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Abstract. This paper presents a new offline dust cycle modelrainfall, vegetation and dust emissions has been suggested,
which uses the Lund-Potsdam-Jena dynamic global vegewhereby a decrease in precipitation in the Sahel causes a re-
tation model §itch et al, 2003 to calculate time varying duction in vegetation cover, which increases dust emissions
dust sources. Surface emissions are calculated by simulatinEvan et al. 2006 Zender and Kwon2005.
the processes of saltation and sandblasting using an existing This theory is supported by measurements of Normalised
model (Tegen et aJ.2002. Dust particles are transported Difference Vegetation Index (NDVI) in the Sahel which show
using the TOMCAT chemical transport mod€lipperfield that vegetation cover responds to changes in precipitation
2006. Dust particles are removed from the atmosphere by(Tucker et al. 1991). Studies have shown that this re-
dry deposition and sub-cloud scavenging. The model is desponse occurs relatively quickly. NDVI has been correlated
signed so that it can be driven using reanalysis data or GCMvith rainfall for the concurrent month plus the two previous
derived fields. months Nicholson et al.199Q Herrmann et a).2005. Lim-

To improve the performance of the model, thresholditations in vegetation models means that dust cycle models
values for vegetation cover, soil moisture, snow depth andare unable to simulate this fast response.
threshold friction velocity, used to determine surface emis- Two categories of dust cycle models have been developed
sions are tuned. The effectiveness of three sub-cloud scavo date; models which use remote sensing data to describe
enging schemes are also tested. An ensemble of tuning ex«egetation cover on the land surface (&€gnder et al.2003
periments are evaluated against dust deposition and surfadginoux et al, 2004 Grini et al, 2005 Cakmur et al.2006
concentration measurements. Surface emissions which prand models which use vegetation models, typically Equilib-
duce the best agreement with observations range from 1600um Biogeography-Biogeochemistry models (BIOME3 or
to 2400 Mtyr 1. BIOME4) to simulate the distribution of vegetation cover
(e.g.Werner et al.2002 Mahowald et al.2002 Lunt and
Valdes 2002 Mahowald et al. 1999. The latter category
can be used as predictive tools to estimate how the dust load-
ing will change in the future or in the past under different

Mineral dust plays an interactive role in the Earth’s system¢limatic conditions. _

by modifying the radiation balanc&grster et al.2007) and Dust cycle models which use BIOME3 or BIOMEA4 are
transporting nutrients to the terrestrilufman et al.2005 unable to simulate the mter—a_nnual variability in dust_ source
Menendez et al2007) and marine ecosystem&dale et al. areas ca}used by the dynamic response of veget_atlon cover
2004 Jickells et al. 2005. Observations show that vegeta- © the climate. A$ a consequence, it is not possible to test
tion cover may play a role in constraining dust emissions on'Vhether changes in the dust loading are caused by variability
seasonal and inter-annual time scalBsaq 2004 Lee and 1N Vegetation cover or by other processes. For this reason

Sohn 2009. In the Sahel, a three way connection betweenthis work describes a dust cycle model which uses the Lund-
Potsdam-Jena dynamic global vegetation model (LEi#g

et al, 2003 to simulate the dynamic vegetation on the land
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As with any numerical model of a physical system, un- 2 Dust model description
certainty in the model results will arise from parametric and
structural uncertainty and uncertainty in the input data usedlhe dust model comprises of three existing models. LPJ
to drive the model. Parametric uncertainty in a dust model(Sitch et al, 2003 is used to calculate the distribution of un-
may be associated with the values for threshold limits forvegetated areas which may act as potential dust sources. This
vegetation cover, soil moisture, snow cover and thresholds linked to an existing model which calculates dust emis-
friction velocity used to calculate surface emissioiaint  Sions by simulating the processes of saltation and sandblast-
and Valdeg2002 showed that the dust loading is very sen- ing (Tegen et al.20029. Dust particles are transported as
sitive to the choice of values for these thresholds. For examindependent tracers within the TOMCAT chemical transport
ple, they found that increasing the threshold friction velocity model Chipperfield 2006. Dust is removed from the atmo-
from 0.4 to 0.6 ms! caused a decrease in the dust loadingSphere by dry deposition and sub-cloud scavenging. The fol-
by a factor of 19. lowing section describes the components of the dust model
A way to constrain the threshold limits is to perform a (Fig. 1).
model tuning. One strategy for tuning is to produce an en-
semble of models by selecting certain values for model pa2.1 Calculation of dust source areas using LPJ
rameters and selecting from these a subset of models which
perform well compared to observations. A way to selectLPJ simulates vegetation dynamics by modeling the
values for parameters is to use Latin Hypercube Samplingatmosphere-vegetation carbon and water fluxes, plant phys-
(McKay et al, 1979. This approach has been takenbg- iology, phenology, establishment and mortality. LPJ calcu-
wards and Marsl{2005 to tune parameters in a 3-D ocean lates daily gross primary production (GPP) by modeling the
climate model and bgchneider von Deimling et 2006 to processes of photosynthesis and transpiration using a cou-
tune parameters in the CLIMBER-2 intermediate complexity pled photosynthesis and water balance scheme developed in
climate model. The technique divides each tunable paramethe BIOME3 model Haxeltine and Prentice996. A frac-
ter into equal intervals (N) of equal probability (1/N). One tion of the GPP produced is used for the plant respiration.
sample is selected at random from each interval and matche@he remaining fraction known as the net primary production
up randomly with a sample selected for another parame{NPP) is allocated to the leaf, sapwood and fine root carbon
ter. The advantage of this technique over randomly choosingpools, satisfying a series of structural constraints.
values is that it ensures that all regions of parameter space are Vegetation is grouped into ten plant functional types
evenly sampled. In this paper, Latin Hypercube Sampling is(PFTs) which are categorised according to their plant phy-
used to select values for tuneable parameters in the model. siological (C3, C4 photosynthesis), phenological (decidu-
A source of structural uncertainty in the model arises fromous, evergreen) and physiognomic (tree, grass) attributes.
the choice of parameterisation for sub-cloud scavengingPlant mortality by fire, heat stress, competition for light and
Jung and Sha¢2006 examined the characteristics of four whether there is insufficient carbon to grow is modeled on an
different sub-cloud scavenging schemes within the frame-annual basis. Every year a proportion of the total vegetation
work of a dust cycle model. They found that the choice of subcover decomposes and falls to the surface as litter and new
cloud scavenging scheme affected the ability of the model tovegetation is established. A set of bioclimatic limits are used
accurately predict surface concentrations of dust at selectetb determine if a PFT can survive within a particular tem-
locations in Asia. Furthermore, the scavenging coefficientperature range. The establishment of new PFTs is prohibited
deviated by a factor of 1000 depending on the precipitationwhen the annual precipitation is less than 100 mryr
rate and particle size. To reduce the structural uncertainty Studies have been carried out to validate LPJ vegetation
associated with wet deposition three sub-cloud scavengingover Sitch et al, 2003 and hydrology {Vagner et a].2003
schemes are tested in this paper as part of the model tuningGerten et al.2004. LPJ has been shown to successfully
This paper presents a description of the new dust cyclaeproduce inter-annual variability in vegetation cover in the
model and tuning. The layout of the paper is as follows: in Sahel from 1980 to 2005gaquist et al2009. Latitudinal
Sect.2, the dust model is described. This includes details ofshifts in vegetation cover in this region may affect the loca-
how dust source areas are calculated from LPJ, a descriptiotion of the Sahara-Sahel boundary line and thus influence the
of the dust emission scheme, the chemical transport modejuantity of dust emitted from North Africa.
and parameterisation of wet and dry deposition. A baseline LPJ is forced using annual mean atmospheric, @@d
dust simulation is described in Se2t4. The method used monthly mean precipitation, fractional cloud cover and tem-
for selecting values for threshold parameters is described iperature. In this paper, these are obtained from the Climate
Sect.2.5. The three types of sub-cloud scavenging scheme&Rkesearch Unit, University of East Anglia, UK (CRU 2.1),
are described in Sec2.6. The measurement datasets usedbut they could equally be obtained from a GCM. Historical
to evaluate the model performance are described in 88ct. CO, data from 1901 to 1995 is obtained from the Carbon
Finally, the results of the model tuning and potential applica-Cycle Model Linkage projectMcGuire et al, 2001, Cramer
tions of the model are discussed in Séct. et al, 1999. Information on soil texture is taken from the
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Fig. 1. A schematic of the LPJ-dust model and its components.

Soil Food and Agriculture Organization United Nations Edu-  To demonstrate the relationship between vegetation cover,
cational, Scientific and Cultural Organization soil map of the precipitation and dust source areas in the model, Fépows
world (Zobler, 1986. This is used to calculate the daily per- the correlation between the annual mean fraction of photo-
colation of water from the upper soil layer to the lower soil synthetically active radiation (FPAR) simulated by LPJ and
layer. the CRU precipitation in the previous year. The correlation
LPJ is run on a ® x 0.5 degree spatial resolution. The coefficient is calculated over the years 1958 to 2002. Re-
simulation begins with no vegetation cover and is allowed togions of high positive correlation are visible on the margins
spin up for 1000 years so that the vegetation cover and caref dust sources. This signifies that vegetation cover responds
bon pools reach equilibrium. This is achieved by forcing theto precipitation in these regions. Figu2eshows the standard
model with the first 30 years of the CRU climate repetitively deviation of the un-vegetated area for the same time period,
for 1000 years. The model is then forced using 102 years of
the CRU climate data.
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Fig. 2. Correlation between annual mean FPAR simulated by LPJ
and CRU precipitation in the previous year.

where the un-vegetated area is

and

mfpar

1

mfpalim @
mfpagm is 0.5 and mfpar is the monthly FPAR. Inter-

annual variability in the un-vegetated area is evident at the
boundaries of the dust source regions.

2.1.1 LPJ outputs used to calculate dust source areas

The following variables are output annually and used to cal-
culate monthly dust source areas:

1.

Annual foliage projective cover (FPC).

The FPC is calculated from FREr, where FPGET is

the fractional coverage of each PFT in a grid cell. The
FPC has a value of 1 if the grid cell is completely cove-
red in vegetation or O if no vegetation cover is present.
The FPC is calculated from the FR& using the fol-
lowing relationship.

PFT=10
Y~ FPC=CA(PFT)- P (PFT)-FPGoer
PFT=1

where CA(PFT) is the crown area and P(PFT) is the
population density of the PFT. The crown area is cal-
culated using an empirical relationship between crown
area and stem diametefdide 1993. The FPGET is
calculated using the following relationshiménsi and
Saekj 1953.

)

FPQDFT —1— e—0.5LA| PFT

©)

where LAlpeTis the leaf area index of the PFT which is
related to the amount of carbon stored in the leaf.

. Annual growing degree days basé®(GDDs).

GDDs is calculated by summing the daily temperatures
Ty when temperatures are greater th&iC5

d=23:65 .
Ty if T4>5°C

GDDs=| 4=1 (4)
0 otherwise
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Ty is calculated by interpolating monthly temperatures
onto a daily time step.

. Annual tree height#).

The annual tree height is calculated using the empirical
relationship between vegetation height and stem diame-
ter (Huang et al.1992.
H= kallomZDanom3 (5)
wherekaliom2 = 40 and allom3=0.5 are constants and
D is the stem diameter.

. Monthly volumetric soil moisture (sm).

The soil moisture in LPJ is calculated using a
semi-empirical approach which was developed in the
BIOME3 model Haxeltine et al. 19969. The soil is
divided into two layers of 0.5m each. The water held
in each layer is calculated daily by taking into account
the precipitation, snow melt, percolation, evapotranspi-
ration and runoff. The percolation rate is dependent on
the soil texture. When the soil layer is at field capacity
the excess water is considered to be runoff. The soil wa-
ter content of the upper layer on any given day is related
to the amount of water into the soil layer plus the water
out of the soil layer during the previous day.

sm= (melt+ precip— perc—runoff— B;AET) — AWC;

where melt is the snowmelt, precip is the precipitation,
perc is the percolation, runoff is the runoff aadis the
rate of transpired water from the upper layer to the lower
layer. AET is the calculated evapotranspiration rate for
each plant functional type. AWds the available water
holding capacity. The soil moisture in the upper 0.5m
of the soil is converted from units of mm into percentage
volumetric soil moisture.

Monthly snow depth (sd).

LPJ calculates monthly snow depth using daily precipi-
tation data which is derived from monthly precipitation
that has been interpolated onto a daily time step. When
the daily temperature is less than %2, new snow is
formed. The magnitude of the snow formed is pro-
portional to the daily precipitation. An adjustment is
made to the snow depth to account for the melting of
snow. Snow melt occurs when the daily temperature is
greater than —2C. The amount of melting is related to
the temperature by snow melt coefficient taken from the
BIOMES3 model Haxeltine et al.1996).

. Monthly fraction of photosynthetically active radiation

(mfpar).

The mfpar predicted by LPJ gives an indication of the
state and productivity of the vegetation cover. This
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quantity is defined as the fraction of incoming solar ra- The same mfpag, is used for grasses and shrubs in the
diation absorbed by vegetation cover which is used tomodel. LPJ does not explicitly simulate shrub PFTs. The
drive photosynthesis. It is calculated using the follow- scheme used to convert PFTs into biomes produces very lit-

ing relationship, tle dry shrub land compared to the Matthews vegetation map
(Matthews 1983. This is caused by the lack of PFTs with
mfpar= FPGorT- Dphen (6) GDDs > 500 and tree height4 m simulated by LPJ. The

scheme is reasonably successful at predicting tundra shrub
where Dpheniis the daily leaf-on fractionDphenand is  land. We would expect the mfgar for dry shrubs to be
calculated from the accumulated GBBnd has a value higher than that used for grasses and tundra shrubs. However,
of 1 when leaves are present and 0 when leaves are albecause very little dry shrubs are simulated, we decided that

sent. using the same mfpgs would not significantly affect esti-
) ] . mates of dust source regions.
2.1.2  Creating a biome map of vegetation cover At high latitudes, dust emissions are suppressed by snow

cover. The area exposed for dust emissioghof is linearly

GDDs and H are used to convert FPC into a biome map related to the snow depth (sd) below a threshold valug,(sd

every year using a scheme adapted framos et al(2004).
This conversion is carried out because at high latitudes, LPJ 1- s—j% if sd< sdim
predicts barren land (i.e. FPC =0), combined with low soil “snow= ©)
moisture and low snow cover which is a criteria for a dust

source. This results in a large dust source area in the Cana- The total area available for dust emission is related to area
dian Arctic. Creating a biome map allows polar desert, whichof dry ground that is un-vegetated and not covered by snow.
has low GDI} and is not a dust source, to be distinguished The erodible are@pareis expressed by the following form

from a hot desert which has high GIgand is a dust source. {

otherwise

. ; X . A Asnow- g for grass biomes
Using this scheme also allows trees with a stand height ofg,, .= grass Ssnow: 16 g

less than 4 m to be considered as shrubs. Although this is a

simplification, it means that regions wnh yvoody PFTs .WI.|| whereA grassand Ashrupis the contribution of exposed ground
act as dust sources if productivity is sufficiently low. This is from shrub or grass vegetation covelnowis the contribu-

a useful assumption as LPJ does not simulate shrub PFTs. ﬁbn from snow cover. I, represents the effect of the soil

schematic of the scheme used to create a biome map is Sho"\‘ﬂoisture When sm exceeds a threshold limitsnthen s

in Fig. 4. Dust emissions are permitted for regions contain- g assigned a value of 0 and no dust emissions occur. Con-
ing hot desert, dry grass, dry shrubs, tundra grass and tundr\?ersely, if the soil moisture is below s, then, has a

shrubs. value of 1 and dust emissions will occur.

. (10)
Ashrubr Asnow- Ip~ for shrub biomes

2.1.3 Calculating monthly dust source areas 22 Calculation of the dust flux

For grass-dominated biomes (tundra grass and dry grass) thee caiculation of the dust flux is taken from the model by
area exposed for dust emission is allowed to vary sea:sonallyregerl et al(2002. The model parameterises saltation and
The un-vegetated aredgrassis linearly proportional to the g5 gpiasting using the scheme Marticorena and Berga-
mfpar below a threshold value mfpav. metti (1999. The horizontal fluxG,; generated by saltating
particles is calculated as

1—% if mfpar < mfpafim -

. ) nuy (’7“*)2
otherwise sz—au*3<l+ ’) 1-——— s, (11)

Ag rass—

g u* u*
where mfpar is calculated from Edg)(

In shrub dominated biomes the area exposed for dust emisiherep, is the density of air (kgm?), g is the gravitational
sion remains fixed throughout the year. This is becauseonstant (ms?), u* is the surface wind velocity (ms) and
shrubs are assumed to protect the surface all year round eve is the threshold friction velocity (md).
when no leaves are present. The annual maximum mfpar s; iS used to scale the relative contribution of each size
(mfpamax) is used as an index for the density of shrubs. Forfraction j to the total flux. s; is the surface area covered
shrub dominated biomes, the area is calculated as by a patrticle size fraction relative to the area covered by the
total flux of particles. The surface covered by each grain is

Ashrub= 1-mipamax if mipar <mfpagy @) calculated from its basal surface. This is related to the mass
s otherwise (M) of the particle such that,

This means the dust source area remains constant througg-S(D ): dM(Dp) (12)

out the year but decreases to zero when the (mfpae=1. P %ppr

www.geosci-model-dev.net/4/85/2011/ Geosci. Model Dev., 41852011
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wherepy is the density of the particle anf,, is the particle

) . Table 1. Column 2 contains the sandblasting mass efficiency values
diameter. The total basal surface is

for different soil textures. Columns 3 to 6 contain the relative mass

of the main soil types for each soil texture. These values are used to
StoTAL :/D ds (DP) dDp 13) calculate the particle size distribution in EG8j.
P
The relative area covered by each particle fraction is then,  zobler texture acm! Coarse Medium/ Silt  Clay
classes Sand Fine
5= dS(Dp) (14) Sand
STOTAL Coarse 2% 10*: 043 0.4 017 -
u; in Eq. (11) is calculated as a function of particle diame- ﬁﬁg'“m ‘fgi 18_7 _ o7 3’:33 8'27
ter using a semi-empirical relationship described\u®rsen Coarse-Medium %106 01 05 020 0.20
and White(1982. u; is modified to account for the presence  Coarse-Fine Bx10° 0 0.5 012 038
of non-erodible elements such as vegetation cover or rocks Medium-Fine 10X1°:Z 0 0.27 0.27 048
on the surface. The adjustment:tp is applied by dividing Coarse-Medum-Fine 8x107> 023 023 019 035
by the drag partition ratigest (Marticorena and Bergametti
1995
In(z—o) Information on the particle size distribution comes from
foft=1— 205 (15) the Soil Food and Agriculture Organization United Nations
ef 08 Educational, Scientific and Cultural Organization soil map
In 0.35(2) ) ! organization sovt
( 20s of the world gobler, 1986. The particle size distribution

for each soil texture type is calculated using the following

where roughness length of a surface with no obstagles relationship fronfTegen et al(2002

0.001 cm. The roughness length of the surfages assigned
a value of 0.01cm which is a typical value for level desert ;,, (Dp)
(Seinfeld and Pandid998. In this casefesf has a constant
value of 0.64 for all dust emitting regions.

The friction velocity«* in Eq. (11) is calculated as a func- R M; ox (InDp— InMMDj)2 (18)
tion of surface roughness, such that =~ (Zn)% Ino; _2|n26j

dInDp

u

ut = n (zz_o> (16) D, is the particle sizeM; is the percentage mass of coarse
sand, medium/fine sand, silt or clay, MM[s the mass me-

wherek is the Von Karman constant=0.4 (dimensionless), dian diameter and has a value of 2. The values from,
is the height (m)z is the roughness length (m) andms ™) for each soil type are listed in Table
is the wind speedy in Eq. (11) is a tunable parameter which  pyst emissions are calculated for particles with diame-
serves to increase or decreage The default value for ter 0.1 um, 0.3pm, 0.9 pm, 2.6 um, 8 um, 24 pum, 72 um and
used byTegen et al(2002) is 0.66. 220 um. The emissions are re-gridded from%>00.5 spa-

~ Dust emissions are calculated on a six hourly time step ustja| resolution onto a T42 spatial resolution for input into the
ing ERA-40 10 m wind speeds. The emissions are calculategroMCAT chemical transport model.

on 0.5 degre& 0.5 degree resolution to match the LPJ reso-
lution. 1 x 1 degree wind speed data is interpolated onto thez 3 Transport and removal
0.5 x 0.5 degree resolution by assuming that four adjoining

half degree pixels have the same wind speed as a 1degresyst particles are transported as independent tracers us-

pixel. ing the chemical transport model TOMCAT lipperfield
The vertical fluxF is estimated from the horizontal flux 200§. TOMCAT is driven by 3-D wind speeds, specific
by the following humidity and temperature which can be derived from either

meteorological re-analysis data or GCM output. TOMCAT
simulates the transport of gaseous or aerosol species via ad-
where G is the horizontal flux determined from Eqll),  vection, convection and vertical diffusion.

Aparels the monthly bare ground fraction which has been cal- The advection scheme used in TOMCAT is the conserva-
culated from LPJ in Eq.10) and« is the sandblasting mass tion of second order moments developedRrather(1986.
efficiency. Theu values used in the model are taken from The Prather advection scheme represents tracer concentra-
Marticorena et al(1997) who summarise the experimental tion as second-order polynomials within each grid box. This
values for different soil types. For completeness d¢hior makes the scheme more computationally expensive than sim-
different soil types are listed in Table pler schemes, such as the slopes schem&bssell and

Geosci. Model Dev., 4, 8305 2011 www.geosci-model-dev.net/4/85/2011/
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Lerner(1981). Although the Prather advection scheme is ex-the medium can no longer be considered a continuum. The
pensive, it has been shown to have low numerical diffusion slip correction factor is given by
thus providing more accurate resul@dq and Lej1998. 5
Convection is parameterised in TOMCAT using a schemeC, =1+ il (1_257+ o_4exp*0~55Dp/A) (22)
by developed byTiedtke (1989. The scheme includes cu- Dp
mulus updrgfts in the vertical di.rection and the exghange ofwherex is the mean free path of the air (m).
air from msuje the cloud to outside the cloud and vice Versa. pyst is transported downwards by gravitational settling
The convective scheme calculates the mass of tracer that fhirough each model vertical level. For simplification, we as-

uplifted within a cloud column. Vertical diffusion is para- g me that particles do not fall though more than one vertical
meterised in TOMCAT using a scheme developed_byis level within one time step.

(1979. . _ For the shortest model level and a time step of one hour,
TOMCAT is forced using ERA-40 6 hourly 3-D tempera- the assumption implies that the deposition velocity should

ture, U andV wind speed and specific humidity fields on a ot exceed 18000 cnd. This applies to the six small-
T42 spatial rgsolutlon. The model has 31 vertical pressurg,g; particles sizes which have deposition velocities less than
levels extending from the surface to the stratosphere. Advecy g 000 cm ht. The two largest particle sizes fall faster and
tion, convection, diffusion and dust removal take place on anyg ot obey the assumption. These particles represent only

hourly time step. 3.2% of the total surface emissions, therefore, we assume the
simplification does not cause a large uncertainty in the model
2.3.1 Dry deposition estimates of surface concentrations and deposition rates.

At the lowest model level the resistance of the quasi lami-

The dry deposition parameterisation consists of gravitationanar sub-layer in Eq.20) is defined as
settling and turbulent mixing across the quasi sub-laminar 1

layer. The dry deposition parameterisation is taken fromrp= -
Lunt (2007 which is based on equations for dry deposition u* (SCT +10%:{’)
described irSeinfeld and Pandid999. The rate of dust re- ] . )
moval by dry deposition per unit area per unit tidigis pro- V\{hereSc!S the Schmidt number. which qccounts for Brow-
portional to the concentration of dust at a particular heightnian motion of very small particles.Scis calculated as

C; and to the deposition velocityy by the following rela- ~ S¢=v/D, v is the kinematic viscosity of air an® is the
tionship, molecular diffusivity. Stis the Stokes number which ac-

counts for inertial impaction for larger size particles’ is
the ERA-40 wind speed at the lowest model level.

(23)

FZ = deZ (19)
The dry deposition process is conceptualised in terms of anz'?"2 Wet deposition
electric circuit containing resistance in seriegis the aero-
dynamic resistance ang is the quasi laminar sub layer re-
sistance. The totaly is then

Dust is removed from the atmosphere by sub-cloud scaveng-
ing. The amount of mass removed is proportional to the pre-
cipitation rate and the scavenging coefficient such that,
o= Vet — 00y Cr=Coexp ™ (24)
ra+rp+rarbus . L .
Co is the initial tracer mass (kg) ands the model time step

The first term on the right hand side of the equation corre-which is one hourA is the scavenging coefficient which has
sponds to the gravitational settling velociig), The second units of ! (Seinfeld and Pandjs1998. The scavenging
expression corresponds to the deposition velocity across theoefficient is calculated using the following empirical rela-
quasi laminar sub-layer. tionship Brandt et al, 2002.

The gravitational settling velocitys is

A=Aps (25)
_ ppDéch 21 whereA = 8.4 x 10> and B = 0.79 for both convective and
Us="g w (21) large scale precipitationp; is the large scale or convective

precipitation rate (mmtt) at a particular heightp, is cal-
where py, is the density of the particle (kgnd), Dp is the  culated from the surface precipitation rajg) by assuming
particle diameter (m)g is gravitational constant (M), u a vertical precipitation profile (Figg). For large scale pre-
is the viscosity of air (kg mst) andC¢ is the slip correction  cipitation, the cloud is divided into an upper and a lower part.
factor. Cc becomes important when the particle diameter ap-The cloud base assumed to be located at 90% of the surface
proaches the same magnitude as the mean free path of air apdessure, the cloud middle at about 80% and the cloud top
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Stendard deviation of unvegetated area 1958-2002 Sampling McKay et al, 1979. To use this technique a sen-
ﬂ%@@s”v : =l 3 sible minimum and maximum range for each parameter and
-. >~ s the total number of experiments must be known. To esti-
mate the minimum and maximum range for the tunable pa-

5
30N ﬁ rameters, extreme values for the threshold limits are tested.
07 g g The model is run multiple times using different values for the
| = . . . . . .
300§ el R T g B g threshold limits and emissions are compared to a simulation

. : o e o using the model offegen et al(2002. Data from the year
50w 120w 60w 00 60°E 120 180w 1987 is used for comparison.
The first parameter to tune is the vegetation threshold

Fig. 3. Standard deviation of the un-vegetated area simulated bymfpafi,. The value for this parameter is poorly constrained
LPJ over the period 1958-2002. by observations. Where observations are available they may

be limited to a particular regiork{mura et al, 2009. Of-

ten the vegetation threshold is chosen subjectively to give
at about 50%. The precipitation varies linearly in the up- reasonable estimates of dust source regions. For example,
per part of the cloud, from zero at cloud top, to a valye  studies which use BIOME3 or BIOME4 models, use an an-
at cloud middle. x is calculated from the medium and low nual mean leaf area index (LAI) of 1.2¢nt and Valdes

cloud amounts such that 2002 or an annual maximum LAl of 0.35fm~2 in the
Amed tropics and subtropics and 0.28m~2 in colder regions
x=po—1C (26)  (Mahowald et al.1999.
(Amed+ Alow)

Alternatively, Zender et al(2003 used a satellite derived

where Amed and Ajow are the ERA-40 6hourly low and Vegetation dataset a single threshold of 023mn2. Another

medium cloud amounts. approach has been to use different thresholds depending on
For convective precipitation, the cloud base is assumed téhe vegetation typelegen et al(2002 used a monthly FPAR

be at a pressure which is 90% of surface pressure, and clouimit of 0.25 for grasses and annual mean FPAR of 0.5 for

top is assumed to be at the tropopause. The amount of preshrubs which was derived from NDVI observations.

cipitation varies linearly from zero at cloud top to the surface We decided to tune the mfpgr for LPJ within a mini-

value at the base of the cloud. This figure has been referref?um and maximum range of 0.2-0.5. A comparison with the

to previously in the text. Alternative sub-cloud scavenging Mmodel ofTegen et al(2003 for the same period shows that

schemes are tested in Sez#. choosing values lower than 0.2 leads to very little dust emis-
sions in South America, North America, South Africa and
2.4 A baseline dust simulation Australia. Choosing an mfpg# threshold greater than 0.5

leads to dust emissions from highly productive grass lands
Figure 3 shows a schematic of the dust model. A base-Where C4 grass is present.
line simulation is run using an arbitrary choice of values for ~ The second parameter tuned is the soil moisture threshold
mfpalim, Sdim, 7 and smm. These parameters will be tuned Sdim. Dust models treat the interaction between soil mois-
in the following section. For the baseline simulation the ture and dust emissions in a different walant and Valdes
values selected are mfgar= 0.5, sgm = 0.1 m, n = 0.66, (2002 assumed that dust emissions occur whefsis less
smim = 4%. Figure5 shows a plot of surface emissions and than 10% by volumeTegen et al(2002) allowed dust emis-
deposition fields. It can be seen that dry deposition is thesions whenever the soil was not at field capacityerner
dominant mechanism for dust removal close to the source reet al.(2002 allowed dust emissions if the relative soil mois-
gions owing to the abundance of heavy particles close to théure over the total soil depth was less than 1%. Other models
source. In addition to this, there is generally a lack of precipi-use surface wetness limit of 0.6ioux et al, 2001 or 0.4
tation in these regions which means dry deposition is the pre{Yue et al, 2009. Alternatively, some models circumvent
vailing mechanism for removal. In contrast, wet deposition using a soil moisture limit by assuming no emissions occur
dominates the removal in regions far from the source. Thewhen there are consecutive days with no precipitat@®rin|
annual mean surface emissions predicted by the un-tuneéit al, 2005 Myhre et al, 2003 Claquin et al, 1999. One of
model averaged over the years 1987-1990 is 1944 Mityr  the reasons to tune gmis because wind speeds can dry the

soil surface causing emissions even though the soil beneath
2.5 Tuning threshold limits for surface emissions may be at field capacity. Furthermore, in remote regions,

uncertainty in the precipitation rates, caused by the lack of
We decide to tune four threshold limits in the model; observational data, means that the soil moisture may not be
mfpalim, sdim, n and smm. The reasons for tuning these known well. The smy, values are selected within the range
particular set of parameters are discussed in turn belowof 2% to 5%. Values lower than 2% leads to an under predic-
Values for the thresholds are selected using Latin Hypercubdion of dust emissions from central Asia, Australia and North
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GDD, < 500°C day GDD, 2 500°C day

Dominant FPC Dominant FPC ~ Dominant FPC Dominant FPC

woody herbaceous woody herbaceous

No vegetation No vegetation
-Polar desert - hot desert

Tundra Dry grass
grass

Tundra Forest Dry Savanna/Dry

shrubs tundra Forest shrubs  Wwoodland Forest

(h<4m) (4m< h<10m) (h=10m) (h<4m) (@ms h<10m) (h=10m)

Fig. 4. Scheme used to calculate biomes from LPJ annual mean FPCg @miDiree height. The scheme has been adaptedJoas et al.
(2004). Dust emitting biomes are designated in bold.

America. The upper bound was selected so as to include¢ains 8tracers resulting in 504 sets of experiments. Running
emissions from the boundaries of the deserts, for example ithis number of experiments provides a balance between com-
the Sahel in North Africa. putational expense and coverage of parameter space.

The third parameter tuned is the threshold limit for snow _
depth sgn. This threshold represents the snow depth at2-6 Sub-cloud scavenging schemes
which a model grid box is completely covered by snow. We
expect the choice of value for jggl to affect surface emis-
sions at high latitudes but to have a relatively small impact
on the total global dust loading. Typical values used in pre-
vious studies have been 0.05 Zefder et al.2003 Werner

The un-tuned model uses a sub-cloud scavenging scheme
which is independent of the size of the precipitating cloud
droplets Brandt et al, 2002. We test another possible sub-
cloud scavenging scheme, in which the scavenging coeffi-
‘ _ cient is calculated as a function of the cloud droplet size.
et al, 2003 and 0.015m Tegen et a].2003. sdim thresh The parameterisation is based on the semi-empirical expres-

old limits are tuned within the a range of 0.01m to 0.1 m. _. . . .
Choosing a threshold greater 0.1 m gives rise to an abundancg®" for the aerosol droplet collision efficiency described by

of dust emissions at high latitudes in winter while choosing a_. linn (1983' Th? collision efficiency is calculated as a func-
threshold smaller than 0.01 m eliminates dust emissions fror’r%'on of particle size as,
the Gobi Desert.

The fourth parameter tuned isfrom Eq. (L1). This pa-
rameter increases or decreagefor each particle by a con-
stant factor, while retaining the same form of size depen- 1 1 St—85 \?
dence between* and the particle diameter as calculated by +4¢’[“’ + <1+2Re2)¢] sst2
Iversen and Whit€1982. This parameter is tuned to ac- s
count for uncertainties in the properties of the surface suchas_ ) .
surface crusting or cultivation which is not parameterised in(S€infeld, 1998). Reis the Reynolds numbeiScis the
the model Tegen et al(2002) used a value of 0.66 for. We ~ Schmidt numberStis the Stokes numbeg is the ratio of
tuner range over a range of 0.4—1. Choosing a value of 0.40€ particle diameter to the drop diameteris the ratio of
for the 5 gives annual mean dust emissions of 3000 Mtyr e water viscosity to air viscosity and
yvhich is_ the upper estimate predicted by other dust model- 1.2+1i2In(1+R9
ing studies Tegen and Fundl994 Mahowald et al. 1999. S=
Choosing a value of 1 for the means the threshold friction 1+In(1+Re
velocities are un-scaled. This results in very low annual mean The scavenging coefficient is calculated from the collision
dust emissions of 60 Mtyr. coefficient by assuming a monotonic rain droplet diameter,

21sets of surface emissions are generated for the years 3 Eps
1987 to 1990. This comprises of 20sets of surface emis-A = 5D
sions calculated using Latin Hypercube Sampling and the un- droplet
tuned emissions from the baseline simulation. The surfacavhere Dgropiet is the rain droplet size (mm) ang, is the
emissions are combined with three sub-cloud scavengingrecipitation rate (mmht). A is calculated for a rain droplet
schemes (see Se@.6). Each set of surface emissions con- with diameter 0.5 mm and 0.1 mm.

4 11 11
= @C{1+O.4Re2 SG +0.16Re? Scz]

(27)

(28)
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Fig. 6. Calculation of 3-D precipitation rates from surface precip-
itation rates by assuming a vertical cloud profile based on low and

120°W  60°W 0° 60°E  120°E medium cloud fractional cloud amounts. The scheme is taken from
Lunt (2007).
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Fig. 5. Emissions and deposition fields from the baseline dust sim- Particle radius um

ulation.
Fig. 7. Comparison between the scavenging coefficients for three
different wet deposition schemes. The dashed lines correspond to
Figure 7 shows the scavenging coefficient calculated for the size dependent removal schen@ling, 1983 while the fixed
the three schemes using a precipitation rate of 1minh line corresponds to the size independent removal sch&mandt
The straight line corresponds to the particle size independerftt l. 2002. A precipitation rate of 1 mmht is used to calculate
sub-cloud scavenging scheme used in the un-tuned model’® scavenging coefficient for this figure.
The particle size dependent removal schemes have a hook
shaped curve which indicates that scavenging is efficient for
very small and very large particles. For very large parti- 2.7 Target datasets
cles the process of inertial impact dominates the removal
while Brownian diffusion is important for very small parti- Three measurement datasets are used to evaluate the perfor-
cles. However, for particles in the region of 0.1 um diametermance of the experiments. The firstis dust deposition rates to
scavenging is not as efficient. The simulations are run for thehe ocean from marine sediment traps from the Dust Indica-
years 1987—-1990 and amount of dust removed by wet and drjors and Records of Terrestrial and MArine Palaeoenviron-
deposition and the surface concentrations are output daily. ments datasephfeld and Harrison2001). This data has
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been compiled bifegen et al(2002 and has been filtered to Location of depostion & surface concentration data
only include observations taken for more than 50 days. Sites
where observations could potentially be contaminated by flu- _, F=¢ |
vial inputs or hemipelagic reworking have been removed. In -
regions where multiple observations occur within one model 350y 4.
grid box the mean deposition rate is used. Deposition rates

obtained from ice cores, marine cores and loess are exclude: * ]
as these observations represent dust deposition over manszgos-

hundreds of years and are not comparable to the relatively

short tuning period. 60°s 1
The second dataset consists of dust deposition rates com >
piled byGinoux et al(2001). This dataset set contains obser- g0 120°w 60°W 00 50°E 120°E 180°W

vations made in the Pacific Ocean and from high resolution
ice core records. Observations which do not occur duing theFig. 8. Location of DIRTMAP sites (circles), Ginoux deposition
1980s and 1990s are excluded in the analysis. (squares) and University of Miami data (triangles).

The third dataset comprises of surface concentration mea-
surements from the University of Miami aerosol network

(provided by J. Prospero and D. Savoie). The network con-
tains observations of monthly surface concentrations made at 0.7t
sites during the 1980s and 1990s. The annual mean surface
concentrations are calculated from monthly data and used in
the analysis. Figur8 shows the spatial distribution of the . %65[
DIRTMAP deposition, Ginoux deposition and University of Q
Miami surface concentration observations. & osl
2.8 Results
0.55¢
To evaluate the best experiment in the ensemble, a skill score
is used. The skills score is based on the normalised root o5k ‘ ‘ ‘ ‘ ‘ B
mean square error (NRMSE) between the observations and ' 10 20 30 40 50 60
the model data. The NRMSE is calculated as Rank
NRMSE= @E (29) Fig. 9. Model error plotted against position of experiment in the en-
o2 semble, Brandt removal (green), Slinn remalgl= 0.1 mm (blue)

whereo? is the variance of the observations and MSE is the2"d Sinn removabp =0.5mm (red).

mean square error.
o is calculated from
5 S (0i—w)? w; is a weighting factor for each dataset. Because there are
0" = _7 (30) two deposition datasets each is weighted half as much as the
. . surface concentration data. A similar weighting approach has
vyhereoi is 'the observed datg, is the mean of the observa- been used bgakmur et al(200§ who used multiple obser-
tions andr is the number of observations. vational datasets to contrain dust emissions. Weighting each

The MSE is dataset evenly does not change the outcome for the best and
Y i (my —0;)? worst experiment but changes the order of the experiments
MSE===— " (31) -
n within the ensemble.
wherem; is the modelled data. Table? lists the experiments ranked according to the total

Prior to calculating the NRMSE, a global tuning factor is error Q. The threshold values for each experiment, the re-
calculated ['). This is the value by which the data is adjusted moval scheme and tHg values for each dataset are listed in
by to minimize the NRMSET acts to move the modeled data the table. The top five best experiments use the Brandt re-
up or down so that it fits on the ideal 1:1line with the least moval scheme and a soil moisture threshold of 2%. There is

amount of scatter. The total errop) is calculated from the N0 area of parameter space which results in high skills scores

NRMSE such that, for the other threshold parameters.
3 Figure9 shows the model error plotted against the position
0= ijNRMSEj (32) of experiment in the ensemble. Experiments which use the

= Brandt removal scheme and the Slinn removal scheme with
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Table 2. Tuning experiments ranked according to the total error. Threshold limits used to determine surface emissions, the tuning factor T

and the removal schemes are also listed.

S. Shannon and D. J. Lunt: LPJ-dust version 1.0

ExptID  Removal Scheme mfpgs  SMim  sdim 7 Tbirtmap  IGinoux IMiami @

54 Brandt 0.33 0.02 0.08 0.90 7.26 10.54 7.61 0.50

44 Brandt 0.37 0.02 0.10 0.55 0.21 0.89 0.77 0.50

45 Brandt 0.23 0.02 0.05 0.80 2.04 4.22 3.01 0.1

52 Brandt 0.28 0.02 0.07 0.58 0.23 0.87 0.69 0.51

62 Brandt 0.43 0.02 0.03 0.82 2.94 5.74 422 051

46 Brandt 0.32 0.03 0.07 0.93 9.38 11.93 7.83 0.51

25 Slinn droplet=0.1mm  0.32 0.03 0.07 0.93 10.42 12.74 5.18 0.1
63 Brandt 0.27 0.02 0.09 0.64 0.37 1.27 0.95 0.52

24 Slinn droplet=0.1mm  0.23 0.02 0.05 0.80 2.07 4.85 197 0.52
29 Slinn droplet=0.1mm  0.30 0.04 0.02 0.99 19.58 20.46 8.40 0.52
34 Slinn droplet=0.1mm 0.25 0.05 0.03 0.73 0.97 2.45 0.97 0.52
59 Brandt 0.40 0.03 0.04 0.78 1.57 3.14 2.08 0.53

33 Slinn droplet=0.1mm  0.33 0.02 0.08 0.90 7.77 11.51 477 0.3
38 Slinn droplet=0.1mm  0.40 0.03 0.04 0.78 1.60 3.40 141 0.53
35 Slinn droplet=0.1mm 0.24 0.03 0.04 0.60 0.26 1.02 0.43 0.53
56 Brandt 0.24 0.03 0.04 0.60 0.26 0.89 0.63 0.53

48 Brandt 0.46 0.03 0.06 041 0.11 0.31 0.23 0.53

28 Slinn droplet=0.1mm  0.36 0.04 0.05 0.71 0.73 1.98 0.83 0.583
49 Brandt 0.36 0.04 0.05 0.71 0.73 1.83 122 0.53

42 Slinn droplet=0.1mm  0.27 0.02 0.09 0.64 0.37 1.45 0.62 0.53
57 Brandt 0.49 0.02 0.00 0.68 0.52 1.62 1.27 0.53

26 Slinn droplet=0.1mm 0.21 0.04 0.02 0.46 0.13 0.49 0.20 0.53
50 Brandt 0.30 0.04 0.02 0.99 16.95 19.96 12.54 0.53
39 Slinn droplet=0.1mm 0.41 0.03 0.08 0.96 13.88 14.12 5.99 0.53
60 Brandt 0.41 0.03 0.08 0.96 12.15 14.12 9.24 0.53

40 Slinn droplet=0.1mm 0.44 0.04 0.09 0.87 4.97 6.11 255 0.53
47 Brandt 0.21 0.04 0.02 0.46 0.13 0.43 0.30 0.53

55 Brandt 0.25 0.05 0.03 0.73 0.96 2.23 1.38 0.54

37 Slinn droplet=0.1mm 0.35 0.04 0.01 0.66 0.42 1.36 0.58 0.54
58 Brandt 0.35 0.04 0.01 0.66 0.42 1.24 0.84 0.54

51 Brandt 0.39 0.05 0.01 0.46 0.17 0.38 0.27 0.54

31 Slinn droplet=0.1mm  0.28 0.02 0.07 0.58 0.23 0.99 0.44 0.54
61 Brandt 0.44 0.04 0.09 0.87 4.60 6.09 3.84 0.54

30 Slinn droplet=0.1mm  0.39 0.05 0.01 0.46 0.12 0.42 0.18 0.54
53 Brandt 0.47 0.05 0.06 051 0.16 0.51 0.36 0.55

43 Brandt 0.50 0.04 0.01 0.66 0.44 1.22 0.84 0.55

27 Slinn droplet=0.1mm  0.46 0.03 0.06 0.41 0.11 0.33 0.15 0.55
41 Slinn droplet=0.1mm  0.43 0.02 0.03 0.82 3.00 6.21 2.63 0.55
22 Slinn droplet=0.1mm  0.50 0.04 0.01 0.66 0.44 1.28 0.56 0.55
32 Slinn droplet=0.1mm  0.47 0.05 0.06 051 0.16 0.53 0.24 0.55
36 Slinn droplet=0.1mm  0.49 0.02 0.00 0.68 0.52 1.78 0.80 0.56
23 Slinn droplet=0.1mm  0.37 0.02 0.10 0.55 0.20 0.99 0.45 0.57
3 Slinn droplet=0.5mm  0.23 0.02 0.05 0.80 2.05 4.37 0.71 0.68
13 Slinn droplet=0.5mm  0.25 0.05 0.03 0.73 0.96 2.31 0.34 0.69
5 Slinn droplet=0.5mm 0.21 0.04 0.02 0.46 0.13 0.45 0.07 0.69
14 Slinn droplet=0.5mm 0.24 0.03 0.04 0.60 0.26 0.93 0.15 0.69
21 Slinn droplet=0.5mm  0.27 0.02 0.09 0.64 0.37 1.32 0.21 0.70
4 Slinn droplet=0.5mm  0.32 0.03 0.07 0.93 9.92 12.20 1.68 0.70
10 Slinn droplet=0.5mm  0.28 0.02 0.07 0.58 0.23 0.90 0.14 0.70
12 Slinn droplet=0.5mm 0.33 0.02 0.08 0.90 7.52 10.72 1.54 0.70
16 Slinn droplet=0.5mm  0.35 0.04 0.01 0.66 0.42 1.29 0.19 0.71
17 Slinn droplet=0.5mm  0.40 0.03 0.04 0.78 1.58 3.22 0.45 0.71
7 Slinn droplet=0.5mm 0.36 0.04 0.05 0.71 0.73 1.88 0.27 0.71
8 Slinn droplet=0.5mm  0.30 0.04 0.02 0.99 18.42 20.46 269 0.71
9 Slinn droplet=0.5mm  0.39 0.05 0.01 0.46 0.12 0.40 0.06 0.72
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Table 2. Continued.

ExptID  Removal Scheme mfggs  SMim  sdim 7 Toitmap  TGinoux Tmiami @

20 Slinn droplet=0.5mm  0.43 0.02 0.03 0.82 2.97 5.84 0.81 0.72
19 Slinn droplet=0.5mm 0.44 0.04 0.09 0.87 4.78 6.17 0.75 0.73
2 Slinn droplet=0.5mm  0.37 0.02 0.10 0.55 0.20 0.92 0.14 0.73
18 Slinn droplet=0.5mm  0.41 0.03 0.08 0.96 13.06 14.32 1.75 0.73
6 Slinn droplet=0.5mm  0.46 0.03 0.06 0.41 0.11 0.32 0.04 0.73
15 Slinn droplet=0.5mm  0.49 0.02 0.00 0.68 0.52 1.66 0.24 0.74
1 Slinn droplet=0.5mm  0.50 0.04 0.01 0.66 0.44 1.24 0.16 0.74
11 Slinn droplet=0.5mm  0.47 0.05 0.06 0.1 0.16 0.52 0.07 0.74

droplet diameter 0.1 mm perform the best. A sharp increasesimulate dynamic vegetation. The model has been tuned
in the model error can be seen for the experiments which uséy producing an ensemble of simulations and using a skills
the 0.5 mm rain droplet. The experiment with the lowest totalscore to select the best performing experiment. Surface emis-
error has threshold limits mfpgs =0.33, s¢y, =0.08 My = sions which agree best with observations range from 1600 to
0.9, smim = 2% . This results in estimates of the annual mean2400 Mtyr-1. This estimate lies within the range reported by
surface emissions which range from 1600 My(7 =7.26,  studies Cakmur et al. 200§ Yue et al, 2009 Tanaka and
DIRTMAP) and 3000 Mtyr?, (T = 7.61, University of Mi-  Chiba 2006 Ginoux et al, 2004. The tuning carried out
ami) and 2400 Mtyr!, (T = 10,54, Ginoux). The meaff explored only a small subset of the possible parametric and
value gives emissions of 1900 Mty*. It is not expected that  structural uncertainty in the model, but resulted in improved
the value forT be exactly the same for each dataset. This isestimates of dust deposition to the North Atlantic, North Pa-
because the observations contain inter-annual varibility ancific, South pacific and the Arabian Sea.
different degrees of measurement error. There are also dif- The LPJ-dust model has many limitations. Currently,
ferences in the spatial distribution of the observations. Foroughness length is assumed have a constant value for all
example, many of the University of Miami sites are located dust emitting regions. Wind speed has a non-linear relation-
far from the source region, while the DIRTMAP data con- ship with dust emissions, which means the way in which
tains more sites downwind of the source regions. the roughness length is treated, may have a large impact
Figurel0shows a comparison between the model data andn the surface emissions. One way to improve this is to
the observations for the best and the worst performing experparameterise the roughness length as a function of the leaf
iment in the ensemble. The best experiment shows improvedrea index and the vegetation stand height simulated by
estimates of deposition rates and surface concentrations toPJ using an empirical relationship such as that.mdroth
the North and South Pacific, Arabian Sea and the North At-(1993.
lantic and the Southern Atlantic. Another limitation is that the current set of PFT in LPJ
Experiments are listed according to their NRMSE with is not sufficient to characterise all the possible vegetation
each dataset separately in Tab&s4 and5. The compa- types. In particular, LPJ does not simulate shrub PFTs
rison with the DIRTMAP data shows the best three exper-which may be important in semi-arid regions. The model
iments have the same threshold limits but use different reassumes that short trees are shrubs even though their phy-
moval schemes. This is because the DIRTMAP data containsiological and morphological attributes may be different to
sites close to the source region, and thus show more sensitthat of trees. Furthermore, the model uses the same thresh-
vity to the choice of threshold limits and less sensitivity to the old limit for both shrub and grasses to calculate dust emis-
removal scheme. The comparison with the surface concensions. This could be improved by using a threshold specific
trations and Ginoux deposition data, show that the Slinn reto different vegetation types in a similar way Tegen et al.
moval scheme with droplet diameter 0.1 mm and the Brandi(2002.
removal scheme produce high skills scores. Another limitation of the model, is that the temporal vari-
ability in sediment supply is not parameterised. Sediment
. supply is enhanced when flooding deposits fine grain ma-
3 Conclusions terial which can be easily eroded. Crusting of the surface
. . : which occurs when the soil dries out reduces the sediment
This work has described how the LPJ dynamic global Veg'.supply. Zender and Kwor(2009 showed that this may be

etation model has been used to simulate the temporal vart i Sortant process and may helb exolain why dust models
ability in vegetation cover within the framework of a dust P P y Ne'b exp y

cycle model. The development of the model has been mo_underesnmate inter-annual variability.

tivated by the fact that current off-line dust models do not
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Table 3. Tuning experiments ranked according to NRMSE with DIRTMAP deposition rates.

ExptID Removal Scheme mfpgs  SMim  Sdim 7 Tcinoux NRMSE
40 Slinn droplet=0.1mm 0.44 0.04 0.09 0.87 497 1.04
61 Brandt 0.44 0.04 0.09 0.87 460 1.04
19 Slinn droplet=0.5mm 0.44 0.04 0.09 0.87 478 1.05
25 Slinn droplet=0.1mm  0.32 0.03 0.07 0.93 1042 1.05
33 Slinn droplet=0.1mm  0.33 0.02 0.08 0.90 7.77 1.05
39 Slinn droplet=0.1mm 0.41 0.03 0.08 0.96 13.88 1.05
54 Brandt 0.33 0.02 0.08 0.90 7.26 1.05
12 Slinn droplet=0.5mm  0.33 0.02 0.08 0.90 7.52 1.05
4 Slinn droplet=0.5mm  0.32 0.03 0.07 0.93 9.92 1.06
46 Brandt 0.32 0.03 0.07 0.93 9.38 1.06
62 Brandt 0.43 0.02 0.03 0.82 294 1.06
18 Slinn droplet=0.5mm  0.41 0.03 0.08 0.96 13.06 1.06
20 Slinn droplet=0.5mm  0.43 0.02 0.03 0.82 297 1.06
59 Brandt 0.40 0.03 0.04 0.78 157 1.07
41 Slinn droplet=0.1mm  0.43 0.02 0.03 0.82 3.00 1.07
60 Brandt 0.41 0.03 0.08 0.96 12.15 1.07
29 Slinn droplet=0.1mm  0.30 0.04 0.02 0.99 19.58 1.07
45 Brandt 0.23 0.02 0.05 0.80 2.04 1.07
17 Slinn droplet=0.5mm  0.40 0.03 0.04 0.78 158 1.07
38 Slinn droplet=0.1mm  0.40 0.03 0.04 0.78 1.60 1.07
3 Slinn droplet=0.5mm  0.23 0.02 0.05 0.80 205 1.07
24 Slinn droplet=0.1mm  0.23 0.02 0.05 0.80 2.07 1.07
55 Brandt 0.25 0.05 0.03 0.73 0.96 1.07
8 Slinn droplet=0.5mm  0.30 0.04 0.02 0.99 18.42 1.08
13 Slinn droplet=0.5mm  0.25 0.05 0.03 0.73 0.96 1.08
51 Brandt 0.39 0.05 0.01 0.46 0.17 1.08
50 Brandt 0.30 0.04 0.02 0.99 16.95 1.08
34 Slinn droplet=0.1mm 0.25 0.05 0.03 0.73 0.97 1.08
49 Brandt 0.36 0.04 0.05 0.71 0.73 1.08
7 Slinn droplet=0.5mm  0.36 0.04 0.05 0.71 0.73 1.08
28 Slinn droplet=0.1mm 0.36 0.04 0.05 0.71 0.73 1.08
43 Brandt 0.50 0.04 0.01 0.66 0.44 1.09
58 Brandt 0.35 0.04 0.01 0.66 0.42 1.09
57 Brandt 0.49 0.02 0.00 0.68 0.52 1.09
1 Slinn droplet=0.5mm  0.50 0.04 0.01 0.66 0.44 1.09
22 Slinn droplet=0.1mm  0.50 0.04 0.01 0.66 0.44 1.09
48 Brandt 0.46 0.03 0.06 041 0.112 1.09
16 Slinn droplet=0.5mm 0.35 0.04 0.01 0.66 0.42 1.09
15 Slinn droplet=0.5mm  0.49 0.02 0.00 0.68 0.52 1.09
37 Slinn droplet=0.1mm 0.35 0.04 0.01 0.66 0.42 1.09
53 Brandt 0.47 0.05 0.06 051 0.16 1.09
36 Slinn droplet=0.1mm 0.49 0.02 0.00 0.68 0.52 1.10
6 Slinn droplet=0.5mm  0.46 0.03 0.06 0.41 0.11 1.10
63 Brandt 0.27 0.02 0.09 0.64 0.37 1.10
27 Slinn droplet=0.1mm  0.46 0.03 0.06 041 0.11 1.10
56 Brandt 0.24 0.03 0.04 0.60 0.26 1.10
11 Slinn droplet=0.5mm  0.47 0.05 0.06 051 0.16 1.10
47 Brandt 0.21 0.04 0.02 0.46 0.13 1.10
9 Slinn droplet=0.5mm  0.39 0.05 0.01 0.46 0.12 1.10
32 Slinn droplet=0.1mm 0.47 0.05 0.06 0.51 0.16 1.10
30 Slinn droplet=0.1mm  0.39 0.05 0.01 0.46 0.12 1.10
21 Slinn droplet=0.5mm  0.27 0.02 0.09 0.64 0.37 1.10
42 Slinn droplet=0.1mm 0.27 0.02 0.09 0.64 0.37 1.10
52 Brandt 0.28 0.02 0.07 0.58 0.23 1.10
14 Slinn droplet=0.5mm 0.24 0.03 0.04 0.60 0.26 1.10
5 Slinn droplet=0.5mm 0.21 0.04 0.02 0.46 0.13 1.10
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Table 3. Continued.

ExptID Removal Scheme mfpgs  SMim  Sdim 7 Tcinoux NRMSE
35 Slinn droplet=0.1mm 0.24 0.03 0.04 0.60 0.26 1.10
26 Slinn droplet=0.1mm 0.21 0.04 0.02 0.46 0.13 1.10
10 Slinn droplet=0.5mm 0.28 0.02 0.07 0.58 0.23 1.10
44 Brandt 0.37 0.02 0.10 0.55 0.21 1.10
31 Slinn droplet=0.1mm 0.28 0.02 0.07 0.58 023 111
2 Slinn droplet=0.5mm  0.37 0.02 0.10 0.55 020 1.11
23 Slinn droplet=0.1mm  0.37 0.02 0.10 0.55 0.20 111
Table 4. Tuning experiments ranked according to NRMSE with Ginoux deposition rates.
ExptID Removal Scheme mfpgk  SMim  Sdim 7 Tmiami NRMSE
52 Brandt 0.28 0.02 0.07 058 1.14 0.12
63 Brandt 0.27 0.02 0.09 0.64 0.78 0.12
56 Brandt 0.24 0.03 0.04 060 1.11 0.13
a7 Brandt 0.21 0.04 0.02 046 231 0.13
45 Brandt 0.23 0.02 0.05 0.80 0.23 0.13
55 Brandt 0.25 0.05 0.03 0.73 0.44 0.14
44 Brandt 0.37 0.02 0.10 055 1.10 0.15
58 Brandt 0.35 0.04 0.01 0.66 0.79 0.15
49 Brandt 0.36 0.04 0.05 0.71 0.54 0.16
54 Brandt 0.33 0.02 0.08 0.90 0.09 0.16
46 Brandt 0.32 0.03 0.07 0.93 0.08 0.17
51 Brandt 0.39 0.05 0.01 046 255 0.17
59 Brandt 0.40 0.03 0.04 0.78 0.31 0.17
48 Brandt 0.46 0.03 0.06 041 3.17 0.18
50 Brandt 0.30 0.04 0.02 0.99 0.05 0.20
57 Brandt 0.49 0.02 0.00 0.68 0.60 0.20
62 Brandt 0.43 0.02 0.03 0.82 0.17 0.21
53 Brandt 0.47 0.05 0.06 051 1.91 0.22
3 Slinn droplet=0.5mm  0.23 0.02 0.05 0.80 0.22 0.23
43 Brandt 0.50 0.04 0.01 0.66 0.79 0.23
14 Slinn droplet=0.5mm 0.24 0.03 0.04 0.60 1.03 0.24
5 Slinn droplet=0.5mm 0.21 0.04 0.02 046 2.15 0.24
21 Slinn droplet=0.5mm  0.27 0.02 0.09 0.64 0.73 0.24
10 Slinn droplet=0.5mm 0.28 0.02 0.07 058 1.07 0.24
61 Brandt 0.44 0.04 0.09 0.87 0.16 0.25
60 Brandt 0.41 0.03 0.08 0.96 0.07 0.26
13 Slinn droplet=0.5mm 0.25 0.05 0.03 0.73 041 0.27
12 Slinn droplet=0.5mm  0.33 0.02 0.08 0.90 0.09 0.30
2 Slinn droplet=0.5mm  0.37 0.02 0.10 055 1.04 0.30
16 Slinn droplet=0.5mm  0.35 0.04 0.01 066 0.74 0.30
4 Slinn droplet=0.5mm  0.32 0.03 0.07 0.93 0.08 0.31
7 Slinn droplet=0.5mm  0.36 0.04 0.05 0.71 0.50 0.31
17 Slinn droplet=0.5mm  0.40 0.03 0.04 0.78 0.29 0.32
9 Slinn droplet=0.5mm  0.39 0.05 0.01 046 2.37 0.33
15 Slinn droplet=0.5mm  0.49 0.02 0.00 0.68 0.56 0.34
20 Slinn droplet=0.5mm  0.43 0.02 0.03 0.82 0.16 0.35
6 Slinn droplet=0.5mm  0.46 0.03 0.06 041 2.95 0.35
8 Slinn droplet=0.5mm  0.30 0.04 0.02 0.99 0.05 0.37
11 Slinn droplet=0.5mm  0.47 0.05 0.06 051 1.78 0.39
1 Slinn droplet=0.5mm  0.50 0.04 0.01 066 0.74 0.39
19 Slinn droplet=0.5mm 0.44 0.04 0.09 0.87 0.15 0.43
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Table 4. Continued.

ExptID Removal Scheme mfpgk  SMim  Sdim 7 Tmiami NRMSE
18 Slinn droplet=0.5mm 0.41 0.03 0.08 0.96 0.06 0.43
24 Slinn droplet=0.1mm 0.23 0.02 0.05 0.80 0.18 0.46
35 Slinn droplet=0.1mm 0.24 0.03 0.04 0.60 0.87 0.48
42 Slinn droplet=0.1mm  0.27 0.02 0.09 064 0.61 0.48
31 Slinn droplet=0.1mm 0.28 0.02 0.07 0.58 0.89 0.48
26 Slinn droplet=0.1mm 0.21 0.04 0.02 046 181 0.48
34 Slinn droplet=0.1mm  0.25 0.05 0.03 0.73 0.35 0.54
23 Slinn droplet=0.1mm  0.37 0.02 0.10 055 0.88 0.55
37 Slinn droplet=0.1mm 0.35 0.04 0.01 0.66 0.63 0.57
33 Slinn droplet=0.1mm  0.33 0.02 0.08 0.90 0.07 0.57
28 Slinn droplet=0.1mm 0.36 0.04 0.05 0.71 043 0.59
25 Slinn droplet=0.1mm 0.32 0.03 0.07 0.93 0.07 0.60
38 Slinn droplet=0.1mm  0.40 0.03 0.04 0.78 0.25 0.60
30 Slinn droplet=0.1mm  0.39 0.05 0.01 046 2.04 0.61
36 Slinn droplet=0.1mm  0.49 0.02 0.00 0.68 0.48 0.62
41 Slinn droplet=0.1mm 0.43 0.02 0.03 0.82 0.14 0.64
27 Slinn droplet=0.1mm 0.46 0.03 0.06 041 2.53 0.64
29 Slinn droplet=0.1mm 0.30 0.04 0.02 0.99 0.04 0.65
32 Slinn droplet=0.1mm  0.47 0.05 0.06 051 155 0.69
22 Slinn droplet=0.1mm  0.50 0.04 0.01 0.66 0.65 0.70
39 Slinn droplet=0.1mm 0.41 0.03 0.08 0.96 0.06 0.77
40 Slinn droplet=0.1mm 0.44 0.04 0.09 0.87 0.13 0.77

Table 5. Tuning experiments ranked according to NRMSE with surface concentrations.

ExptID Removal Scheme mfpgk SMim  Sdim 7 Tmiami NRMSE
29 Slinn droplet=0.1mm  0.30 0.04 0.02 0.99 840 0.28
25 Slinn droplet=0.1mm  0.32 0.03 0.07 093 5.18 0.28
39 Slinn droplet=0.1mm 0.41 0.03 0.08 0.96 5.99 0.28
40 Slinn droplet=0.1mm 0.44 0.04 0.09 0.87 255 0.29
34 Slinn droplet=0.1mm  0.25 0.05 0.03 0.73 0.97 0.30
28 Slinn droplet=0.1mm 0.36 0.04 0.05 0.71 0.83 0.30
38 Slinn droplet=0.1mm  0.40 0.03 0.04 078 141 0.30
37 Slinn droplet=0.1mm  0.35 0.04 0.01 0.66 0.58 0.31
35 Slinn droplet=0.1mm 0.24 0.03 0.04 0.60 0.43 0.31
33 Slinn droplet=0.1mm  0.33 0.02 0.08 0.90 4.77 0.31
26 Slinndroplet=0.1mm 0.21 0.04 0.02 0.46 0.20 0.32
22 Slinn droplet=0.1mm  0.50 0.04 0.01 0.66 0.56 0.32
24 Slinn droplet=0.1mm  0.23 0.02 0.05 0.80 197 0.32
32 Slinndroplet=0.1mm 0.47 0.05 0.06 051 0.24 0.32
42 Slinn droplet=0.1mm  0.27 0.02 0.09 0.64 0.62 0.32
30 Slinn droplet=0.1mm  0.39 0.05 0.01 046 0.18 0.32
27 Slinn droplet=0.1mm 0.46 0.03 0.06 0.41 0.15 0.32
31 Slinn droplet=0.1mm 0.28 0.02 0.07 058 0.44 0.33
41 Slinn droplet=0.1mm  0.43 0.02 0.03 0.82 263 0.34
36 Slinn droplet=0.1mm  0.49 0.02 0.00 0.68 0.80 0.36
23 Slinn droplet=0.1mm  0.37 0.02 0.10 055 045 0.37
44 Brandt 0.37 0.02 0.10 0.55 0.77 0.38
54 Brandt 0.33 0.02 0.08 090 7.61 0.39
62 Brandt 0.43 0.02 0.03 0.82 422 0.40
52 Brandt 0.28 0.02 0.07 0.58 0.69 0.41
60 Brandt 0.41 0.03 0.08 096 9.24 0.42
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Fig. 10. A comparison between model output and DIRTMAP deposition (top), Ginoux deposition (middle) and surface concentration data
(bottom). Data from the best the worst experiment (54) is shown on the left hand side and the worst experiment (11) on the right hand side.
The location of measurement sites are denoted by colour; South Pacific (green), Antarctica/Southern Ocean (navy blue), North Pacific (red),
North Atlantic (magenta), South Atlantic (pale blue), Arabian Sea (yellow).

The relationship between soil moisture and dust emissions Another limitation of the model is that 6 hourly wind
in the model is currently very simple. Emissions are cut off speeds are used to drive dust emissions. Although, this is
if a threshold soil moisture is exceeded. This could be im-the shortest time step the ERA-40 reanalysis data is avail-
proved by using the scheme Bécan et al(1999 to calcu-  able, it means that sporadic peaks in emissions which occur
late the increase in the threshold friction velocity due to theover short time periods are not captured. To improve this, a
presence of soil moisture. parameterisation for sub-grid scale gustiness could be used.
A possible way to do this is to apply a probability distribution
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Table 5. Continued.

ExptID Removal Scheme mfpgs SMim Sdim 7 Tmiami  NRMSE
46 Brandt 0.32 0.03 0.07 093 7.83 0.42
57 Brandt 0.49 0.02 0.00 0.68 1.27 0.42
63 Brandt 0.27 0.02 0.09 0.64 0.95 0.42
45 Brandt 0.23 0.02 0.05 0.80 3.01 0.42
48 Brandt 0.46 0.03 0.06 041 0.23 0.43
50 Brandt 0.30 0.04 0.02 099 1254 0.43
59 Brandt 0.40 0.03 0.04 0.78 2.08 0.44
61 Brandt 0.44 0.04 0.09 0.87 384 0.44
49 Brandt 0.36 0.04 0.05 071 1.22 0.44
53 Brandt 0.47 0.05 0.06 051 0.36 0.44
56 Brandt 0.24 0.03 0.04 0.60 0.63 0.44
43 Brandt 0.50 0.04 0.01 0.66 0.84 0.45
51 Brandt 0.39 0.05 0.01 046 0.27 0.45
58 Brandt 0.35 0.04 0.01 066 0.84 0.45
47 Brandt 0.21 0.04 0.02 0.46 0.30 0.46
55 Brandt 0.25 0.05 0.03 0.73 1.38 0.46
13 Slinn droplet=0.5mm  0.25 0.05 0.03 073 0.34 0.72
3 Slinn droplet=0.5mm  0.23 0.02 0.05 0.80 0.71 0.72
5 Slinn droplet=0.5mm 0.21 0.04 0.02 0.46 0.07 0.72
14 Slinn droplet=0.5mm 0.24 0.03 0.04 0.60 0.15 0.73
21 Slinn droplet=0.5mm  0.27 0.02 0.09 064 0.21 0.74
4 Slinn droplet=0.5mm  0.32 0.03 0.07 093 1.68 0.74
8 Slinn droplet=0.5mm  0.30 0.04 0.02 099 2.69 0.74
10 Slinn droplet=0.5mm 0.28 0.02 0.07 058 0.14 0.74
16 Slinn droplet=0.5mm  0.35 0.04 0.01 0.66 0.19 0.74
7 Slinn droplet=0.5mm 0.36 0.04 0.05 0.71 0.27 0.75
17 Slinn droplet=0.5mm  0.40 0.03 0.04 0.78 0.45 0.75
12 Slinn droplet=0.5mm  0.33 0.02 0.08 090 1.54 0.75
9 Slinn droplet=0.5mm  0.39 0.05 0.01 0.46 0.06 0.76
19 Slinn droplet=0.5mm 0.44 0.04 0.09 0.87 0.75 0.76
18 Slinn droplet=0.5mm 0.41 0.03 0.08 096 1.75 0.76
20 Slinn droplet=0.5mm  0.43 0.02 0.03 0.82 0.81 0.77
1 Slinn droplet=0.5mm  0.50 0.04 0.01 0.66 0.16 0.77
2 Slinn droplet=0.5mm  0.37 0.02 0.10 055 0.14 0.77
11 Slinn droplet=0.5mm  0.47 0.05 0.06 0.51 0.07 0.77
6 Slinn droplet=0.5mm  0.46 0.03 0.06 0.41 0.04 0.77
15 Slinn droplet=0.5mm  0.49 0.02 0.00 0.68 0.24 0.78

function to the wind speed dat&(ini et al, 2005 Cakmur  study the dust cycle in the past. Ice core records show there
et al, 2006. In the dry deposition scheme dust particles arehas been a 2-25 fold increase in dust deposition rates dur-
prohibited from falling more than one model level per time ing glacial periods compared to inter-glacial periotdarf-
step. Allowing patrticles to fall through multiple levels would bert et al, 2009. Previous studies have used focused on
improve the way in which larger particles are transported.simulating the dust cycle at the LGM using the BIOME4
Furthermore, including in-cloud scavenging as a mechanisnmodel in order to understand the reasons for the high dust
of removal is not currently included in the model. loadings Mahowald et al. 1999 Mahowald 2006 Werner

et al, 2002. The LPJ-dust model could be used to study the

The LPJ-dust model has several potential applications, ) . 3
The model can be used to test whether vegetation changdd!Pact of dynamic vegetation on the dust loading through a
eglaciation period. Likewise, the model can be used to in-

can explain the observed variability in the dust loading on ) . X .
decadal time scales. This may help us distinguish betweenSSt9ate how dust Sources will responq n the'future. with
natural variability in dust cycle from anthropogenic effects elevated atmospheric GQevels. Modelling studies using

such as land degradation. The model can also be used tlgIOME4 have shown that if vegetation cover is allowed to
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respond to elevated GQhen dust emissions will decrease Fécan, F., Marticorena, B., and Bergametti, G.: Parametrization of
in the future Mahowald and Lup2003 Mahowald 2006 the increase of the aeolian erosion threshold wind friction veloc-
2007). Using the LPJ-dust model would make it possible ity due to soil moisture for arid and semi-arid areas, Ann. Geo-
to predict the year to year variability in dust emissions in _ Phys., 17, 149-15%0i:10.1007/s00585-999-0149-1999.

the future which is not possible using equilibrium vegetation Forster. P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fa-
models hey, D., Haywood, J., Lean, J., Lowe, D., Myhre, G., Nganga,

J., Prinn, R., Raga, G., Schulz, M., and Dorland, R. V.: Changes
in Atmospheric Constituents and in Radiative Forcing, in: Cli-
mate Change 2007: The Physical Science Basis, Contribution of
Working Group | to the Fourth Assessment Report of the Inter-
governmental Panel on Climate Change, Cambridge University
Press, Cambridge and New York, NY, USA, 2007.

Ge, X. Z. and Lei, X. E.: Application and numerical experi-
ments with a highly-accurate advection scheme in a regional
transfer model, Meteorol. Atmos. Phys., 66(3—-4), 131-142,
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