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Abstract. This paper presents a new offline dust cycle model
which uses the Lund-Potsdam-Jena dynamic global vege-
tation model (Sitch et al., 2003) to calculate time varying
dust sources. Surface emissions are calculated by simulating
the processes of saltation and sandblasting using an existing
model (Tegen et al., 2002). Dust particles are transported
using the TOMCAT chemical transport model (Chipperfield,
2006). Dust particles are removed from the atmosphere by
dry deposition and sub-cloud scavenging. The model is de-
signed so that it can be driven using reanalysis data or GCM
derived fields.

To improve the performance of the model, threshold
values for vegetation cover, soil moisture, snow depth and
threshold friction velocity, used to determine surface emis-
sions are tuned. The effectiveness of three sub-cloud scav-
enging schemes are also tested. An ensemble of tuning ex-
periments are evaluated against dust deposition and surface
concentration measurements. Surface emissions which pro-
duce the best agreement with observations range from 1600
to 2400 Mtyr−1.

1 Introduction

Mineral dust plays an interactive role in the Earth’s system
by modifying the radiation balance (Forster et al., 2007) and
transporting nutrients to the terrestrial (Kaufman et al., 2005;
Menendez et al., 2007) and marine ecosystems (Coale et al.,
2004; Jickells et al., 2005). Observations show that vegeta-
tion cover may play a role in constraining dust emissions on
seasonal and inter-annual time scales (Zhao, 2004; Lee and
Sohn, 2009). In the Sahel, a three way connection between
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rainfall, vegetation and dust emissions has been suggested,
whereby a decrease in precipitation in the Sahel causes a re-
duction in vegetation cover, which increases dust emissions
(Evan et al., 2006; Zender and Kwon, 2005).

This theory is supported by measurements of Normalised
Difference Vegetation Index (NDVI) in the Sahel which show
that vegetation cover responds to changes in precipitation
(Tucker et al., 1991). Studies have shown that this re-
sponse occurs relatively quickly. NDVI has been correlated
with rainfall for the concurrent month plus the two previous
months (Nicholson et al., 1990; Herrmann et al., 2005). Lim-
itations in vegetation models means that dust cycle models
are unable to simulate this fast response.

Two categories of dust cycle models have been developed
to date; models which use remote sensing data to describe
vegetation cover on the land surface (e.g.Zender et al., 2003;
Ginoux et al., 2004; Grini et al., 2005; Cakmur et al., 2006)
and models which use vegetation models, typically Equilib-
rium Biogeography-Biogeochemistry models (BIOME3 or
BIOME4) to simulate the distribution of vegetation cover
(e.g.Werner et al., 2002; Mahowald et al., 2002; Lunt and
Valdes, 2002; Mahowald et al., 1999). The latter category
can be used as predictive tools to estimate how the dust load-
ing will change in the future or in the past under different
climatic conditions.

Dust cycle models which use BIOME3 or BIOME4 are
unable to simulate the inter-annual variability in dust source
areas caused by the dynamic response of vegetation cover
to the climate. As a consequence, it is not possible to test
whether changes in the dust loading are caused by variability
in vegetation cover or by other processes. For this reason
this work describes a dust cycle model which uses the Lund-
Potsdam-Jena dynamic global vegetation model (LPJ) (Sitch
et al., 2003) to simulate the dynamic vegetation on the land
surface.
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As with any numerical model of a physical system, un-
certainty in the model results will arise from parametric and
structural uncertainty and uncertainty in the input data used
to drive the model. Parametric uncertainty in a dust model
may be associated with the values for threshold limits for
vegetation cover, soil moisture, snow cover and threshold
friction velocity used to calculate surface emissions.Lunt
and Valdes(2002) showed that the dust loading is very sen-
sitive to the choice of values for these thresholds. For exam-
ple, they found that increasing the threshold friction velocity
from 0.4 to 0.6 ms−1 caused a decrease in the dust loading
by a factor of 19.

A way to constrain the threshold limits is to perform a
model tuning. One strategy for tuning is to produce an en-
semble of models by selecting certain values for model pa-
rameters and selecting from these a subset of models which
perform well compared to observations. A way to select
values for parameters is to use Latin Hypercube Sampling
(McKay et al., 1979). This approach has been taken byEd-
wards and Marsh(2005) to tune parameters in a 3-D ocean
climate model and bySchneider von Deimling et al.(2006) to
tune parameters in the CLIMBER-2 intermediate complexity
climate model. The technique divides each tunable parame-
ter into equal intervals (N) of equal probability (1/N). One
sample is selected at random from each interval and matched
up randomly with a sample selected for another parame-
ter. The advantage of this technique over randomly choosing
values is that it ensures that all regions of parameter space are
evenly sampled. In this paper, Latin Hypercube Sampling is
used to select values for tuneable parameters in the model.

A source of structural uncertainty in the model arises from
the choice of parameterisation for sub-cloud scavenging.
Jung and Shao(2006) examined the characteristics of four
different sub-cloud scavenging schemes within the frame-
work of a dust cycle model. They found that the choice of sub
cloud scavenging scheme affected the ability of the model to
accurately predict surface concentrations of dust at selected
locations in Asia. Furthermore, the scavenging coefficient
deviated by a factor of 1000 depending on the precipitation
rate and particle size. To reduce the structural uncertainty
associated with wet deposition three sub-cloud scavenging
schemes are tested in this paper as part of the model tuning.

This paper presents a description of the new dust cycle
model and tuning. The layout of the paper is as follows: in
Sect.2, the dust model is described. This includes details of
how dust source areas are calculated from LPJ, a description
of the dust emission scheme, the chemical transport model
and parameterisation of wet and dry deposition. A baseline
dust simulation is described in Sect.2.4. The method used
for selecting values for threshold parameters is described in
Sect.2.5. The three types of sub-cloud scavenging schemes
are described in Sect.2.6. The measurement datasets used
to evaluate the model performance are described in Sect.2.7.
Finally, the results of the model tuning and potential applica-
tions of the model are discussed in Sect.3.

2 Dust model description

The dust model comprises of three existing models. LPJ
(Sitch et al., 2003) is used to calculate the distribution of un-
vegetated areas which may act as potential dust sources. This
is linked to an existing model which calculates dust emis-
sions by simulating the processes of saltation and sandblast-
ing (Tegen et al., 2002). Dust particles are transported as
independent tracers within the TOMCAT chemical transport
model (Chipperfield, 2006). Dust is removed from the atmo-
sphere by dry deposition and sub-cloud scavenging. The fol-
lowing section describes the components of the dust model
(Fig. 1).

2.1 Calculation of dust source areas using LPJ

LPJ simulates vegetation dynamics by modeling the
atmosphere-vegetation carbon and water fluxes, plant phys-
iology, phenology, establishment and mortality. LPJ calcu-
lates daily gross primary production (GPP) by modeling the
processes of photosynthesis and transpiration using a cou-
pled photosynthesis and water balance scheme developed in
the BIOME3 model (Haxeltine and Prentice, 1996). A frac-
tion of the GPP produced is used for the plant respiration.
The remaining fraction known as the net primary production
(NPP) is allocated to the leaf, sapwood and fine root carbon
pools, satisfying a series of structural constraints.

Vegetation is grouped into ten plant functional types
(PFTs) which are categorised according to their plant phy-
siological (C3, C4 photosynthesis), phenological (decidu-
ous, evergreen) and physiognomic (tree, grass) attributes.
Plant mortality by fire, heat stress, competition for light and
whether there is insufficient carbon to grow is modeled on an
annual basis. Every year a proportion of the total vegetation
cover decomposes and falls to the surface as litter and new
vegetation is established. A set of bioclimatic limits are used
to determine if a PFT can survive within a particular tem-
perature range. The establishment of new PFTs is prohibited
when the annual precipitation is less than 100 mm yr−1.

Studies have been carried out to validate LPJ vegetation
cover (Sitch et al., 2003) and hydrology (Wagner et al., 2003;
Gerten et al., 2004). LPJ has been shown to successfully
reproduce inter-annual variability in vegetation cover in the
Sahel from 1980 to 2002 (Seaquist et al., 2009). Latitudinal
shifts in vegetation cover in this region may affect the loca-
tion of the Sahara-Sahel boundary line and thus influence the
quantity of dust emitted from North Africa.

LPJ is forced using annual mean atmospheric CO2 and
monthly mean precipitation, fractional cloud cover and tem-
perature. In this paper, these are obtained from the Climate
Research Unit, University of East Anglia, UK (CRU 2.1),
but they could equally be obtained from a GCM. Historical
CO2 data from 1901 to 1995 is obtained from the Carbon
Cycle Model Linkage project (McGuire et al., 2001; Cramer
et al., 1999). Information on soil texture is taken from the

Geosci. Model Dev., 4, 85–105, 2011 www.geosci-model-dev.net/4/85/2011/



S. Shannon and D. J. Lunt: LPJ-dust version 1.0 87

20 Sarah Shannon: A new dust cycle model with dynamic vegetation: LPJ-dust version 1.0

Fig. 3. A flow chart of the LPJ-dust model

Fig. 1. A schematic of the LPJ-dust model and its components.

Soil Food and Agriculture Organization United Nations Edu-
cational, Scientific and Cultural Organization soil map of the
world (Zobler, 1986). This is used to calculate the daily per-
colation of water from the upper soil layer to the lower soil
layer.

LPJ is run on a 0.5× 0.5 degree spatial resolution. The
simulation begins with no vegetation cover and is allowed to
spin up for 1000 years so that the vegetation cover and car-
bon pools reach equilibrium. This is achieved by forcing the
model with the first 30 years of the CRU climate repetitively
for 1000 years. The model is then forced using 102 years of
the CRU climate data.

To demonstrate the relationship between vegetation cover,
precipitation and dust source areas in the model, Fig.1 shows
the correlation between the annual mean fraction of photo-
synthetically active radiation (FPAR) simulated by LPJ and
the CRU precipitation in the previous year. The correlation
coefficient is calculated over the years 1958 to 2002. Re-
gions of high positive correlation are visible on the margins
of dust sources. This signifies that vegetation cover responds
to precipitation in these regions. Figure2 shows the standard
deviation of the un-vegetated area for the same time period,
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Fig. 2. Correlation between annual mean FPAR simulated by LPJ
and CRU precipitation in the previous year.

where the un-vegetated area is

A = 1−
mfpar

mfparlim
(1)

and mfparlim is 0.5 and mfpar is the monthly FPAR. Inter-
annual variability in the un-vegetated area is evident at the
boundaries of the dust source regions.

2.1.1 LPJ outputs used to calculate dust source areas

The following variables are output annually and used to cal-
culate monthly dust source areas:

1. Annual foliage projective cover (FPC).

The FPC is calculated from FPCPFT, where FPCPFT is
the fractional coverage of each PFT in a grid cell. The
FPC has a value of 1 if the grid cell is completely cove-
red in vegetation or 0 if no vegetation cover is present.
The FPC is calculated from the FPCPFT using the fol-
lowing relationship.

PFT=10∑
PFT=1

FPC= CA(PFT) ·P (PFT) ·FPCPFT (2)

where CA(PFT) is the crown area and P(PFT) is the
population density of the PFT. The crown area is cal-
culated using an empirical relationship between crown
area and stem diameter (Zeide, 1993). The FPCPFT is
calculated using the following relationship (Monsi and
Saeki, 1953).

FPCPFT= 1−e−0.5LAIPFT (3)

where LAIPFT is the leaf area index of the PFT which is
related to the amount of carbon stored in the leaf.

2. Annual growing degree days base 5◦C (GDD5).

GDD5 is calculated by summing the daily temperatures
Td when temperatures are greater than 5◦C

GDD5 =

 d=365∑
d=1

Td if Td > 5◦ C

0 otherwise

 (4)

Td is calculated by interpolating monthly temperatures
onto a daily time step.

3. Annual tree height (H ).

The annual tree height is calculated using the empirical
relationship between vegetation height and stem diame-
ter (Huang et al., 1992).

H = kallom2D
allom3 (5)

wherekallom2= 40 and allom3 = 0.5 are constants and
D is the stem diameter.

4. Monthly volumetric soil moisture (sm).

The soil moisture in LPJ is calculated using a
semi-empirical approach which was developed in the
BIOME3 model (Haxeltine et al., 1996). The soil is
divided into two layers of 0.5 m each. The water held
in each layer is calculated daily by taking into account
the precipitation, snow melt, percolation, evapotranspi-
ration and runoff. The percolation rate is dependent on
the soil texture. When the soil layer is at field capacity
the excess water is considered to be runoff. The soil wa-
ter content of the upper layer on any given day is related
to the amount of water into the soil layer plus the water
out of the soil layer during the previous day.

sm=
(
melt+precip−perc− runoff−β1AET

)
−AWC1

where melt is the snowmelt, precip is the precipitation,
perc is the percolation, runoff is the runoff andβ1 is the
rate of transpired water from the upper layer to the lower
layer. AET is the calculated evapotranspiration rate for
each plant functional type. AWC1 is the available water
holding capacity. The soil moisture in the upper 0.5 m
of the soil is converted from units of mm into percentage
volumetric soil moisture.

5. Monthly snow depth (sd).

LPJ calculates monthly snow depth using daily precipi-
tation data which is derived from monthly precipitation
that has been interpolated onto a daily time step. When
the daily temperature is less than –2◦C, new snow is
formed. The magnitude of the snow formed is pro-
portional to the daily precipitation. An adjustment is
made to the snow depth to account for the melting of
snow. Snow melt occurs when the daily temperature is
greater than –2◦C. The amount of melting is related to
the temperature by snow melt coefficient taken from the
BIOME3 model (Haxeltine et al., 1996).

6. Monthly fraction of photosynthetically active radiation
(mfpar).

The mfpar predicted by LPJ gives an indication of the
state and productivity of the vegetation cover. This
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quantity is defined as the fraction of incoming solar ra-
diation absorbed by vegetation cover which is used to
drive photosynthesis. It is calculated using the follow-
ing relationship,

mfpar= FPCPFT·Dphen (6)

whereDphen is the daily leaf-on fraction.Dphen and is
calculated from the accumulated GDD5 and has a value
of 1 when leaves are present and 0 when leaves are ab-
sent.

2.1.2 Creating a biome map of vegetation cover

GDD5 and H are used to convert FPC into a biome map
every year using a scheme adapted fromJoos et al.(2004).
This conversion is carried out because at high latitudes, LPJ
predicts barren land (i.e. FPC = 0), combined with low soil
moisture and low snow cover which is a criteria for a dust
source. This results in a large dust source area in the Cana-
dian Arctic. Creating a biome map allows polar desert, which
has low GDD5 and is not a dust source, to be distinguished
from a hot desert which has high GDD5 and is a dust source.
Using this scheme also allows trees with a stand height of
less than 4 m to be considered as shrubs. Although this is a
simplification, it means that regions with woody PFTs will
act as dust sources if productivity is sufficiently low. This is
a useful assumption as LPJ does not simulate shrub PFTs. A
schematic of the scheme used to create a biome map is shown
in Fig. 4. Dust emissions are permitted for regions contain-
ing hot desert, dry grass, dry shrubs, tundra grass and tundra
shrubs.

2.1.3 Calculating monthly dust source areas

For grass-dominated biomes (tundra grass and dry grass) the
area exposed for dust emission is allowed to vary seasonally.
The un-vegetated areaAgrass is linearly proportional to the
mfpar below a threshold value mfparlim .

Agrass=

{
1−

mfpar
mfparlim

if mfpar< mfparlim

0 otherwise,
(7)

where mfpar is calculated from Eq. (6).
In shrub dominated biomes the area exposed for dust emis-

sion remains fixed throughout the year. This is because
shrubs are assumed to protect the surface all year round even
when no leaves are present. The annual maximum mfpar
(mfparmax) is used as an index for the density of shrubs. For
shrub dominated biomes, the area is calculated as

Ashrub=

{
1−mfparmax if mfpar< mfparlim

0 otherwise,
(8)

This means the dust source area remains constant through-
out the year but decreases to zero when the (mfparmax) =1.

The same mfparlim is used for grasses and shrubs in the
model. LPJ does not explicitly simulate shrub PFTs. The
scheme used to convert PFTs into biomes produces very lit-
tle dry shrub land compared to the Matthews vegetation map
(Matthews, 1983). This is caused by the lack of PFTs with
GDD5 > 500 and tree height<4 m simulated by LPJ. The
scheme is reasonably successful at predicting tundra shrub
land. We would expect the mfparlim for dry shrubs to be
higher than that used for grasses and tundra shrubs. However,
because very little dry shrubs are simulated, we decided that
using the same mfparlim would not significantly affect esti-
mates of dust source regions.

At high latitudes, dust emissions are suppressed by snow
cover. The area exposed for dust emission, Asnow, is linearly
related to the snow depth (sd) below a threshold value (sdlim).

Asnow=

{
1−

sd
sdlim

if sd< sdlim

0 otherwise,
(9)

The total area available for dust emission is related to area
of dry ground that is un-vegetated and not covered by snow.
The erodible areaAbare is expressed by the following form

Abare=

{
Agrass·Asnow·Iθ for grass biomes

Ashrub·Asnow·Iθ for shrub biomes
(10)

whereAgrassandAshrubis the contribution of exposed ground
from shrub or grass vegetation cover,Asnow is the contribu-
tion from snow cover. Iθ represents the effect of the soil
moisture. When sm exceeds a threshold limit smlim , thenIθ

is assigned a value of 0 and no dust emissions occur. Con-
versely, if the soil moisture is below smlim , then Iθ has a
value of 1 and dust emissions will occur.

2.2 Calculation of the dust flux

The calculation of the dust flux is taken from the model by
Tegen et al.(2002). The model parameterises saltation and
sandblasting using the scheme byMarticorena and Berga-
metti (1995). The horizontal fluxGj generated by saltating
particles is calculated as

Gj =
ρa

g
u∗3

(
1+

ηu∗
t

u∗

)(
1−

(
ηu∗

t

)2
u∗2

)
·sj (11)

whereρa is the density of air (kgm−3), g is the gravitational
constant (ms−1), u∗ is the surface wind velocity (ms−1) and
u∗

t is the threshold friction velocity (ms−1).
sj is used to scale the relative contribution of each size

fraction j to the total flux. sj is the surface area covered
by a particle size fraction relative to the area covered by the
total flux of particles. The surface covered by each grain is
calculated from its basal surface. This is related to the mass
(M) of the particle such that,

dS
(
Dp
)
=

dM
(
Dp
)

2
3ρpDp

(12)
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whereρd is the density of the particle andDp is the particle
diameter. The total basal surface is

STOTAL =

∫
Dp

dS
(
Dp
)
dDp (13)

The relative area covered by each particle fraction is then,

sj =
dS
(
Dp
)

STOTAL
(14)

u∗
t in Eq. (11) is calculated as a function of particle diame-

ter using a semi-empirical relationship described byIversen
and White(1982). u∗

t is modified to account for the presence
of non-erodible elements such as vegetation cover or rocks
on the surface. The adjustment tou∗

t is applied by dividing
by the drag partition ratiofeff (Marticorena and Bergametti,
1995)

feff = 1−

 ln
(

z0
z0s

)
ln

(
0.35

(
10
z0s

)0.8
)
 (15)

where roughness length of a surface with no obstaclesz0s =

0.001 cm. The roughness length of the surfacez0 is assigned
a value of 0.01 cm which is a typical value for level desert
(Seinfeld and Pandis, 1998). In this casefeff has a constant
value of 0.64 for all dust emitting regions.

The friction velocityu∗ in Eq. (11) is calculated as a func-
tion of surface roughness, such that

u∗
=

u

k
ln

(
z

z0

)
(16)

wherek is the Von Karman constant = 0.4 (dimensionless),z

is the height (m),z0 is the roughness length (m) andu (ms−1)
is the wind speed.η in Eq. (11) is a tunable parameter which
serves to increase or decreaseu∗

t . The default value forη
used byTegen et al.(2002) is 0.66.

Dust emissions are calculated on a six hourly time step us-
ing ERA-40 10 m wind speeds. The emissions are calculated
on 0.5 degree× 0.5 degree resolution to match the LPJ reso-
lution. 1 × 1 degree wind speed data is interpolated onto the
0.5×0.5 degree resolution by assuming that four adjoining
half degree pixels have the same wind speed as a 1 degree
pixel.

The vertical fluxF is estimated from the horizontal flux
by the following

F = αAbareG (17)

whereG is the horizontal flux determined from Eq. (11),
Abareis the monthly bare ground fraction which has been cal-
culated from LPJ in Eq. (10) andα is the sandblasting mass
efficiency. Theα values used in the model are taken from
Marticorena et al.(1997) who summarise the experimental
values for different soil types. For completeness theα for
different soil types are listed in Table1.

Table 1. Column 2 contains the sandblasting mass efficiency values
for different soil textures. Columns 3 to 6 contain the relative mass
of the main soil types for each soil texture. These values are used to
calculate the particle size distribution in Eq. (18).

Zobler texture α cm−1 Coarse Medium/ Silt Clay
classes Sand Fine

Sand

Coarse 2.1×10−6 0.43 0.4 0.17 –
Medium 4.0×10−6 – 0.37 0.33 0.3
Fine 1.0×10−7 – – 0.33 0.67
Coarse-Medium 2.7×10−6 0.1 0.5 0.20 0.20
Coarse-Fine 2.8×10−6 0 0.5 0.12 0.38
Medium-Fine 1.0×10−7 0 0.27 0.27 0.48
Coarse-Medium-Fine 2.5×10−6 0.23 0.23 0.19 0.35

Information on the particle size distribution comes from
the Soil Food and Agriculture Organization United Nations
Educational, Scientific and Cultural Organization soil map
of the world (Zobler, 1986). The particle size distribution
for each soil texture type is calculated using the following
relationship fromTegen et al.(2002)

dM
(
Dp
)

d lnDp

=

n∑
j=1

Mj

(2π)
1
2 lnσj

exp

((
lnDp− lnMMD j

)2
−2ln2σj

)
(18)

Dp is the particle size,Mj is the percentage mass of coarse
sand, medium/fine sand, silt or clay, MMDj is the mass me-
dian diameter andσ has a value of 2. The values fromMj

for each soil type are listed in Table1.
Dust emissions are calculated for particles with diame-

ter 0.1 µm, 0.3 µm, 0.9 µm, 2.6 µm, 8 µm, 24 µm, 72 µm and
220 µm. The emissions are re-gridded from a 0.5×0.5 spa-
tial resolution onto a T42 spatial resolution for input into the
TOMCAT chemical transport model.

2.3 Transport and removal

Dust particles are transported as independent tracers us-
ing the chemical transport model TOMCAT (Chipperfield,
2006). TOMCAT is driven by 3-D wind speeds, specific
humidity and temperature which can be derived from either
meteorological re-analysis data or GCM output. TOMCAT
simulates the transport of gaseous or aerosol species via ad-
vection, convection and vertical diffusion.

The advection scheme used in TOMCAT is the conserva-
tion of second order moments developed byPrather(1986).
The Prather advection scheme represents tracer concentra-
tion as second-order polynomials within each grid box. This
makes the scheme more computationally expensive than sim-
pler schemes, such as the slopes scheme byRussell and
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Lerner(1981). Although the Prather advection scheme is ex-
pensive, it has been shown to have low numerical diffusion,
thus providing more accurate results (Ge and Lei, 1998).

Convection is parameterised in TOMCAT using a scheme
by developed byTiedtke(1989). The scheme includes cu-
mulus updrafts in the vertical direction and the exchange of
air from inside the cloud to outside the cloud and vice versa.
The convective scheme calculates the mass of tracer that is
uplifted within a cloud column. Vertical diffusion is para-
meterised in TOMCAT using a scheme developed byLouis
(1979).

TOMCAT is forced using ERA-40 6 hourly 3-D tempera-
ture,U andV wind speed and specific humidity fields on a
T42 spatial resolution. The model has 31 vertical pressure
levels extending from the surface to the stratosphere. Advec-
tion, convection, diffusion and dust removal take place on an
hourly time step.

2.3.1 Dry deposition

The dry deposition parameterisation consists of gravitational
settling and turbulent mixing across the quasi sub-laminar
layer. The dry deposition parameterisation is taken from
Lunt (2001) which is based on equations for dry deposition
described inSeinfeld and Pandis(1998). The rate of dust re-
moval by dry deposition per unit area per unit timeFz is pro-
portional to the concentration of dust at a particular height
Cz and to the deposition velocityvd by the following rela-
tionship,

Fz = vdCz (19)

The dry deposition process is conceptualised in terms of an
electric circuit containing resistance in series.ra is the aero-
dynamic resistance andrb is the quasi laminar sub layer re-
sistance. The totalvd is then

vd = vs+
1

ra+rb+rarbvs
(20)

The first term on the right hand side of the equation corre-
sponds to the gravitational settling velocity (vs). The second
expression corresponds to the deposition velocity across the
quasi laminar sub-layer.

The gravitational settling velocityvs is

vs=
ρpD

2
pgCc

18µ
(21)

whereρp is the density of the particle (kgm−3), Dp is the
particle diameter (m),g is gravitational constant (ms−2), µ

is the viscosity of air (kg ms−1) andCc is the slip correction
factor.Cc becomes important when the particle diameter ap-
proaches the same magnitude as the mean free path of air and

the medium can no longer be considered a continuum. The
slip correction factor is given by

Cc = 1+
2λ

Dp

(
1.257+0.4exp−0.55Dp/λ

)
(22)

whereλ is the mean free path of the air (m).
Dust is transported downwards by gravitational settling

through each model vertical level. For simplification, we as-
sume that particles do not fall though more than one vertical
level within one time step.

For the shortest model level and a time step of one hour,
the assumption implies that the deposition velocity should
not exceed 18 000 cm h−1. This applies to the six small-
est particles sizes which have deposition velocities less than
16 000 cm h−1. The two largest particle sizes fall faster and
do not obey the assumption. These particles represent only
3.2% of the total surface emissions, therefore, we assume the
simplification does not cause a large uncertainty in the model
estimates of surface concentrations and deposition rates.

At the lowest model level the resistance of the quasi lami-
nar sub-layer in Eq. (20) is defined as

rb =
1

u∗

(
Sc

−2
3 +10−3

St

) (23)

whereSc is the Schmidt number which accounts for Brow-
nian motion of very small particles.Sc is calculated as
Sc= ν/D, ν is the kinematic viscosity of air andD is the
molecular diffusivity. St is the Stokes number which ac-
counts for inertial impaction for larger size particles.u∗ is
the ERA-40 wind speed at the lowest model level.

2.3.2 Wet deposition

Dust is removed from the atmosphere by sub-cloud scaveng-
ing. The amount of mass removed is proportional to the pre-
cipitation rate and the scavenging coefficient such that,

Ct = C0exp−3t (24)

C0 is the initial tracer mass (kg) andt is the model time step
which is one hour.3 is the scavenging coefficient which has
units of h−1 (Seinfeld and Pandis, 1998). The scavenging
coefficient is calculated using the following empirical rela-
tionship (Brandt et al., 2002).

3 = ApB
z (25)

whereA = 8.4×10−5 andB = 0.79 for both convective and
large scale precipitation.pz is the large scale or convective
precipitation rate (mm h−1) at a particular height.pz is cal-
culated from the surface precipitation rate (p0) by assuming
a vertical precipitation profile (Fig.6). For large scale pre-
cipitation, the cloud is divided into an upper and a lower part.
The cloud base assumed to be located at 90% of the surface
pressure, the cloud middle at about 80% and the cloud top
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Fig. 3. Standard deviation of the un-vegetated area simulated by
LPJ over the period 1958–2002.

at about 50%. The precipitation varies linearly in the up-
per part of the cloud, from zero at cloud top, to a valuex,
at cloud middle.x is calculated from the medium and low
cloud amounts such that

x = p0
Amed

(Amed+Alow)
(26)

where Amed and Alow are the ERA-40 6 hourly low and
medium cloud amounts.

For convective precipitation, the cloud base is assumed to
be at a pressure which is 90% of surface pressure, and cloud
top is assumed to be at the tropopause. The amount of pre-
cipitation varies linearly from zero at cloud top to the surface
value at the base of the cloud. This figure has been referred
to previously in the text. Alternative sub-cloud scavenging
schemes are tested in Sect.2.6.

2.4 A baseline dust simulation

Figure 3 shows a schematic of the dust model. A base-
line simulation is run using an arbitrary choice of values for
mfparlim , sdlim , η and smlim . These parameters will be tuned
in the following section. For the baseline simulation the
values selected are mfparlim = 0.5, sdlim = 0.1 m, η = 0.66,
smlim = 4%. Figure5 shows a plot of surface emissions and
deposition fields. It can be seen that dry deposition is the
dominant mechanism for dust removal close to the source re-
gions owing to the abundance of heavy particles close to the
source. In addition to this, there is generally a lack of precipi-
tation in these regions which means dry deposition is the pre-
vailing mechanism for removal. In contrast, wet deposition
dominates the removal in regions far from the source. The
annual mean surface emissions predicted by the un-tuned
model averaged over the years 1987–1990 is 1944 Mtyr−1.

2.5 Tuning threshold limits for surface emissions

We decide to tune four threshold limits in the model;
mfparlim , sdlim , η and smlim . The reasons for tuning these
particular set of parameters are discussed in turn below.
Values for the thresholds are selected using Latin Hypercube

Sampling (McKay et al., 1979). To use this technique a sen-
sible minimum and maximum range for each parameter and
the total number of experiments must be known. To esti-
mate the minimum and maximum range for the tunable pa-
rameters, extreme values for the threshold limits are tested.
The model is run multiple times using different values for the
threshold limits and emissions are compared to a simulation
using the model ofTegen et al.(2002). Data from the year
1987 is used for comparison.

The first parameter to tune is the vegetation threshold
mfparlim . The value for this parameter is poorly constrained
by observations. Where observations are available they may
be limited to a particular region (Kimura et al., 2009). Of-
ten the vegetation threshold is chosen subjectively to give
reasonable estimates of dust source regions. For example,
studies which use BIOME3 or BIOME4 models, use an an-
nual mean leaf area index (LAI) of 1.2 (Lunt and Valdes,
2002) or an annual maximum LAI of 0.35 m2 m−2 in the
tropics and subtropics and 0.20 m2 m−2 in colder regions
(Mahowald et al., 1999).

Alternatively,Zender et al.(2003) used a satellite derived
vegetation dataset a single threshold of 0.3 m2 m−2. Another
approach has been to use different thresholds depending on
the vegetation type.Tegen et al.(2002) used a monthly FPAR
limit of 0.25 for grasses and annual mean FPAR of 0.5 for
shrubs which was derived from NDVI observations.

We decided to tune the mfparlim for LPJ within a mini-
mum and maximum range of 0.2–0.5. A comparison with the
model ofTegen et al.(2002) for the same period shows that
choosing values lower than 0.2 leads to very little dust emis-
sions in South America, North America, South Africa and
Australia. Choosing an mfparlim threshold greater than 0.5
leads to dust emissions from highly productive grass lands
where C4 grass is present.

The second parameter tuned is the soil moisture threshold
sdlim . Dust models treat the interaction between soil mois-
ture and dust emissions in a different ways.Lunt and Valdes
(2002) assumed that dust emissions occur when smlim is less
than 10% by volume.Tegen et al.(2002) allowed dust emis-
sions whenever the soil was not at field capacity.Werner
et al.(2002) allowed dust emissions if the relative soil mois-
ture over the total soil depth was less than 1%. Other models
use surface wetness limit of 0.5 (Ginoux et al., 2001) or 0.4
(Yue et al., 2009). Alternatively, some models circumvent
using a soil moisture limit by assuming no emissions occur
when there are consecutive days with no precipitation (Grini
et al., 2005; Myhre et al., 2003; Claquin et al., 1999). One of
the reasons to tune smlim is because wind speeds can dry the
soil surface causing emissions even though the soil beneath
may be at field capacity. Furthermore, in remote regions,
uncertainty in the precipitation rates, caused by the lack of
observational data, means that the soil moisture may not be
known well. The smlim values are selected within the range
of 2% to 5%. Values lower than 2% leads to an under predic-
tion of dust emissions from central Asia, Australia and North
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Fig. 4. Scheme used to calculate biomes from LPJ annual meanFPC, GDD5 and tree height. The scheme has been adapted from Joos
et al. (2004). Dust emitting biomes are designated in bold
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Fig. 5. Emissions and deposition fields from the baseline dust simulation

Fig. 4. Scheme used to calculate biomes from LPJ annual mean FPC, GDD5 and tree height. The scheme has been adapted fromJoos et al.
(2004). Dust emitting biomes are designated in bold.

America. The upper bound was selected so as to include
emissions from the boundaries of the deserts, for example in
the Sahel in North Africa.

The third parameter tuned is the threshold limit for snow
depth sdlim . This threshold represents the snow depth at
which a model grid box is completely covered by snow. We
expect the choice of value for sdlim to affect surface emis-
sions at high latitudes but to have a relatively small impact
on the total global dust loading. Typical values used in pre-
vious studies have been 0.05 m (Zender et al., 2003; Werner
et al., 2002) and 0.015 m (Tegen et al., 2002). sdlim thresh-
old limits are tuned within the a range of 0.01 m to 0.1 m.
Choosing a threshold greater 0.1 m gives rise to an abundance
of dust emissions at high latitudes in winter while choosing a
threshold smaller than 0.01 m eliminates dust emissions from
the Gobi Desert.

The fourth parameter tuned isη from Eq. (11). This pa-
rameter increases or decreaseu∗

t for each particle by a con-
stant factor, while retaining the same form of size depen-
dence betweenu∗

t and the particle diameter as calculated by
Iversen and White(1982). This parameter is tuned to ac-
count for uncertainties in the properties of the surface such as
surface crusting or cultivation which is not parameterised in
the model.Tegen et al.(2002) used a value of 0.66 forη. We
tuneη range over a range of 0.4–1. Choosing a value of 0.4
for theη gives annual mean dust emissions of 3000 Mtyr−1

which is the upper estimate predicted by other dust model-
ing studies (Tegen and Fung, 1994; Mahowald et al., 1999).
Choosing a value of 1 for theη means the threshold friction
velocities are un-scaled. This results in very low annual mean
dust emissions of 60 Mtyr−1.

21 sets of surface emissions are generated for the years
1987 to 1990. This comprises of 20 sets of surface emis-
sions calculated using Latin Hypercube Sampling and the un-
tuned emissions from the baseline simulation. The surface
emissions are combined with three sub-cloud scavenging
schemes (see Sect.2.6). Each set of surface emissions con-

tains 8 tracers resulting in 504 sets of experiments. Running
this number of experiments provides a balance between com-
putational expense and coverage of parameter space.

2.6 Sub-cloud scavenging schemes

The un-tuned model uses a sub-cloud scavenging scheme
which is independent of the size of the precipitating cloud
droplets (Brandt et al., 2002). We test another possible sub-
cloud scavenging scheme, in which the scavenging coeffi-
cient is calculated as a function of the cloud droplet size.
The parameterisation is based on the semi-empirical expres-
sion for the aerosol droplet collision efficiency described by
Slinn(1983). The collision efficiency is calculated as a func-
tion of particle size as,

E =
4

ReSc

[
1+0.4Re

1
2 Sc

1
3 +0.16Re

1
2 Sc

1
2

]

+4φ
[
ω−1

+

(
1+2Re

1
2

)
φ
]
+

(
St−S

St−S +
2
3

) 3
2

(Seinfeld, 1998). Re is the Reynolds number,Sc is the
Schmidt number,St is the Stokes number,ϕ is the ratio of
the particle diameter to the drop diameter,ω is the ratio of
the water viscosity to air viscosity and

S =
1.2+

1
12 ln(1+Re)

1+ ln(1+Re)
(27)

The scavenging coefficient is calculated from the collision
coefficient by assuming a monotonic rain droplet diameter,

3 =
3

2

Epz

Ddroplet
(28)

whereDdroplet is the rain droplet size (mm) andpz is the
precipitation rate (mm h−1). 3 is calculated for a rain droplet
with diameter 0.5 mm and 0.1 mm.
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Fig. 5. Emissions and deposition fields from the baseline dust sim-
ulation.

Figure7 shows the scavenging coefficient calculated for
the three schemes using a precipitation rate of 1 mm h−1.
The straight line corresponds to the particle size independent
sub-cloud scavenging scheme used in the un-tuned model.
The particle size dependent removal schemes have a hook
shaped curve which indicates that scavenging is efficient for
very small and very large particles. For very large parti-
cles the process of inertial impact dominates the removal
while Brownian diffusion is important for very small parti-
cles. However, for particles in the region of 0.1 µm diameter
scavenging is not as efficient. The simulations are run for the
years 1987–1990 and amount of dust removed by wet and dry
deposition and the surface concentrations are output daily.
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Model level 5
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height height

Model level 3
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P (large scale) P (convective)
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Fig. 6. Calculation of 3-D precipitation rates from surface precip-
itation rates by assuming a vertical cloud profile based on low and
medium cloud fractional cloud amounts. The scheme is taken from
Lunt (2001).
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Fig. 7. Comparison between the scavenging coefficients for three
different wet deposition schemes. The dashed lines correspond to
the size dependent removal schemes (Slinn, 1983) while the fixed
line corresponds to the size independent removal scheme (Brandt
et al., 2002). A precipitation rate of 1 mm h−1 is used to calculate
the scavenging coefficient for this figure.

2.7 Target datasets

Three measurement datasets are used to evaluate the perfor-
mance of the experiments. The first is dust deposition rates to
the ocean from marine sediment traps from the Dust Indica-
tors and Records of Terrestrial and MArine Palaeoenviron-
ments dataset (Kohfeld and Harrison, 2001). This data has
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been compiled byTegen et al.(2002) and has been filtered to
only include observations taken for more than 50 days. Sites
where observations could potentially be contaminated by flu-
vial inputs or hemipelagic reworking have been removed. In
regions where multiple observations occur within one model
grid box the mean deposition rate is used. Deposition rates
obtained from ice cores, marine cores and loess are excluded
as these observations represent dust deposition over many
hundreds of years and are not comparable to the relatively
short tuning period.

The second dataset consists of dust deposition rates com-
piled byGinoux et al.(2001). This dataset set contains obser-
vations made in the Pacific Ocean and from high resolution
ice core records. Observations which do not occur duing the
1980s and 1990s are excluded in the analysis.

The third dataset comprises of surface concentration mea-
surements from the University of Miami aerosol network
(provided by J. Prospero and D. Savoie). The network con-
tains observations of monthly surface concentrations made at
sites during the 1980s and 1990s. The annual mean surface
concentrations are calculated from monthly data and used in
the analysis. Figure8 shows the spatial distribution of the
DIRTMAP deposition, Ginoux deposition and University of
Miami surface concentration observations.

2.8 Results

To evaluate the best experiment in the ensemble, a skill score
is used. The skills score is based on the normalised root
mean square error (NRMSE) between the observations and
the model data. The NRMSE is calculated as

NRMSE=

√
MSE

σ 2
(29)

whereσ 2 is the variance of the observations and MSE is the
mean square error.

σ 2 is calculated from

σ 2
=

∑n
i=1(oi −µ)2

n
(30)

whereoi is the observed data,µ is the mean of the observa-
tions andn is the number of observations.

The MSE is

MSE=

∑n
i=1(mi −oi)

2

n
(31)

wheremi is the modelled data.
Prior to calculating the NRMSE, a global tuning factor is

calculated (T ). This is the value by which the data is adjusted
by to minimize the NRMSE.T acts to move the modeled data
up or down so that it fits on the ideal 1:1 line with the least
amount of scatter. The total error (Q) is calculated from the
NRMSE such that,

Q =

3∑
j=1

wj NRMSEj (32)
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Fig. 8. Location of DIRTMAP sites (circles), Ginoux deposition
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Fig. 9. Model error plotted against position of experiment in the en-
semble, Brandt removal (green), Slinn removalDp = 0.1 mm (blue)
and Slinn removalDp = 0.5 mm (red).

wj is a weighting factor for each dataset. Because there are
two deposition datasets each is weighted half as much as the
surface concentration data. A similar weighting approach has
been used byCakmur et al.(2006) who used multiple obser-
vational datasets to contrain dust emissions. Weighting each
dataset evenly does not change the outcome for the best and
worst experiment but changes the order of the experiments
within the ensemble.

Table2 lists the experiments ranked according to the total
error Q. The threshold values for each experiment, the re-
moval scheme and theT values for each dataset are listed in
the table. The top five best experiments use the Brandt re-
moval scheme and a soil moisture threshold of 2%. There is
no area of parameter space which results in high skills scores
for the other threshold parameters.

Figure9 shows the model error plotted against the position
of experiment in the ensemble. Experiments which use the
Brandt removal scheme and the Slinn removal scheme with
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Table 2. Tuning experiments ranked according to the total error. Threshold limits used to determine surface emissions, the tuning factor T
and the removal schemes are also listed.

Expt ID Removal Scheme mfparlim smlim sdlim η TDirtmap TGinoux TMiami Q

54 Brandt 0.33 0.02 0.08 0.90 7.26 10.54 7.61 0.50
44 Brandt 0.37 0.02 0.10 0.55 0.21 0.89 0.77 0.50
45 Brandt 0.23 0.02 0.05 0.80 2.04 4.22 3.01 0.51
52 Brandt 0.28 0.02 0.07 0.58 0.23 0.87 0.69 0.51
62 Brandt 0.43 0.02 0.03 0.82 2.94 5.74 4.22 0.51
46 Brandt 0.32 0.03 0.07 0.93 9.38 11.93 7.83 0.51
25 Slinn droplet = 0.1 mm 0.32 0.03 0.07 0.93 10.42 12.74 5.18 0.51
63 Brandt 0.27 0.02 0.09 0.64 0.37 1.27 0.95 0.52
24 Slinn droplet = 0.1 mm 0.23 0.02 0.05 0.80 2.07 4.85 1.97 0.52
29 Slinn droplet = 0.1 mm 0.30 0.04 0.02 0.99 19.58 20.46 8.40 0.52
34 Slinn droplet = 0.1 mm 0.25 0.05 0.03 0.73 0.97 2.45 0.97 0.52
59 Brandt 0.40 0.03 0.04 0.78 1.57 3.14 2.08 0.53
33 Slinn droplet = 0.1 mm 0.33 0.02 0.08 0.90 7.77 11.51 4.77 0.53
38 Slinn droplet = 0.1 mm 0.40 0.03 0.04 0.78 1.60 3.40 1.41 0.53
35 Slinn droplet = 0.1 mm 0.24 0.03 0.04 0.60 0.26 1.02 0.43 0.53
56 Brandt 0.24 0.03 0.04 0.60 0.26 0.89 0.63 0.53
48 Brandt 0.46 0.03 0.06 0.41 0.11 0.31 0.23 0.53
28 Slinn droplet = 0.1 mm 0.36 0.04 0.05 0.71 0.73 1.98 0.83 0.53
49 Brandt 0.36 0.04 0.05 0.71 0.73 1.83 1.22 0.53
42 Slinn droplet = 0.1 mm 0.27 0.02 0.09 0.64 0.37 1.45 0.62 0.53
57 Brandt 0.49 0.02 0.00 0.68 0.52 1.62 1.27 0.53
26 Slinn droplet = 0.1 mm 0.21 0.04 0.02 0.46 0.13 0.49 0.20 0.53
50 Brandt 0.30 0.04 0.02 0.99 16.95 19.96 12.54 0.53
39 Slinn droplet = 0.1 mm 0.41 0.03 0.08 0.96 13.88 14.12 5.99 0.53
60 Brandt 0.41 0.03 0.08 0.96 12.15 14.12 9.24 0.53
40 Slinn droplet = 0.1 mm 0.44 0.04 0.09 0.87 4.97 6.11 2.55 0.53
47 Brandt 0.21 0.04 0.02 0.46 0.13 0.43 0.30 0.53
55 Brandt 0.25 0.05 0.03 0.73 0.96 2.23 1.38 0.54
37 Slinn droplet = 0.1 mm 0.35 0.04 0.01 0.66 0.42 1.36 0.58 0.54
58 Brandt 0.35 0.04 0.01 0.66 0.42 1.24 0.84 0.54
51 Brandt 0.39 0.05 0.01 0.46 0.17 0.38 0.27 0.54
31 Slinn droplet = 0.1 mm 0.28 0.02 0.07 0.58 0.23 0.99 0.44 0.54
61 Brandt 0.44 0.04 0.09 0.87 4.60 6.09 3.84 0.54
30 Slinn droplet = 0.1 mm 0.39 0.05 0.01 0.46 0.12 0.42 0.18 0.54
53 Brandt 0.47 0.05 0.06 0.51 0.16 0.51 0.36 0.55
43 Brandt 0.50 0.04 0.01 0.66 0.44 1.22 0.84 0.55
27 Slinn droplet = 0.1 mm 0.46 0.03 0.06 0.41 0.11 0.33 0.15 0.55
41 Slinn droplet = 0.1 mm 0.43 0.02 0.03 0.82 3.00 6.21 2.63 0.55
22 Slinn droplet = 0.1 mm 0.50 0.04 0.01 0.66 0.44 1.28 0.56 0.55
32 Slinn droplet = 0.1 mm 0.47 0.05 0.06 0.51 0.16 0.53 0.24 0.55
36 Slinn droplet = 0.1 mm 0.49 0.02 0.00 0.68 0.52 1.78 0.80 0.56
23 Slinn droplet = 0.1 mm 0.37 0.02 0.10 0.55 0.20 0.99 0.45 0.57
3 Slinn droplet = 0.5 mm 0.23 0.02 0.05 0.80 2.05 4.37 0.71 0.68
13 Slinn droplet = 0.5 mm 0.25 0.05 0.03 0.73 0.96 2.31 0.34 0.69
5 Slinn droplet = 0.5 mm 0.21 0.04 0.02 0.46 0.13 0.45 0.07 0.69
14 Slinn droplet = 0.5 mm 0.24 0.03 0.04 0.60 0.26 0.93 0.15 0.69
21 Slinn droplet = 0.5 mm 0.27 0.02 0.09 0.64 0.37 1.32 0.21 0.70
4 Slinn droplet = 0.5 mm 0.32 0.03 0.07 0.93 9.92 12.20 1.68 0.70
10 Slinn droplet = 0.5 mm 0.28 0.02 0.07 0.58 0.23 0.90 0.14 0.70
12 Slinn droplet = 0.5 mm 0.33 0.02 0.08 0.90 7.52 10.72 1.54 0.70
16 Slinn droplet = 0.5 mm 0.35 0.04 0.01 0.66 0.42 1.29 0.19 0.71
17 Slinn droplet = 0.5 mm 0.40 0.03 0.04 0.78 1.58 3.22 0.45 0.71
7 Slinn droplet = 0.5 mm 0.36 0.04 0.05 0.71 0.73 1.88 0.27 0.71
8 Slinn droplet = 0.5 mm 0.30 0.04 0.02 0.99 18.42 20.46 2.69 0.71
9 Slinn droplet = 0.5 mm 0.39 0.05 0.01 0.46 0.12 0.40 0.06 0.72
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Table 2. Continued.

Expt ID Removal Scheme mfparlim smlim sdlim η TDirtmap TGinoux TMiami Q

20 Slinn droplet = 0.5 mm 0.43 0.02 0.03 0.82 2.97 5.84 0.81 0.72
19 Slinn droplet = 0.5 mm 0.44 0.04 0.09 0.87 4.78 6.17 0.75 0.73
2 Slinn droplet = 0.5 mm 0.37 0.02 0.10 0.55 0.20 0.92 0.14 0.73
18 Slinn droplet = 0.5 mm 0.41 0.03 0.08 0.96 13.06 14.32 1.75 0.73
6 Slinn droplet = 0.5 mm 0.46 0.03 0.06 0.41 0.11 0.32 0.04 0.73
15 Slinn droplet = 0.5 mm 0.49 0.02 0.00 0.68 0.52 1.66 0.24 0.74
1 Slinn droplet = 0.5 mm 0.50 0.04 0.01 0.66 0.44 1.24 0.16 0.74
11 Slinn droplet = 0.5 mm 0.47 0.05 0.06 0.51 0.16 0.52 0.07 0.74

droplet diameter 0.1 mm perform the best. A sharp increase
in the model error can be seen for the experiments which use
the 0.5 mm rain droplet. The experiment with the lowest total
error has threshold limits mfparlim = 0.33, sdlim = 0.08 m,η =

0.9, smlim = 2% . This results in estimates of the annual mean
surface emissions which range from 1600 Mtyr−1 (T = 7.26,
DIRTMAP) and 3000 Mtyr−1, (T = 7.61, University of Mi-
ami) and 2400 Mtyr−1, (T = 10.54, Ginoux). The meanT
value gives emissions of 1900 Mtyr−1. It is not expected that
the value forT be exactly the same for each dataset. This is
because the observations contain inter-annual varibility and
different degrees of measurement error. There are also dif-
ferences in the spatial distribution of the observations. For
example, many of the University of Miami sites are located
far from the source region, while the DIRTMAP data con-
tains more sites downwind of the source regions.

Figure10shows a comparison between the model data and
the observations for the best and the worst performing exper-
iment in the ensemble. The best experiment shows improved
estimates of deposition rates and surface concentrations to
the North and South Pacific, Arabian Sea and the North At-
lantic and the Southern Atlantic.

Experiments are listed according to their NRMSE with
each dataset separately in Tables3, 4 and 5. The compa-
rison with the DIRTMAP data shows the best three exper-
iments have the same threshold limits but use different re-
moval schemes. This is because the DIRTMAP data contains
sites close to the source region, and thus show more sensiti-
vity to the choice of threshold limits and less sensitivity to the
removal scheme. The comparison with the surface concen-
trations and Ginoux deposition data, show that the Slinn re-
moval scheme with droplet diameter 0.1 mm and the Brandt
removal scheme produce high skills scores.

3 Conclusions

This work has described how the LPJ dynamic global veg-
etation model has been used to simulate the temporal vari-
ability in vegetation cover within the framework of a dust
cycle model. The development of the model has been mo-
tivated by the fact that current off-line dust models do not

simulate dynamic vegetation. The model has been tuned
by producing an ensemble of simulations and using a skills
score to select the best performing experiment. Surface emis-
sions which agree best with observations range from 1600 to
2400 Mtyr−1. This estimate lies within the range reported by
studies (Cakmur et al., 2006; Yue et al., 2009; Tanaka and
Chiba, 2006; Ginoux et al., 2004). The tuning carried out
explored only a small subset of the possible parametric and
structural uncertainty in the model, but resulted in improved
estimates of dust deposition to the North Atlantic, North Pa-
cific, South pacific and the Arabian Sea.

The LPJ-dust model has many limitations. Currently,
roughness length is assumed have a constant value for all
dust emitting regions. Wind speed has a non-linear relation-
ship with dust emissions, which means the way in which
the roughness length is treated, may have a large impact
on the surface emissions. One way to improve this is to
parameterise the roughness length as a function of the leaf
area index and the vegetation stand height simulated by
LPJ using an empirical relationship such as that byLindroth
(1993).

Another limitation is that the current set of PFT in LPJ
is not sufficient to characterise all the possible vegetation
types. In particular, LPJ does not simulate shrub PFTs
which may be important in semi-arid regions. The model
assumes that short trees are shrubs even though their phy-
siological and morphological attributes may be different to
that of trees. Furthermore, the model uses the same thresh-
old limit for both shrub and grasses to calculate dust emis-
sions. This could be improved by using a threshold specific
to different vegetation types in a similar way toTegen et al.
(2002).

Another limitation of the model, is that the temporal vari-
ability in sediment supply is not parameterised. Sediment
supply is enhanced when flooding deposits fine grain ma-
terial which can be easily eroded. Crusting of the surface
which occurs when the soil dries out reduces the sediment
supply. Zender and Kwon(2005) showed that this may be
an important process and may help explain why dust models
underestimate inter-annual variability.
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Table 3. Tuning experiments ranked according to NRMSE with DIRTMAP deposition rates.

Expt ID Removal Scheme mfparlim smlim sdlim η TGinoux NRMSE

40 Slinn droplet = 0.1 mm 0.44 0.04 0.09 0.87 4.97 1.04
61 Brandt 0.44 0.04 0.09 0.87 4.60 1.04
19 Slinn droplet = 0.5 mm 0.44 0.04 0.09 0.87 4.78 1.05
25 Slinn droplet = 0.1 mm 0.32 0.03 0.07 0.93 10.42 1.05
33 Slinn droplet = 0.1 mm 0.33 0.02 0.08 0.90 7.77 1.05
39 Slinn droplet = 0.1 mm 0.41 0.03 0.08 0.96 13.88 1.05
54 Brandt 0.33 0.02 0.08 0.90 7.26 1.05
12 Slinn droplet = 0.5 mm 0.33 0.02 0.08 0.90 7.52 1.05
4 Slinn droplet = 0.5 mm 0.32 0.03 0.07 0.93 9.92 1.06
46 Brandt 0.32 0.03 0.07 0.93 9.38 1.06
62 Brandt 0.43 0.02 0.03 0.82 2.94 1.06
18 Slinn droplet = 0.5 mm 0.41 0.03 0.08 0.96 13.06 1.06
20 Slinn droplet = 0.5 mm 0.43 0.02 0.03 0.82 2.97 1.06
59 Brandt 0.40 0.03 0.04 0.78 1.57 1.07
41 Slinn droplet = 0.1 mm 0.43 0.02 0.03 0.82 3.00 1.07
60 Brandt 0.41 0.03 0.08 0.96 12.15 1.07
29 Slinn droplet = 0.1 mm 0.30 0.04 0.02 0.99 19.58 1.07
45 Brandt 0.23 0.02 0.05 0.80 2.04 1.07
17 Slinn droplet = 0.5 mm 0.40 0.03 0.04 0.78 1.58 1.07
38 Slinn droplet = 0.1 mm 0.40 0.03 0.04 0.78 1.60 1.07
3 Slinn droplet = 0.5 mm 0.23 0.02 0.05 0.80 2.05 1.07
24 Slinn droplet = 0.1 mm 0.23 0.02 0.05 0.80 2.07 1.07
55 Brandt 0.25 0.05 0.03 0.73 0.96 1.07
8 Slinn droplet = 0.5 mm 0.30 0.04 0.02 0.99 18.42 1.08
13 Slinn droplet = 0.5 mm 0.25 0.05 0.03 0.73 0.96 1.08
51 Brandt 0.39 0.05 0.01 0.46 0.17 1.08
50 Brandt 0.30 0.04 0.02 0.99 16.95 1.08
34 Slinn droplet = 0.1 mm 0.25 0.05 0.03 0.73 0.97 1.08
49 Brandt 0.36 0.04 0.05 0.71 0.73 1.08
7 Slinn droplet = 0.5 mm 0.36 0.04 0.05 0.71 0.73 1.08
28 Slinn droplet = 0.1 mm 0.36 0.04 0.05 0.71 0.73 1.08
43 Brandt 0.50 0.04 0.01 0.66 0.44 1.09
58 Brandt 0.35 0.04 0.01 0.66 0.42 1.09
57 Brandt 0.49 0.02 0.00 0.68 0.52 1.09
1 Slinn droplet = 0.5 mm 0.50 0.04 0.01 0.66 0.44 1.09
22 Slinn droplet = 0.1 mm 0.50 0.04 0.01 0.66 0.44 1.09
48 Brandt 0.46 0.03 0.06 0.41 0.11 1.09
16 Slinn droplet = 0.5 mm 0.35 0.04 0.01 0.66 0.42 1.09
15 Slinn droplet = 0.5 mm 0.49 0.02 0.00 0.68 0.52 1.09
37 Slinn droplet = 0.1 mm 0.35 0.04 0.01 0.66 0.42 1.09
53 Brandt 0.47 0.05 0.06 0.51 0.16 1.09
36 Slinn droplet = 0.1 mm 0.49 0.02 0.00 0.68 0.52 1.10
6 Slinn droplet = 0.5 mm 0.46 0.03 0.06 0.41 0.11 1.10
63 Brandt 0.27 0.02 0.09 0.64 0.37 1.10
27 Slinn droplet = 0.1 mm 0.46 0.03 0.06 0.41 0.11 1.10
56 Brandt 0.24 0.03 0.04 0.60 0.26 1.10
11 Slinn droplet = 0.5 mm 0.47 0.05 0.06 0.51 0.16 1.10
47 Brandt 0.21 0.04 0.02 0.46 0.13 1.10
9 Slinn droplet = 0.5 mm 0.39 0.05 0.01 0.46 0.12 1.10
32 Slinn droplet = 0.1 mm 0.47 0.05 0.06 0.51 0.16 1.10
30 Slinn droplet = 0.1 mm 0.39 0.05 0.01 0.46 0.12 1.10
21 Slinn droplet = 0.5 mm 0.27 0.02 0.09 0.64 0.37 1.10
42 Slinn droplet = 0.1 mm 0.27 0.02 0.09 0.64 0.37 1.10
52 Brandt 0.28 0.02 0.07 0.58 0.23 1.10
14 Slinn droplet = 0.5 mm 0.24 0.03 0.04 0.60 0.26 1.10
5 Slinn droplet = 0.5 mm 0.21 0.04 0.02 0.46 0.13 1.10

Geosci. Model Dev., 4, 85–105, 2011 www.geosci-model-dev.net/4/85/2011/



S. Shannon and D. J. Lunt: LPJ-dust version 1.0 99

Table 3. Continued.

Expt ID Removal Scheme mfparlim smlim sdlim η TGinoux NRMSE

35 Slinn droplet = 0.1 mm 0.24 0.03 0.04 0.60 0.26 1.10
26 Slinn droplet = 0.1 mm 0.21 0.04 0.02 0.46 0.13 1.10
10 Slinn droplet = 0.5 mm 0.28 0.02 0.07 0.58 0.23 1.10
44 Brandt 0.37 0.02 0.10 0.55 0.21 1.10
31 Slinn droplet = 0.1 mm 0.28 0.02 0.07 0.58 0.23 1.11
2 Slinn droplet = 0.5 mm 0.37 0.02 0.10 0.55 0.20 1.11
23 Slinn droplet = 0.1 mm 0.37 0.02 0.10 0.55 0.20 1.11

Table 4. Tuning experiments ranked according to NRMSE with Ginoux deposition rates.

Expt ID Removal Scheme mfparlim smlim sdlim η TMiami NRMSE

52 Brandt 0.28 0.02 0.07 0.58 1.14 0.12
63 Brandt 0.27 0.02 0.09 0.64 0.78 0.12
56 Brandt 0.24 0.03 0.04 0.60 1.11 0.13
47 Brandt 0.21 0.04 0.02 0.46 2.31 0.13
45 Brandt 0.23 0.02 0.05 0.80 0.23 0.13
55 Brandt 0.25 0.05 0.03 0.73 0.44 0.14
44 Brandt 0.37 0.02 0.10 0.55 1.10 0.15
58 Brandt 0.35 0.04 0.01 0.66 0.79 0.15
49 Brandt 0.36 0.04 0.05 0.71 0.54 0.16
54 Brandt 0.33 0.02 0.08 0.90 0.09 0.16
46 Brandt 0.32 0.03 0.07 0.93 0.08 0.17
51 Brandt 0.39 0.05 0.01 0.46 2.55 0.17
59 Brandt 0.40 0.03 0.04 0.78 0.31 0.17
48 Brandt 0.46 0.03 0.06 0.41 3.17 0.18
50 Brandt 0.30 0.04 0.02 0.99 0.05 0.20
57 Brandt 0.49 0.02 0.00 0.68 0.60 0.20
62 Brandt 0.43 0.02 0.03 0.82 0.17 0.21
53 Brandt 0.47 0.05 0.06 0.51 1.91 0.22
3 Slinn droplet = 0.5 mm 0.23 0.02 0.05 0.80 0.22 0.23
43 Brandt 0.50 0.04 0.01 0.66 0.79 0.23
14 Slinn droplet = 0.5 mm 0.24 0.03 0.04 0.60 1.03 0.24
5 Slinn droplet = 0.5 mm 0.21 0.04 0.02 0.46 2.15 0.24
21 Slinn droplet = 0.5 mm 0.27 0.02 0.09 0.64 0.73 0.24
10 Slinn droplet = 0.5 mm 0.28 0.02 0.07 0.58 1.07 0.24
61 Brandt 0.44 0.04 0.09 0.87 0.16 0.25
60 Brandt 0.41 0.03 0.08 0.96 0.07 0.26
13 Slinn droplet = 0.5 mm 0.25 0.05 0.03 0.73 0.41 0.27
12 Slinn droplet = 0.5 mm 0.33 0.02 0.08 0.90 0.09 0.30
2 Slinn droplet = 0.5 mm 0.37 0.02 0.10 0.55 1.04 0.30
16 Slinn droplet = 0.5 mm 0.35 0.04 0.01 0.66 0.74 0.30
4 Slinn droplet = 0.5 mm 0.32 0.03 0.07 0.93 0.08 0.31
7 Slinn droplet = 0.5 mm 0.36 0.04 0.05 0.71 0.50 0.31
17 Slinn droplet = 0.5 mm 0.40 0.03 0.04 0.78 0.29 0.32
9 Slinn droplet = 0.5 mm 0.39 0.05 0.01 0.46 2.37 0.33
15 Slinn droplet = 0.5 mm 0.49 0.02 0.00 0.68 0.56 0.34
20 Slinn droplet = 0.5 mm 0.43 0.02 0.03 0.82 0.16 0.35
6 Slinn droplet = 0.5 mm 0.46 0.03 0.06 0.41 2.95 0.35
8 Slinn droplet = 0.5 mm 0.30 0.04 0.02 0.99 0.05 0.37
11 Slinn droplet = 0.5 mm 0.47 0.05 0.06 0.51 1.78 0.39
1 Slinn droplet = 0.5 mm 0.50 0.04 0.01 0.66 0.74 0.39
19 Slinn droplet = 0.5 mm 0.44 0.04 0.09 0.87 0.15 0.43
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Table 4. Continued.

Expt ID Removal Scheme mfparlim smlim sdlim η TMiami NRMSE

18 Slinn droplet = 0.5 mm 0.41 0.03 0.08 0.96 0.06 0.43
24 Slinn droplet = 0.1 mm 0.23 0.02 0.05 0.80 0.18 0.46
35 Slinn droplet = 0.1 mm 0.24 0.03 0.04 0.60 0.87 0.48
42 Slinn droplet = 0.1 mm 0.27 0.02 0.09 0.64 0.61 0.48
31 Slinn droplet = 0.1 mm 0.28 0.02 0.07 0.58 0.89 0.48
26 Slinn droplet = 0.1 mm 0.21 0.04 0.02 0.46 1.81 0.48
34 Slinn droplet = 0.1 mm 0.25 0.05 0.03 0.73 0.35 0.54
23 Slinn droplet = 0.1 mm 0.37 0.02 0.10 0.55 0.88 0.55
37 Slinn droplet = 0.1 mm 0.35 0.04 0.01 0.66 0.63 0.57
33 Slinn droplet = 0.1 mm 0.33 0.02 0.08 0.90 0.07 0.57
28 Slinn droplet = 0.1 mm 0.36 0.04 0.05 0.71 0.43 0.59
25 Slinn droplet = 0.1 mm 0.32 0.03 0.07 0.93 0.07 0.60
38 Slinn droplet = 0.1 mm 0.40 0.03 0.04 0.78 0.25 0.60
30 Slinn droplet = 0.1 mm 0.39 0.05 0.01 0.46 2.04 0.61
36 Slinn droplet = 0.1 mm 0.49 0.02 0.00 0.68 0.48 0.62
41 Slinn droplet = 0.1 mm 0.43 0.02 0.03 0.82 0.14 0.64
27 Slinn droplet = 0.1 mm 0.46 0.03 0.06 0.41 2.53 0.64
29 Slinn droplet = 0.1 mm 0.30 0.04 0.02 0.99 0.04 0.65
32 Slinn droplet = 0.1 mm 0.47 0.05 0.06 0.51 1.55 0.69
22 Slinn droplet = 0.1 mm 0.50 0.04 0.01 0.66 0.65 0.70
39 Slinn droplet = 0.1 mm 0.41 0.03 0.08 0.96 0.06 0.77
40 Slinn droplet = 0.1 mm 0.44 0.04 0.09 0.87 0.13 0.77

Table 5. Tuning experiments ranked according to NRMSE with surface concentrations.

Expt ID Removal Scheme mfparlim smlim sdlim η TMiami NRMSE

29 Slinn droplet = 0.1 mm 0.30 0.04 0.02 0.99 8.40 0.28
25 Slinn droplet = 0.1 mm 0.32 0.03 0.07 0.93 5.18 0.28
39 Slinn droplet = 0.1 mm 0.41 0.03 0.08 0.96 5.99 0.28
40 Slinn droplet = 0.1 mm 0.44 0.04 0.09 0.87 2.55 0.29
34 Slinn droplet = 0.1 mm 0.25 0.05 0.03 0.73 0.97 0.30
28 Slinn droplet = 0.1 mm 0.36 0.04 0.05 0.71 0.83 0.30
38 Slinn droplet = 0.1 mm 0.40 0.03 0.04 0.78 1.41 0.30
37 Slinn droplet = 0.1 mm 0.35 0.04 0.01 0.66 0.58 0.31
35 Slinn droplet = 0.1 mm 0.24 0.03 0.04 0.60 0.43 0.31
33 Slinn droplet = 0.1 mm 0.33 0.02 0.08 0.90 4.77 0.31
26 Slinn droplet = 0.1 mm 0.21 0.04 0.02 0.46 0.20 0.32
22 Slinn droplet = 0.1 mm 0.50 0.04 0.01 0.66 0.56 0.32
24 Slinn droplet = 0.1 mm 0.23 0.02 0.05 0.80 1.97 0.32
32 Slinn droplet = 0.1 mm 0.47 0.05 0.06 0.51 0.24 0.32
42 Slinn droplet = 0.1 mm 0.27 0.02 0.09 0.64 0.62 0.32
30 Slinn droplet = 0.1 mm 0.39 0.05 0.01 0.46 0.18 0.32
27 Slinn droplet = 0.1 mm 0.46 0.03 0.06 0.41 0.15 0.32
31 Slinn droplet = 0.1 mm 0.28 0.02 0.07 0.58 0.44 0.33
41 Slinn droplet = 0.1 mm 0.43 0.02 0.03 0.82 2.63 0.34
36 Slinn droplet = 0.1 mm 0.49 0.02 0.00 0.68 0.80 0.36
23 Slinn droplet = 0.1 mm 0.37 0.02 0.10 0.55 0.45 0.37
44 Brandt 0.37 0.02 0.10 0.55 0.77 0.38
54 Brandt 0.33 0.02 0.08 0.90 7.61 0.39
62 Brandt 0.43 0.02 0.03 0.82 4.22 0.40
52 Brandt 0.28 0.02 0.07 0.58 0.69 0.41
60 Brandt 0.41 0.03 0.08 0.96 9.24 0.42
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Fig. 10. A comparison between model output and DIRTMAP deposition (top), Ginoux deposition (middle) and surface concentration data
(bottom). Data from the best the worst experiment (54) is shown on the left hand side and the worst experiment (11) on the right hand side.
The location of measurement sites are denoted by colour; South Pacific (green), Antarctica/Southern Ocean (navy blue), North Pacific (red),
North Atlantic (magenta), South Atlantic (pale blue), Arabian Sea (yellow).

The relationship between soil moisture and dust emissions
in the model is currently very simple. Emissions are cut off
if a threshold soil moisture is exceeded. This could be im-
proved by using the scheme ofFécan et al.(1999) to calcu-
late the increase in the threshold friction velocity due to the
presence of soil moisture.

Another limitation of the model is that 6 hourly wind
speeds are used to drive dust emissions. Although, this is
the shortest time step the ERA-40 reanalysis data is avail-
able, it means that sporadic peaks in emissions which occur
over short time periods are not captured. To improve this, a
parameterisation for sub-grid scale gustiness could be used.
A possible way to do this is to apply a probability distribution
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Table 5. Continued.

Expt ID Removal Scheme mfparlim smlim sdlim η TMiami NRMSE

46 Brandt 0.32 0.03 0.07 0.93 7.83 0.42
57 Brandt 0.49 0.02 0.00 0.68 1.27 0.42
63 Brandt 0.27 0.02 0.09 0.64 0.95 0.42
45 Brandt 0.23 0.02 0.05 0.80 3.01 0.42
48 Brandt 0.46 0.03 0.06 0.41 0.23 0.43
50 Brandt 0.30 0.04 0.02 0.99 12.54 0.43
59 Brandt 0.40 0.03 0.04 0.78 2.08 0.44
61 Brandt 0.44 0.04 0.09 0.87 3.84 0.44
49 Brandt 0.36 0.04 0.05 0.71 1.22 0.44
53 Brandt 0.47 0.05 0.06 0.51 0.36 0.44
56 Brandt 0.24 0.03 0.04 0.60 0.63 0.44
43 Brandt 0.50 0.04 0.01 0.66 0.84 0.45
51 Brandt 0.39 0.05 0.01 0.46 0.27 0.45
58 Brandt 0.35 0.04 0.01 0.66 0.84 0.45
47 Brandt 0.21 0.04 0.02 0.46 0.30 0.46
55 Brandt 0.25 0.05 0.03 0.73 1.38 0.46
13 Slinn droplet = 0.5 mm 0.25 0.05 0.03 0.73 0.34 0.72
3 Slinn droplet = 0.5 mm 0.23 0.02 0.05 0.80 0.71 0.72
5 Slinn droplet = 0.5 mm 0.21 0.04 0.02 0.46 0.07 0.72
14 Slinn droplet = 0.5 mm 0.24 0.03 0.04 0.60 0.15 0.73
21 Slinn droplet = 0.5 mm 0.27 0.02 0.09 0.64 0.21 0.74
4 Slinn droplet = 0.5 mm 0.32 0.03 0.07 0.93 1.68 0.74
8 Slinn droplet = 0.5 mm 0.30 0.04 0.02 0.99 2.69 0.74
10 Slinn droplet = 0.5 mm 0.28 0.02 0.07 0.58 0.14 0.74
16 Slinn droplet = 0.5 mm 0.35 0.04 0.01 0.66 0.19 0.74
7 Slinn droplet = 0.5 mm 0.36 0.04 0.05 0.71 0.27 0.75
17 Slinn droplet = 0.5 mm 0.40 0.03 0.04 0.78 0.45 0.75
12 Slinn droplet = 0.5 mm 0.33 0.02 0.08 0.90 1.54 0.75
9 Slinn droplet = 0.5 mm 0.39 0.05 0.01 0.46 0.06 0.76
19 Slinn droplet = 0.5 mm 0.44 0.04 0.09 0.87 0.75 0.76
18 Slinn droplet = 0.5 mm 0.41 0.03 0.08 0.96 1.75 0.76
20 Slinn droplet = 0.5 mm 0.43 0.02 0.03 0.82 0.81 0.77
1 Slinn droplet = 0.5 mm 0.50 0.04 0.01 0.66 0.16 0.77
2 Slinn droplet = 0.5 mm 0.37 0.02 0.10 0.55 0.14 0.77
11 Slinn droplet = 0.5 mm 0.47 0.05 0.06 0.51 0.07 0.77
6 Slinn droplet = 0.5 mm 0.46 0.03 0.06 0.41 0.04 0.77
15 Slinn droplet = 0.5 mm 0.49 0.02 0.00 0.68 0.24 0.78

function to the wind speed data (Grini et al., 2005; Cakmur
et al., 2006). In the dry deposition scheme dust particles are
prohibited from falling more than one model level per time
step. Allowing particles to fall through multiple levels would
improve the way in which larger particles are transported.
Furthermore, including in-cloud scavenging as a mechanism
of removal is not currently included in the model.

The LPJ-dust model has several potential applications.
The model can be used to test whether vegetation changes
can explain the observed variability in the dust loading on
decadal time scales. This may help us distinguish between
natural variability in dust cycle from anthropogenic effects
such as land degradation. The model can also be used to

study the dust cycle in the past. Ice core records show there
has been a 2–25 fold increase in dust deposition rates dur-
ing glacial periods compared to inter-glacial periods (Lam-
bert et al., 2008). Previous studies have used focused on
simulating the dust cycle at the LGM using the BIOME4
model in order to understand the reasons for the high dust
loadings (Mahowald et al., 1999; Mahowald, 2006; Werner
et al., 2002). The LPJ-dust model could be used to study the
impact of dynamic vegetation on the dust loading through a
deglaciation period. Likewise, the model can be used to in-
vestigate how dust sources will respond in the future with
elevated atmospheric CO2 levels. Modelling studies using
BIOME4 have shown that if vegetation cover is allowed to
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respond to elevated CO2 then dust emissions will decrease
in the future (Mahowald and Luo, 2003; Mahowald, 2006,
2007). Using the LPJ-dust model would make it possible
to predict the year to year variability in dust emissions in
the future which is not possible using equilibrium vegetation
models.
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