimlen). This information is required by the MMD library
for the data exchange.

∗ Afterwards, CPLDATA(ii)%rank is determined dependent on the third dimension of
ptr_in to be 2 or 3.

∗ Additionally, the INT2COSMO field is marked as read
(var_in(itab)%lreadin = .TRUE.).

∗ The POINTER CPLDATA(ii)%ptr_i2c to the intermediate field required in
INT2COSMO is set by the subroutine get_channel_object by using
CPLDATA(ii)%vartab_name as channel object name and ’MMDC4’ as channel name.

b) The memory for the intermediate and in-fields still needs to be allocated (additional
fields only):
The representation of the intermediate and in-fields is not a priori known. They are
determined dependent on the rank of the field.

∗ For CPLDATA(ii)%rank = 2 the in-field and the intermediate field are defined using
the existing representation IDs REPR_I2C_2D_IN and REPR_I2C_2D, for a 2-D in-
field and a 2-D intermediate field, respectively.

∗ If CPLDATA(ii)%rank is 3 and CPLDATA(ii)%C_REPR is ’GP_3D_MID’, the prior
defined representation IDs ’REPR_3D_MID_IN’ and ’REPR_I2C_3D_MID’ are used.

∗ In all other cases, the subroutine make_i2c_representation is called with the
vertical and number dimensions as input parameters. The subroutine determines
similarly to the subroutine make_cosmo_representation the representations for
the intermediate field and the in-field.

Using these representations, the new channel objects for the in-field and the intermedi-
ate field are defined. The channel objects for the in-fields are added to the INT2COSMO
channel ’MMDC4_IN’. The intermediate fields are added to the channel ’MMDC4’ con-
taining all intermediate fields.
Additionally, the axis string (CPLDATA(ii)%AXIS) and the local dimen-
sions (CPLDATA(ii)%ldimlen) are determined by calling the subroutine
get_representation_info with the representation ID REPR_IN.

• Define data arrays: After all data fields are associated or allocated, the respective POINT-

ERs of the in-fields can be forwarded to the MMD library routines. To address the correct
exchange fields within the MMD library, a loop over the exchange fields is performed by using
the MMD library function MMD_C_GetNextArray. For each field the MMD library subroutine
MMD_C_Set_DataArray is called, handing over the POINTER to the memory allocated for the
in-field. Additionally, the axis string and the local dimension length are communicated to the
MMD library, which, internally uses this information, later on, to unpack the data received from
the server.

19One special case has to be considered: the in-field for ’W SO’ is not necessarily named ’W SO IN’, it can also be
’W SO REL IN’.

32 Kerkweg and Jöckel: MMD user manual

Before returning from this subroutine, the MMD library subroutine
MMD_C_SetInd_and_AllocMem is called. It invokes the MMD internal calculation of the
required buffer sizes and the actual memory allocation via MPI_alloc_mem.

With this the initialisation phase for the MMDCLNT submodel is complete.

5.2 Integration Phase

The procedure explained in this section is part of the subroutine mmdclnt_init_loop, as the update
of the fields is required at the very beginning of the respective time step. The very first time step
of a model simulation (lstart = .TRUE.) builds an exception to this rule, because in the very first
initialisation not only input and boundary fields, but also the initial fields are calculated. The latter
are already used during the end of the initialisation phase in the COSMO model. Therefore the very
first data transfer and interpolation takes already place in mmdclnt_init_memory. Nevertheless, the
procedure explained here is the same.

There are two chunks of information, which need to be exchanged during the integration phase: the
coarse grid data and the TIMER status of the server.

5.2.1 Data exchange, interpolation and supply

First of all, the coupling event (CPL_EVENT) determines, if data exchange should occur in this time
step. If this is the case, the MMDCLNT private subroutine exchange_interpol_data is called:

1. First, the data exchange is performed by calling the MMD library subroutine MMD_C_GetBuffer,
which fills all in-fields with the updated values sent by the server. MMD_C_GetBuffer also hands
back a variable containing the time in seconds, which the client had to wait until the server data
was accessible. This information is written to the log-file.

2. As soon as the in-fields are filled, the MMD internal check of the consistency of the exchanged
horizontal data field is performed. This is invoked by calling the subroutine MMD_testC_compare.
As the content of the test_array does not change with time this check is only performed at the
beginning (start or restart) of a simulation.

3. The COSMO and the INT2COSMO implementation of the MPI data exchange routines for
scattering and gathering fields include dimension checks, which inhibit the exchange of data of
different horizontal dimensions. But the standard 2-D- and 3-D-COSMO fields and the in-fields
of INT2COSMO are of different horizontal resolution. This was no matter as long as COSMO
and INT2LM were independent programs. In the case of on-line coupling the easiest way to
cope with this, was to (re-)set the variables used for the dimension checks every time, when
changing between INT2COSMO and COSMO parallelisation. This is done within the subroutine
switch_par_utilities(flag). When flag=1 the check environment switches to INT2COSMO
parallelisation, in the case flag=2 it is switched back to COSMO parallelisation. Because the
subroutines called in the following in exchange_interpol_data are INT2COSMO routines (com-
pare flow chart Fig. 3), the parallel environment checks are switched to INT2COSMO at this
place. After those more general preparations the processing of the incoming data starts:

• mmdclnt prepare external data: This subroutine collects all data required for the in-
terpolation and the calculation of the coupling fields: INT2COSMO basically distinguishes
three types of “external data”:

Kerkweg and Jöckel: MMD user manual 33

(a) the external parameters defined on the target COSMO model grid,
(b) the external parameters as provided by the driving model (server) and
(c) the data fields provided by the driving model (server).

– External parameters are constant or slowly changing fields given as boundary conditions
for the model domain, e.g., the soil type, the leaf area index, the root depth and so
forth.
The external parameters for the target grid are read in from an extra file in the
INT2COSMO subroutine external_data. Based on the read-in values, the variables
required in COSMO and INT2COSMO are calculated later on. At the time being, in
INT2LM all external parameters are read, meaning, even for monthly changing vari-
ables (in the climate mode of the model) the data for all twelve month is read at once.
Thus reading the external parameters is only required at the beginning and the restart
of a simulation. For the sake of higher computational efficiency, the read procedure
is switched off for additional time steps in MMDCLNT INT2COSMO. This is accom-
plished by the extra LOGICAL variable lread, which is parameter to the subroutine
external_data and switches off the reading procedure20.
In addition to the reading of the external parameters for the COSMO grid switched
by the parameter lread in the subroutine external_data, the reading of the external
parameters of the coarse grid is always omitted, because these variables are updated
by the on-line data exchange. The calculation of the external parameters following the
read procedure is kept virtually unchanged and the fields are processed in the same
way as in INT2LM. For more details about the code changes see Sect. 7.7.

– Similarly as in external_data, in the subroutine org_read_coarse_grid the reading
procedure is omitted, as the fields are already initialised by the on-line coupling.The
subsequent analysis of the data, the determination of logical switches and intermediate
fields is kept unchanged except for a few very small changes, which are discussed in
detail in Sect. 7.16.

• mmdclnt interpolation: After the preparation of the data, the interpolation begins.
The interpolation of the INT2COSMO inherent fields proceeds exactly as in the off-line
INT2LM:

(a) The fields are interpolated horizontally by calling the INT2COSMO routine
org_coarse_interpol. In this subroutine a field specific interpolation is performed.
For 3-D-fields each vertical level is independently interpolated horizontally.

(b) The horizontal interpolation is followed by the vertical interpolation. If
the COSMO/MESSy model is the server (llm2lm = .TRUE.) the subroutine
org_vert_inter_lm is called, otherwise the subroutine org_vert_interpol.

(c) Subsequently, additional 2-D-fields are calculated by the INT2COSMO subroutine
org_2d_fields.

(d) If the server is not the COSMO/MESSy model, the fields need adjustment to the
non-hydrostatic grid of the COSMO model. This is done within the subroutine
org_lm_fields.

• Interpol AddiArrays: The interpolation of the additional fields is based on the routines
provided by INT2LM. In the subroutine a loop over all exchange fields (from 1 to NEXCH)

20In future it might be desirable to regularly read updated external parameters. For this we implemented the event
READEXT EVENT. Per default the adjustment of the event is set to ’none’, deactivating the event, i.e., the external data
are only read at start or restart of a simulation.

34 Kerkweg and Jöckel: MMD user manual

is processed. All fields with CPLDATA(ii)%lvartab = .TRUE. are skipped because they
have already been interpolated in INT2COSMO. Additionally, the MMD test_array is
excluded as the test is performed for the in-field.

– In a loop over the vertical levels (or vertical levels and number dimension length
for 4-D fields) the fields are interpolated horizontally by calling the subroutine
interpol_coarse_OneLayer. This subroutine uses the weights calculated before in
org_coarse_interpol for the INT2COSMO inherent fields and calls for each field
the interpolation routines according to the CPLDATA(ii)%C_INTERPOL flags set in the
namelist (as org_coarse_interpol does for the INT2COSMO inherent fields).

– After interpolating the fields horizontally, they are vertically interpolated within the
subroutine interpol_vert_AddiArray. Again the INT2COSMO routines are used.
If the server is ECHAM5/MESSy, the interpolation routines vert_interpol and
vert_int_lm, or, depending on the vertical grid vert_z_lm are subsequently called
including the adaption to the COSMO non-hydrostatic grid. For llm2lm = .TRUE.
(server is a COSMO/MESSy model), the subroutine vert_interp performs the entire
interpolation. The vertical interpolation of the 4-D fields proceeds for each number
dimension independently.

• After finishing the INT2COSMO routines, the dimension check is reset to the COSMO
parallelisation in switch_par_utilities.

4. Last but not least, the intermediate fields calculated by the interpolation routines
(CPLDATA(ii)%ptr_i2c) need to be assigned to the target fields. This task is split into two
parts. The intermediate fields are copied to the initial fields, but only at the very first model
time step, whereas the boundary and input fields need to be assigned each coupling time step.

• The subroutine move_initial_arrays_to_COSMO moves initial data in two ways: It copies
the intermediate fields to their initial fields and performs additional initialisations: In the
off-line version of COSMO, the reference atmosphere and the vertical coordinate are deter-
mined within the INT2LM namelist. COSMO afterwards reads these parameters from the
initial file produced by INT2LM. In the case of on-line coupling, these parameters are still
determined via the INT2COSMO namelist, but the respective COSMO variables need to be
set to the INT2COSMO values. Hence, the parameters determining the vertical coordinate
and the reference atmosphere21 in COSMO are set to their INT2COSMO counterparts in
move_initial_arrays_to_COSMO.
For the assignment of the COSMO/MESSy fields the CPLDATA structure is processed in one
loop over the entries of CPLDATA. The field is skipped,

– if L_INITIAL is .FALSE.,
– if it is only an exchange field (the client channel name is ’#XXX’), or
– if it is the test_array.

Otherwise, dependent on the dimension of the CPLDATA(ii)%cosmo the data is moved to
the target field(s):

– If the dimension of CPLDATA(ii)%cosmo is 1, only one field needs to be assigned. Within
a loop over the fourth dimension (loop index iX) the first three dimensions are copied:
size3 = SIZE(CPLDATA(ii)%cosmo(1)%ptr,3)

21i.e., vcflat, p0sl, t0sl, dt0lp, nfltvc, svc1, svc2, ivctype, irefatm, delta t and h scal

Kerkweg and Jöckel: MMD user manual 35

CPLDATA(ii)%cosmo(1)%ptr(istartpar:iendpar &
,jstartpar:jendpar,1:size3,iX) = &
CPLDATA(ii)%ptr_i2c(istartcos:iendcos &
,jstartcos:jendcos,1:size3,iX)

Note: the data can only be copied on the “core-regions” (see Sect. 5.4) as only these
overlap on each PE of the COSMO and of the INT2COSMO grid. This is achieved by
using the indices istartpar, iendpar, jstartpar and jendpar for the COSMO grid
and the indices istartcos, iendcos, jstartcos and jendcos for the INT2COSMO
grid. Details about the matching of the decomposition of the two grids are provided
in Sect. 5.4. As only the “core-regions” of the local domain can be initialised for each
field, the COSMO subroutine exchg_boundaries must be called to ensure that the
entire local domains are initialised.

– If the dimension of CPLDATA(ii)%cosmo is larger than 1, the variable depends on time
and three cases are distinguished:

∗ For a 2-time level integration scheme only the “new” time level needs to be ini-
tialised:
size3 = SIZE(CPLDATA(ii)%cosmo(1)%ptr,3)

CPLDATA(ii)%cosmo(nnew)%ptr(istartpar:iendpar &
,jstartpar:jendpar,1:size3,iX) = &
CPLDATA(ii)%ptr_i2c(istartcos:iendcos &
,jstartcos:jendcos,1:size3,iX)

with nnew being the index of the “new” time level in COSMO.
∗ For a 3-time level scheme two time levels are initialised:

size3 = SIZE(CPLDATA(ii)%cosmo(1)%ptr,3)

CPLDATA(ii)%cosmo(nnew)%ptr(istartpar:iendpar &
,jstartpar:jendpar,1:size3,iX) = &
CPLDATA(ii)%ptr_i2c(istartcos:iendcos &
,jstartcos:jendcos,1:size3,iX)

CPLDATA(ii)%cosmo(nnow)%ptr(istartpar_c4:iendpar_c4 &
,jstartpar_c4:jendpar_c4,1:size3,iX) = &
CPLDATA(ii)%ptr_i2c(istartcos:iendcos &
,jstartcos:jendcos,1:size3,iX)

∗ A special case are the tracers, as they are not accessible via index shift: The
POINTERs of the POINTER ARRAY CPLDATA(ii)%cosmo are associated in a way
that the first POINTER points to the nnew time level and the nnow time level
is accessed by the second POINTER (see Sect. 5.1.2). Thus for a 2-time level
integration scheme only the first, otherwise both fields are initialised.

As in the diagnostic case, the copy statements are placed in a loop over the fourth
dimension of CPLDATA(ii)%cosmo(nt)%ptr and exchg_boundaries needs to be called
to complete the initialisation.

• The subroutine move_boundary_arrays_to_COSMO copies the boundary and the input fields
to their respective target fields.
One important difference between the boundary data association of the off-line COSMO
setup and the on-line coupled setup must be emphasised here: In the off-line COSMO

36 Kerkweg and Jöckel: MMD user manual

boundary data are provided for two time steps (e.g., in 6 hour intervals) and the actual
boundary values in-between these time steps are interpolated linearly between these two
time steps. If this were to be imitated in the on-line coupling, the server model had to be
one coupling time interval ahead of the client model. This could be implemented, but the
ultimate goal for the development of the on-line coupling is to include a two-way nesting.
In this case, the server cannot be ahead of the client model. Therefore it was decided to
fill the two time levels of the boundary data with the same actual value. As the on-line
setup enables a much higher coupling frequency the deviation due to the different handling
of boundary data is expected to be small.
For the transfer of the boundary and the input fields a loop over the entries of CPLDATA is es-
tablished. Again, the test_array and the exchange fields only required for the interpolation
are skipped. If boundary data is requested for a field (CPLDATA(ii)%L_BOUND = .TRUE.)
the respective intermediate field CPLDATA(ii)%ptr_i2c is copied to both time levels of the
boundary data POINTER ARRAY:

size3 = SIZE(CPLDATA(ii)%cosmo_bd(1)%ptr,3)
size4 = SIZE(CPLDATA(ii)%cosmo_bd(1)%ptr,4)
CPLDATA(ii)%cosmo_bd(1)%ptr(istartpar:iendpar &

,jstartpar:jendpar,1:size3,1:size4) = &
CPLDATA(ii)%ptr_i2c(istartcos:iendcos &
,jstartcos:jendcos,1:size3,1:size4)

CPLDATA(ii)%cosmo_bd(2)%ptr(istartpar:iendpar &
,jstartpar:jendpar,1:size3,1:size4) = &
CPLDATA(ii)%ptr_i2c(istartcos:iendcos &
,jstartcos:jendcos,1:size3,1:size4)

Subsequently they are distributed to the full local domains by calling exchg_boundaries.
Similarly, if CPLDATA(ii)%L_INPUT = .TRUE for a coupling field, the intermediate field is
copied to the CPLDATA(ii)%cosmo POINTER ARRAY:

size3 = SIZE(CPLDATA(ii)%cosmo(1)%ptr,3)
size4 = SIZE(CPLDATA(ii)%cosmo(1)%ptr,4)
CPLDATA(ii)%cosmo(1)%ptr(istartpar:iendpar &

,jstartpar:jendpar,1:size3,1:size4) = &
CPLDATA(ii)%ptr_i2c(istartcos:iendcos &
,jstartcos:jendcos,1:size3,1:size4)

The transfer is finalised by the boundary exchange with exchg_boundaries.

Before copying the intermediate fields to the target fields, one additional measure has to be taken,
since some 2-D INT2COSMO inherent fields are flagged: The COSMO model tests for undefined
values by comparing with a constant value undefncdf (defined as “undefined”). Usually in the
COSMO off-line setup the initial and boundary data are read from files, in which undefined data
points are marked by this special value. Therefore some fields are flagged during the on-line
coupling for the sake of consistency:

• If the land/sea mask flag var_lm(i)%lsm of a variable is set to ’l’, the variable will be
flagged with undefncdf at points over sea.

• The grid points of ’T_SNOW’ will be set to undefncdf where w_snow_lm < 0..

Kerkweg and Jöckel: MMD user manual 37

Table 1: LOGICALs switches determining the restart behaviour.
switch description (if .TRUE.)
lbreak interruption or stop of model simulation
lstop stop of model simulation
l rerun write restart files
l TRIGGER RESTART force model interruption

• ’Z0’ is multiplied with the gravitational acceleration (g) to get the variable ’gZ0’ as used
by COSMO.

The procedure explained in detail above is summarized in Fig. 5. Furthermore it illustrates the usage
of the MMDCLNT internal pointers: ptr_in is the in-field, which is input to INT2COSMO. During
the horizontal interpolation the vertical and number dimensions remain untouched. The result of the
interpolation is written to the intermediate field ptr_i2c. If the in-field is 3-D in space (number of
incoming vertical levels is ke_in) vertical interpolation is possible. After the vertical interpolation
ptr_i2c contains valid data on the vertical levels 1:ke with ke being the number of vertical levels
in the client model. After the interpolation, the intermediate field (ptr_i2c) is copied to the target
field(s), i.e., those variables used subsequently in the basemodel or other MESSy submodels. For
initial and input fields the data is copied to the variable associated with the cosmo(.)%ptr, for
boundary fields the intermediate field is copied to the boundary variable associated with the pointers
cosmo_bd(.)%ptr.

5.2.2 Exchange of stop and restart triggers

To ensure the synchronisation of the models, information is exchanged whether the simulation is to be
interrupted. Such an exchange is necessary, as, apart from the scheduled restart, exceptional simulation
interruptions are triggered ,e.g., by QTIMER, when the available scheduler time is consumed. Table
1 lists the LOGICAL variables, which determine the behaviour of the simulation.

For the synchronisation, an exchange of this information has to take place each server time step. Thus,
a BREAK_EVENT is set up for the client, which triggers for each server time step. If the event is scheduled,
the subroutine exchange_breakinfo is called. The server sends the contents of its TIMER LOGICALs

lbreak, l_rerun and lstop, via the MMD library routine MMD_Inter_Bcast. As this subroutine is
not overloaded for LOGICALs, these are transferred as INTEGERs: .TRUE. is 1 and .FALSE. is 0.

lbreak indicates, if a simulation is going to be interrupted, lstop shows, if the simulation will be
stopped and l_rerun signals, if restart file shall be written at the end of the time step. The contents
of the server lbreak and l_rerun switches are directly written to the respective client switches. If the
server lstop-switch is .TRUE., this indicates that the model simulation is terminated. In this case,
if the client lstop-switch is not yet .TRUE., the client model must not directly trigger a restart and
exit, but rather end the simulation at the stop_date. Thus, if the server lServstop is .TRUE. and
the client itself did not yet indicate the end of the simulation (i.e., lstop = .FALSE.), lbreak will
be reset to .FALSE.. This combination appears exactly in the case discussed above, when the client
should continue its calculation until its own stop_date is reached. Additionally, if lbreak is .TRUE.,
l_rerun and L_TRIGGER_RESTART are set to .TRUE.. Table 2 lists the contents of the LOGICALs on
the client side dependent on the status of the server.

38 Kerkweg and Jöckel: MMD user manual

ptr_in(:,:,1:ke_in,1:N)

Horizontal
 Interpolation

ptr_i2c(:,:,1:ke_in,1:N)

Vertical
 Interpolation

move initial
move input

cosmo(.)%ptr(:,:,1:ke,1:N)

move boundary

cosmo_bd(.)%ptr(:,:,1:ke,1:N)

COSMO/MESSy

ptr_in(:,:,1:kex,1:N)

cosmo(.)%ptr(:,:,1:kex,1:N) cosmo_bd(.)%ptr(:,:,1:kex,1:N)

ptr_i2c(:,:,1:ke,1:N)

ptr_i2c(:,:,1:kex,1:N)

Figure 5: Pointer usage in MMDCLNT. N is an arbitrary (number) dimension, ke in is the number
of vertical levels of the in-field, ke is the number of vertical levels in the COSMO model and kex is an
arbitrary number of vertical levels. First, the in-field is interpolated horizontally, second, -if requested
and possible- the vertical interpolation (black) is performed and third, the intermediate field is copied
to the COSMO/MESSy target and boundary variables.

Kerkweg and Jöckel: MMD user manual 39

Table 2: Contents of client LOGICALs, which determine the restart settings.
server status lbreak l rerun
continue .FALSE. .FALSE.
write restart file, continue .FALSE. .TRUE.
restart .TRUE. .TRUE.
stop .FALSE. .TRUE.

INT2COSMO

COSMO

external

Figure 6: Illustration of the three model domains for the external parameters (turquoise),
INT2COSMO (red) and the COSMO model (black). The dashed lines illustrate the entire model
domains, whereas the solid lines show the “inner” domains (see text).

5.3 Finalisation Phase

After the integration phase at the end of a simulation, the memory allocated in the course of the
simulation is deallocated. The MMDCLNT subroutine mmdclnt_free_memory releases the memory
allocated by INT2COSMO by calling the INT2COSMO subroutine org_cleanup. For the MMD
test_array and the other memory allocated by MMD the MMD library routines MMD_testC_FreeMem
and MMD_C_FreeMem release the memory, respectively.

5.4 Grid definitions and parallel decomposition of INT2COSMO

In this section the definition of the different grids or domains used in INT2COSMO and the parallel
domain decomposition of INT2COSMO, which differs from the INT2LM decomposition, are illus-
trated.

5.4.1 Domains

INT2COSMO works with data defined on four different domains:

1. The domain of the fields provided by the server, i.e., the “in”-grid or the in-field domain;

40 Kerkweg and Jöckel: MMD user manual

2 5 8

1

30

4 7

6

ie_tot1 isubpos(3,3)
isubpos(4,3)
isubpos(5,3)

isubpos(0,3)
isubpos(1,3)
isubpos(2,3)

isubpos(0,1)
isubpos(1,1)
isubpos(2,1)

isubpos(6,3)
isubpos(7,3)
isubpos(8,3)

isubpos(3,1)
isubpos(4,1)
isubpos(5,1)

isubpos(6,1)
isubpos(7,1)
isubpos(8,1)

je_tot

isubpos(2,4)
isubpos(5,4)
isubpos(8,4)

isubpos(2,2)
isubpos(5,2)
isubpos(8,2)

isubpos(1,4)
isubpos(4,4)
isubpos(7,4)

isubpos(1,2)
isubpos(4,2)
isubpos(7,2)

isubpos(0,4)
isubpos(3,4)
isubpos(6,4)

isubpos(0,2)
isubpos(3,2)
isubpos(6,2)

1

Figure 7: Example for a parallel decomposed COSMO model domain, distributed on 3x3 PEs: The
numbers on yellow background are the respective PE number. The black dashed line is the border of
the entire model domain, the solid lines depict the core-regions of the local domains. The blue dashed
line indicates the full local domain of PE 4, i.e., including the halo or ghost boundaries. Additionally
annotated are the global indices for of the core-regions.

2. the target domain, i.e., the COSMO model domain;

3. the INT2COSMO domain, i.e., the “working” domain of INT2COSMO;

4. the domain on which the external parameters such as root depth, the orography, the leaf area
index or the land-sea mask, are defined.

Table 3 lists which structure components of the MMDCLNT variable CPLDATA are defined on which
domain.

The in-field domain is defined by the server (see Sect. 6.1.2) and therefore independent of the target
COSMO model domain.

The other three domains, must have the same grid spacing and need to be rotated in the same way.
In other words, the only difference between these model domains is their size. The order of the
domains is obvious:

Kerkweg and Jöckel: MMD user manual 41

2 5 8

1

30

4 7

6

je

1

jend jendpar

jstart jstartpar

istart
istartpar

iend
iendpar

ie1

3

4 7

6

istart
istartpar

iend ie
iendpar

1

je

1
 jstartpar

jend
jendpar

jstart

Figure 8: The figure is zooming in on PE 4 (left) and PE 6 (right) of Fig. 7, illustrating the definition
of the local indices istart, iend, jstart, jend, istartpar, iendpar,jstartpar and jendpar.

Table 3: List of CPLDATA structure components and their respective model domain.
structure component domain
CPLDATA(ii)%ptr in in-field domain
CPLDATA(ii)%ptr i2c INT2COSMO domain
CPLDATA(ii)%cosmo(:)%ptr COSMO domain
CPLDATA(ii)%cosmo bd(:)%ptr COSMO domain

external parameter domain > INT2COSMO domain > COSMO domain

This hierarchy is caused by the processing order:

• INT2COSMO processes external parameters. Consequently, the external parameter fields need
to be larger as the INT2COSMO fields.

• INT2COSMO interpolates data to the COSMO domain, thus the INT2COSMO domain has to
be larger as the COSMO domain.

The model domains are illustrated in Fig. 6.

5.4.2 The parallel decomposition of the COSMO model grid and the INT2LM grid

INT2LM and the COSMO model use the same decomposition procedure. The domain is split into
rectangular parts according to the numbers of PEs in x and y directions (nprox and nprocy as
namelist entries). Figure 7 shows a decomposition for 9 PEs (3x3). The parts enclosed by the solid
lines illustrate the so-called “core-regions” of the local (i.e. PE-bound) model domains. The sum of
the core-regions covers the entire model domain, except for a frame at the lateral boundaries, which
relevance becomes clear below (i.e., entire domain = “inner” domain + lateral frame).

42 Kerkweg and Jöckel: MMD user manual

These core-regions are unambiguously defined by their indices in the entire model domain. The
indices are stored in the INTEGER ARRAY variable isubpos(0:nPE-1,4), with nPE number of PEs.
This variable lists the indices of the lower left and the upper right corner of the core-regions of each
PE in the entire model domain:

• isubpos(:,1): first (’i’) index of the lower left corner;

• isubpos(:,2): second (’j’) index of the lower left corner;

• isubpos(:,3): first (’i’) index of the upper right corner;

• isubpos(:,4): second (’j’) index of the upper right corner.

Figure 7 illustrates the definition of the individual isubpos for the example.

To allow the computationally efficient implementation of processes, which require the data of the
neighbour grid points, a “halo” or “ghost boundaries” surround the core-region of each PE. Thus, the
local decomposed domain on each PE consists of the ghost boundaries and the core-region22. The blue
dashed line in Fig. 8 illustrates the local model domains of PE 4 (left) and PE 6 (right), including the
ghost boundaries and the core-region. Physical processes are calculated on the core-region, whereas the
ghost boundaries are used, if the neighbouring value is required during the calculation of a physical
process, e.g., for advection. Before calculating such a process, it must be ensured, that the ghost
boundaries contain the correct values for the required fields. This is achieved by the subroutine
exchg_boundaries, which transfers the data from the PE, on which a grid point belongs to the
core-region, to the ghost boundary of the neighbouring PEs.

Figure 8 illustrates the definitions of the local grid and the respective indices for example PEs 4 and
6:

• The lower left corner of the local domain is always the grid point (1,1) and the upper right
corner is (ie,je) with ie and je being the number of grid points in x or y direction, respectively.

• The lower left corner of the core-region is (istart,jstart) and the upper right corner is
(iend,jend).

If the PE is not completely surrounded by other PEs, the PE also hosts a part of the lateral frame of
the entire model domain. In this case, the physical processes need also to be calculated on the lateral
frame. The lateral frame is not a part of a core-region, but it is identical to the ghost boundaries of
the respective PE. Thus, the physical processes are also calculated on the ghost boundaries which is
visualised by the right hand side of Fig. 8. PE 6 is located at the lower right corner of the entire model
domain. Thus, to calculate the processes on the entire model domain, on the eastern and southern bor-
der the physical processes are also calculated on the ghost boundaries. While istart, jstart, iend
and jend always refer to the core-region, the indices istartpar, jstartpar, iendpar and jendpar
refer to the grid points on which the physical processes are really calculated. On a PE completely
surrounded by other PEs, these index quadruples are equal, as illustrated by the left hand side of Fig.
8. The right hand side of Fig. 8 shows the indices as defined for a PE at the lateral boundary. The
solid black rectangle illustrates the core-region, the blue dashed line the entire local model domain.
The light blue area indicates the domain part, on which the physical processes are calculated for PE
6.

22Note: The width of the ghost boundaries and of the lateral frame are identical. It is defined by the variable
nboundlines

Kerkweg and Jöckel: MMD user manual 43

3

4 7

6

istart
istartpar

iend ie
iendpar

1

je

1
 jstartpar

jend
jendpar

jstart

istart
istartpar iend

ie2lm
iendpar

1

je2lm

1, jstartpar

jend jendpar

jstart

istartcos iendcos

jstartcos

jendcos

Figure 9: This is an extension of the right hand side of Fig. 8. Additionally the overlapping
INT2COSMO regions for PE 6 are indicated by red rectangles. The lighter red shows the ghost
latitudes, whereas the darker red indicates the INT2COSMO core-region. The red indices are the
indices for the local INT2COSMO domain. Additionally, the position of the four indices istartcos,
iendcos,jstartcos and jendcos are marked (green colour).
.

The width of the ghost boundaries, i.e., the number of grid points (variable nboundlines) added
at each side to the core-region, depends on the processes taken into account in the simulation. For
the COSMO model using the leap-frog time integration scheme nboundlines=2 is sufficient. If the
Runge-Kutta time integration scheme is used, nboundlines is 3 or 4 depending on the order of the
Runge-Kutta scheme. In contrast to this, nboundlines for the INT2COSMO domain is determined
by the order of the interpolation routines. For the currently implemented interpolation algorithms
nboundlines is always 1.

5.4.3 The parallel decomposition of the INT2COSMO grid

For the sake of computational efficiency, the local INT2COSMO and the local COSMO model do-
mains should be congruent. If this is not the case, it is required to gather the fields calculated by
INT2COSMO on one PE and to scatter them to the local COSMO model domain, afterwards.

Unfortunately, the decomposition algorithm used for COSMO and INT2LM does not lead to a con-
gruent decomposition of both domains, because in the decomposition algorithm

1. an nboundlines-wide frame is subtracted from the entire domain,

44 Kerkweg and Jöckel: MMD user manual

2. the remaining domain (called “inner” domain) is almost equally distributed on the PEs, which
leads to the definition of the core-regions and

3. the nboundlines-wide ghost-boundaries are added to the core-regions to define the entire local
model domains.

The INT2COSMO domain is larger than the COSMO model domain, and the number of ghost bound-
aries is larger for the COSMO model than for INT2COSMO, therefore “inner” domains have always
different sizes, this is why the decomposition algorithm cannot result in congruent domains for COSMO
and INT2COSMO.

Nevertheless, it is possible, that the COSMO core-regions are always covered by the INT2COSMO
core-regions. The coverage of the COSMO core-regions is sufficient to avoid the gather and scatter
procedure for the complete fields. Nevertheless, it requires additional data exchange, for the ghost
boundaries. This is performed by the COSMO subroutine exchg_boundaries. As the INT2COSMO
core-regions are always equal are larger than the COSMO core-regions the coverage can be achieved
by skilfully defining the INT2COSMO core-regions based on the COSMO core-region definition. The
procedure is outlined below: The INT2COSMO domain is larger than the COSMO model domain, i.e.,
the entire COSMO model domain is equal to the “inner” INT2COSMO domain, i.e., the entire domain
minus an nboundlines wide frame. (compare Fig. 6). Therefore, the INT2COSMO core-regions can
be made equal to the COSMO core-regions for all PEs, except for those at the lateral boundaries. Here
the INT2COSMO core-regions are larger than the COSMO core-regions. To be more precise, (following
the calculation outlined below) the INT2COSMO core-regions at the lateral boundaries are equal to the
parts of the local COSMO model domain described by the indices istartpar, jstartpar, iendpar
and jendpar.

Coverage can only be achieved, if the core-regions of the decomposed COSMO model are taken as
basis for the calculation of the decomposed INT2COSMO grid. Thus, the isubpos definition of
the COSMO model domain (further on denoted as isubpos_cosmo) is taken and the INT2COSMO
variable isubpos is calculated from this variable. For the PEs not located at the lateral boundaries
of the model domain isubpos of the INT2COSMO domain is equal to isubpos_cosmo+nboundlines,
with nboundlines=1 for INT2COSMO. nboundlines must be added, as the global indices are shifted
by nboundlines in the INT2COSMO grid.

In addition to this shift by nboundlines, at the lateral boundaries it has to be taken into ac-
count, that the “inner” INT2COSMO domain equals the entire COSMO model domain. Thus, as
the isubpos_cosmo are the indices of the “inner” COSMO domain, these need to be shifted by
nboundlines_cosmo in order to equal the indices of the entire model domain. Thus isubpos for PEs
at the lateral boundaries of the INT2COSMO domain is calculated by:

isubpos(., 1) = isubposCOSMO − nboundlinesCOSMO + 1

at a western lateral boundary,

isubpos(., 2) = isubposCOSMO − nboundlinesCOSMO + 1

for a southern lateral boundary,

isubpos(., 3) = isubposCOSMO + nboundlinesCOSMO + 1

at a eastern lateral boundary and

isubpos(., 4) = isubposCOSMO + nboundlinesCOSMO + 1

Kerkweg and Jöckel: MMD user manual 45

at a northern lateral boundary.

Because of this procedure, the core-regions of the INT2COSMO domain and those of the COSMO
model domain are not equal at the lateral boundaries. In order to copy the data from the fields defined
on the INT2COSMO domains correctly to the fields defined on the COSMO model domains, additional
indices are required to indicate the co-location of the COSMO local domains on which the physical
processes are calculated (i.e., those indicated by istartpar,jstartpar,iendpar and jendpar) and
the INT2COSMO core-regions. The indices istartcos, iendcos, jstartcos and jendcos are defined
in a similar manner as istartpar,jstartpar,iendpar and jendpar by:

istartcos = 1 + nboundlines

iendcos = ie2lm− nboundlines

jstartcos = 1 + nboundlines

jendcos = je2lm− nboundlines

with ie2lm and je2lm being the dimension of the local INT2COSMO domains (similar to ie and je
for the decomposed COSMO domain). This is illustrated by Fig. 9.

6 The Server

The server fulfils three tasks, which are essential for the on-line coupling:

• It dictates the date/time and restart settings of the client.

• It calculates the index_list, i.e., the association of the client and the server grid points on the
individual PEs.

• It provides the exchange fields.

Comparably to MMDCLNT, in MMDSERV the data for the data exchange is organised in a Fortran95
structure:

! CPLDATA STRUCTURE
TYPE T_COUPLE_DATA

! CHANNEL AND CHANNEL OBJECT NAMES IN SERVER
CHARACTER(LEN=STRLEN_CHANNEL) :: CHA ! SERVER CHANNEL NAME
CHARACTER(LEN=STRLEN_OBJECT) :: OBJ ! SERVER OBJECT NAME
! POINTER TO SERVER FIELD
REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr
! REPRESENTATION OF SERVER FIELD
INTEGER :: rank
INTEGER, DIMENSION(4) :: ldimlen=0
! STRING ORDER OF AXES
CHARACTER(LEN=4) :: AXIS

END TYPE T_COUPLE_DATA

46 Kerkweg and Jöckel: MMD user manual

As the server only provides data, the Fortran95 structure contains considerably less components than
MMDCLNT. In contrast to the client, a server can have more than one client model. Therefore the
variable of TYPE T_COUPLE_DATA (CPLDATA) is itself component of a structure (TYPE T_CLIENT_DATA).

TYPE T_CLIENT_DATA
! NUMBER OF EXCHANGED FIELDS
INTEGER :: NEXCH
TYPE (T_COUPLE_DATA), DIMENSION(:), ALLOCATABLE :: CPLDATA

END TYPE T_CLIENT_DATA

TYPE (T_CLIENT_DATA), DIMENSION(:), ALLOCATABLE :: CL

The Fortran95 variable CL is allocated to the number of clients of the respective server in the initiali-
sation phase.

6.1 Initialisation Phase

6.1.1 mmdserv initialise

The server inquires the number of clients it has to provide data for. The MMD library variable
MMD_Server_for_Client is a list of the server specific client IDs in the MMD setup. For each server
model it is allocated to the specific number of clients the respective server has to deal with. Thus
the SIZE of this array equals the numbers of clients of the server. Subsequently, the MMD library
initialisation routines MMD_S_ALLOCATE_CLIENT and MMD_S_Init are called to initialise the MMD
environment of this specific server. In MMDSERV itself, the variable CL is dimensioned to the number
of clients. As each client may require a different coupling frequency, the TIMER event variables
CPL_EVENT and CPL_IOEVENT must also be available for each client individually.

6.1.2 mmdserv init coupling

The preparations for the coupling are all performed in the subroutine mmdserv_init_coupling. The
subroutines described below are always processed for each client individually (indicated below by the
index ic).

• The timing between the coupled models is synchronised in the subroutine Setup_Client_Time.

1. The server receives the coupling interval in seconds from the client and defines the respective
TIMER EVENT (CPL_EVENT(ic)).

2. Next, the server sends its date information and its time step length to the client:
The following dates must be exchanged to ensure that the models are synchronised:
current_date, start_date, resume_date and stop_date. The dates are of TYPE

time_days:

TYPE, PUBLIC :: time_days
!
! relative calendar date and time format
!
! time_days [structure]

Kerkweg and Jöckel: MMD user manual 47

! day [integer] (day in calendar, -2147483648 2147483647
! approx. +/-5.8 Mio. years)
! second [integer] (seconds of day, 0,...,86399)
!
!PRIVATE
LOGICAL :: init = .FALSE.
INTEGER :: day = 0
INTEGER :: second = 0

END TYPE time_days

Thus, each date is defined by an INTEGER indicating the day and an INTEGER for the
seconds of the day. For all four dates these two INTEGERs are packed into an INTEGER

array and sent to the client model. As a ninth INTEGER the time step length of the server
is sent. The latter is used to define the BREAK_EVENT on the client side.

• After setting up the timing of the client model the MMD library subroutine
MMD_S_Get_DataArray_Name is called, which receives the list of exchange fields. At this point
this information is available within the MMD library, but not yet made available to MMDSERV
itself. This transfer is done within the subroutine Define_data_arrays (see last item below).

• Before the exchange fields themselves are acquired, the domain section required by the client for
the interpolation of the data, i.e., the domain of the in-fields of the client are determined in the
subroutine Setup_Client_Area.

– In a first step the server acquires the client grid information:

∗ First, the server gets the dimensions of the client COSMO domain (ie_tot and je_tot)
and the number of exchange fields.

∗ Second, according to the dimensions, fields are allocated for the geographical longitudes
and latitudes of the COSMO/MESSy grid points,

∗ which are, third, sent subsequently from the client to the server.

– Based on the client grid, the domain of the data sent to the client is determined:

∗ If a COSMO/MESSy model is the server, the complete COSMO/MESSy server do-
main is used as in-field for the client. In this case simply the information about the
server COSMO grid are copied to the respective transfer variables: i.e., startlat_tot,
startlon_tot, endlat_tot, endlon_tot, pollat, pollon, dlat , dlon, ie_coarse,
je_coarse, ke_coarse , ke_soil_coarse, itype_w_so_rel, itype_t_cl, vcflat ,
p0sl, t0sl, dt0lp, delta_t, h_scal, svc1, svc2, ivctype, irefatm, the vertical co-
ordinate vcoord and the depth of the soil layers (czmls).

∗ If ECHAM5/MESSy is server, a subset of the global grid is provided as input to
INT2COSMO. The size of the domain is determined by the minimum and maximum
longitudes and latitudes, including a check whether the date line is part of the model
domain. As INT2COSMO requires a somewhat larger model domain as the COSMO
grid to perform the interpolation 4.5 grid boxes are added at each side of the model
domain23. From this model domain, the location of the corners of the grid in the parallel
decomposition of the global model are calculated by the subroutine locate_in_decomp.

23The size of 4.5 is arbitrarily chosen, because it worked for the standard ECHAM5/MESSy resolutions so far employed.
The smaller the difference between client and server grid the smaller this size can be chosen.

48 Kerkweg and Jöckel: MMD user manual

· The geographical coordinates of the South-West corner determine the start latitude
(startlat_tot) and longitude (startlon_tot) and

· those of the North-Eastern corner the end latitude (endlat_tot) and longitude
(endlon_tot).

· The coordinates of the rotated pole, pollat and pollon, are always 90 and 180
for a non-rotated grid like the ECHAM5 grid.

· The grid spacings in degrees for the longitudes of the global grid (dlon) is easily
calculated by dividing 360._dp by the SIZE of the variables containing the Gaussian
longitudes of the global grid.

· The latitudes of a Gaussian grid are not equidistant, however, the grid spacings
in degrees is a mandatory input to INT2LM also for the latitudes. Thus, the
method implemented in INT2LM when reading and checking the netCDF-file global
definitions (subroutine read_nc_gdefs)

dlat = (MAXVAL(philat) - MINVAL(philat))/(ngl-1)

is used. To minimise the error, dlat is recalculated after the determination of the
section of the grid that is sent to the client using the maximum and minimum
latitude of the sent section. Note: as the latitudes in a Gaussian grid are not
equidistant this only works satisfactorily if the regional model region is not to close
to the poles (with “to close” depending on the ECHAM5 resolution).

· The horizontal dimensions of the exchanged domain ie_tot and je_tot are calcu-
lated according to the difference of the corner indices.

· ke_tot is simply nlev, i.e., the number of ECHAM5 vertical levels.
· ke_soil is 4 as ECHAM5 includes a soil with 5 layers and 4 is the number of

interfaces between the soil layers.
· The INT2COSMO variable itype_w_so_rel, indicating which type of soil moisture

is input to INT2COSMO, must be set to 2 (for both server models).
· The variable defining the type of the climatological temperature itype_t_cl is

set to 1, if ECHAM5/MESSy is the server model, and to 0, if a COSMO/MESSy
model is server.

· Additionally, information about the vertical levels of the model domain i.e.,
the interface hybrid parameters (vct) for ECHAM5/MESSy and vcoord for the
COSMO/MESSy model server are sent to the client.

∗ Last but not least, two fields containing the longitudes and latitudes for each server
domain grid point are sent to the client.

• The purpose of the subroutine Setup_data_exchange_with_Client is to calculate the
index_list, i.e., the list which unambiguously associates the grid points with the same ge-
ographical coordinates located in the local domains of the clients in-field and in the server local
domain to each other. Each grid point is defined by the process number (PE) the grid point
is located on, and an index pair (i, j) containing the indices of the grid point in the parallel
decomposed grids. Along with determining this list the test_array for the MMD consistency
check is filled. Thus, at the beginning of this subroutine the test_array is allocated by calling
the MMD library routine MMD_testS_Setup.

For the calculation of the index_list the server needs the geographic coordinates of the grid
points of the local (decomposed) fields from the client. To exchange these, the server first receives
three INTEGERs: the maximum dimensions for the decomposed horizontal client grid (ie_max

Kerkweg and Jöckel: MMD user manual 49

and je_max) and the number of client PEs. According to these dimensions, the server allocates
two three dimensional fields to pick up the decomposed longitude and latitude fields sent by the
client.

For each of the grid points in the horizontal domain a list member containing six entries is
created. One of these sextuples consists of the client PE (PEc), the server PE (PEs) and the
index pairs (ic,jc) and (is,js) of the local decomposed client and server domains, respectively,
associating the two points with the same geographical coordinates in client and server grid
to each other. The index information about the client grid is inherent in the longitude and
latitude arrays. These fields have been gathered in a way, that the index of the third dimension
corresponds to PEc and the indices of the first two dimensions correspond to the indices in
the horizontal local grid. The longitude and latitude given by the fields sent by the client are
processed by the subroutine locate_in_decomp, which locates the respective pair of geographical
coordinates on the local decomposed grid of the server model. Output of this subroutine are
the PE on which the grid point is located (PEs) and the indices in the local fields (is,js). Thus,
a sextuple containing all required information about the related grid points of the client and
server domain is complete. Such a sextuple is determined for each of the client in-field grid
points yielding in a field (is,js,ic,jc,PEc,PEs)n, with n number of grid points. Additionally, each
sextuple is fed into the MMD test_array by using the MMD library function MMD_testS_Fill.
After all grid points have been processed the filling of the MMD test_array is finalised by
calling the MMD library function MMD_testS_FinishFill. The entire index_list containing
all sextuples is forwarded to the MMD library and analysed within the MMD library routine
MMD_S_Set_Indexlist establishing the connections between the individual server and client
PEs. A more detailed explanation of this list is given in the MMD library manual, which is part
of the same electronic supplement as this manual.

• Last but not least, the POINTERs to the exchange fields must be associated during the initiali-
sation phase. This is achieved in the subroutine Define_data_arrays:

– The structure CL(ic)%CPLDATA, with ic being the index for one client, is allocated to the
number of required exchange fields.

– The channel and channel object name of each field and the client representation as
listed in the MMDCLNT namelist are retrieved by calling the MMD library function
MMD_S_GetNextArray.

∗ If the channel name is ’test’ the MMD test_array is requested and the POINTER is
associated by calling the MMD library routine MMD_testS_GetTestPtr.

∗ In all other cases the POINTER is associated by calling the CHANNEL subroutine
get_channel_object. If the object does not exist the simulation is terminated as the
required coupling is not possible.

– When the object exists, the representation ID is inquired by calling the CHANNEL sub-
routine get_channel_object_info.

– The representation ID must be known to subsequently retrieve the required dimension
informations:

∗ the axis string,
∗ the local dimension,
∗ the global dimension and
∗ the representation name.

50 Kerkweg and Jöckel: MMD user manual

The latter two are required, if the representation name given in the MMDCLNT namelist is
’#UNKNOWN’. In this case the client model needs the additional information plus a possible
attribute which might contain heights (in case of multi-layer emission fields) to create the
correct representation. This additional attribute is accessed by the CHANNEL subroutine
get_attribute. All these information are forwarded to the client by the MMD library
function MMD_S_Send_Repr.

– The POINTER, the axis string and the local dimensions are passed on to the MMD library
by the subroutine MMD_S_Set_DataArray and processed inside to save dimension and order
information for later use.

– After all data fields are processed a last call during the initialisation phase to the MMD
library (subroutine MMD_S_SetInd_and_AllocMem) invokes the final evaluation of the di-
mension information in order to determine the correct buffer size. Subsequently, the actual
allocation of the buffer required by MPI takes place calling MPI_ALLOC_MEM in the MMD
library.

6.2 Integration Phase

During the integration phase, in the subroutine mmdserv_global_start, the server provides the ex-
change fields to its clients and informs the clients, whether the simulation is going to be interrupted.

First, the coupling event is tested for each client model. If the coupling with the respective client is
scheduled for the current time step, the MPI Buffer is filled by calling the MMD library subroutine
MMD_S_FillBuffer. Within this MMD library routine the data is copied to the memory buffer acces-
sible for the client model. To ensure the correct order of accesses to the buffer from the server and the
client side, the buffer is locked for that model of a client-server pair, which latest wrote to/read the
buffer. If the workload of the models is not ideally balanced it happens that one of the models has to
wait until it can access the buffer again. MMD_S_FillBuffer returns the waiting time in seconds for
the server.

After the Buffer exchange, the server additionally sends the information about the status of the
interrupt-switches lbreak, l_rerun and lstop. If the LOGICALs are .TRUE., the respective entry of
the INTEGER ARRAY timeflags is set to 1. Otherwise it is set to zero.

6.3 Finalisation Phase

At the end of the simulation the allocated memory is released. The subroutine mmdserv_free_memory
calls, independently for each client model, the MMD library subroutines MMD_S_test_FreeMem and
MMD_S_FreeMem to release the memory allocated within the library. Additionally, the MMDSERV
internal variables CL(ic)%CPLDATA, CL, CPL_IOEVENT and CPL_EVENT are deallocated.

7 Changes in INT2LM code required for the MESSy submodel
INT2COSMO

All changes to the INT2LM code have been embedded in the preprocessor directive I2CINC
(INT2COSMO IN COSMO). In this section the changes and the reasons for them are listed for each
code file. The files are listed in alphabetical order.

Kerkweg and Jöckel: MMD user manual 51

7.1 data fields lm.f90 /data fields in.f90

As all INT2COSMO fields are allocated as MESSy channel objects they have to be declared as
POINTERs, instead of ALLOCATABLE ARRAYs. The definitions are replaced throughout the module
for all REAL variables.

Additionally, the fields zfi_fl, zhi_fl, zps1_lm and zkzgr are defined in data_fields_lm.f90.
In the off-line INT2LM these fields are locally defined intermediate variables, which are used during
the interpolation. In INT2COSMO these fields are also required for the interpolation of the addi-
tional fields. Therefore they are declared in data_fields_lm.f90 and allocated as channel objects in
src_memory.

7.2 data grid lm.f90

Instead of declaring and defining the grid in INT2COSMO independently, the vertical coordinates
(vcoord), the number (ke_soil_lm) and depths (czmls_lm and czhls_lm) of the soil layers and the
grid dimensions and orientation (dlon, dlat, startlon_tot, startlat_tot, polgam, pollon, pollat,
ielm_tot, jelm_tot and kelm_tot) are USEd directly from the COSMO model and renamed to their
INT2COSMO names:

USE data_modelconfig, ONLY: vcoord, czmls_lm => czmls, czhls_lm => czhls &
, ke_soil_lm => ke_soil, ielm_tot => ie_tot &
, jelm_tot => je_tot, kelm_tot => ke_tot &
, dlon, dlat, pollat, pollon, polgam &
, startlat_tot, startlon_tot

Furthermore, four additional index variables are defined, which are required for the grid mapping
of the COSMO and the INT2COSMO grid (istartcos, iendcos, jstartcos and jendcos). The
meaning of these variables is explained in Sect. 5.4.

7.3 data int2lm control.f90

As INT2COSMO and the COSMO model need to be set up in the same way, some run control variables
are directly used from the COSMO model. Thus the declaration in data_int2lm_control.f90 and
the definition in the INT2COSMO namelist are omitted.

USE data_runcontrol, ONLY: nstop, nstart, llake, lradtopo, lprog_qi &
, itype_calendar, idbg_level, lforest, lsso &
, lmulti_layer_lm => lmulti_layer

7.4 data int2lm io.f90

To make INT2COSMO as inherently consistent with the COSMO setup as possible, the variable
ydate_ini containing the start date of the simulation is USEd from the COSMO model module
data_io instead of being declared within this file.

52 Kerkweg and Jöckel: MMD user manual

7.5 data int2lm parallel.f90

As INT2COSMO is run in the same parallel environment as the COSMO model, most of the variables
are USEd from the COSMO module data_parallel, instead of being defined within INT2COSMO:

USE data_parallel, ONLY: ldatatypes,lasync_io,nprocx,nprocy,nprocio,nproc, &
num_compute, num_io,ncomm_type,my_world_id,my_cart_id, &
my_cart_pos,my_cart_neigh,igroup_world,icomm_world, &
icomm_compute,igroup_cart,icomm_cart,icomm_row, &
iexch_req,imp_reals,imp_grib,imp_integers,imp_byte, &
imp_character,imp_logical,lcompute_pe,lreorder

7.6 data parameters.f90

To be consistent, the KIND parameters are overwritten by those determined within the MESSy sub-
model messy_main_constants_mem.f90. ireals and idouble are set to dp, iintegers is set equal
to i4 and isingle to sp.

7.7 external data.f90

• The MESSy submodel MMDCLNT calls the subroutine external_data with an additional pa-
rameter: lread. This LOGICAL indicates whether the external data should be read or not. When
lread is .FALSE., the initialisation of the LOGICALs (indicating the existence of specific vari-
ables in the external data file) with .FALSE. and the subroutine read_lm_ext are not processed.
Additionally, rootdp_mx must only be set, when data was read, i.e., lread=.TRUE..

• All parameters and variables determining the coarse grid are directly exchanged with the server
via MMD. Thus the subroutine read_coarse_grid_ext is not called in INT2COSMO. The
LOGICALs lfis__in and lfrla_in are set to .TRUE., according to the fields exchanged during
the on-line coupling.

• The vertical levels used in the calculation of the reference atmosphere are directly used from the
COSMO model instead of being declared locally:

USE data_modelconfig, ONLY : &
klv950, & ! k index of the LM-mainlevel, on 950 HPa
klv850, & ! k index of the LM-mainlevel, on 850 HPa
klv800, & ! k index of the LM-mainlevel, on 800 HPa
klv700, & ! k index of the LM-mainlevel, on 700 HPa
klv500, & ! k index of the LM-mainlevel, on 500 HPa
klv400, & ! k index of the LM-mainlevel, on 400 HPa
klv300 ! k index of the LM-mainlevel, on 300 HPa

• The variables fr_land_in, z0_in, plcov_in, plcmx_in, plcmn_in, rlaimx_in, rlaimn_in and
root_in are only deallocated from INT2LM. In INT2COSMO these variables are channel objects
and as such automatically deallocated by the CHANNEL submodel.

Kerkweg and Jöckel: MMD user manual 53

7.8 src 2d fields.f90

t_so_lm is defined in the vertical from 0:ke_soil+1. As channel objects can only be allocated starting
by 1 due to the used POINTER arithmetic, t_so_lm is allocated in the vertical by 1:ke_soil+2. This
has to be taken into account for the calculation of t_so_lm. For instance,

#ifndef I2CINC
t_so_lm(i,j,0) = t_s_lm(i,j)

ELSE
t_so_lm(i,j,0) = undef

#else
t_so_lm(i,j,1) = t_s_lm(i,j)

ELSE
t_so_lm(i,j,1) = undef

#endif

All places, where t_so_lm is calculated or used, are changed accordingly.

7.9 setup int2lm.f90

• The memory allocation for the fields of INT2COSMO is modified (compared to INT2LM)
from merely allocating the fields to defining channel objects for them. For the definition of
channel objects the representations of these objects must be specified. Within the subroutine
make_MMDC4_channel, which is called from setup_int2lm, the dimensions and representations
required for the channel objects are created. The subroutine make_MMDC4_channel is located
within the INT2COSMO file src_memory.f90.

• As INT2COSMO uses the parallelisation of the COSMO model, the subroutines
init_environment, init_procgrid, mpe_io_init and mpe_io_reconfig are skipped.

• INT2LM offers the possibility to measure the timing of different phases of the interpolation
process. Most of the required calls occur in subroutines and in the main program, which are
skipped in INT2COSMO. Therefore, the initialisation of the timing located in setup_int2lm is
skipped for INT2COSMO too.

• The debug output file is renamed to ’YUDEBUG_i2cinc’ because the COSMO model also writes
a file named ’YUDEBUG’.

• At the end of the subroutine the maximum length of the sent buffer (isendbuflen) is determined.
The calculation relies on the knowledge of the decomposition of the INT2COSMO grid. In
INT2LM the local domains are equally dimensioned, depending on the total number of grid boxes
(ielm_tot or jelm_tot) plus the boundary lines (nboundlines) and the number of processes
(nprocx or nprocy). This is no longer correct in INT2COSMO. Here, the local domain size also
depends on the COSMO number of boundary lines (nboundlines_cosmo). This is taken into
account in the calculation of isendbuflen.

7.10 src cleanup.f90

In INT2COSMO the subroutine free_memory is almost completely skipped, as all fields deallocated in
INT2LM in this subroutine are declared as channel objects and thus deallocated automatically within

54 Kerkweg and Jöckel: MMD user manual

the CHANNEL submodel. Only the three LOGICAL (land-sea) masks lolp_lm, lolp_in and lmask_lm
are allocated manually in make_MMDC4_channel as they can not be defined directly as channel objects
and thus are still deallocated within free_memory.

7.11 src coarse interpol.f90

• In case of INT2COSMO the on-line exchanged data is always handled similar to ’ncdf’ data.
Thus, for the undefined values always the undef flag undefncdf is used. In INT2LM the value of
the variable undef is determined by the type of the external data fields, i.e., undef= undefgrib
for grib-files and undef = undefncdf for netCDF-files. In INT2COSMO it is possible, that the
external file is in grib format, but the on-line data is processed like netCDF data. To ensure the
correct setting of undef, it is set to undefncdf before the interpolation starts in INT2COSMO.

• To be able to treat the soil temperature in-field t_so_in as channel object, its vertical dimen-
sion is allocated by 1:ke_soil+2 instead of 0:ke_soil+1. The change of the indexing has to be
taken into account in src_coarse_interpol.f90, when calculating zdt_so and when the inter-
polation for the surface levels is called: i.e. CALL interp_l(t_so_in(:,:,1),...) instead
of CALL interp_l(t_so_in(:,:,0),...) .

7.12 src decomposition.f90

• As the parallel decomposition of INT2COSMO is matched with the parallel decomposition of
the COSMO model, the decomposition routine for the client model (decompose_lm) is partly
rewritten as explained in Sect. 5.4.

• The call to the subroutine read_nc_axis is skipped, as all information about the server model
are exchanged on-line.

7.13 src lm fields.f90

• zfi_fl is an intermediate variable calculated within the subroutine org_lm_fields. As it is
required for the interpolation of the additional fields as well, it is declared in data_fields_lm
and allocated as channel object.

• In order to interpolate the additional fields, the subroutines vert_int_lm and vert_z_lm have
been expanded to vertically interpolate all possible input variables and not only those specified
in the code by name.

7.14 src memory.f90

The original subroutines alloc_lm and alloc_coarse_grid are completely replaced by subroutines
of the same name. Instead of allocating all fields directly, they are defined as channel objects. To be
able to define the channel objects, the dimension IDs and the representations have to be created. This
is done within the subroutine make_MMDC4_channel.

Two channels are created:

• The channel ’MMDC4’ contains the intermediate fields of INT2COSMO (horizontally dimensioned
by ie2lm and je2lm);

Kerkweg and Jöckel: MMD user manual 55

• The second channel (’MMDC4_IN’) comprises the in-fields (horizontally dimensioned by ie_in
and je_in).

In addition to the fields usually defined in data_fields_lm and data_fields_in, some fields which
are only temporary fields in the INT2LM have been declared as channel objects, because they are
required for the interpolation of the additional fields.

7.15 src namelists.f90

Most of the changes in this file are due to the fact, that in INT2COSMO many INT2LM namelist
switches are determined by COSMO or the server model. Thus, they must not be read in anymore.
The following tables list (for each namelist) those variables excluded from the namelist. The header
of the column indicates the place (basemodel or MMDCLNT) where the variables are set instead.

&contrl
Set by COSMO Set by COSMO Set by MMDCLNT not valid for

(continued) on-line coupling
ydate ini lprog qi linitial
ydate bd itype calendar lboundaries lante 0006
hstart lforest lgme2lm lpost 0006
hstop lsso lec2lm
hincbound lradtopo llm2lm
nincbound llake lhm2lm
nmaxwait lasync io lcm2lm
ytrans in lreorder itype w so rel
ytrans out lmulti layer lm itype t cl
nprocx ldatatypes
nprocy ncomm type
nprocio idbg level

Two more &contrl namelist parameters are not read anymore:

• nboundlines is not read from the namelist as it is always 1 for INT2COSMO.

• lmulti_layer_in is set in accordance to lmulti_layer_lm for INT2COSMO.

&grid in
Set by server Set by server Set by MMDCLNT

(continued)
ie in tot p0sl in lushift in
je in tot t0sl in lvshift in
ke in tot delta t in
nlevskip h scal in
pollat in startlat in tot
pollon in startlon in tot
polgam in endlat in tot
dlat in endlon in tot
dlon in ke soil in
irefatm in czml soil in
dt0lp in

56 Kerkweg and Jöckel: MMD user manual

&lmgrid
Set by COSMO Set by COSMO

(continued)
ielm tot dlon
jelm tot dlat
kelm tot startlat tot
ke soil lm startlon tot
pollat czml soil lm
pollon czvw so lm
polgam

&data
not valid/needed for
on-line coupling
yinext cat
yinext lfn
ybitmap cat
ybitmap lfn
yin cat
ylm cat
nprocess ini
nprocess bd
yinext form read
yin form read

The namelists &prictr and &epsctl have not been changed. Checks required for the namelist
switches are omitted, if the variables were removed from the namelist.

7.16 src read coarse grid.f90

Of this module only the subroutine org_read_coarse_grid was modified for the implementation of
INT2LM as MESSy sub-submodel INT2COSMO:

• If called from MMDCLNT, the subroutine org_read_coarse_grid is called without any argu-
ments, as these are only required to read the data files, which is omitted in INT2COSMO.

• The file-type determination and read procedure dependent data blocks are skipped.

• The variable fic_in (control geopotential) is used for the interpolation. As it is based on driving
model fields, it needs to be recalculated every time step at which interpolation of boundary
data occurs, in order to get reproducible results. Thus, fic_in is calculated every time in
INT2COSMO by omitting the if-statement for var_in(mzfi_loc_in)%lreadin.

Kerkweg and Jöckel: MMD user manual 57

• In INT2COSMO the in-field for T_SO is in the vertical dimension defined from 1 to ke_soil+2
(instead of 0:ke_soil+1 in INT2LM). Thus, the surface temperature is copied to the index 1 in
INT2COSMO.

var_in(n)%p3(1:ie_in,1:je_in,1) = &
var_in(mzts_loc_in)%p2(1:ie_in,1:je_in)

7.17 src vert inter lm.f90

The variable zhi_fl, which is only temporarily calculated within the subroutine org_vert_inter_lm
in INT2LM, is also required for the interpolation of the additional fields. Therefore, it is converted
to a channel object in INT2COSMO instead of being defined locally in INT2LM. Additionally, the
boundary layer height is stored in the channel object zkzgr.

7.18 src vert interpol.f90

In order to interpolate the additional fields, the intermediate variables zps1_lm and the boundary layer
top kzgr are converted to channel objects to be available in MMDCLNT. As kzgr is an INTEGER and
channel objects need to be of type REAL kzgr is stored in a REAL variable called zkzgr.

8 Changes in the COSMO code required for the on-line coupling

The COSMO model code has been changed for two reasons:

1.) The reading of the initial and boundary data files is obsolete and thus skipped, if the data is
calculated on-line by the MESSy submodel MMDCLNT. The preprocessor directive I2CINC
(INT2C OSMO IN COSMO) accomplishes this.

2.) The internal MPI environment settings need to be adjusted to the MPI environment, as required
for the on-line coupling and managed by the MMD library. These changes are introduced using
the preprocessor directive MESSYMMD.

In this section the COSMO model source files changed by these two preprocessor directives are listed
and the changes are explained in detail.

8.1 Application of the preprocessor directive I2CINC

src_input.f90 is the only modified file. It manages the reading of the initial and boundary data.
When the COSMO model is a client, the preprocessor directive I2CINC prevents the opening and
reading of the initial and/or boundary files:

#ifdef I2CINC
! SKIP READ-IN-PROCEDURE IN CASE OF I2CINC FOR ’initial’ and ’boundary’
IF ((ydata /= ’initial’ .AND. ydata/=’boundary’) &

.OR. (.NOT. L_IS_CLIENT)) THEN
#endif

58 Kerkweg and Jöckel: MMD user manual

The variable undef is usually set in one of these skipped sections, for a defined preprocessor directive
I2CINC undef is set at the end of the section:

#ifdef I2CINC
ENDIF
IF (yformat /= ’ncdf’) THEN

undef = REAL(undefgrib, ireals)
ELSE

undef = REAL(undefncdf, ireals)
ENDIF

#endif

In addition, specific variables are deallocated in COSMO without testing if they are really allocated.
In case of I2CINC, the association state of the variables iblocks, ibmap, ds_grib, ds_real, dsupand
idims_id_in is tested first, before they are deallocated.

8.2 Application of the preprocessor directive MESSYMMD

8.2.1 environment.f90

In its usual configuration the COSMO model is run in its own MPI environment. In this case the
model wide communicator icomm_world is equal to MPI_COMM_WORLD. When COSMO is running
within an MMD environment, it only runs on a subset of the processes of the MPI environment.
Therefore, the model wide group communicator needs to be provided by MMD. This is done within
the subroutine MMD_get_model_communicator. The subsequent use of the worldwide communicator
MPI_COMM_WORLD would lead to errors. Thus MPI_COMM_WORLD was substituted by the model wide
communicator icomm_world. To perform this substitution, the subroutine init_procgrid (part of
the modules file src_setup.f90) is called with the additional parameter icomm_world.

The memory allocated by the MMD library needs to be released at the end of a simulation. Thus
the MMD library subroutine MMD_FreeMem_communicator is called from the COSMO subroutine
final_environment.

8.2.2 src setup.f90

According to the changes in environment.f90 the subroutine init_procgrid has an additional pa-
rameter (icomm_world), which is used instead of MPI_COMM_WORLD within the subroutine.

9 Changes in the ECHAM5 code required for the on-line coupling

When ECHAM5/MESSy is server in the MMD setup, the MPI environment needs to be changed
accordingly. The preprocessor directive for these changes is the same as in COSMO, i.e., MESSYMMD.

9.1 mo mpi.f90

• If ECHAM5/MESSy is the only executable running in an MPI environment, the communica-
tor required to communicate with all PEs of this model is easily determined by duplicating

Kerkweg and Jöckel: MMD user manual 59

MPI_COMM_WORLD by calling the subroutine MPI_COMM_DUP into the model wide communicator
p_all_comm. When ECHAM5/MESSy is running within an MMD environment, the model wide
communicator p_all_comm is not equal to MPI_COMM_WORLD. Thus, the correct communicator is
determined by the MMD library subroutine MMD_get_model_communicator.

• Before the simulation is terminated, the memory allocated by the MMD library needs to be
released. This is achieved by calling MMD_FreeMem_Communicator from the ECHAM5 subroutine
p_stop.

9.2 scan1.f90

One additional change had to be made, for ECHAM5/MESSy as server. The temperature is not
initialised before the start of the time loop. But, when ECHAM5/MESSy is server, the first action
taken in the time loop is to send the data for initialisation to the client model. Thus the temper-
ature needs to be initialised before the first call to messy_global_start in case of the very first
model start (lstart = .TRUE.). This is done by calling the ECHAM5 subroutine initemp before
messy_global_start when MESSYMMD is defined.

Glossary

• additional field: An additional field is a field requested in the MMDCLNT namelist in addition
to the fields already taken into account within INT2COSMO.

• attributes: Attributes represent time independent, scalar characteristics, e.g., the measuring unit.

• axis string: The axis string is defined for each representation. It indicates the order of the ’X’,
’Y’, ’Z’ and ’N’ direction, e.g., a 3-D variable in COSMO/MESSy has the axis string ’XYZ-’,
whereas the same variable in ECHAM5/MESSy has the axis string ’XZY-’.

• boundary field: It is used to prescribe the variables at the model domain boundaries.

• break event: The break event is an event that is triggered each server time step in order to receive
the information from the server, whether the server model is going to be interrupted after the
current time step.

• channel: The generic submodel CHANNEL manages the memory and meta-data and provides
a data transfer and export interface (Jöckel et al., 2010). A channel represents sets of “related”
channel objects with additional meta information. The “relation” can be, for instance, the simple
fact that the channel objects are defined by the same submodel.

• channel object: It represents a data field including its meta information and its underlying ge-
ometric structure (representation), e.g., the 3-D vorticity in spectral representation, the ozone
mixing ratio in Eulerian representation, the pressure altitude of trajectories in Lagrangian rep-
resentation.

• coupling event: This is an event scheduling the data exchange from the server to the client. Its
time interval has to be a multiple of the client and the server time step length.

• coupling field: A coupling field is either an exchange field or a field required by the client model
that is calculated during the interpolation procedure in INT2COSMO, i.e., the fields deduced
from the external parameters, e.g. lai, rootdp, etc.

60 Kerkweg and Jöckel: MMD user manual

• dimensions: They represent the basic geometry of one dimension, e.g., the number of latitude
points, the number of trajectories, etc.

• event: This is a data type provided by the generic submodel TIMER, which is used to schedule
processes at specific (regular) time intervals, e.g., to trigger regular output or input during a
simulation. The event control is part of the MESSy generic submodel TIMER. The electronic
supplement of Jöckel et al. (2010) comprises a manual for TIMER and details about the event
definition.

• exchange field: An exchange field is a field requested within the mmdclnt.nml namelist file and
provided by the server to the client. An exchange field can either be a field which is interpolated
and copied to a client variable, or a field required for the interpolation itself.

• in-coming grid: The in-coming grid is the grid on which the in-fields are defined, i.e., a subpart
or the full server grid.

• in-field: The in-fields are those fields provided by the server or driving model, which are still
defined on the server grid, but on the client side. In other words, in-fields are the exchanged
fields before the interpolation.

• driving model: The coarse grid model (=server) that provides the in-fields to INT2LM /
INT2COSMO.

• INT2COSMO inherent field: This is a field which is considered and interpolated within
INT2COSMO or INT2LM (it is part of the variable table in INT2LM).

• initial fields: One destination type of data field provided by MMDCLNT to the client model.
Initial fields are only used to initialise fields at the very beginning of the simulation.

• input fields: One destination type of data field provided by MMDCLNT to the client model.
Input fields are additional fields. The newly interpolated field replaces the field in the client
model, e.g., an emission field, that is down-scaled from the server.

• intermediate field: The intermediate field is the “work space” of INT2COSMO. It contains the
fields after horizontal and/or vertical interpolation.

• mandatory field: This is an in-field absolutely required either by the COSMO model setup or
for the interpolation itself.

• master server: The coarsest model in the model cascade is called the master server. It determines
the time settings of all other model instances.

• pointer array: is an array of pointers of a specific dimension. For instance, a 2-D-pointer array
example_ptr is defined by:

TYPE (PTR_2D_ARRAY), DIMENSION(:), POINTER :: example_ptr => NULL()

with

TYPE PTR_2D_ARRAY
REAL(DP),DIMENSION(:,:),POINTER :: PTR
END TYPE PTR_2D_ARRAY

• representation: It describes multidimensional geometric structures (based on dimensions), e.g.,
Eulerian (or grid point), spectral, Lagrangian.

Kerkweg and Jöckel: MMD user manual 61

• representation ID: in the CHANNEL submodel the representations are stored as a list. Thus
each representation is unambiguously identifiable by an identification number (ID).

• restart: A restart is performed, if the computing time allowed by a scheduler of a super-computer
is to short to fit in the complete simulation. In this case, the simulation is interrupted in between
and restarted in a new job. To achieve binary identical results for simulations with and without
interruption, restart files are written, of which the contents fully determine the state of a model
simulation. These files are read in the initialisation phase during a model restart.

• target field: This term specifies those fields on which the results of INT2COSMO are written,
i.e., those fields used in the COSMO/MESSy simulation.

References

Jöckel, P., Kerkweg, A., Buchholz-Dietsch, J., Tost, H., Sander, R., and Pozzer, A.: Technical Note:
Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel
TRACER, Atmos. Chem. Phys., 8, 1677–1687, doi:10.5194/acp-8-1677-2008, 2008.

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S.,
and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci.
Model Dev., 3, 717–752, doi:10.5194/gmd-3-717-2010, 2010.

Kerkweg, A., Sander, R., Tost, H., and Jöckel, P.: Technical Note: Implementation of prescribed
(OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the
Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 3603–3609, 2006.

