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Abstract. The sensitivity of global carbon and water cycling
to climate variability is coupled directly to land cover and the
distribution of vegetation. To investigate biogeochemistry-
climate interactions, earth system models require a represen-
tation of vegetation distributions that are either prescribed
from remote sensing data or simulated via biogeography
models. However, the abstraction of earth system state vari-
ables in models means that data products derived from re-
mote sensing need to be post-processed for model-data as-
similation. Dynamic global vegetation models (DGVM) rely
on the concept of plant functional types (PFT) to group
shared traits of thousands of plant species into usually only
10–20 classes. Available databases of observed PFT dis-
tributions must be relevant to existing satellite sensors and
their derived products, and to the present day distribution of
managed lands. Here, we develop four PFT datasets based
on land-cover information from three satellite sensors (EOS-
MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and
ENVISAT-MERIS 0.3 km spatial resolution) that are merged
with spatially-consistent K̈oppen-Geiger climate zones. Us-
ing a beta (ß) diversity metric to assess reclassification simi-
larity, we find that the greatest uncertainty in PFT classifica-
tions occur most frequently between cropland and grassland
categories, and in dryland systems between shrubland, grass-
land and forest categories because of differences in the mini-
mum threshold required for forest cover. The biogeography-
biogeochemistry DGVM, LPJmL, is used in diagnostic mode
with the four PFT datasets prescribed to quantify the effect
of land-cover uncertainty on climatic sensitivity of gross pri-
mary productivity (GPP) and transpiration fluxes. Our re-
sults show that land-cover uncertainty has large effects in
arid regions, contributing up to 30 % (20 %) uncertainty in
the sensitivity of GPP (transpiration) to precipitation. The
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availability of PFT datasets that are consistent with current
satellite products and adapted for earth system models is an
important component for reducing the uncertainty of terres-
trial biogeochemistry to climate variability.

1 Introduction

Terrestrial biogeography holds a key role in determining spa-
tial patterns of biogeochemical cycling (Olson et al., 1983),
biodiversity (Kleidon et al., 2009) and the consumption and
production of natural resources (Foley et al., 2005; Haberl et
al., 2007). An improved understanding of global biogeogra-
phy is required to provide a baseline for assessing the vul-
nerability of the carbon and water cycle and other ecosys-
tem processes related to ongoing global change. Such base-
lines are also relevant to earth system modeling research, es-
pecially for dynamic global vegetation modeling (DGVM),
with applications extending to model initialization, optimiza-
tion, and benchmarking (Plummer, 2000). However, avail-
able remotely-sensed datasets for land cover show large vari-
ability (Giri et al., 2005), partly due to differences in data re-
trieval (i.e., satellite properties) and partly because there is no
standard approach to classifying continuous vegetation cover
into discrete categories. In addition, to be comparable to
plant functional type (PFT) definitions used by DGVM mod-
els, land-cover legends must be cross-walked (reclassified)
to broader PFT categories (Jung et al., 2006). To address the
variability between land-cover products and the challenges of
cross-walking land-cover legends, we developed a method-
ology to process an ensemble of PFT datasets corresponding
to the most common global land-cover products available. In
our analysis, the pattern and drivers of variability across this
ensemble is quantitatively assessed and attributed to inter-
pret the effects of land-cover uncertainty on biogeochemical
fluxes.
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Table 1. Characteristics of the remotely sensed land cover datasets used to develop the phenology, physiognomy, and natural/managed traits
for the PFT mapping.

Land cover
product

Satellite and
sensor type

Time
period

Spatial
resolution

Number
of classes

File size
(GB)

# rows # cols Classification
accuracy

GLC2000 v1.1 SPOT-4
(VEGA2000)

2000 1000 m 22 (modified
UN LCCS)

0.66 40 320 16 353 39–64 %

Mod12q1 C004 Terra 2001 1000 m 17 (IGBP legend) 0.93 43 200 21 600 75–80 %

Mod12q1 C005 Terra 2005 500 m 17 (IGBP legend) 3.47 86400 43200 72–77 %

GlobCover v2.2 Envisat
(Meris)

12-2004/
06-2006

300 m 22 (modified
UN LCCS)

7.82 129 600 64 800 67.1 %

There are now several (Table 1) moderate resolution global
land-cover datasets available from different satellite sensors
and research groups (Friedl et al., 2002, 2010; Bartholome
and Belward, 2005; Arino et al., 2008) providing an oppor-
tunity to assess ensemble variability. Although these land-
cover datasets provide new opportunities for model-data as-
similation studies to assess the effects of land-cover feed-
backs (Quaife et al., 2008; Sterling and Ducharne, 2008;
Jung et al., 2007), their approach for classifying land cover
is not yet consistent with Earth System Model (ESM) re-
quirements. This is because the concept of plant functional
types used in ESMs cannot be mapped directly using re-
mote sensing data since PFT traits represent a combination
of spectral relationships, and climatic, ecological, and the-
oretical assumptions (Smith et al., 1997; Sun et al., 2008;
Running et al., 1995; Ustin and Gamon, 2010). The PFT
concept consists of aggregating multiple species traits, al-
lowing for the reduction of thousands of species to a small
set of functional groups (typically<15) defined by their phe-
nology type, physiognomy, photosynthetic pathway, and cli-
mate zone. The advantage of the PFT classification system
is that it allows the possibility for posing testable hypotheses
that are feasible at global and centennial scales (Smith et al.,
1997).

Existing PFT datasets include those by Bonan et al. (2002)
for the Community Land Model, with updates from
(Lawrence and Chase, 2007), by Verant et al. (2004) for the
Orchidee DGVM, and by Lapola et al. (2008) for the SSiB
model. Improvements to these PFT datasets are currently
needed to expand the availability of land-cover datasets to al-
low consistency with a more complete set of satellite sensors
and more detailed or revised climate zone data, and to take
into account current human land-use patterns. For example,
Bonan et al. (2002) used multiple data sources to combine
the IGBP-DISCover Global Land Cover Classification data
(IGBP GLCC) and phenology-type data (from 1992–1993
AVHRR data) with vegetation continuous fields from De-
Fries et al. (2000). They assigned biome types from biocli-
matic definitions provided by Prentice et al. (1992) based on

gridded climate data from Legates and Wilmott (1990), cre-
ating one of the first ESM-relevant PFT legends (Table 2) for
the Community Land Model 3.0 (Dickinson et al., 2006). In
comparison, Verant et al. (2004) combined simplified Olson
biomes with IGBP GLCC data to create a PFT map for the
Orchidee DGVM (Krinner et al., 2005). Lapola et al. (2008)
developed a global PFT map by reclassifying legends from
Olson et al. (1983) and Matthews (1983) and filling areas of
mismatch with regional land cover information. A different
PFT legend accompanies the MODIS land cover product us-
ing categories defined by Running et al. (1995) and has been
developed from GLC2000 (Wang et al., 2006). For these
particular PFT legends, the classifications include phenology
type but not the associated climate zone, which is needed
to assign climate-specific physiological parameters to each
PFT (i.e., Sitch et al., 2003). As a consequence, vegeta-
tion models using these particular PFT datasets must assume
that biochemical and biophysical PFT parameters are con-
stant globally across different climate zones (e.g., see Alton
et al., 2009).

Our study contributes to ESM and DGVM modeling by
developing four global PFT datasets (Table 1) using a con-
sistent methodology applied to satellite data that vary by
sensor (spatial and spectral resolution), classification sys-
tem, and time period. The K̈oppen-Geiger climate classifica-
tion scheme is used to associate physiognomy and phenology
type with climate zone, and the pattern of uncertainty among
the four classification systems is evaluated using a beta di-
versity metric. We provide an example of the importance
of land-cover uncertainty on land-surface climate sensitivity
by prescribing vegetation types and analyzing biogeochem-
istry with the LPJmL DGVM. In this experiment, we quan-
tify the sensitivity of water and carbon fluxes to climate –
biogeochemical fluxes highly modified by human activities
(Oki and Kanae, 2006; Schimel et al., 2001) – and evaluate
how land-cover uncertainty alters these relationships.
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Table 2. Plant functional types (PFT) used in the Orchidee, LPJ and CLM dynamic global vegetation models. The PFTs are defined by
biome and by phenology, followed by temperature criteria (here shown from Sitch et al., 2003) for establishment (Tmin/Tmax, in ◦C, are
calculated from twenty year annual means).

Plant Functional Type (PFT) used in
LPJmL and Orchidee and CLM
(PFT code in parentheses)

Biome Phenology Class
(phenology code
in parentheses)

Tmin Tmax

Tropical broadleaf evergreen (TrBe)
Tropical

Broadleaf evergreen (BrEv) 15.5 –
Tropical raingreen (TrRg) Broadleaf deciduous (BrDe) 15.5 –

Temperate needleleaf evergreen (TeNe)
Temperate

Needleleaf evergreen (NeEv) −2 22.2
Temperate broadleaf evergreen (TeBe) Broadleaf evergreen (BrEv) 3.0 18.8
Temperate broadleaf summergreen (TeBs) Broadleaf deciduous (BrDe) −17.0 15.5

Boreal needleleaf evergreen (BoNe)
Boreal

Needleleaf evergreen (NeEv) − −2
Boreal needleleaf summergreen (BoNd) Needleleaf deciduous (NeDe) − −2
Boreal broadleaf summergreen (BoBs) Broadleaf deciduous (BrDe) − −2

Temperate herbaceous (NatGrassC3) Temperate Grass − 15.5
Tropical herbaceous (NatGrassC34) Tropical Grass 15.5−
Managed grass C3 (MGrassC3) Temperate Grass − 15.5
Managed grass C4 (MGrassC4) Tropical Grass 15.5−

2 Methods

2.1 Land cover and climate zone datasets

Land-cover datasets, described in Table 1, were manually re-
classified to PFT specific phenology type and physiognomic
categories. The resulting categories were merged with cli-
mate zones defined by the Köppen-Geiger classification sys-
tem to resolve to PFT classes. The merged dataset was aggre-
gated to 0.5◦ spatial resolution (corresponding to the climate
and soils data used in LPJmL), representing the fractional
abundance of PFT mixtures within a grid cell. All analyses
were conducted at the global scale in Plate-Carrée (WGS84)
projection, area correcting grid cells during post-processing
when necessary. The original land-cover datasets varied in
spatial resolution, time period of data collection, classifica-
tion approach, and accuracy and are discussed below.

The Köppen-Geiger dataset was created by Peel et
al. (2007) from over 4000 metrological stations contained in
the Global Historical Climatological Network v2.0 database.
The authors calculated climate indices (i.e., seasonal means,
minimums, and maximums) for the stations from precipita-
tion and temperature for their entire time series (mostly, the
20th century) and then interpolated to a 0.1◦ resolution grid
(not accounting for elevation). These indices were classified
into one of 32 possible climate zones (Table 3) according to
the original K̈oppen-Geiger classification system (Köppen,
1936).

The GLC2000 land-cover data were generated from
SPOT-VEGETATION (SPOT 4) and ATSR-2/DMSP sensors
and are available for most of the vegetated surface of the
globe (75◦ N to 56◦ S, excluding Antarctica) at 1 km resolu-

tion (Bartholome and Belward, 2005; Hugh et al., 2004). The
data were collected between November 1999 and December
2000. The GLC2000 classification (Table 4) was conducted
by regional expert groups following an unsupervised clas-
sification of 19 similar geographic regions using the LCCS
nomenclature (22 categories for global purposes).

The GlobCover data became available in 2008 (Arino et
al., 2008) and represent the highest-spatial resolution data
available for global extent at this time (0.3 km resolution).
The classification system also follows the LCCS system
(22 categories, Table 5) and the spectral data were acquired
from the MERIS sensor on-board the ENVISAT satellite be-
tween June 2004 and December 2006. Individual pixels are
classified using unsupervised and supervised approaches on
sub-global regional clusters.

Two versions of the EOS-MODIS land cover data
(MOD12Q1), V004 and V005, were used in the analysis.
These differ in several aspects, including temporal coverage,
spatial resolution, and classification methodology, but both
use the same 17 IGBP categories (Table 6) (Friedl et al.,
2010). These land-cover classes were categorized using a
globally consistent supervised classification approach. V004
is available globally at 1 km resolution from data acquired in
2001 while V005 is available at 0.5 km resolution at annual
resolution (starting in 2001). Both products have multiple
legends available, and here we worked with the IGBP leg-
end (Table 6), the primary MODIS legend from which the
other legends are derived and most relevant for reclassifying
to phenology categories (next section).
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Table 3. Köppen-Geiger biome types (Code column is defined in Peel et al., 2007) and their simplified equivalents required for DGVM PFT
classification. WhereThot andTcold are temperature of the hottest and coldest month (◦C), and MAT is mean annual temperature (◦C).

Number Code K̈oppen-Geiger biome category PFT biome equivalent
(this study)

1 Af Tropical Tcold=> 18 Tropical
2 Am
3 Aw

4 BWh Arid MAT =>18
5 BWk MAT <18 Temperate (warm)
6 BSh MAT =>18 Tropical
7 BSk MAT <18 Temperate (warm)

8 Csa Temperate
Thot>10
& Tcold<18

Thot=> 22 Temperate (warm)

9 Csb Temperate (cool)
10 Csc
11 Cwa Thot=> 22 Temperate (warm)
12 Cwb Temperate (cool)
13 Cwc
14 Cfa Thot=> 22 Temperate (warm)
15 Cfb Temperate (cool)
16 Cfc

17 Dsa Cold
Thot>10
& Tcold<0

Thot=> 22 Boreal (warm)

18 Dsb Boreal (cool)
19 Dsc
20 Dsd
21 Dwa Thot=> 22 Boreal (warm)
22 Dwb Boreal (cool)
23 Dwc
24 Dwd
25 Dfa Thot=> 22 Boreal (warm)
26 Dfb Boreal (cool)
27 Dfc
28 Dfd

29 ET Polar
Thot<10

Thot> 0

30 EF Thot< 0
31==29 ETH
32==30 EFH

2.2 Reclassifying the legends

The land-cover data were first cross-walked (reclassified) to a
phenology-based legend consistent with the plant functional
types used in major DGVM and land surface models (Ta-
ble 2). Figure 1 illustrates the flow of data processing, with
the merging of the phenology type and climate data described
in the following section. Manually reclassifying legends is
inherently subjective, especially with the treatment of mixed
vegetation categories where multiple possible classes must

be reduced to only one class (Jung et al., 2006; Giri et al.,
2005). The possible bias resulting from reclassification was
handled, in part, by comparing levels of agreement among
the aggregated PFT classification datasets. The comparison
highlighted the spatial pattern of dissimilarity and provided a
means for qualitatively evaluating the contribution of uncer-
tainty from reclassification problems and from actual remote
sensing differences. The reclassification was conducted on
the original resolution of the land-cover dataset and imple-
mented in C programming language.
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Table 4. The GLC2000 legend (based on LCCS) and corresponding DGVM phenology class (from Table 2).

GLC ID GLC2000 description DGVM phenology class

1 Tree Cover, broadleaved, evergreen 90 % BrEv, 10 % NatGrass
2 Tree Cover, broadleaved, deciduous, closed 100 % BrDe
3 Tree Cover, broadleaved, deciduous, open (open 15–40 % tree cover) 80 %BrDe, 20 % NatGrass
4 Tree Cover, needle-leaved, evergreen 100 % NeEv
5 Tree Cover, needle-leaved, deciduous 100 % NeDe
6 Tree Cover, mixed leaf type 25 % BrEv, BrDe, NeEv, NeDe
7 Tree Cover, regularly flooded, fresh water (& brackish) 25 % BrEv, BrDe, NeEv, NeDe
8 Tree Cover, regularly flooded, saline water 25 % BrEv, BrDe, NeEv, NeDe
9 Mosaic: Tree cover/Other natural vegetation 20 % BrEv, BrDe, NeEv, NeDe, NatGrass
10 Tree Cover, burnt 25 % BrEv, BrDe, NeEv, NeDe
11 Shrub Cover, closed-open, evergreen 40 % BrEv, NeEv, 20 % NatGrass
12 Shrub Cover, closed-open, deciduous 80 % BrDe, 20 % NatGrass
13 Herbaceous Cover, closed-open 100 % NatGrass
14 Sparse Herbaceous or sparse Shrub Cover 60 % NatGrass, 40 % bare
15 Regularly flooded Shrub and/or Herbaceous Cover 10 % BrEv, BrDe, NeEv, NeDe, 60 % NatGrass
16 Cultivated and managed areas 100 % ManGrass
17 Mosaic: Cropland/Tree Cover/Other natural vegetation 8 % BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass
18 Mosaic: Cropland/Shrub or Grass Cover 8 % BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass
19 Bare Areas Bare
20 Water Bodies (natural & artificial) Water
21 Snow and Ice (natural & artificial) Bare
22 Artificial surfaces and associated areas Urban
23 No data No data

Fig. 1. Illustration of the flow of analysis and the reclassification of the climate zone data to simplified biomes, and the land-cover data to
their phenology types, physiognomy and land-use counterparts.
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Table 5. The GlobCover legend (LCCS) and corresponding DGVM phenology class (from Table 2).

ID GlobCover description DGVM phenology class

11 Post-flooding or irrigated croplands (or aquatic) 100 % ManGrass

14 Rainfed croplands 100 % ManGrass

20 Mosaic cropland (50–70 %)/vegetation
(grassland/shrubland/forest) (20–50 %)

10 % BrEv, BrDe, NeEv, NeDe, Nat-
Grass, 50 % ManGrass

30 Mosaic vegetation (grassland/shrubland/forest)
(50–70 %) / cropland (20–50 %)

10 % BrEv, BrDe, NeEv, NeDe, 20 %
NatGrass, 40 % ManGrass

40 Closed to open (>15 %) broadleaved evergreen
or semi-deciduous forest (>5 m)

50 % BrEv, BrDe

50 Closed (>40 %) broadleaved deciduous
forest (>5 m)

100 % BrDe

60 Open (15–40%) broadleaved deciduous
forest/woodland (>5 m)

80 % BrDe, 20 % NatGrass

70 Closed (>40 %) needleleaved
evergreen forest (>5m)

100 % NeEv

90 Open (15–40 %) needleleaved deciduous or
evergreen forest (>5 m)

40 % NeEv, NeDe, 20 % NatGrass

100 Closed to open (>15 %) mixed broadleaved and
needleleaved forest (>5 m)

25 % BrEv, BrDe, NeEv, NeDe

110 Mosaic forest or shrubland
(50–70 %)/grassland (20–50 %)

20 % BrEv, BrDe, NeEv, NeDe, Nat-
Grass

120 Mosaic grassland (50–70 %)/forest or
shrubland (20–50 %)

10 % BrEv, BrDe, NeEv, NeDe, 60 %
NatGrass

130 Closed to open (>15 %) (broadleaved or
needleleaved, evergreen or deciduous)
shrubland (<5 m)

20 % BrEv, NeEv, 10 % BrDe, NeDe,
40 % NatGrass

140 Closed to open (>15 %) herbaceous vegetation
(grassland, savannas or lichens/mosses)

20 % NeEv, 80 % NatGrass

150 Sparse (<15 %) vegetation 40 % NatGrass, 60 % bare

160 Closed to open (>15 %) broadleaved forest
regularly flooded (semi-permanently or
temporarily) – Fresh or brackish water

33 % BrEv, BrDe, NatGrass

170 Closed (>40 %) broadleaved forest or
shrubland permanently flooded – Saline or
brackish water

50 % BrEv, BrDe

180 Closed to open (>15 %) grassland or woody
vegetation on regularly flooded or waterlogged
soil – Fresh, brackish or saline water

20 % BrEv, BrDe, NeEv, NeDe,
NatGrass

190 Artificial surfaces and associated areas (Urban
areas>50 %)

100 % Urban

200 Bare areas 100 % Bare

210 Water bodies 100 % Water

220 Permanent snow and ice 100 % Bare

230 No data (burnt areas, clouds,. . . ) 100 % No data

Tables 4, 5, and 6 list the original land-cover classes from
GLC2000, GlobCover, and MODIS and their corresponding
reclassification into phenology type (Table 2). Six PFT-
specific phenology-type/physiognomy classes were pre-
defined, corresponding with categories used in several
DGVM models (broadleaf evergreen BrEv, broadleaf de-
ciduous BrDe, needleaf evergreen NeEv, needleleaf decid-

uous NeDe, natural grassland NatGrass, and managed grass-
land ManGrass (representing either pasture or crop)). For
some categories, the reclassification was straightforward,
i.e., GLC2000 “Tree cover, broadleaf, deciduous, closed”
was reclassified to “broadleaf deciduous.” Other categories,
for example, GLC2000 “Tree cover, mixed leaf type,” or
MODIS IGBP “Open shrublands” did not correspond to a
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single PFT phenology/physiognomy class. In these cases, the
land cover class was reclassified to one of several possible
phenology-types and physiognomy classes whose probabil-
ity was assigned by assessing the supplementary data regard-
ing the legend definitions or examining the spatial pattern
of observed land cover classes, and based on expert opinion
on how the class might be composed of various phenology
types (similar to Wang et al., 2006). In these cases, for ex-
ample, a “mixed tree cover” category would yield 25 % equal
probability (using a uniform distribution for all mixed land
cover categories) with the grid cell being reclassified to ei-
ther BrEv, BrDe, NeEv, or NeDe. This approach resulted in
a single category cell, but when the cells were aggregated to
coarser resolution (described below), the relative PFT frac-
tions more realistically represented the original mixed for-
est classes (for example, aggregating from 1 km mixed forest
category to 0.5 degree resolution results in 0.5 degree frac-
tions equal to 0.25 for BrEv, BrDe, NeEv, and NeDe, sum-
ming to 1.0 for an aggregated cell).

2.3 Merging and aggregating phenology and
climate zones

The Köppen-Geiger dataset was first adjusted to expand its
coastal grid cell definitions to neighboring ocean grid cells
to allow a complete overlay of land cover with climate zone.
The buffered K̈oppen-Geiger data were then downscaled to
the spatial resolution of the corresponding land-cover dataset
using a nearest neighbor resampling algorithm. The resam-
pled Köppen-Geiger data were reclassified into one of three
major biome types (following the rules described in Table 3),
namely: tropical, temperate and boreal. The temperate and
the boreal biome were further subdivided into either cool
(<22◦C) or warm (=>22◦C) types to distinguish between
C3 or C4 photosynthesis in the former, and temperate needle-
leaf and broadleaf trees in the latter (based on their PFT
temperature establishment thresholds in Table 2). While C4
grasses can establish at cooler temperatures (i.e., the LPJ
model uses a temperature of 15◦C, Table 2), this tempera-
ture threshold (22◦C) has been shown in prior studies to be
a critical “crossover” temperature for C3 and C4 adaptations
(Collatz et al., 1998).

Each of the 4 reclassified phenology type datasets were
then merged with the climate zones to produce the final PFT
classification at the spatial resolution of the original land
cover data following the assembly rules in Table 7. Some
exceptions were made to account for the full combination
of phenology and climate zone possibilities. For example,
because there are few to no deciduous needleleaf PFTs ob-
served in tropical and temperate ecosystems, this phenology
type was treated as tropical broadleaf raingreen (deciduous)
or temperate broadleaf summergreen PFT. Natural and man-
aged grasslands were split into the C3 and C4 photosynthetic
pathways according to temperature thresholds that defined
tropical versus temperate, and cool versus warm temperate

biomes from the K̈oppen-Geiger data. This approach may
underestimate C3/C4 grass mixtures or C4 summer crops
(i.e., maize) that might be planted in cooler regions (Ra-
mankutty and Foley, 1998).

The PFT classifications were aggregated to a spatial reso-
lution of 0.5◦ by summing the area of each PFT class within
the corresponding 0.5◦ cell (16 classes, Table 7) and divid-
ing by the grid cell area. A spatial resolution of 0.5◦ was
chosen for this study because most models in the ESM com-
munity use climate and other ancillary driver (e.g., soil type)
data at this resolution, or greater (Zobler, 1986;New et al.,
2002). The aggregation of PFT fractions can also be carried
out at finer resolution, but at smaller window sizes the es-
timates of fractional PFT coverage may become more sen-
sitive to the selection of probability distribution. Each of
the four PFT fractional abundance files were filtered with
a global land/water mask, which was derived from a global
soils database (Zobler, 1986). This ensured that the terrestrial
surface area and land/ocean boundaries were equal between
datasets.

2.4 Measuring PFT agreement

We analyzed the agreement between PFT fractional abun-
dance (and re-groupings of PFTs by various traits) with a
beta (ß) diversity metric (mean Euclidean distance) calcu-
lated for each grid cell. Euclidean distance is a measure of
dissimilarity between groups with multiple members (Leg-
endre et al., 2005) and is commonly used to summarize land-
scape species diversity from multiple sampling plots (Whit-
taker, 1972). In our case, the “plots” were the grid cells
which contained the fractional PFT abundances contained
from the different classification datasets. This analysis had
two objectives; the first was to assess, geographically, where
regions of high uncertainty in PFT abundance may exist, the
second was to help evaluate the methods for the reclassifi-
cation of legends, especially for the mixed vegetation cate-
gories.

The beta diversity metric was calculated for each grid cell
for each of the four datasets, for the standard PFT classifica-
tion, and for three re-groupings based on PFT traits. These
regroupings were 1. Phenology type (total evergreen ver-
sus total deciduous fraction), 2. Physiognomy (total woody
versus total herbaceous fraction), and 3. Management status
(natural grass versus managed grass). Equation (1) presents
the variables used for calculating the Euclidean distance,
the mean of which, we consider to represent beta diversity,
ß. For every grid cellc, the Euclidean distance,D was
calculated between every combination of classifications,N

(1. . . 4) composed of 10 PFTs (I = 10) and their correspond-
ing fractional abundanceAfor the different classifications (j

andk).

ßc=Dc=

N∑
n=1

[
I∑

i=1

(
Ai,j,c−Ai,k,c

)2
]0.5

N
(1)

www.geosci-model-dev.net/4/993/2011/ Geosci. Model Dev., 4, 993–1010, 2011



1000 B. Poulter et al.: Plant functional type mapping for earth system models

Table 6. Modis collection 4 and 5 legend (IGBP) and corresponding DGVM phenology class (from Table 2). For mixed phenology cells, it
was assumed that any phenology type could be found, these were determined randomly using a uniform distribution.

MODIS ID MODIS description DGVM phenology class

0 Water 100 % Water
1 Evergreen Needleleaf Forest 100 % NeEv
2 Evergreen Broadleaf Forest 100 % BrEv
3 Deciduous Needleleaf Forest 100 % NeDe
4 Deciduous Broadleaf Forest 100 % BrDe
5 Mixed Forests 25 % BrEv, BrDe, NeEv, NeDe
6 Closed Shrublands 10 %, BrEv, BrDe, 30 % NeEv, 10 % NeDe, 40 % NatGrass
7 Open Shrublands 10 % BrEv, BrDe, NeDe, NeEv, 20 % NatGrass, 40 % Bare
8 Woody Savannas 20 %, BrEv, 10 % BrDe, 20 % NeEv, 50 % NatGrass
9 Savannas 10 %, BrEv, 20 % NeEv, 70 % NatGrass
10 Grasslands 100 % NatGrass
11 Permanent Wetlands 20 % BrEv, BrDe, NeEv, NeDe, NatGrass
12 Croplands 100 % ManGrass
13 Urban and Built-Up 100 % Urban
14 Cropland/Natural Vegetation Mosaic 8 % BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass
15 Snow and Ice 100 % Bare
16 Barren or Sparsely Vegetated (<10 % veg. cover) 10 % NatGrass, 90 % Bare
17 (IGBP Water Bodies, recoded to 0 for MODIS Land Product consistency.) 100 % Water
254 Unclassified 100 % No data
255 Fill Value 100 % No data

Table 7. Final merging rules for phenology and climate zone, and legend for final PFT map (including non-PFT categories).

Biome Phenology PFT Category Data Band

Tropical Broadleaf evergreen Tropical Broadleaf Evergreen 1
Tropical Broadleaf deciduous Needleleaf deciduous Tropical Broadleaf Raingreen 2
Tropical Temperate (warm) Temperate (cool) Boreal (warm) Needleaf evergreen Temperate Needleleaf Evergreen 3
Temperate (warm) Temperate (cool) Boreal (warm) Boreal (cool) Broadleaf evergreen Temperate Broadleaf Evergreen 4
Temperate (cool) Temperate (warm) Boreal (warm) Broadleaf deciduous Needleleaf deciduous Temperate Broadleaf Summergreen 5
Boreal (cool) Needleleaf evergreen Boreal Needleleaf Evergreen 6
Temperate (cool) Boreal (cool) Needleleaf deciduous Boreal Needleleaf Deciduous 7
Boreal (cool) Broadleaf deciduous Boreal Broadleaf Summergreen 8
Temperate (cool) Boreal (warm) Boreal (cool) Natural Grass Natural grassland C3 9
Tropical Temperate (warm) Natural Grass Natural grassland C4 10
Temperate (cool) Boreal (warm) Boreal (cool) Managed Grass Managed grassland C3 11
Tropical Temperate (warm) Managed Grass Managed grassland C4 12

Non-vegetated

Barren/Bare 13
Water 14
Urban 15
No Data 16

The mean Euclidean distance (beta diversity) between groups
(Dc) was calculated as the mean of the diagonals from the
resulting matrix to represent overall dissimilarity (Legendre
et al., 2005; Whittaker, 1972). The variance of the Euclidean
distance matrix was also calculated using the same approach,
but taking the variance of the matrix diagonals rather than
the mean. The two approaches were used to aggregate the
distance matrix into a single index as recommended by Leg-
endre et al. (2005). ß was plotted as both geographic maps
and as latitudinal summaries to explore the spatial patterns of
uncertainty for each grouping.

An ordination analysis was conducted for four individual
grid cells representative of major biomes (temperate, tropi-
cal, boreal, and desert) to investigate the similarity between
PFT products and to display the main gradients partitioning

them. The PFT products included those developed in this
study, the existing products described in the Introduction for
Orchidee and CLM, and the results from a DGVM simula-
tion from LPJmL (described below). Non-metric multidi-
mensional scaling (NMDS) was chosen (using a Euclidean
distance matrix); this ordination method is less sensitive to
non-linear relationships among variables.

2.5 Prescribing PFT data to a dynamic global
vegetation model

PFT fractions were prescribed to the LPJmL DGVM, an
ecosystem model that simulates global biogeography and
biogeochemistry via coupled water-carbon cycling and veg-
etation dynamics (Sitch et al., 2003). Bioclimatic thresholds
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Table 8. Global plant functional type and non-vegetated cover (%) for land surface.

PFT GLC2000 Globcover Modis C004 Modis C005 StDev

Tropical Broadleaf Evergreen 7.97 6 11.47 11.13 2.62
Tropical Broadleaf Raingreen 7.52 8.96 2.71 3.15 3.13
Temperate Needleleaf Evergreen 3.68 5.68 5.32 5.6 0.94
Temperate Broadleaf Evergreen 2.86 3.3 5.24 5.22 1.25
Temperate Broadleaf Summergreen 5.51 5.38 3.08 3.22 1.33
Boreal Needleleaf Evergreen 5.78 5.24 5.77 5.62 0.25
Boreal Needleleaf Deciduous 3.87 4.05 2.45 3.78 0.73
Boreal Broadleaf Summergreen 4.05 3.09 2.39 2.47 0.77
Natural grassland C3 7.45 7.7 7.56 8.04 0.26
Natural grassland C4 13.87 11.21 17.99 19.13 3.67
Managed grassland C3 5.01 3.92 5.26 5.14 0.62
Managed grassland C4 8.56 8.83 4.87 4.95 2.19
Unvegetated (ice/barren, urban, water, no
data)

23.88 26.62 25.87 22.55 1.80

Fig. 2. The latitudinal distribution of the plant functional types for each land-cover dataset. The PFT acronyms correspond to those in
Table 2.

were removed to allow the establishment of PFTs wher-
ever they were prescribed from the external datasets. In the
LPJmL model, diagnostic PFT fractions replaced the variable
for maximum annual fraction of photosynthetic absorbed ra-
diation (FPAR) while not modifying the vegetation dynamics
or physiology modules. Monthly climate data (precipitation,

temperature, cloud cover, and wet days) and annual CO2 con-
centrations were prescribed from the Climatic Research Unit
TS3.0 dataset (Mitchell and Jones, 2005) and the Carbon
Dioxide Information Analysis Center (CDIAC). Following
a 1000-yr spin up to equilibrate vegetation and carbon pools,
a transient simulation, including the effects of prognostic fire
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Fig. 3. Map of the PFT fractions (at 0.5 degrees resolution) from(a) Modis C005 land-cover inputs using the IGBP legend, and(b) GlobCover
land-cover inputs using the LCCS legend. The PFT acronyms correspond to those in Table 2.

(Thonicke et al., 2001), was initiated beginning in 1901 and
ending in 2005. Managed grasslands were treated as in Bon-
deau et al. (2007), with harvest occurring repeatedly during
the year when peak leaf area index (LAI) was reached. An-
nual GPP and transpiration (from 1956-2005) were regressed
with mean annual temperature, total annual photosynthetic
active radiation (PAR), and total annual precipitation, from
the same time period, to calculate partial correlation coeffi-
cients used to interpret the sensitivity of the biogeochemical
fluxes to climate.

3 Results

3.1 Uncertainty in global PFT fractions

At the global scale, managed and unmanaged grassland
PFTs, which includes croplands and pasture, were most
abundant in terms of percent land area (∼30 %), followed
by tropical (∼15%), boreal (∼12 %), and temperate PFTs
(∼11 %) (Table 8). Classification agreement (Table 8) was
lowest (for globally averaged values) for C4 grasses, espe-
cially for natural C4 grasslands. Tropical raingreen (TrRg)

and tropical evergreen (TrEv) PFT fractional coverage also
had high uncertainty, both in savanna regions, and in the
Amazon and Congo River Basins (acronyms explained in
Table 2). The lowest uncertainty was found for the boreal
needleleaf PFT (BoNe) and natural/managed C3 grasslands.

The spatial uncertainty of PFT agreement was low in the
boreal biome, increasing to some extent in the temperate
biome, and highest in the tropics (Fig. 2). The disagreement
between land-cover datasets was greatest for deciduous PFT
phenology types compared to evergreen PFTs, which was es-
pecially important in the tropics where the GlobCover dataset
categorized the Amazon and Congo River Basins as mixed-
leaf or seasonal forest (in comparison to the “evergreen” phe-
nology type for the other datasets). Managed and natural
C3 grasslands showed high dissimilarity in the mid-western
United States mostly because GlobCover had low fractions
of managed grassland in this region (Fig. 2; MGrassC3 low
abundance between 40–50◦ N). C4 grasslands (both natu-
ral and managed) showed high dissimilarity because of dif-
ferences related to distinguishing natural versus managed
grassland, and because of differences in how the land-cover
datasets treated barren/dry areas. For example, much of
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Fig. 4. Close-up illustration of PFT fractions for(a) GLC2000,(b) GlobCover,(c) Modis C004 and(d) Modis C005 for Eastern Africa
where fine-scale topographic features and their effects on climate zones are apparent.

interior Australia was classified as “open shrublands” by the
IGBP MODIS legend (Fig. 3a; higher abundance of TrEv
and TrRg compared to Fig. 3b). Our reclassification for the
IGBP legend assigned 40 % of this class to woody PFTs,
20 % to grass PFTs and 40 % to barren. In comparison,
the LCCS legend reclassifies part of this region as “sparse
vegetation”, which we reclassified as 40 % grass PFT and
60 % bare, consistent with the supporting documentation for
LCCS (Fig. 3b; lower abundance of TrEv and TrRg). The
IGBP “open shrubland” category also includes tundra and
permafrost biomes (in addition to the warmer arid regions).
Herbaceous cover may be higher in these cooler regions than
in “open shrublands” of warm regions (Fig. 3b; NatGrassC3
replaces by BoNe), which suggests that further refinement
of shrubland categories could improve differences between
land-cover products.

Spatial resolution and the detail of land-cover categories
had important effects in intensively managed landscapes.
For example, in the Southeastern United States, the Glob-
Cover dataset (0.3 km) and LCCS legend (22 classes) bet-

ter distinguished secondary succession vegetation (Fig. 3b;
higher abundance of TeNe) (i.e., pine forests from agricul-
tural abandonment, Christensen and Peet, 1984). Climatic
differences across small gradients were generally detected by
the Köppen-Geiger classification, despite elevation not being
included in the interpolation process. These topographic fea-
tures were apparent in the north-south divide along the island
of Madagascar (Fig. 4a–d; NatGrassC4 versus TrRg), along
the Andes, separating the Amazon rainforests from high-
elevation grasslands, as well as in Ethiopia, where the effects
of the highland rift-valley corresponded to C3 grasslands in
a region mostly surrounded by C4 climate zones (Fig. 4a–d;
NatGrassC3).

GlobCover and GLC2000 detected higher fractions,∼12–
13 %, of managed grasslands globally. Compared to the
MODIS products, this estimate is slightly less than∼14 %
for cropland area found in previous studies scaled to FAO
country statistics (Ramankutty and Foley, 1998; Klein Gold-
ewijk et al., 2007). GlobCover also distinguished alpine veg-
etation communities in more detail (compared to GLC2000
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Fig. 5. Latitudinal distributions of mean dissimilarity for the 3 dif-
ferent grouping of PFT traits and for all PFTs (described in Meth-
ods: Measuring PFT agreement).

and MODIS) for the European Alps. C4 abundance was
higher than in Still et al. (2003) who found that globally, C4
vegetation compose∼15 % of terrestrial vegetation (whereas
the estimates presented here are closer to∼22 %, Table 8).
The higher estimates for C4 grass abundance are due, in
part, to differences in the IGBP “grasslands” and LCCS
“sparsely vegetated” categories, which corresponded to the
LCCS “sparse vegetation” or “barren” categories (Fig. 3a and
b; see MGrassC4). For IGBP, “grasslands” were reclassified
to 100 % grass cover (Table 6), but for LCCS “sparse vege-
tation,” only 40 % grass cover (Table 5).

The disagreement between PFT trait-groups (see cate-
gories described in Methods: Measuring PFT agreement),
was highest in the tropics (Fig. 5; 20◦ N to 20◦ S) and for
a “hotspot” in the mid-western United States (Fig. 5; 35–
55◦ N) resulting from managed versus natural grassland clas-
sification. Phenology-type disagreement was also high in
the tropics, but in general, structural (physiognomy) observa-
tions appear to have high agreement (Fig. 5). In the northern
temperate zone, grasslands were more consistently classified
as managed, with the exception of mid-western USA, where
GlobCover underestimated cropland fraction compared to
GLC2000 and MODIS (Fig. 2; MGrassC3). Tropical savan-
nas and warm-climate croplands emerged as bands of dis-
agreement, because of differences between the IGBP and
LCCS classification for natural and managed C4 grassland
and shrubland categories. A notable region of high uncer-
tainty was the Karakum desert in Central Asia which was

classified as “barren” or “sparse vegetation” in LCCS and as
“grassland” in IGBP leading to large differences in estimated
PFT fractions (Fig. 6).

3.2 Land cover and the uncertainty of fluxes to climate

In diagnostic mode (with PFT distributions prescribed),
global GPP ranged from 130.9 to 134.9 PgC a−1 (averaged
over 1996–2005) and transpiration ranged from 43 200 to
44 600 H2O km3 a−1. These global values were similar to the
prognostic (dynamic vegetation) simulation, using the Hyde
dataset for managed grasslands (Klein Goldewijk and Batjes,
1997), which produced values of 131.0 PgC a−1 and 39 000
H2O km3 a−1. All estimates are close to previous analyses
of global carbon Beer et al., 2010) and water fluxes (Gerten
et al., 2005). GPP and transpiration sensitivity to climate
followed similar patterns observed in previous studies (Ne-
mani et al., 2003), with temperature important in northern
latitudes, radiation more limiting in the wet tropics, and pre-
cipitation a dominant feature globally (Fig. 8a). As in Beer
et al. 2010), precipitation was the most important global cli-
mate variable controlling GPP (65–70%) and transpiration
(58–63 %). The range of uncertainty was similar for either
GPP or transpiration sensitivity to climate; with agricultural
regions in mid-western USA and Europe, and arid regions
in Australia and S. Africa showing high uncertainty in the
sensitivity of GPP to precipitation (Fig. 8b). In agricultural
regions, the lower fractional coverage of croplands in the
GlobCover product led to higher grassland LAI (because of
no harvesting), causing higher sensitivity (or correlation co-
efficient) to precipitation. In semi-arid regions, the MODIS
products led to higher GPP sensitivity to precipitation (Fig-
ure 8) because of a higher abundance of woody species (with
deeper rooting strategies) unable to compete efficiently for
minimal rainfall with grasses that had shallow rooting strate-
gies.

4 Discussion

4.1 PFT datasets and themes for improvement

PFT datasets must remain consistent with available satel-
lite products used for data assimilation (i.e., LAI, FPAR or
biomass assimilation) and account for recent changes associ-
ated with land-use dynamics. Here, we have evaluated an ap-
proach for establishing a series of PFT datasets for use within
Earth System Models and DGVMs, and explored patterns
of disagreement and their propagated effects to land-surface
process uncertainty. To date, available PFT datasets for ESM
models have been limited to single satellite sensors and partly
outdated land-cover data (i.e., 1992/1993 AVHRR data). The
approach used in this study increases the resources available
for evaluating ensemble uncertainties introduced from land-
surface state variables and we discuss possible opportunities
for refining classification methodologies.
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Fig. 6. TMap of mean fractional dissimilarity (0 is complete agreement and 1 is complete disagreement) considering all PFTs using the
beta-diversity metric (Eq. 1). Representative grid cells shown in Fig. 7 illustrate the main patterns of clustering and spread of the existing
products in comparison to the new PFT products presented here.

Fig. 7. Comparison of the 4 new PFT products to one another and the existing products based on older datasets. The NMDS ordination shows
the degree of differences and clustering of the products (black names) and the major PFT gradients (p < 0.05) that explain the differences in
the gradients (red names). The LPJ product is the PFT composition from a fully dynamic vegetation simulation, described in the Methods.
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Fig. 8. (a)Partial correlation coefficients (PCC) for modeled GPP to radiation, precipitation, and temperature variable for the MODIS C005
PFT product(b) standard deviation of the PCC for all four land-cover simulations.

The main areas of disagreement were found in regions
of intensive land management or in regions where accurate
spectral discrimination between similar land cover, but dif-
ferent land use, caused classification problems (e.g., cropland
and natural grassland). High-disagreement was also found in
warm/cool arid regions where land-cover categories were ei-
ther too broadly defined or because different legend types had
conflicting tree-cover thresholds to define forest vegetation.
Previous studies have also observed that dryland systems,
which include heterogeneous mixtures of grasslands, crop-
lands and savanna shrublands, feature as prominent zones of
disagreement (Giri et al., 2005; Herold et al., 2008; Fritz
and See, 2008). Our results confirm that this disagreement
scales to PFT groupings and contributes a large part of the
land-surface process uncertainty for GPP and transpiration
sensitivity to climate (Fig. 9).

Much of this disagreement results from differences in the
classification for forest land; the LCCS definition for forest is
an area with more than 15 % tree cover, whereas IGBP uses a
60 % tree-cover threshold. Consequently, the MODIS prod-
uct has a much larger fraction of (non-forest) shrubland and
savanna systems, which are categorized as various “open” or
“closed” forest types in GLC2000 and GLOBCOVER, Ta-
bles 4 and 6. Such problems stem from defining forest struc-
ture from forest cover, which may be overcome with new
developments in satellite-based lidar, which can successfully
provide measurements of tree height and vertical structure at
global extents (Lefsky, 2010). Overlap of cool or warm arid-
land categories (i.e., grassland, shrubland, barren), also in-
troduced error in deserts and tundra regions, where broadly

defined categories could be improved by including climate
information. Arid-regions have large global coverage and re-
cent work suggests that these ecosystems have a significant
influence on global biogeochemistry and the climate system
itself via biophysical properties (Rotenberg and Yakir, 2010),
hence a better understanding of their distribution could con-
tribute to reducing uncertainty of global climate processes.

The humid tropics remain an additional challenge for bio-
geochemical modeling, in part, due to a need to better under-
stand basic ecophysiological processes (Baker et al., 2008),
but also because of data collection limitations. Remote sens-
ing data for tropical vegetation must first be processed to re-
move seasonal cloud cover and aerosol contamination (Poul-
ter and Cramer, 2009; Kobayashi and Dye, 2005), and also
account for the rapid pace and complex spatial patterns aris-
ing from deforestation and fire (Morton et al., 2006). In our
study, these measurement problems contributed to land-cover
uncertainty in the classification of natural versus managed
grasslands in southeastern Brazil, and in the classification of
the phenology type for the wet-tropical forests. Quantifying
the degree of seasonal tropical forest phenology is a long-
standing problem and studies disagree at the level to which
these forests shed their leaves during the dry season (Samanta
et al., 2010; Saleska et al., 2007). Despite the disagreement
among tropical PFTs, the uncertainty in GPP and transpira-
tion sensitivity to climate was relatively low (Figs. 8b and
Fig. 9, Tropical America and S. Africa regions). This was
because of similarities in the ecological functioning of the
modeled raingreen and evergreen PFTs in non-water stressed
environments (see Poulter et al., 2009).
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Fig. 9. Cumulative partial correlation between GPP and precipitation using the same approach as described in Beer et al. (2010). Zones
correspond to TRANSCOM 3 biome regions (Gurney et al., 2003), and legend colors red for GLC2000, green for GlobCover, light blue for
Modis v4, and dark blue for Modis v5.

Our analysis suggests that the PFT uncertainties could be
reduced by using land-cover data based on high to moderate-
spatial resolution and a larger number of legend categories
(as in GlobCover). For example, the more detailed LCCS
legend was better able to handle dry-land classifications than
the coarser IGBP legend and GlobCover appears to classify
heterogeneous landscapes well. Future versions of MODIS
land-cover data are expected to include the LCCS legend
(Friedl et al., 2010), which in addition, should further reduce
errors from user-based reclassification necessary for land-
cover product comparisons.

4.2 Application with Earth System Models

Developments in ESM models will likely focus on includ-
ing a higher diversity of PFT and crop functional types and
entirely new approaches that include adaptive, rather than
fixed, traits for PFT parameters (Scheiter and Higgins, 2009).
The number of PFT types is not restricted to those pre-
sented in our study and the next generation of DGVMs, with
higher-functional diversity, will be better prepared to evalu-
ate ecosystem resilience and stability hypotheses related to
global change. However, increasing PFT diversity requires
detecting life history traits (i.e., growth form and disper-
sal rates) not readily observable at global scales or from
space (Ustin and Gamon, 2010). The utility of the PFT
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approach for hypothesis testing and linkage to remote sens-
ing will remain important. Finer resolution categories of
crop types has been shown to be important for global bio-
geochemical cycling (Bondeau et al., 2007) but crop types
or crop cover (or pasture) is not easily distinguished in the
global land-cover datasets, highlighting the importance of
integrated land-cover mapping approaches. Managed grass-
land categories can be subdivided using regional statistics
on crop use, similar to methods described by Ramankutty
et al. (1998), but many earth system models are at the early
stages of incorporating crop functional types.

By forcing LPJmL with diagnostic PFT fractions we were
able to illustrate the utility of ensembles of land-cover ap-
proaches and the application of diagnostic datasets. Interest-
ingly, global estimates of GPP and ET were similar, regard-
less of land cover, confirming studies conducted at continen-
tal scales (Jung et al., 2007). However, we show that there
are large regional differences, 20–30 %, in the sensitivity of
biogeochemical fluxes to climate that are directly linked to
land-cover uncertainty. High-PFT uncertainty did not always
correspond to high biogeochemical cycling uncertainty (e.g.,
wet tropics), illustrating that propagated errors may differ
from the initial condition agreement and that the choice of
evaluation metric is important. These PFT datasets have ap-
plications beyond ESM modeling and can be integrated with
bottom-up studies, include accounting methods for evaluat-
ing carbon stocks (Kindermann et al., 2008), or as base-maps
that can inform biodiversity-patterns related to biogeography
(Loucks et al., 2008).
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