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Abstract. A climate model is an executable theory of the cli-
mate; the model encapsulates climatological theories in soft-
ware so that they can be simulated and their implications in-
vestigated. Thus, in order to trust a climate model, one must
trust that the software it is built from is built correctly. Our
study explores the nature of software quality in the context
of climate modelling. We performed an analysis of defect re-
ports and defect fixes in several versions of leading global cli-
mate models by collecting defect data from bug tracking sys-
tems and version control repository comments. We found that
the climate models all have very low defect densities com-
pared to well-known, similarly sized open-source projects.
We discuss the implications of our findings for the assess-
ment of climate model software trustworthiness.

1 Introduction

In this paper we report on our investigation into the software
quality of climate models. A study byEasterbrook and Johns
(2009) of the software development practices at the UK Met
Office Hadley Centre estimates an extremely low defect den-
sity for the climate model produced there, which suggests an
extraordinary level of software quality. Our purpose in this
study is to conduct a rigorous defect density analysis across
several climate models to confirm whether this high level of
quality holds, and whether it is true of other models.

Defect density measures the number of problems fixed
by the developers of the software, normalised by the size
of the body of code. We chose defect density as our indi-
cator of quality because it is well-known and widely used
across the software industry as a rough measure of qual-
ity, and because of its ease of comparison with published

statistics. Additionally, the measure is general and does not
rely on many assumptions about how software quality should
be measured, other than the notion that fewer defects indicate
greater software quality.

2 Background

2.1 Measuring software quality

In software engineering research,software qualityis not
a simple, well-defined concept.Kitchenham and Pfleeger
(1996) suggest that software quality can be viewed through
five different lenses:

– Thetranscendental viewsees software quality as some-
thing that can be recognised and worked towards, but
never precisely defined nor perfectly achieved. This
view holds that quality is inherently unmeasurable.

– The user viewdescribes software quality by how well
the software suits the needs of its users. This view does
not consider the construction of the software unless it
has a bearing on the user experience.

– The manufacturing viewconsiders quality as confor-
mance to specifications and development processes.
Measuring manufacturing quality is done through mea-
suring defect counts and rework costs.

– The product viewsees quality as indicated by measur-
able internal characteristics of the software itself with-
out regard to its use or usability. Software metrics like
code coverage, cyclomatic complexity, and program
size are some ways of measuring software quality from
the product view.
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– The value-based viewtakes an economic perspective
by equating software quality with what the customer is
willing to pay for the software.

The product and manufacturing views are the dominant
views adopted by software researchers (van Vliet, 2000).
Software is seen as a product, produced by a manufactur-
ing process, i.e. software development. This view enables
the quality of aproduct to be measured independently of
the manufacturingprocess. Quality is then either the extent
to which the product or processconformsto predetermined
quality requirements, or the extent to which the product or
processimprovesover time with respect to those require-
ments. Quality requirements are then made measurable by
decomposing them into quality factors and subfactors. Each
factor is then associated with specific metrics taken as in-
dicating the degree to which that factor is present, and so
indicating the degree of overall quality. Software quality is
variously defined as “the degree to which a system, compo-
nent or process meets specified requirements,” (IEEE, 1990),
or more broadly as “the degree to which software possesses
a desired combination of attributes” (IEEE, 1998).

These two perspectives on software quality have been for-
malised in software engineering standards. ISO Std 9126
(ISO, 2001) and IEEE Std 1061 (IEEE, 1998) are both aimed
at managing product conformance. The Capability Maturity
Model (CMM/CMMI)1 is a framework for measuring and
carrying out software development process improvement.
ISO 9001 and related ISO 900x standards2 define how to
manage and measure (software development) process confor-
mance. Whilst these standards reflect the product and manu-
facturing views in what aspects of software development they
consider relevant to software quality, the standards do not
prescribe specific quality measurements nor hold any spe-
cific measures as necessarily better at indicating quality than
others. Those choices and judgements are left as tasks for
individual projects.

2.2 Scientific software development

There is a long history of software research focused on in-
dustrial and commercial software development but it is only
recently thatscientific softwaredevelopment has been seen
as an important area of research (Kelly, 2007). There is ev-
idence to show that scientific software development has sig-
nificant differences from other types of software develop-
ment.

Segal and Morris(2008) andSegal(2008) point to two ma-
jor differences. Experimentation and trial-and-error work is
an essential part of the development process because the soft-
ware is built to explore the unknown. It is often impossible to
provide complete requirements for the software upfront, and

1Seehttp://www.sei.cmu.edu/cmmi/
2See http://www.iso.org/iso/iso_catalogue/management_

standards/quality_management.htm

in fact, the requirements are expected to emerge and change
over the lifetime of the project as the understanding of the
science evolves. Partly because of this, the scientists must
develop the software themselves, or be intimately involved,
since it would be impossible to build the software correctly
without their guidance and knowledge.

In a study of high-performance computing (HPC) commu-
nities,Basili et al.(2008) find that scientists value scientific
output as the highest priority and make decisions on program
attributes accordingly. For instance, an increase in machine
performance is often seen as the opportunity to add scientific
complexity to their programs, not as an opportunity to save
on execution time (since that may not serve as great a scien-
tific purpose). They report that scientists recognised software
quality as both very important and extremely challenging.
They note that the techniques used are “qualitatively differ-
ent for HPC than for traditional software development”, and
that many software engineering techniques and tools, such as
interactive debuggers, are simply not usable in their environ-
ment.

In summary, scientific software development (under which
climate modelling falls) is markedly different from the tradi-
tional domains studied by software researchers. It works with
few upfront requirements and a design that never truly settles
since it must adapt to constant experimentation.

This raises the question: what does software quality mean
in the climate modelling context?

2.3 The problem of software quality in scientific
software

Stevenson(1999) discusses a divide between the software
research community and the scientific community as it ap-
plies to scientists building large-scale computer simulations
as their primary research apparatus. Stevenson raises the con-
cern that because the primary job of a scientist is to do sci-
ence, software engineering notions of quality do not apply
to software constructed as part of a scientific effort. This
is because of fundamentally incompatible paradigms: scien-
tists are concerned with the production of scientific insight,
while software engineers are concerned with the manufac-
turing process that produces software. Stevenson argues that
for the termsoftware qualityto have meaning in the scien-
tific domain, our notions of quality must be informed by our
understanding of the requirement forinsight and all that it
entails.

When considering the use of computational simulations
for science, insights come by way of gaining knowledge
about the natural system that is being modelled. Stevenson
offers specific terminology to understand this point clearly.
There are three kinds of systems involved: theobserva-
tional (i.e. the world itself; in our case, the climate), thetheo-
retical (i.e. our theory or model of the workings of the obser-
vational system; in our case, the equations and concepts that
describe climate processes), and thecalculational (i.e. the
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executable implementation of the theoretical model; in our
case, climate model code)3. Computational scientists study
the behaviour of the calculational system to gain insight into
the workings of the theoretical system, and ultimately the ob-
servational system.

Two basic kinds of activity ensure that the systems cor-
respond to one another.Validation is the process of check-
ing that the theoretical system properlyexplainsthe observa-
tional system, andverificationis the process of checking that
the calculational system correctly implements the theoretical
system. The distinction between validation and verification is
expressed in the questions, “Are we building the right thing?”
(validation) and, “Are we building the thing right?” (verifica-
tion). Stevenson also uses the termcomplete validationto
refer to checking all three systems – that is, to mean that "we
compute the right numbers for the right reasons."

Stevenson describes two types of quality with respect to
the above model of computational science.Intrinsic quality
is "the sum total of our faith in the system of models and ma-
chines." It is an epistemological notion of a good modelling
endeavour; it is what we are asking about when we ask what
needs to be present in any theoretical system and any im-
plementation for us to gain insight and knowledge.Internal
quality applies to a particular theoretical and calculational
system, and asks how good our model and implementation
is in its own right. For a mathematician, internal quality may
relate to the simplicity or elegance of the model. For a com-
puter scientist or engineer, internal quality may relate to the
simplicity or extensibility of the code.

We have seen that, from one perspective, scientific insight
is the ultimate measure of the overall quality of a scientific
modelling endeavour. Meaningful insight depends upon the-
oretical and calculational systems corresponding in sensible
ways to each other, and ultimately to the observational sys-
tem under study. So, the “correctness” of our models is bound
up with our notion of quality: what are the “right numbers”?
How do we know when we see them? The conceptual ma-
chinery for approaching these questions is discussed suc-
cinctly byHook (2009) andHook and Kelly(2009).

Hook divides error, the “difference between measured
or calculated value of a quantity and actual value”, into
acknowledged errorand unacknowledged error. Acknowl-
edged errors “are unavoidable or intentionally introduced to
make a problem tractable” whereas unacknowledged errors
“result from blunders or mistakes”. Defining a theoretical
model and refining it into a calculational model necessar-
ily introduces acknowledged error. This error may come in
the form of uncertainties in experimental observations, ap-
proximations and assumptions made to create a theory of

3There are alternatives to these terms which Stevenson does not
mention. The termmodelis used both to refer to the theoretical sys-
tem at times, and at other times to refer to the calculational system.
The termsimulationis only used to refer to thecalculational sys-
tem.

the observational system, truncation and round-off errors that
come from algorithmic approximations and discretizations of
continuous expressions, the implementation – i.e. program-
ming – of those algorithms, or even from compiler optimiza-
tions made during translation to machine code. Unacknowl-
edged errors may appear at any step along the way because
of mistakes in reasoning or misuse of equipment.

There are two fundamental problems that make impossi-
ble the traditional notion of testing by way of directly com-
paring a program’s output to an expected value. The first is
what Hook terms thetolerance problem: it is impossible, or
very difficult, to tell if errors in output are completely free of
unacknowledged error since it may be difficult to bound ac-
knowledged error, and even with a bound on acknowledged
error it is impossible to detect unacknowledged errors that
fall within those bounds. In short, because there is a range
of acknowledged error in the output, some unacknowledged
error cannot reliably be detected.

The second problem is theoracle problem: “available ora-
cles are problematically imprecise and limited”. That is, for
certain inputs there may not exist a source of precise ex-
pected outputs with which to compare a program’s output.
For a computational scientist, many of the important out-
puts of scientific software are theresultsof an experiment. If
the output was always known beforehand, then the scientists
would not be engaging in science. As a result of the oracle
problem, scientists may have to rely on educated guesses, in-
tuition, and comparison to available data in order to judge the
“correctness” of their software.

In summary, for any given input there may be no accurate
expected output values (the oracle problem); and because of
inherent error in the output, unacknowledged errors may be
undetectable (the tolerance problem). These problems do not
suggest that building correct models is impossible, but that in
the scientific software domain we must redefine correctness
so as to take into account these problems. That is, we cannot
accept that an evaluation of a model’s correctness consists
only of comparing output to expected values.

How, then, should climate model quality be judged? This
is the problem of quality in scientific software which the
present work explores, albeit only partially since we concern
ourselves with the question ofsoftwarequality and not theo-
retical quality.

Kelly and Sanders(2008) discuss the core questions that
ought to guide a research program to understand and im-
prove the quality of scientific software. They motivate their
discussion by noting that in all software domains, testing is
the most widely used quality assessment technique, yet sci-
entists typically run tests only to assess their theories and
not their software. From a scientist’s perspective, Kelly and
Sanders observe, “the software is invisible” – that is, sci-
entists conflate the theoretical and calculational systems –
unless the software is suspected of not working correctly
(Segal, 2008). Kelly and Sanders point to this conflation, as
well as a variety of other factors (such as the oracle problem)
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that prevent the study of scientific software quality from be-
ing a straightforward matter of applying existing software en-
gineering knowledge to a new domain. Instead, they suggest
that software researchers work with scientists to learn more
about their development context, and establish which soft-
ware development techniques can be used directly and what
has to be adapted or created. With respect to software cor-
rectness, they ask:

“At this point, we don’t have a full list of factors that
contribute to correctness of scientific software, particularly
factors in areas that a software engineer could address.
What activities can contribute to factors of importance to
correctness? How effective are these activities?" (Kelly and
Sanders, 2008)

We will revisit these questions in Sect.5.2.
Assessing the quality of scientific software may be tricky,

but is it needed?Hatton(1997b) performed a study analysing
scientific software from many different application areas in
order to shed light on the answer to this question. Hatton’s
study involved two types of quality tests. The first test, T1,
involved static analysis of over 100 pieces of scientific soft-
ware. This type of analysis results in a listing of “weak-
nesses”, or static code faults – i.e., known “misuse[s] of the
language which will very likely cause the program to fail in
some context". The second test, T2, involved comparing the
output of nine different seismic data processing programs,
each one supposedly designed to do the same thing, on the
same input data. Hatton found that the scientific software
analysed had plenty of statically detectable faults, that the
number of faults varied widely across the different programs
analysed, and that there was significant and unexpected un-
certainty in the output of this software: agreement amongst
the seismic processing packages was only to one signifi-
cant digit. Hatton concludes that, "taken with other evidence,
the T experiments suggest that the results of scientific cal-
culations carried out by many software packages should be
treated with the same measure of disbelief researchers have
traditionally attached to the results of unconfirmed physical
experiments." Thus, if Hatton’s findings are any indication of
quality of scientific software in general, then improvements
in software quality assessment of scientific software is dearly
needed.

2.4 Climate model development

Theclimateis “all of the statistics describing the atmosphere
and ocean determined over an agreed time interval.”Weather,
on the other hand, is the description of the atmosphere at a
single point in time. Climate modellers are climate scientists
who investigate the workings of the climate by way of com-
puter simulations:

“Any climate model is an attempt to represent the many
processes that produce climate. The objective is to under-
stand these processes and to predict the effects of changes
and interactions. This characterization is accomplished by

describing the climate system in terms of basic physical,
chemical and biological principles. Hence, a numerical
model can be considered as being comprised of a series of
equations expressing these laws." (McGuffie and Henderson-
Sellers, 2005)

Climate modelling has also become a way of answering
questions about the nature of climate change and about pre-
dicting the future climate and, to a lesser extent, the predic-
tion of societal and economic impacts of climate change.

Climate models come in varying flavours based on the
level of complexity with which they capture various physical
processes or physical extents. GCMs (“global climate mod-
els” or “general circulation models”) are the most sophis-
ticated of climate models. They are numerical simulations
that attempt to capture as many climate processes as possible
with as much detailed output as possible. Model output con-
sists of data for points on a global 3D grid as well as other
diagnostic data for each time-step of the simulation. Whilst
GCMs aspire to be the most physically accurate of models,
this does not mean they are always the most used or useful;
simpler models are used for specific problems or to “provide
insight that might otherwise be hidden by the complexity of
the larger models” (McGuffie and Henderson-Sellers, 2005;
Shackley et al., 1998). In this paper we focus on the develop-
ment of GCMs for two reasons: they are the most complex
from a software point of view; and, to the extent that they pro-
vide the detailed projections of future climate change used to
inform policy making, they are perhaps the models for which
software quality matters the most.

GCMs are typically constructed by coupling together sev-
eral components, each of which is responsible for simulating
the various subsystems of the climate: atmosphere, ocean,
ice, land, and biological systems. Each component can often
be run independently to study the subsystem in isolation. A
special model component, the coupler, manages the transfer
of physical quantities (energy, momentum, air, etc.) between
components during the simulation. As GCMs originally in-
cluded only atmosphere and ocean components, models that
include additional Earth system processes are often referred
to as Earth system models (ESMs). For simplicity, hereafter,
we will use the phraseclimate modelto mean both GCMs
and ESMs.

In order to facilitate experimentation, climate models are
highly configurable. Entire climate subsystem components
can be included or excluded, starting conditions and physical
parameterizations specified, individual diagnostics turned on
or off, as well as specific features or alternative implementa-
tions of those features selected.

We are only aware of one study,Easterbrook and Johns
(2009), that specifically examines the software development
practices of climate modellers. The authors performed an
ethnographic study of a major climate modelling centre in
order to explore how scientists “think about software correct-
ness, how they prioritize requirements, and how they develop
a shared understanding of their models.” The results confirm
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what we have already summarised above about general scien-
tific software development in a high-performance computing
environment.

Easterbrook and Johns find that evolution of the software
and structure of the development team resemble those found
in an open source community even though the centre’s code
is not open nor is development geographically distributed.
Specifically, the domain experts and primary users of the
software (the scientists) are also the developers. As well,
there are a small number of code owners who act as gate-
keepers over their component of the model. They are sur-
rounded by a large community of developers who contribute
code changes that must pass through an established code re-
view process in order to be included in the model.

Easterbrook and Johns also describe the verification and
validation (V&V) practices used by climate modellers. They
note that these practices are “dominated by the understanding
that the models are imperfect representations of very com-
plex physical phenomena.” Specific practices include the use
of validation notes: standardized visualisations of model out-
puts for visually assessing the scientific integrity of the run
or as a way to compare it with previous model runs. An-
other V&V technique is the use of bit-level comparisons be-
tween the output of two different versions of the model con-
figured in the same way. These provide a good indicator of
reproducibility on longer runs, and strong support that the
changes to the calculational model have not changed the the-
oretical model. Finally, results from several different models
are compared. Organized model intercomparisons are con-
ducted with models from several organisations run on simi-
lar scenarios4. Additionally, the results from several different
runs of the same model with perturbed physical parameters
are compared in modelensemble runs. This is done so as
to compare the model’s response to different parameteriza-
tions, implementations, or to quantify output probabilities.
Easterbrook and Johns conclude that “overall code quality
is hard to assess”. They describe two sources of problems:
configuration issues (e.g. conflicting configuration options),
and modelling approximations which lead to acknowledged
error. Neither of these are problems with the code per se.

3 Approach

In this study we analysed defect density for three differ-
ent models: two fully coupled general circulation mod-
els (GCMs) and an ocean model. For comparison, we also an-
alyzed three unrelated open-source projects. We repeated our
analysis for multiple versions of each piece of software, and
we calculated defect density using several different methods.
There are a variety of methods for deciding on what consti-
tutes a defect and how to measure the size of a software prod-
uct. This section makes explicit our definition of a defect and

4Seehttp://cmip-pcmdi.llnl.gov/for more information.

Table 1. Post-delivery problem rates as reported byPfleeger and
Hatton(1997)

Source Language Failures per
KLOC

IBM normal development Various 30
Satellite planning study Fortran 6 to16
Siemens operating system Assembly 6 to 15
Unisys communications software Ada 2 to 9
IBM Cleanroom development Various 3.4
NAG scientific libraries Fortran 3.0
Lloyd’s language parser C 1.4
CDIS air-traffic-control support C 0.8

product size, and explains in detail how we conducted our
study.

We also compare our results with defect density rates re-
ported in the literature, typically calculated as the number
of failures encountered (or defects discovered) after deliv-
ery of software to the customer, per thousand lines of source
code (KLOC). For example,Pfleeger and Hatton(1997) list
a number of published post-delivery defect rates, which we
reproduce in Table1. Hatton(1997a) states: “three to six de-
fects per KLOC represent high-quality software.”Li et al.
(1998) state that “leading edge software development or-
ganizations typically achieve a defect density of about 2.0
defects/KLOC”. The COQUALMO quality model (Chulani
and Boehm, 1999), which bases its interpretation of defect
density on the advice of industry experts, suggests that high
software quality is achieved at a post-release defect density
of 7.5 defects/KLOC or lower.

3.1 Selection process

Convenience sampling and snowballing were used to find cli-
mate modelling centres willing to participate (Fink, 2008).
We began with our contacts from a previous study (East-
erbrook and Johns, 2009), and were referred to other con-
tacts at other centres. In addition, we were able to access the
code and version control repositories for some centres anony-
mously from publicly available internet sites.

We only considered modelling centres with large enough
modelling efforts to warrant a submission to the IPCC Fourth
Assessment Report (Solomon et al., 2007). We used this cri-
teria because the modelling centres were well-known, and
we had access to the code, project management systems, and
developers. In the interests of privacy, the modelling centres
remain anonymous in this report. We use the identifiers C1,
C2, and C3 to refer to the three models we studied.

To provide a comparison to other kinds of software, we
also performed a defect density analysis on three projects un-
related to climate modelling:

www.geosci-model-dev.net/5/1009/2012/ Geosci. Model Dev., 5, 1009–1022, 2012
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– theApacheHTTPD5 webserver, which has been widely
studied as an example of high quality open source soft-
ware;

– the Visualization Toolkit (VTK ) 6, a widely used open
source package for scientific visualization;

– theEclipseproject, an open source Integrated Develop-
ment Environment, for whichZimmermann et al.(2007)
provide a detailed defect density analysis.

3.2 Terminology

For the remainder of this paper, we adopt the following ter-
minology:

– Error is the difference between a measured or computed
quantity and the value of the quantity considered to be
correct.

– A code faultis a mistake made when programming; it is
"a misuse of the language which will very likely cause
the program to fail in some context" (Hatton, 1997b).

– A failure occurs when a code fault is executed (Hook,
2009).

– The termsdefectandbugare commonly used to refer to
failures or faults, or both. We use these terms to mean
both failures and faults, unless specified otherwise.

– Defect reportsare reports about faults or failures, typi-
cally recorded in a bug tracking system, along with doc-
umentation on the resolution of the problem.

– A defect fixis any change made to the code to repair a
defect, whether or not a defect report was documented.

3.2.1 Identifying defects

One approach to measuring software defects is to count each
documented report of a problem filed against a software
product. This approach has the drawback of ignoring those
defects that are not formally reported, but which are found
and fixed nonetheless. Since we did not have information
on the bug reporting practices for every model we studied,
we broadened our characterization of a defect fromreported
and fixed problemsto any problem fixed. Hence, in addition
to examining defect reports, we examined the changes made
to the code over a given period to identify those that were
intended to repair a defect. This broader analysis reflects an
operational definition of a software defect as “any problem
that is worth fixing”.

Defect reports are usually easy to identify, since they are
labeled and stored in a project database which can be queried
directly. We consider only those reports specifically labeled

5http://httpd.apache.org/
6http://www.vtk.org/
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1. CT : BUGFIX083 : add the initialisation
of the prd 2D array in the xxxxx
subroutine

2. xxxx_bugfix_041 : SM : Remove unused
variables tauxg and tauyg

3. Correct a bug in ice rheology, see ticket
#78

4. Correct a bug and clean comments in
xxxxx, see ticket #79

5. Ouput xxxx additional diagnostics at the
right frequency, see ticket:404

6. Initialization of passive tracer trends
module at the right place, see ticket:314

7. additional bug fix associated with
changeset:1485, see ticket:468

8. CT : BUGFIX122 : improve restart case
when changing the time steps between 2
simulations

9. Fix a stupid bug for time splitting and
ensure restartability for dynspg_ts in
addition, see tickets #280 and #292

10. dev_004_VVL:sync: synchro with trunk
(r1415), see ticket #423

Fig. 1. A sample of version control log messages indicating a defect
fix. Redacted to preserve anonymity.

well as being labeled as fixed (as opposed to unresolved or
invalid).

Identifying defects fixes is more problematic. Although
all code changes are recorded in a version control repository,
the only form of labeling is the use of free-form revision log510

messages associated with each change. We used an informal
technique for identifying defect fixes by searching the revi-
sion log messages for specific keywords or textual patterns
(Zimmermann et al., 2007a). We began by manually inspect-
ing a sample of the log messages and code changes from each515

project. We identified which revisions appeared to be defect
fixes based on our understanding of the log message and de-
tails of the code change. We then proposed patterns (as regu-
lar expressions) for automatically identifying those log mes-
sages. We refined these patterns by sampling the matching520

log messages and modifying the patterns to improve recall
and precision. The pattern we settled on matches messages
that contain the strings “bug”, “fix”, “correction”, or “ticket”;
or contain the “#” symbol followed by digits (this typically
indicates a reference to a report ticket). Figure 1 shows a525

sample of log messages that match this pattern.

Some centres were able to provide us with a snapshot of
their version control repository, as well as access to their bug
tracking system (e.g., Bugzilla or Trac). In the cases where
we only had access to the version control repository we used530

Fig. 1.A sample of version control log messages indicating a defect
fix. Redacted to preserve anonymity.

as defects (as opposed to enhancements or work items) as
well as being labeled as fixed (as opposed to unresolved or
invalid).

Identifying defects fixes is more problematic. Although all
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the only form of labeling is the use of free-form revision log
messages associated with each change. We used an informal
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defect fixes based on our understanding of the log message
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messages. We refined these patterns by sampling the match-
ing log messages and modifying the patterns to improve re-
call and precision. The pattern we settled on matches mes-
sages that contain the strings “bug”, “fix”, “correction”, or
“ticket”; or contain the “#” symbol followed by digits (this
typically indicates a reference to a report ticket). Figure1
shows a sample of log messages that match this pattern.
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tracking system (e.g., Bugzilla or Trac). In the cases where
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Fig. 2. Project repository time lines. Candidate versions are marked on the timelines with downward ticks, and analysed versions are labelled.
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the tool CVSANALY7 to build an SQLITE8 database of the
repository items. This database includes tables for: the log
messages, tags, and all of the files and folders. One centre
provided us with a snapshot of their trac9 installation and
repository. We used the database powering the trac installa-535

tion (also based on SQLITE) as it stores the repository data
in a similar way to CVSANALY.

3.2.2 Measuring Product Size

In order to normalize defect counts, it is necessary to select
a method for calculating product size. The size of a software540

product is typically measured in terms of code volume (e.g.,
source lines of code) or function points (a measure of the
functionality provided by the source code). Source lines of
code (SLOC) can be measured automatically. In contrast,
function points, which are considered to be a more accu-545

rate measurement of the essential properties of a piece of
software (Jones, 2008), rely on subjective judgment, and are
time-consuming to assess for large software systems. There-
fore, we chose to use the source lines of code metric for its
ease of measurement and repeatability (Jones, 2008; Park,550

1992).
There are two major types of source lines of code mea-

sures: physical, and logical. The Physical SLOC measure
views each line of text in a source file as a potential line of
code to be counted. The physical SLOC measure we report555

counts all lines except blank lines and lines with only com-
ments. The Logical SLOC measure ignores the textual for-
matting of the source code and considers each statement to be
a line of code. In this study we report both of these measures

7http://tools.libresoft.es/cvsanaly
8http://sqlite.org/
9http://trac.edgewall.org/

but we use the physical SLOC measure in our calculation of560

defect density since we feel it as a more reproducible and
language-neutral measure.

We used the CODECOUNT10 tool to count source lines of
code for all of our projects. We determined which source files
to include in the count based on their extension: .F, .f,565

.f90 for Fortran files and .c, .cpp, .h, and .hpp for
C/C++ projects). We included other files if we knew from
conversations with the developers that they contained code
(for example, model C2 contained Fortran code in certain .h
files). Additionally, we analysed the source files without per-570

forming any C preprocessing and so our line counts include
C preprocessing directives and sections of code that might
not appear in any specific model configuration.

3.2.3 Calculating Defect Density

Defect density is loosely defined as the number of defects575

found in a product divided by the size of the product. De-
fects are discovered continuously throughout the develop-
ment and use of a software product. However, product size
changes discretely as modifications are made to the source
code. Thus, in order to calculate the defect density of a prod-580

uct we must be able to associate defects to a particular ver-
sion of the product. We use the term version to refer to any
snapshot of model source code whose size we can measure
and assign defects to. A version in this sense does not nec-
essarily refer to a public release of the product since defects585

can be both reported and fixed on unreleased or internally
released versions.

In general, we attempted to limit the versions we anal-
ysed to major product releases only. We began with a pool
of candidate versions populated from the source code revi-590

10http://csse.usc.edu/research/CODECOUNT/
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candidate versions populated from the source code revisions
in the version control repository. Where possible, we used
only those versions indicated as significant by the developers
through personal communication. Otherwise, we narrowed
the pool of candidate versions to only those revisions that
were tagged in the repository (models C1, C3, and compara-
tors HTTPD and VTK) under the assumption that tags indi-
cated significance. We further narrowed our candidate ver-
sions by selecting only those tagged revisions that had asso-
ciated defect reports. We assumed that reports are typically
logged against major versions of the product. We attempted
to match repository tag names to the version numbers listed
in the issue report database for the project. Where there was
ambiguity over which tag version to choose we chose the old-
est one11. We will refer to the remaining candidate versions
– those that were included in our analysis – asselected ver-
sions. Figure2 shows a time line for each project marking
the selected versions, as well as the other candidate versions
we considered. To maintain the anonymity of the models, we
have used artificial version names rather than the repository
tags or actual model version numbers.

Assigning a defect to a product version can be done in
several ways. In a simple project, development proceeds se-
quentially, one release at a time. Simplifying, we can make
the assumption that the defects found and fixed leading up
to or following the release date of a version are likely de-
fects in that version. Defects which occur before the release
date are calledpre-release defectsand those which occur af-
terwards are calledpost-release defects. One method for as-
signing defects to a product version is to assign all of the pre-
and post-release defects that occur within a certain time in-
terval of a version’s release date to that version. We call this
methodinterval assignment. We used an interval duration of
six months to match that used byZimmermann et al.(2007).

An alternative method is to assign to a version all of the
defects that occur in the time span between its release date
and the release date of the following version. We call this
methodspan assignment.

A third and more sophisticated method is used inZimmer-
mann et al.(2007), whereby defect identifiers are extracted
from the log messages of fixes, and the version label from the
ticket is used to indicate which version to assign the defect
to. We call this methodreport assignment.

We used all three assignment methods to calculate defect
density.

11For instance, in one project there were repository tags of the
form <release_number>_beta_<id>, and a report version name of
the form <release_number>_beta. Our assumption is that devel-
opment on a major version progresses with minor versions being
tagged in the repository up until the final release.
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ties of each project version using the physical product size
measurement. For Eclipse, we extracted defect counts for
each version by totalling the defects found across all of the640

plug-ins that compose the Eclipse JDT product using the data
published by Zimmermann et al. (2007b).

Figure 4 displays the post-release defect densities of the
projects we analysed, with several of the published figures
from Table 1 marked down the right hand side of the chart645

for comparison. Both the fix- and report-defect densities are
included for each assignment method.

Regardless of whether we count fixes or reported defects,
and regardless of the assignment method used, the median
defect density of each of the climate models is lower, often650

significantly, than the projects listed in Table 1. Similarly,
the median model defect density is lower, often significantly,
than the comparator projects.

Version defect densities are generally larger under span-
assignment, and small under report-assignment. This is most655

likely because fewer defects are reported than those that are
actually fixed. For instance, only suitably important defects
may be reported whereas minor defects are simply found and
fixed.

Fig. 3.Lines of code measurements for each project.

4 Results

Figure3 displays the physical, logical and total line count for
each project, and Table2 lists the median defect densities of
each project version using the physical product size measure-
ment. For Eclipse, we extracted defect counts for each ver-
sion by totalling the defects found across all of the plug-ins
that compose the Eclipse JDT product using the data pub-
lished byZimmermann et al.(2007).

Figure4 displays the post-release defect densities of the
projects we analysed, with several of the listed projects from
Table1 marked down the right hand side of the chart for com-
parison. Both the fix- and report-defect densities are included
for each assignment method.

Regardless of whether we count fixes or reported defects,
and regardless of the assignment method used, the median
defect density of each of the climate models is lower, often
significantly, than the projects listed in Table1. Similarly,
the median model defect density is lower, often significantly,
than the comparator projects.

Version defect densities are generally larger under span-
assignment, and smaller under report-assignment. This is
most likely because fewer defects are reported than those
that are actually fixed. For instance, only suitably important

Geosci. Model Dev., 5, 1009–1022, 2012 www.geosci-model-dev.net/5/1009/2012/



J. Pipitone and S. Easterbrook: Software quality of climate models 1017

Table 2. Median project defect density (interquartile range in parenthesis) of analysed versions under different defect assignment methods.

Interval-assignment Span-assignment Report-assignment
Project Fixes Tickets Fixes Tickets Fixes Tickets

C1 0.540 (0.277) 0.475 (0.341) 0.752 (0.476) 0.284 (0.803) 0.124 (0.325) 0.241 (0.296)
C2 1.169 (0.549) 0.073 (0.029) 0.773 (0.357) 0.060 (0.019) 0.202 (0.106) 0.058 (0.025)
C3 0.838 (0.206) 0.191 (0.006) 0.522 (2.191) 0.124 (0.415) 0.006 (0.023) 0.039 (0.034)

Apache 3.586 (2.793) 0.755 (1.489) 12.503 (15.901) 3.436 (6.851) 0.283 (0.824) 0.270 (2.780)
VTK 1.217 (0.304) 0.010 (0.024) 0.776 (0.957) 0.009 (0.023) 0.000 (0.000) 0.000 (0.000)
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defects may be reported whereas minor defects are simply
found and fixed.

5 Discussion

Each of the comparator projects we chose is a long-lived,
well-known, open-source software package. We have good
reason to believe that they are each of high quality and rig-
orously field-tested. Thus, our results suggest that the soft-
ware quality of the climate models investigated is as good as,
or better than, the comparator open source projects and de-
fect density statistics reported in the literature. In addition, to
the best of our knowledge, the climate modelling centres that
produced the models we studied are representative of major
modelling centres. This suggests that climate models from
other centres may have similarly low defect densities.

Our results are surprising in light of previous studies of
scientific software development, which show how volatile
and vague their requirements are (Kelly, 2007; Segal and

Morris, 2008; Segal, 2008; Carver et al., 2007). Our results
suggest that the climate modellers have produced very high
quality software under uncertain conditions with little in the
way of guidance from the software engineering community.

Notwithstanding issues of construct validity that we dis-
cuss in Sect.5.1.4, there are a number of possible explana-
tions for low defect densities in the models. We offer the fol-
lowing hypotheses:

1. Domain expertise.Climate modellers are at once the
scientific experts, primary users, and primary develop-
ers of climate models. This hypothesis asserts that be-
cause of their deep familiarity with the project, climate
modellers make fewer requirements errors and intro-
duce fewer logical defects. We would also expect that
modellers are better able to recognise, find, and fix de-
fects when they do arise, but that the increase in defect
density this leads to is overwhelmed by former effect.
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2. Rigorous development process.As we have discussed,
scientific correctness is paramount for climate mod-
ellers. This concern is reflected in an extremely rigorous
change management process where each code change
undergoes intense scrutiny by other modellers (Easter-
brook and Johns, 2009). Under this hypothesis, the rel-
ative effort put into inspecting code changes leads to
fewer introduced defects.

3. Domination by caution.Fear of introducing defects may
cause modellers to proceed with such caution as to slow
down model development significantly, providing more
time to consider the correctness of each code change.
This hypothesis suggests we would also expect to see
a lower code churn per developer per unit time than in
commercial software practices12. If true, it might also
mean that modellers are sacrificing some scientific pro-
ductivity in return for higher quality code.

4. Narrow usage profile.Our comparators are general pur-
pose tools (i.e. a numerical library, an IDE, and a web-
server) whereas, this hypothesis holds, even though cli-
mate models are built to be extremely flexible, they are
most often used and developed for a much smaller set of
scenarios than they are capable of performing in. That
is, only a limited number of the possible model con-
figurations are regularly used in experiments. Develop-
ment effort is concentrated on the code paths supporting
these configurations, resulting in well-designed, well-
tested and consequently, high quality code. However,
this hypothesis would suggest the models may be rel-
atively brittle, in that the less frequently used configura-
tions of the models may include many more unnoticed
code faults (unacknowledged errors). If code routines
that are rarely used make up a significant proportion
of the code size, then the defect density count will be
skewed downwards.

5. Intrinsic sensitivity/tolerance.This hypothesis posits
that there are intrinsic properties of climate models that
lead to the production of high quality software inde-
pendent of the skill of the development team. For in-
stance, climate models may be sensitive to certain types
of defects (those that change climate dynamics or nu-
merical stability, for example). These defects appear as
obvious failures (e.g. a crash, or numerical blowup) or
improbable climate behaviours, and are therefore fixed
at the time of development, resulting in fewer defect re-
ports and fixes. At the same time, we have evidence that
climate model behaviour is robust. One climate mod-
eller we interviewed explained that the climate is a “het-
erogeneous system with many ways of moving energy

12although this may be masked by certain coding practices,
(e.g. cut-and-paste, lack of granularity) where conceptually small
changes result in disproportionate source code changes.

around from system to system” which makes the theo-
retical system being modelled “tolerant to the inclusion
of bugs.” The combination of both factors means that
code defects are either made obvious (and so immedi-
ately fixed) or made irrelevant by the nature of climate
models themselves and therefore never reported as de-
fects.

6. Successful disregard.Compared to other domains, cli-
mate modellers may be less likely to consider certain
defects important enough to report or even be seenas
defects. The culture of emphasizing scientific correct-
ness may lead modellers to ignore defects which do not
cause errors in correctness (e.g. problems with usability,
readability or modifiability of the code), and defects for
which there are ready workarounds (e.g output format
errors). In other words, modellers have "learned to live
with a lower standard" of code and development pro-
cesses simply because they are good enough to produce
valid scientific results. A net result may be that climate
modellers incur higher levels oftechnical debt(Brown
et al., 2010) – problems in the code that do not affect
correctness, but which make the code harder to work
with over time.

Several of these hypotheses call into question the use of
standard measures of defect density to compare software
quality across domains, which we will consider in depth in
the following section.

5.1 Threats to validity

5.1.1 Overall study design

We do not yet understand enough about the kinds of climate
modelling organisations to make any principled sampling of
climate models that would have any power to generalize to
all climate models. Nevertheless, since we used convenience
and snowball sampling to find modelling centres to partici-
pate in our study, we are particularly open to several biases
(Fink, 2008):

– Modelling centres willing to participate in a study on
software quality may be more concerned with software
quality themselves.

– Modelling centres which openly publish their climate
model code and project artifacts may be also be more
concerned with software quality.

One of the models used in the study (C1) is an ocean model
rather than a full climate model. Even though this particular
model component is developed as an independent project, it
is not clear to what extent it is comparable to a full GCM.

Our selection of comparator projects was equally undis-
ciplined: we chose projects that were open-source, and that
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were large enough and well-known enough to provide an in-
tuitive comparison to the climate models.

Our choice to use defect density as a quality indicator was
made largely because of its place as ade factorough measure
of quality, and because of existing publications to compare
to. Gauging software quality is known to be tricky and sub-
jective and most sources suggest that it can only accurately
be done by considering a wide range of quality indicators
(Jones, 2008; IEEE, 1998; ISO, 2001; Hatton, 1995). Thus,
at best, our study can only hope to present a very limited view
of software quality.

5.1.2 Internal validity

The internal validity of the defect assignment methods (i.e.
interval- and span-assignment) is threatened by the fact that
we chose to view software development as proceeding in a
linear fashion, from one major version to the next. This view
assumes a defect found immediately before and after a re-
lease date is a defect in that release. However, when several
parallel branches of a project are developed simultaneously,
as some projects in our study were, this flattened view of de-
velopment is not able to distinguish amongst the branches.
We may have incorrectly assigned a defect to a version in
a different branch if the defect’s date was closer to the ver-
sion’s release date than to the version the defect rightfully is
associated with.

In addition, we assumed a 1:1 mapping between defect in-
dicators and defects. We did not account for reports or ver-
sion control check-ins that each refer to multiple defects, nor
for multiple reports or check-ins that, together, indicate only
one defect.

Finally, we did not perform any rigorous analysis of recall
and precision of our fix identification method. This means we
cannot say whether our counts are over- or under-estimates
of the true number of check-ins that contain defect fixes.

5.1.3 External validity

The external validity of our assignment methods depends on
correctly picking repository versions that correspond to ac-
tual releases. If a version is used that is not a release, then
it is not clear what is meant by pre-release and post-release
defects, and whether they can be compared. For several of
the projects we made educated guesses as to the versions to
select (as described in Sect.3), and so we may have classified
some defects as post-release defect that may more rightly be
classified as pre-release defects had we chosen the correct
version. Similarly, if there were no releases of the project
made in our repository snapshot, we used intermediate ver-
sions. This makes it difficult to justify comparing defect rates
since pre- and post-release are not clearly defined.

Our definition of a defect as “anything worth fixing” was a
convenient definition for our purposes but it has not been val-
idated in the field, and it is even unclear that it corresponds to

our own intuitions. What about defects that are found but not
worth fixing right then and there? We confront this question
in Sect.5.2.

Finally, there are many small differences between the way
we carried out our identification of code fixes and that of
Zimmermann et al.(2007). In their study, they did not rig-
orously specify the means by which check-in comments
were identified as fixes; they only gave a few examples of
common phrases they looked for. We were forced to invent
our own approximation. Furthermore, for report-assignment,
Zimmermann et al. (2007) used the first product version
listed in a report’s history as the release date to associate de-
fects with. Since we did not have access to the report history
for every project we analysed, we only considered the prod-
uct version as of the date we extracted the report informa-
tion. As well, Zimmermann et al. (2007) only counted defects
that occurred within 6 months of the release date whereas we
counted all defects associated with a report version. Thus, it
is not clear to what extent we can rightly compare our results.

5.1.4 Construct validity

As we have mentioned, defect density is thede factoinfor-
mal measure of software quality but it is by no means consid-
ered a complete or entirely accurate measure.Hatton(1997a)
says:

“We can measure the quality of a software system by its de-
fect density – the number of defects found per KLOC over a
period of time representing reasonable system use. Although
this method has numerous deficiencies, it provides a reason-
able though rough guide."

The question we explore in this section is: to what ex-
tent can we consider defect density even a rough indicator
of quality?

We suggest the following aspects which make the defect
density measure open to inconsistent interpretation:

– Finding, fixing, and reporting behaviour. In order to
be counted, defects must be discovered and reported.
This means that the defect density measure depends on
the testing effort of the development team, as well as the
number of users, and the culture of reporting defects. An
untested, unused, or abandoned project may have a low
defect density but an equally low level of quality.

– Accuracy and completeness of repository comments
or defect reports are accurate.There is good reason to
believe that these data sources contain many omissions
and inaccuracies (Aranda and Venolia, 2009).

– Product use.The period of time over which to collect
defects (e.g. “reasonable system use”) is unclear and
possibly varies from release to release.

– Release cycle.How do we decide which defects to con-
sider post-release and which ones pre-release? Do we
consider beta releases or only major releases? Does a
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project even make major releases or does it have contin-
uous incremental releases?

– Product size.There are many ways of evaluating the
product size, which one should we use and is it replica-
ble? Can it account for the expressiveness of different
languages, formatting styles, etc?

– Criticality and severity. Are all defects counted
equally, or certain severity levels ignored?

When we use the defect density measure to compare soft-
ware quality between projects, we are implicitly making the
assumption that these factors are similar in each project. If
they are not – and without any other information we have no
way of knowing – then we suggest the defect density mea-
sure is effectively meaningless as a method of comparing the
software quality, even roughly, between products. There is
too much variability in the project conditions for a single in-
terval measure to account for or express.

Even if all our concerns above are taken into account, we
cannot rightly conclude that a product with low defect den-
sity is, even roughly, of better quality than one with a higher
defect density.Jones(2008) states that whilst software defect
levels and user satisfaction are correlated, this relationship
disappears when defect levels are low: having fewer defects
does not tell us anything about the presence of favourable
quality attributes.

Our focus on defect density emphasizes code correctness
over and above other aspects of software quality. Of particu-
lar concern to the climate modelling community is the extent
to which poorly written or poorly structured code may slow
down subsequent model development and hence may reduce
scientific productivity, even it if works perfectly. Our study
did not attempt to measure these aspects of software quality.

In Sect.5.2we will discuss ideas for future studies to help
discover quality factors relevant in the climate modelling do-
main.

5.2 Future work

Many of the limitations to the present study could be over-
come with more detailed and controlled replications. Mostly
significantly, a larger sample size both of climate models and
comparator projects would lend to the credibility of our de-
fect density and fault analysis results.

As we have mentioned elsewhere, assessing software qual-
ity is not a simple matter of measuring one or two quality
indicators, but neither is it clear howanycollection of mea-
surements we could make could give us an assessment of
software quality with confidence.Hatton(1995) remarks:

“There is no shortage of things to measure, but there is a
dire shortage of case histories which provide useful correla-
tions. What is reasonably well established, however, is that
there is no single metric which is continuously and monoton-
ically related to various useful measures of software qual-
ity..."

Later on, he states that “individual metric measurements
are of little use and [instead] combinations of metrics and
some way of comparing their values against each other or
against other populations is vital”. His proposal is to perform
a demographic analysis– a comparison over a large popula-
tion of codes – of software metrics in order to learn about the
discriminating power of the measure in a real-world context.

While an important future step, mining our arsenal of met-
rics for strong correlations with our implicit notions of soft-
ware quality, which we believe this approach boils down to,
cannot define the entire research program. There is a deeper
problem which must be addressed first: our notion of soft-
ware quality with respect to climate models is theoretically
and conceptually vague. It is not clear to us what differen-
tiates high from low quality software, nor is it clear which
aspects of the models or modelling processes we might reli-
ably look to make to that assessment. If we do not get clear
on what we mean by software quality first, then we have no
way to assess what any empirical test is measuring, and so
we will have no way to accept or reject measures as truly
indicative of quality. We will not be doing science.

To tackle this conceptual vagueness, we suggest a research
program of theory building. We need a theory of scien-
tific software quality that describes the aspects of the cli-
mate models and modelling process which are relevant to
the software quality under all of the quality views outlined
by Kitchenham and Pfleeger, 1996(except perhaps the tran-
scendental view, which by definition excludes explanation),
as well as the ways in which those aspects are interrelated.
To achieve this, we propose in-depth empirical studies of the
climate modelling community from which to ground a the-
ory.

We suggest further qualitative studies to investigate the
quality perceptions and concerns of the climate modellers,
as well as documenting the practices and processes that im-
pact model software quality. A more in-depth study of defect
histories will give us insights into the kinds of defects climate
modellers have difficulty with, and how the defects are hid-
den and found. As well, we suggest detailed case studies of
the climate modelling development done in a similar manner
to Carver et al.(2007), or Basili et al.(2008).

We also see a role for more participatory action research
whereby software researchers work directly with climate
modellers to implement a quality assessment program. Our
interviews have shown us than software qualityis a recog-
nised concern for climate modellers but it is not one that is
widely discussed outside of each climate modelling centre.
Software researchers may be able to play a role in fostering
the development of community-wide software quality bench-
marks or assessment programs by providing climate mod-
ellers with a level-headed interpretation existing assessment
methodologies, as well as helping with their implementation
and studying their effectiveness.
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6 Conclusions

The results of our defect density analysis of three leading
climate models show that they each have a very low defect
density nnnnnnnn across several releases. A low defect den-
sity suggests that the models are of high software quality, but
we have only looked at one of many possible quality met-
rics. Knowing which metrics are relevant to climate mod-
elling software quality, and understanding precisely how they
correspond the climate modellers notions of software quality
(as well as our own) is the next challenge to take on in or-
der to achieve a more thorough assessment of climate model
software quality.
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