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Abstract. The sensitivity of global carbon and water cycling availability of PFT datasets that are consistent with current
to climate variability is coupled directly to land cover and the satellite products and adapted for earth system models is an
distribution of vegetation. To investigate biogeochemistry-important component for reducing the uncertainty of terres-
climate interactions, earth system models require a represerntrial biogeochemistry to climate variability.
tation of vegetation distributions that are either prescribed
from remote sensing data or simulated via biogeography
models. However, the abstraction of earth system state vari;  |ntroduction
ables in models means that data products derived from re-
mote sensing need to be post-processed for model-data aSerrestrial biogeography holds a key role in determining spa-
similation. Dynamic global vegetation models (DGVM) rely tial patterns of biogeochemical cycling (Olson et al., 1983),
on the concept of plant functional types (PFT) to group biodiversity (Kleidon et al., 2009) and the consumption and
shared traits of thousands of plant species into usually onlyproduction of natural resources (Foley et al., 2005; Haberl et
10-20 classes. Available databases of observed PFT disil., 2007). An improved understanding of global biogeogra-
tributions must be relevant to existing satellite sensors anghy is required to provide a baseline for assessing the vul-
their derived products, and to the present day distribution ofnerability of the carbon and water cycle and other ecosys-
managed lands. Here, we develop four PFT datasets basegm processes related to ongoing global change. Such base-
on land-cover information from three satellite sensors (EOSHines are also relevant to earth system modeling research, es-
MODIS 1km and 0.5km, SPOT4-VEGETATION 1km, and pecially for dynamic global vegetation modeling (DGVM),
ENVISAT-MERIS 0.3 km spatial resolution) that are merged with applications extending to model initialization, optimiza-
with spatially-consistent &ppen-Geiger climate zones. Us- tion, and benchmarking (Plummer, 2000). However, avail-
ing a beta (B) diversity metric to assess reclassification simiable remotely-sensed datasets for land cover show large vari-
larity, we find that the greatest uncertainty in PFT classifica-ability (Giri et al., 2005), partly due to differences in data re-
tions occur most frequently between cropland and grasslangieval (i.e., satellite properties) and partly because there is no
categories, and in dryland systems between shrubland, grasstandard approach to classifying continuous vegetation cover
land and forest categories because of differences in the mininto discrete categories. In addition, to be comparable to
mum threshold required for forest cover. The biogeography-plant functional type (PFT) definitions used by DGVM mod-
biogeochemistry DGVM, LPJmL, is used in diagnostic mode els, land-cover legends must be cross-walked (reclassified)
with the four PFT datasets prescribed to quantify the effectto broader PFT categories (Jung et al., 2006). To address the
of land-cover uncertainty on climatic sensitivity of gross pri- variability between land-cover products and the challenges of
mary productivity (GPP) and transpiration fluxes. Our re- cross-walking land-cover legends, we developed a method-
sults show that land-cover uncertainty has large effects irology to process an ensemble of PFT datasets corresponding
arid regions, contributing up to 30% (20 %) uncertainty in to the most common global land-cover products available. In
the sensitivity of GPP (transpiration) to precipitation. The our analysis, the pattern and drivers of variability across this
ensemble is quantitatively assessed and attributed to inter-
pret the effects of land-cover uncertainty on biogeochemical
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Table 1. Characteristics of the remotely sensed land cover datasets used to develop the phenology, physiognomy, and natural/managed trait
for the PFT mapping.

Land cover Satellite and  Time Spatial Number File size  #rows  #cols Classification

product sensor type period resolution of classes (GB) accuracy

GLC2000v1.1 SPOT-4 2000 1000 m 22 (modified 0.66 40320 16353 39-64%
(VEGA2000) UN LCCS)

Mod12qgl C004 Terra 2001 1000 m 17 (IGBP legend)  0.93 43200 21600 75-80%

Mod12qg1 C005 Terra 2005 500 m 17 (IGBP legend)  3.47 86400 43200 72-77%

GlobCover v2.2 Envisat 12-2004/ 300m 22 (modified 7.82 129600 64800 67.1%
(Meris) 06-2006 UN LCCS)

There are now several (Table 1) moderate resolution globagridded climate data from Legates and Wilmott (1990), cre-
land-cover datasets available from different satellite sensorating one of the first ESM-relevant PFT legends (Table 2) for
and research groups (Friedl et al., 2002, 2010; Bartholoméhe Community Land Model 3.0 (Dickinson et al., 2006). In
and Belward, 2005; Arino et al., 2008) providing an oppor- comparison, Verant et al. (2004) combined simplified Olson
tunity to assess ensemble variability. Although these land-biomes with IGBP GLCC data to create a PFT map for the
cover datasets provide new opportunities for model-data asOrchidee DGVM (Krinner et al., 2005). Lapola et al. (2008)
similation studies to assess the effects of land-cover feeddeveloped a global PFT map by reclassifying legends from
backs (Quaife et al., 2008; Sterling and Ducharne, 20080lson et al. (1983) and Matthews (1983) and filling areas of
Jung et al., 2007), their approach for classifying land covermismatch with regional land cover information. A different
is not yet consistent with Earth System Model (ESM) re- PFT legend accompanies the MODIS land cover product us-
quirements. This is because the concept of plant functionaing categories defined by Running et al. (1995) and has been
types used in ESMs cannot be mapped directly using redeveloped from GLC2000 (Wang et al., 2006). For these
mote sensing data since PFT traits represent a combinatioparticular PFT legends, the classifications include phenology
of spectral relationships, and climatic, ecological, and the-type but not the associated climate zone, which is needed
oretical assumptions (Smith et al., 1997; Sun et al.,, 2008fo assign climate-specific physiological parameters to each
Running et al., 1995; Ustin and Gamon, 2010). The PFTPFT (i.e., Sitch et al., 2003). As a consequence, vegeta-
concept consists of aggregating multiple species traits, altion models using these particular PFT datasets must assume
lowing for the reduction of thousands of species to a smallthat biochemical and biophysical PFT parameters are con-
set of functional groups (typically 15) defined by their phe-  stant globally across different climate zones (e.g., see Alton
nology type, physiognomy, photosynthetic pathway, and cli-et al., 2009).
mate zone. The advantage of the PFT classification system Our study contributes to ESM and DGVM modeling by
is that it allows the possibility for posing testable hypothesesdeveloping four global PFT datasets (Table 1) using a con-
that are feasible at global and centennial scales (Smith et alsistent methodology applied to satellite data that vary by
1997). sensor (spatial and spectral resolution), classification sys-

Existing PFT datasets include those by Bonan et al. (2002jem, and time period. Thedppen-Geiger climate classifica-
for the Community Land Model, with updates from tionscheme is used to associate physiognomy and phenology
(Lawrence and Chase, 2007), by Verant et al. (2004) for thdype with climate zone, and the pattern of uncertainty among
Orchidee DGVM, and by Lapola et al. (2008) for the SSiB the four classification systems is evaluated using a beta di-
model. Improvements to these PFT datasets are currentlyersity metric. We provide an example of the importance
needed to expand the availability of land-cover datasets to alof land-cover uncertainty on land-surface climate sensitivity
low consistency with a more complete set of satellite sensor®y prescribing vegetation types and analyzing biogeochem-
and more detailed or revised climate zone data, and to takéstry with the LPIJmL DGVM. In this experiment, we quan-
into account current human land-use patterns. For exampldify the sensitivity of water and carbon fluxes to climate —
Bonan et al. (2002) used multiple data sources to combindiogeochemical fluxes highly modified by human activities
the IGBP-DISCover Global Land Cover Classification data (Oki and Kanae, 2006; Schimel et al., 2001) — and evaluate
(IGBP GLCC) and phenology-type data (from 1992-1993 how land-cover uncertainty alters these relationships.
AVHRR data) with vegetation continuous fields from De-

Fries et al. (2000). They assigned biome types from biocli-
matic definitions provided by Prentice et al. (1992) based on
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Table 2. Plant functional types (PFT) used in the Orchidee, LPJ and CLM dynamic global vegetation models. The PFTs are defined by
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biome and by phenology, followed by temperature criteria (here shown from Sitch et al., 2003) for establighmghhbyx in °C, are

calculated from twenty year annual means).

Plant Functional Type (PFT) used in Biome Phenology Class Tmin Tmax
LPJmL and Orchidee and CLM (phenology code

(PFT code in parentheses) in parentheses)

Tropical broadleaf evergreen (TrBe) Trovical Broadleaf evergreen (BrEv) 155 -
Tropical raingreen (TrRg) ropica Broadleaf deciduous (BrDe) 15.5 -
Temperate needleleaf evergreen (TeNe) Needleleaf evergreen (NeEv) -2 22.2
Temperate broadleaf evergreen (TeBe) Temperate Broadleaf evergreen (BrEv) 3.0 18.8
Temperate broadleaf summergreen (TeBs) Broadleaf deciduous (BrDe) —-17.0 15.5
Boreal needleleaf evergreen (BoNe) Needleleaf evergreen (NeEv) — -2
Boreal needleleaf summergreen (BoNd) Boreal Needleleaf deciduous (NeDe) — -2
Boreal broadleaf summergreen (BoBs) Broadleaf deciduous (BrDe) — -2
Temperate herbaceous (NatGrassC3) Temperate  Grass — 155
Tropical herbaceous (NatGrassC34) Tropical Grass 15.5-
Managed grass C3 (MGrassC3) Temperate Grass — 155
Managed grass C4 (MGrassC4) Tropical Grass 15.5—

2 Methods

2.1 Land cover and climate zone datasets

tion (Bartholome and Belward, 2005; Hugh et al., 2004). The
data were collected between November 1999 and December
2000. The GLC2000 classification (Table 4) was conducted
by regional expert groups following an unsupervised clas-

Land-cover datasets, described in Table 1, were manually resjfication of 19 similar geographic regions using the LCCS
classme_d to PFT spemflc phenology type and Phy5'09_”0m'91omenclature (22 categories for global purposes).
categories. The resulting categories were merged with cli- The GlobCover data became available in 2008 (Arino et

mate zones defined by theédpen-Geiger classification sys-

al., 2008) and represent the highest-spatial resolution data

temtoresolve to PFT classes. The merged dataset was aggrgyailable for global extent at this time (0.3km resolution).
gated to 0.3 spatial resolution (corresponding to the climate The classification system also follows the LCCS system
and soils data used in LPJmL), representing the fractionaf2 categories, Table 5) and the spectral data were acquired
abundance of PFT mixtures within a grid cell. All analyses from the MERIS sensor on-board the ENVISAT satellite be-

were conducted at the global scale in Plate-Ea(iWGS84)

tween June 2004 and December 2006. Individual pixels are

projection, area correcting grid cells during post-processingc|assified using unsupervised and supervised approaches on
when necessary. The original land-cover datasets varied igyp-global regional clusters.

spatial resolution, time period of data collection, classifica-

tion approach, and accuracy and are discussed below.

Two versions of the EOS-MODIS land cover data
(MOD12Q1), V004 and V005, were used in the analysis.

The Koppen-Geiger dataset was created by Peel efrhese differ in several aspects, including temporal coverage,
al. (2007) from over 4000 metrological stations contained ingpatial resolution, and classification methodology, but both
the Global Historical Climatological Network v2.0 database. se the same 17 IGBP categories (Table 6) (Fried! et al.,
The authors calculated climate indices (i.e., seasonal mean$010). These land-cover classes were categorized using a
minimums, and maximums) for the stations from precipita- giopally consistent supervised classification approach. V004
tion and temperature for their entire time series (mostly, thejs ayailable globally at 1 km resolution from data acquired in

20th century) and then interpolated to a“Orésolution grid

2001 while V0O05 is available at 0.5 km resolution at annual

(not accounting for elevation). These indices were classifiedtesolution (starting in 2001). Both products have multiple
into one of 32 possible climate zones (Table 3) according tQegends available, and here we worked with the IGBP leg-

the original Kdoppen-Geiger classification systemofppen,
1936).

end (Table 6), the primary MODIS legend from which the
other legends are derived and most relevant for reclassifying

The GLC2000 land-cover data were generatEd fromto pheno|ogy Categories (nex‘[ Section)_

SPOT-VEGETATION (SPOT 4) and ATSR-2/DMSP sensors

and are available for most of the vegetated surface of the

globe (73 N to 56 S, excluding Antarctica) at 1 km resolu-
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Table 3. Kdppen-Geiger biome types (Code column is defined in Peel et al., 2007) and their simplified equivalents required for DGVM PFT
classification. Wher@&,q; andT¢g1g are temperature of the hottest and coldest motl),(and MAT is mean annual temperatuf€j.

Number Code Kppen-Geiger biome category PFT biome equivalent
(this study)
1 Af Tropical Teolg=> 18 Tropical
2 Am
3 Aw
4 BWh  Arid MAT =>18
5 BWKk MAT <18 Temperate (warm)
6 BSh MAT =18 Tropical
7 BSk MAT <18 Temperate (warm)
8 Csa Temperate Thot=> 22 Temperate (warm)
ThOI > 10
& Tcolg<18
9 Csb Temperate (cool)
10 Csc
11 Cwa Thot=> 22 Temperate (warm)
12 Cwb Temperate (cool)
13 Cwc
14 Cfa Thot=> 22 Temperate (warm)
15 Cfb Temperate (cool)
16 Cfc
17 Dsa Cold Thot=> 22 Boreal (warm)
ThOt >10
& Teold <0
18 Dsb Boreal (cool)
19 Dsc
20 Dsd
21 Dwa Thot=> 22 Boreal (warm)
22 Dwb Boreal (cool)
23 Dwc
24 Dwd
25 Dfa Thot=> 22 Boreal (warm)
26 Dfb Boreal (cool)
27 Dfc
28 Dfd
29 ET Polar Thot> 0
ThOI <10
30 EF Thot< 0
31==29 ETH
32==30 EFH
2.2 Reclassifying the legends be reduced to only one class (Jung et al., 2006; Giri et al.,

2005). The possible bias resulting from reclassification was

The land-cover data were first cross-walked (reclassified) to #andled, in part, by comparing levels of agreement among
phenology-based legend consistent with the plant functionafhe aggregated PFT classification datasets. The comparison
types used in major DGVM and land surface models (Ta_hlghllghtEd the Spatial pattern of d|SS|m|Iar|ty and prOVided a
ble 2). Figure 1 illustrates the flow of data processing, with means for qualitatively evaluating the contribution of uncer-
the merging of the phenology type and climate data describedginty from reclassification problems and from actual remote
in the following section. Manually reclassifying legends is sensing differences. The reclassification was conducted on
inherently subjective, especially with the treatment of mixed the original resolution of the land-cover dataset and imple-
vegetation categories where multiple possible classes mugpented in C programming language.

Geosci. Model Dev., 4, 993010 2011 www.geosci-model-dev.net/4/993/2011/



B. Poulter et al.: Plant functional type mapping for earth system models 997

Table 4. The GLC2000 legend (based on LCCS) and corresponding DGVM phenology class (from Table 2).

GLCID GLC2000 description DGVM phenology class

1 Tree Cover, broadleaved, evergreen 90 % BrEv, 10 % NatGrass

2 Tree Cover, broadleaved, deciduous, closed 100 % BrDe

3 Tree Cover, broadleaved, deciduous, open (open 15-40 % tree cover) 80%BrDe, 20 % NatGrass

4 Tree Cover, needle-leaved, evergreen 100 % NeEv

5 Tree Cover, needle-leaved, deciduous 100 % NeDe

6 Tree Cover, mixed leaf type 25% BrEv, BrDe, NeEv, NeDe

7 Tree Cover, regularly flooded, fresh water (& brackish) 25% BrEv, BrDe, NeEv, NeDe

8 Tree Cover, regularly flooded, saline water 25% BrEv, BrDe, NeEv, NeDe

9 Mosaic: Tree cover/Other natural vegetation 20% BrEv, BrDe, NeEv, NeDe, NatGrass

10 Tree Cover, burnt 25 % BrEv, BrDe, NeEv, NeDe

11 Shrub Cover, closed-open, evergreen 40 % BrEv, NeEv, 20 % NatGrass

12 Shrub Cover, closed-open, deciduous 80% BrDe, 20 % NatGrass

13 Herbaceous Cover, closed-open 100 % NatGrass

14 Sparse Herbaceous or sparse Shrub Cover 60 % NatGrass, 40 % bare

15 Regularly flooded Shrub and/or Herbaceous Cover 10% BrEv, BrDe, NeEv, NeDe, 60 % NatGrass
16 Cultivated and managed areas 100 % ManGrass

17 Mosaic: Cropland/Tree Cover/Other natural vegetation 8% BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass
18 Mosaic: Cropland/Shrub or Grass Cover 8% BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass
19 Bare Areas Bare

20 Water Bodies (natural & artificial) Water

21 Snow and Ice (natural & artificial) Bare

22 Artificial surfaces and associated areas Urban

23 No data No data

Koppen-Geiger (0.1 degrees)

Buffer nodata
regions

Resampled to land
cover grid resolution

Input resolution

Land cover

Convert tiff
to binary

=== d

\4
Climate zones reclassed g ‘J Land cover reclassed
(Table 4) Merge to PFTs (Tables 5-7)

(Table 8)
LEGEND l
) . Aggregate to
(arrows define programming language) 0.5 degree
e Arcinfo/AML (focal stats) 1
[}
=== Gdal (gdal_translate) :
1 Analysis
<«——— C (Large File System/64 bit) | Spatial patterns
v

< - - - =R (sp/maptools/lattice/vegan)

Similarity (beta diversity)

Fig. 1. lllustration of the flow of analysis and the reclassification of the climate zone data to simplified biomes, and the land-cover data to
their phenology types, physiognomy and land-use counterparts.
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Table 5. The GlobCover legend (LCCS) and corresponding DGVM phenology class (from Table 2).

ID  GlobCover description DGVM phenology class

11 Post-flooding or irrigated croplands (or aquatic) 100 % ManGrass

14  Rainfed croplands 100 % ManGrass
20 Mosaic cropland (50-70 %)/vegetation 10% BrEv, BrDe, NeEv, NeDe, Nat-
(grassland/shrubland/forest) (20-50 %) Grass, 50 % ManGrass

30 Mosaic vegetation (grassland/shrubland/forest)0 % BrEv, BrDe, NeEv, NeDe, 20 %
(50-70%) / cropland (20-50 %) NatGrass, 40 % ManGrass

40 Closed to openx(15 %) broadleaved evergreen50 % BrEv, BrDe
or semi-deciduous forest-6 m)

50 Closed £40 %) broadleaved deciduous 100 % BrDe
forest &5m)

60 Open (15-40%) broadleaved deciduous 80 % BrDe, 20 % NatGrass
forest/woodland£5 m)

70 Closed £40 %) needleleaved 100 % NeEv

evergreen forest{5m)

90 Open (15-40 %) needleleaved deciduous or 40 % NeEv, NeDe, 20 % NatGrass
evergreen forest{5m)

100 Closed to open{15 %) mixed broadleaved and 25 % BrEv, BrDe, NeEv, NeDe
needleleaved forest-6 m)

110 Mosaic forest or shrubland 20% BrEv, BrDe, NeEv, NeDe, Nat-
(50-70 %)/grassland (20-50 %) Grass

120 Mosaic grassland (5070 %)/forest or 10% BrEv, BrDe, NeEv, NeDe, 60 %
shrubland (20-50 %) NatGrass

130 Closed to openx15 %) (broadleaved or 20% BrEv, NeEv, 10% BrDe, NeDe,
needleleaved, evergreen or deciduous) 40 % NatGrass
shrubland &5 m)

140 Closed to openx(15 %) herbaceous vegetation20 % NeEv, 80 % NatGrass
(grassland, savannas or lichens/mosses)

150 Sparse<15 %) vegetation 40 % NatGrass, 60 % bare

160 Closed to openx(15 %) broadleaved forest 33% BrEv, BrDe, NatGrass
regularly flooded (semi-permanently or
temporarily) — Fresh or brackish water

170 Closed £40 %) broadleaved forest or 50 % BrEv, BrDe
shrubland permanently flooded — Saline or
brackish water

180 Closed to open>(15%) grassland or woody 20 % BrEv, BrDe, NeEv, NeDe,
vegetation on regularly flooded or waterloggedNatGrass
soil — Fresh, brackish or saline water

190 Artificial surfaces and associated areas (Urbak00 % Urban

areas>50 %)
200 Bare areas 100 % Bare
210 Water bodies 100 % Water
220 Permanent snow and ice 100 % Bare
230 No data (burnt areas, clouds,...) 100 % No data

Tables 4, 5, and 6 list the original land-cover classes fromuous NeDe, natural grassland NatGrass, and managed grass-
GLC2000, GlobCover, and MODIS and their correspondingland ManGrass (representing either pasture or crop)). For
reclassification into phenology type (Table 2). Six PFT- some categories, the reclassification was straightforward,
specific phenology-type/physiognomy classes were preie., GLC2000 “Tree cover, broadleaf, deciduous, closed”
defined, corresponding with categories used in severalas reclassified to “broadleaf deciduous.” Other categories,
DGVM models (broadleaf evergreen BrEv, broadleaf de-for example, GLC2000 “Tree cover, mixed leaf type,” or
ciduous BrDe, needleaf evergreen NeEv, needleleaf decidMODIS IGBP “Open shrublands” did not correspond to a

Geosci. Model Dev., 4, 993010 2011 www.geosci-model-dev.net/4/993/2011/
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single PFT phenology/physiognomy class. In these cases, theiomes from the Kppen-Geiger data. This approach may
land cover class was reclassified to one of several possiblanderestimate C3/C4 grass mixtures or C4 summer crops
phenology-types and physiognomy classes whose probabild.e., maize) that might be planted in cooler regions (Ra-
ity was assigned by assessing the supplementary data reganshankutty and Foley, 1998).
ing the legend definitions or examining the spatial pattern The PFT classifications were aggregated to a spatial reso-
of observed land cover classes, and based on expert opinidation of 0.5 by summing the area of each PFT class within
on how the class might be composed of various phenologythe corresponding 0?5cell (16 classes, Table 7) and divid-
types (similar to Wang et al., 2006). In these cases, for exing by the grid cell area. A spatial resolution of 9.\was
ample, a “mixed tree cover” category would yield 25 % equal chosen for this study because most models in the ESM com-
probability (using a uniform distribution for all mixed land munity use climate and other ancillary driver (e.g., soil type)
cover categories) with the grid cell being reclassified to ei-data at this resolution, or greater (Zobler, 1986;New et al.,
ther BrEv, BrDe, NeEv, or NeDe. This approach resulted in2002). The aggregation of PFT fractions can also be carried
a single category cell, but when the cells were aggregated tout at finer resolution, but at smaller window sizes the es-
coarser resolution (described below), the relative PFT fractimates of fractional PFT coverage may become more sen-
tions more realistically represented the original mixed for- sitive to the selection of probability distribution. Each of
est classes (for example, aggregating from 1 km mixed foresthe four PFT fractional abundance files were filtered with
category to 0.5 degree resolution results in 0.5 degree fraca global land/water mask, which was derived from a global
tions equal to 0.25 for BrEv, BrDe, NeEv, and NeDe, sum- soils database (Zobler, 1986). This ensured that the terrestrial
ming to 1.0 for an aggregated cell). surface area and land/ocean boundaries were equal between
datasets.

2.3 Merging and aggregating phenology and
climate zones 2.4 Measuring PFT agreement

We analyzed the agreement between PFT fractional abun-
The Koppen-Geiger dataset was first adjusted to expand itgance (and re-groupings of PFTs by various traits) with a
coastal grid cell definitions to neighboring ocean grid cells petg (R) diversity metric (mean Euclidean distance) calcu-
to allow a complete overlay of land cover with climate zone. |ated for each grid cell. Euclidean distance is a measure of
The buffered Kppen-Geiger data were then downscaled togjssimilarity between groups with multiple members (Leg-
the spatial resolution of the corresponding land-cover dataseingre et al., 2005) and is commonly used to summarize land-
using a nearest neighbor resampling algorithm. The resamgcape species diversity from multiple sampling plots (Whit-
pled Koppen-Geiger data were reclassified into one of threqgker, 1972). In our case, the “plots” were the grid cells
major biome types (following the rules described in Table 3),\yhich contained the fractional PFT abundances contained
namely: tropical, temperate and boreal. The temperate ang¢iom the different classification datasets. This analysis had
the boreal biome were further subdivided into either cool g objectives; the first was to assess, geographically, where
(<22°C) or warm (=22°C) types to distinguish between regions of high uncertainty in PFT abundance may exist, the
C3 or C4 photosynthesis in the former, and temperate needlesecond was to help evaluate the methods for the reclassifi-
leaf and broadleaf trees in the latter (based on their PFTeation of legends, especially for the mixed vegetation cate-
temperature establishment thresholds in Table 2). While CAgories.
grasses can establish at cooler temperatures (i.e., the LPJ The peta diversity metric was calculated for each grid cell
model uses a temperature of k5, Table 2), this tempera-  for each of the four datasets, for the standard PFT classifica-
ture threshold (22C) has been shown in prior studies to be tjon, and for three re-groupings based on PFT traits. These
a critical “crossover” temperature for C3 and C4 adaptationqe(‘:]roupings were 1. Phenology type (total evergreen ver-
(Collatz et al., 1998). sus total deciduous fraction), 2. Physiognomy (total woody

Each of the 4 reclassified phenology type datasets wergersus total herbaceous fraction), and 3. Management status

then merged with the climate zones to produce the final PFT(natural grass versus managed grass). Equation (1) presents
classification at the spatial resolution of the original land the variables used for calculating the Euclidean distance,
cover data following the assembly rules in Table 7. Somethe mean of which, we consider to represent beta diversity,
exceptions were made to account for the full combinationR. For every grid celk, the Euclidean distance) was
of phenology and climate zone possibilities. For example,calculated between every combination of classificatians,
because there are few to no deciduous needleleaf PFTs olpi . . . 4) composed of 10 PFT$ £ 10) and their correspond-

served in tropical and temperate ecosystems, this phenologiyig fractional abundancefor the different classifications (
type was treated as tropical broadleaf raingreen (deciduousgndk).

or temperate broadleaf summergreen PFT. Natural and man-

aged grasslands were split into the C3 and C4 photosynthetic % i (A- o )2 0.5
pathways according to temperature thresholds that defined & | 5V bkc
tropical versus temperate, and cool versus warm temperate=Dc= N (1)

www.geosci-model-dev.net/4/993/2011/ Geosci. Model Dev., 4, 9983 2011
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Table 6. Modis collection 4 and 5 legend (IGBP) and corresponding DGVM phenology class (from Table 2). For mixed phenology cells, it
was assumed that any phenology type could be found, these were determined randomly using a uniform distribution.

MODIS ID MODIS description DGVM phenology class

0 Water 100 % Water

1 Evergreen Needleleaf Forest 100 % NeEv

2 Evergreen Broadleaf Forest 100 % Brev

3 Deciduous Needleleaf Forest 100 % NeDe

4 Deciduous Broadleaf Forest 100 % BrDe

5 Mixed Forests 25% BrEv, BrDe, NeEv, NeDe

6 Closed Shrublands 10 %, BrEv, BrDe, 30 % NeEv, 10 % NeDe, 40 % NatGrass
7 Open Shrublands 10 % BrEyv, BrDe, NeDe, NeEv, 20 % NatGrass, 40 % Bare
8 Woody Savannas 20%, BrEv, 10 % BrDe, 20 % NeEv, 50 % NatGrass
9 Savannas 10 %, BrEv, 20 % NeEv, 70 % NatGrass

10 Grasslands 100 % NatGrass

11 Permanent Wetlands 20% BrEv, BrDe, NeEv, NeDe, NatGrass

12 Croplands 100 % ManGrass

13 Urban and Built-Up 100 % Urban

14 Cropland/Natural Vegetation Mosaic 8% BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass
15 Snow and Ice 100 % Bare

16 Barren or Sparsely Vegetated0 % veg. cover) 10 % NatGrass, 90 % Bare

17 (IGBP Water Bodies, recoded to 0 for MODIS Land Product consistency.) 100 % Water

254 Unclassified 100 % No data

255 Fill Value 100 % No data

Table 7. Final merging rules for phenology and climate zone, and legend for final PFT map (including non-PFT categories).

Biome Phenology PFT Category Data Band
Tropical Broadleaf evergreen Tropical Broadleaf Evergreen 1
Tropical Broadleaf deciduous Needleleaf deciduous  Tropical Broadleaf Raingreen 2
Tropical Temperate (warm) Temperate (cool) Boreal (warm) Needleaf evergreen Temperate Needleleaf Evergreen 3
Temperate (warm) Temperate (cool) Boreal (warm) Boreal (cool)  Broadleaf evergreen Temperate Broadleaf Evergreen 4
Temperate (cool) Temperate (warm) Boreal (warm) Broadleaf deciduous Needleleaf deciduous  Temperate Broadleaf Summergreen 5
Boreal (cool) Needleleaf evergreen Boreal Needleleaf Evergreen 6
Temperate (cool) Boreal (cool) Needleleaf deciduous Boreal Needleleaf Deciduous 7
Boreal (cool) Broadleaf deciduous Boreal Broadleaf Summergreen 8
Temperate (cool) Boreal (warm) Boreal (cool) Natural Grass Natural grassland C3 9
Tropical Temperate (warm) Natural Grass Natural grassland C4 10
Temperate (cool) Boreal (warm) Boreal (cool) Managed Grass Managed grassland C3 11
Tropical Temperate (warm) Managed Grass Managed grassland C4 12
Barren/Bare 13

Water 14
Non-vegetated Urban 15

No Data 16

The mean Euclidean distance (beta diversity) between groupthem. The PFT products included those developed in this
(D.) was calculated as the mean of the diagonals from thestudy, the existing products described in the Introduction for
resulting matrix to represent overall dissimilarity (Legendre Orchidee and CLM, and the results from a DGVM simula-
et al., 2005; Whittaker, 1972). The variance of the Euclideantion from LPJmL (described below). Non-metric multidi-
distance matrix was also calculated using the same approacmensional scaling (NMDS) was chosen (using a Euclidean
but taking the variance of the matrix diagonals rather thandistance matrix); this ordination method is less sensitive to
the mean. The two approaches were used to aggregate thmn-linear relationships among variables.

distance matrix into a single index as recommended by Leg-

endre et al. (2005). B was plotted as both geographic mapg.5 Prescribing PFT data to a dynamic global

and as latitudinal summaries to explore the spatial patterns of  vegetation model

uncertainty for each grouping.

An ordination analysis was conducted for four individual PFT fractions were prescribed to the LPIJmL DGVM, an
grid cells representative of major biomes (temperate, tropi-ecosystem model that simulates global biogeography and
cal, boreal, and desert) to investigate the similarity betweerbiogeochemistry via coupled water-carbon cycling and veg-
PFT products and to display the main gradients partitioningetation dynamics (Sitch et al., 2003). Bioclimatic thresholds
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Table 8. Global plant functional type and non-vegetated cover (%) for land surface.

PFT GLC2000 Globcover Modis C004 Modis C005 StDev
Tropical Broadleaf Evergreen 7.97 6 11.47 11.13 2.62
Tropical Broadleaf Raingreen 7.52 8.96 271 3.15 3.13
Temperate Needleleaf Evergreen 3.68 5.68 5.32 5.6 0.94
Temperate Broadleaf Evergreen 2.86 3.3 5.24 5.22 1.25
Temperate Broadleaf Summergreen 5.51 5.38 3.08 3.22 1.33
Boreal Needleleaf Evergreen 5.78 5.24 5.77 5.62 0.25
Boreal Needleleaf Deciduous 3.87 4.05 2.45 3.78 0.73
Boreal Broadleaf Summergreen 4.05 3.09 2.39 2.47 0.77
Natural grassland C3 7.45 7.7 7.56 8.04 0.26
Natural grassland C4 13.87 11.21 17.99 19.13 3.67
Managed grassland C3 5.01 3.92 5.26 5.14 0.62
Managed grassland C4 8.56 8.83 4.87 4.95 2.19
Unvegetated (ice/barren, urban, water, n@3.88 26.62 25.87 22.55 1.80
data)
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Fig. 2. The latitudinal distribution of the plant functional types for each land-cover dataset. The PFT acronyms correspond to those in
Table 2.

were removed to allow the establishment of PFTs wher-temperature, cloud cover, and wet days) and annualc®-
ever they were prescribed from the external datasets. In theentrations were prescribed from the Climatic Research Unit
LPJImL model, diagnostic PFT fractions replaced the variableTS3.0 dataset (Mitchell and Jones, 2005) and the Carbon
for maximum annual fraction of photosynthetic absorbed ra-Dioxide Information Analysis Center (CDIAC). Following
diation (FPAR) while not modifying the vegetation dynamics a 1000-yr spin up to equilibrate vegetation and carbon pools,
or physiology modules. Monthly climate data (precipitation, a transient simulation, including the effects of prognostic fire
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Fig. 3. Map of the PFT fractions (at 0.5 degrees resolution) ftajiModis C005 land-cover inputs using the IGBP legend, @)&lobCover
land-cover inputs using the LCCS legend. The PFT acronyms correspond to those in Table 2.

(Thonicke et al., 2001), was initiated beginning in 1901 andand tropical evergreen (TrEv) PFT fractional coverage also

ending in 2005. Managed grasslands were treated as in Borlrad high uncertainty, both in savanna regions, and in the
deau et al. (2007), with harvest occurring repeatedly duringAmazon and Congo River Basins (acronyms explained in

the year when peak leaf area index (LAI) was reached. An-Table 2). The lowest uncertainty was found for the boreal

nual GPP and transpiration (from 1956-2005) were regressedeedleleaf PFT (BoNe) and natural/managed C3 grasslands.
with mean annual temperature, total annual photosynthetic

active radiation (PAR), and total annual precipitation, from  The spatial uncertainty of PFT agreement was low in the

the same time period, to calculate partial correlation coeffi-Doreal biome, increasing to some extent in the temperate

cients used to interpret the sensitivity of the biogeochemicaPiome, and highest in the tropics (Fig. 2). The disagreement
fluxes to climate. between land-cover datasets was greatest for deciduous PFT

phenology types compared to evergreen PFTs, which was es-
pecially important in the tropics where the GlobCover dataset

3 Results categorized the Amazon and Congo River Basins as mixed-
leaf or seasonal forest (in comparison to the “evergreen” phe-
3.1 Uncertainty in global PFT fractions nology type for the other datasets). Managed and natural

C3 grasslands showed high dissimilarity in the mid-western
At the global scale, managed and unmanaged grasslandnited States mostly because GlobCover had low fractions
PFTs, which includes croplands and pasture, were mosbf managed grassland in this region (Fig. 2; MGrassC3 low
abundant in terms of percent land area3Q %), followed  abundance between 40-90Q). C4 grasslands (both natu-
by tropical (~15%), boreal £12 %), and temperate PFTs ral and managed) showed high dissimilarity because of dif-
(~11 %) (Table 8). Classification agreement (Table 8) wasferences related to distinguishing natural versus managed
lowest (for globally averaged values) for C4 grasses, espegrassland, and because of differences in how the land-cover
cially for natural C4 grasslands. Tropical raingreen (TrRg) datasets treated barren/dry areas. For example, much of
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Fig. 4. Close-up illustration of PFT fractions f¢a) GLC2000,(b) GlobCover,(c) Modis C004 andd) Modis C005 for Eastern Africa
where fine-scale topographic features and their effects on climate zones are apparent.

interior Australia was classified as “open shrublands” by theter distinguished secondary succession vegetation (Fig. 3b;
IGBP MODIS legend (Fig. 3a; higher abundance of TrEv higher abundance of TeNe) (i.e., pine forests from agricul-
and TrRg compared to Fig. 3b). Our reclassification for thetural abandonment, Christensen and Peet, 1984). Climatic
IGBP legend assigned 40 % of this class to woody PFTsdifferences across small gradients were generally detected by
20% to grass PFTs and 40% to barren. In comparisonthe Kbppen-Geiger classification, despite elevation not being
the LCCS legend reclassifies part of this region as “sparséncluded in the interpolation process. These topographic fea-
vegetation”, which we reclassified as 40% grass PFT andures were apparent in the north-south divide along the island
60 % bare, consistent with the supporting documentation forof Madagascar (Fig. 4a—d; NatGrassC4 versus TrRg), along
LCCS (Fig. 3b; lower abundance of TrEv and TrRg). The the Andes, separating the Amazon rainforests from high-
IGBP “open shrubland” category also includes tundra andelevation grasslands, as well as in Ethiopia, where the effects
permafrost biomes (in addition to the warmer arid regions).of the highland rift-valley corresponded to C3 grasslands in
Herbaceous cover may be higher in these cooler regions thaa region mostly surrounded by C4 climate zones (Fig. 4a—d;
in “open shrublands” of warm regions (Fig. 3b; NatGrassC3NatGrassC3).

replaces by BoNe), which suggests that further refinement

of shrubland categories could improve differences between GlobCover and GLC2000 detected higher fraction$2—
land-cover products. 13 %, of managed grasslands globally. Compared to the

MODIS products, this estimate is slightly less that4 %
Spatial resolution and the detail of land-cover categoriesfor cropland area found in previous studies scaled to FAO
had important effects in intensively managed landscapescountry statistics (Ramankutty and Foley, 1998; Klein Gold-
For example, in the Southeastern United States, the Globewijk et al., 2007). GlobCover also distinguished alpine veg-
Cover dataset (0.3km) and LCCS legend (22 classes) betetation communities in more detail (compared to GLC2000
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classified as “barren” or “sparse vegetation” in LCCS and as

S 1= “grassland” in IGBP leading to large differences in estimated
."_f — PFT PFT fractions (Fig. 6).
o | --- Leaf
© “‘-, _____ Structure 3.2 Land cover and the uncertainty of fluxes to climate
i<
B == M . . . o .
S ..“f’ ? anage In diagnostic mode (with PFT distributions prescribed),
— i ¢ global GPP ranged from 130.9 to 134.9 Pg¢ gaveraged
o S f\ { over 1996-2005) and transpiration ranged from 43200 to
g r’,-"/\—'g 44600 HO km3a~1. These global values were similar to the
= ! prognostic (dynamic vegetation) simulation, using the Hyde
8 o ; . .
N dataset for managed grasslands (Klein Goldewijk and Batjes,
o ‘S : 1997), which produced values of 131.0 Pg€ and 39 000
N \ ,-’ H,Okmia 1. All estimates are close to previous analyses
,‘, of global carbon Beer et al., 2010) and water fluxes (Gerten
‘O.f . ,‘A et al., 2005). GPP and transpiration sensitivity to climate
;,:___ followed similar patterns observed in previous studies (Ne-

mani et al., 2003), with temperature important in northern
latitudes, radiation more limiting in the wet tropics, and pre-
0.0 0.4 0.8 cipitation a dominant feature globally (Fig. 8a). As in Beer

Mean dissimilarity etal. 2010), precipitation was the most important global cli-
mate variable controlling GPP (65-70%) and transpiration

Fig. 5. Latitudinal distributions of mean dissimilarity for the 3 dif- (58—63%). The range of uncertainty was similar for either

ferent grouping of PFT traits and for all PFTs (described in Meth- GPP or transpiration sensitivity to climate; with agricultural
ods: Measuring PFT agreement). regions in mid-western USA and Europe, and arid regions

in Australia and S. Africa showing high uncertainty in the

sensitivity of GPP to precipitation (Fig. 8b). In agricultural
and MODIS) for the European Alps. C4 abundance wasregions, the lower fractional coverage of croplands in the
higher than in Still et al. (2003) who found that globally, C4 GlobCover product led to higher grassland LAl (because of
vegetation compose15 % of terrestrial vegetation (whereas N0 harvesting), causing higher sensitivity (or correlation co-
the estimates presented here are closer2@ %, Table 8) efﬁCient) to precipitation. In semi-arid regions, the MODIS
The higher estimates for C4 grass abundance are due, iRroducts led to higher GPP sensitivity to precipitation (Fig-
part, to differences in the IGBP “grasslands” and LCCS ure 8) because of a higher abundance of woody species (with
“sparsely vegetated” categories, which corresponded to théleeper rooting strategies) unable to compete efficiently for
LCCS “sparse Vegetation" or “barren” Categories (F|g 3a andminimal rainfall with grasses that had shallow rOOting strate-
b; see MGrassC4). For IGBP, “grasslands” were reclassifiedi€s.
to 100 % grass cover (Table 6), but for LCCS “sparse vege-
tation,” only 40 % grass cover (Table 5). 4

The disagreement between PFT trait-groups (see cate-

gories described in Methods: Measuring PFT agreement)4.1 PFT datasets and themes for improvement
was highest in the tropics (Fig. 5; 2N to 2C° S) and for
a “hotspot” in the mid-western United States (Fig. 5; 35— PFT datasets must remain consistent with available satel-
55° N) resulting from managed versus natural grassland claslite products used for data assimilation (i.e., LAl, FPAR or
sification. Phenology-type disagreement was also high irbiomass assimilation) and account for recent changes associ-
the tropics, but in general, structural (physiognomy) observa-ated with land-use dynamics. Here, we have evaluated an ap-
tions appear to have high agreement (Fig. 5). In the northermproach for establishing a series of PFT datasets for use within
temperate zone, grasslands were more consistently classifiggarth System Models and DGVMs, and explored patterns
as managed, with the exception of mid-western USA, whereof disagreement and their propagated effects to land-surface
GlobCover underestimated cropland fraction compared tgorocess uncertainty. To date, available PFT datasets for ESM
GLC2000 and MODIS (Fig. 2; MGrassC3). Tropical savan- models have been limited to single satellite sensors and partly
nas and warm-climate croplands emerged as bands of disutdated land-cover data (i.e., 1992/1993 AVHRR data). The
agreement, because of differences between the IGBP anagpproach used in this study increases the resources available
LCCS classification for natural and managed C4 grasslandor evaluating ensemble uncertainties introduced from land-
and shrubland categories. A notable region of high uncersurface state variables and we discuss possible opportunities
tainty was the Karakum desert in Central Asia which wasfor refining classification methodologies.

-60

Discussion
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Fig. 6. TMap of mean fractional dissimilarity (0 is complete agreement and 1 is complete disagreement) considering all PFTs using the
beta-diversity metric (Eq. 1). Representative grid cells shown in Fig. 7 illustrate the main patterns of clustering and spread of the existing
products in comparison to the new PFT products presented here.
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the gradients (red names). The LPJ product is the PFT composition from a fully dynamic vegetation simulation, described in the Methods.
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Fig. 8. (a) Partial correlation coefficients (PCC) for modeled GPP to radiation, precipitation, and temperature variable for the MODIS C005
PFT producib) standard deviation of the PCC for all four land-cover simulations.

The main areas of disagreement were found in regionslefined categories could be improved by including climate
of intensive land management or in regions where accuraténformation. Arid-regions have large global coverage and re-
spectral discrimination between similar land cover, but dif- cent work suggests that these ecosystems have a significant
ferent land use, caused classification problems (e.qg., croplanihfluence on global biogeochemistry and the climate system
and natural grassland). High-disagreement was also found iitself via biophysical properties (Rotenberg and Yakir, 2010),
warm/cool arid regions where land-cover categories were eihence a better understanding of their distribution could con-
ther too broadly defined or because different legend types hattibute to reducing uncertainty of global climate processes.

conflicting tree-cover thresholds to define forest vegetation. The humid tropics remain an additional challenge for bio-

which include heterogeneous mixtures of grasslands, cro t:j’eochemical modeling, in part, due to a need to better under-
9 grass ' stfe\nd basic ecophysiological processes (Baker et al., 2008),
Ut also because of data collection limitations. Remote sens-

disagreement (Giri et al., 2005; Herold et al., 2008; I:mzi g data for tropical vegetation must first be processed to re-

and See, 2008). Our results confirm that this disagreemen ove seasonal cloud cover and aerosol contamination (Poul-

e e oo 410 Craer, 2000 Kobayashi an Dye, 2005, ad i
sensitivity to climate (Fig. 9) gccount for the rap!d pace a_nd complex spatial patterns aris-
T ing from deforestation and fire (Morton et al., 2006). In our

Much of this disagreement results from differences in thestudy, these measurement problems contributed to land-cover
classification for forest land; the LCCS definition for forest is uncertainty in the classification of natural versus managed
an area with more than 15 % tree cover, whereas IGBP usesgrasslands in southeastern Brazil, and in the classification of
60 % tree-cover threshold. Consequently, the MODIS prod-the phenology type for the wet-tropical forests. Quantifying
uct has a much larger fraction of (non-forest) shrubland andhe degree of seasonal tropical forest phenology is a long-
savanna systems, which are categorized as various “open” agtanding problem and studies disagree at the level to which
“closed” forest types in GLC2000 and GLOBCOVER, Ta- these forests shed their leaves during the dry season (Samanta
bles 4 and 6. Such problems stem from defining forest strucet al., 2010; Saleska et al., 2007). Despite the disagreement
ture from forest cover, which may be overcome with new among tropical PFTs, the uncertainty in GPP and transpira-
developments in satellite-based lidar, which can successfullyion sensitivity to climate was relatively low (Figs. 8b and
provide measurements of tree height and vertical structure aig. 9, Tropical America and S. Africa regions). This was
global extents (Lefsky, 2010). Overlap of cool or warm arid- because of similarities in the ecological functioning of the
land categories (i.e., grassland, shrubland, barren), also irmodeled raingreen and evergreen PFTs in non-water stressed
troduced error in deserts and tundra regions, where broadlgnvironments (see Poulter et al., 2009).
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Fig. 9. Cumulative partial correlation between GPP and precipitation using the same approach as described in Beer et al. (2010). Zones
correspond to TRANSCOM 3 biome regions (Gurney et al., 2003), and legend colors red for GLC2000, green for GlobCover, light blue for
Modis v4, and dark blue for Modis v5.

Our analysis suggests that the PFT uncertainties could bd.2 Application with Earth System Models
reduced by using land-cover data based on high to moderate-
spatial resolution and a larger number of legend categorie®evelopments in ESM models will likely focus on includ-
(as in GlobCover). For example, the more detailed LCCSing a higher diversity of PFT and crop functional types and
legend was better able to handle dry-land classifications thaentirely new approaches that include adaptive, rather than
the coarser IGBP legend and GlobCover appears to classiffixed, traits for PFT parameters (Scheiter and Higgins, 2009).
heterogeneous landscapes well. Future versions of MODIShe number of PFT types is not restricted to those pre-
land-cover data are expected to include the LCCS legen@ented in our study and the next generation of DGVMs, with
(Friedl et al., 2010), which in addition, should further reduce higher-functional diversity, will be better prepared to evalu-
errors from user-based reclassification necessary for landate ecosystem resilience and stability hypotheses related to
cover product comparisons. global change. However, increasing PFT diversity requires
detecting life history traits (i.e., growth form and disper-
sal rates) not readily observable at global scales or from
space (Ustin and Gamon, 2010). The utility of the PFT
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