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1. Introduction and what’s new

The Joint UK Land Environment Simulator (JULES) is a computer model that simulates many soil
and vegetation processes. This document describes how to run version 2.2 of JULES. It primarily
describes the format of the input and output files, and does not include detailed descriptions of the
science and representation of the processes in the model.

The first version of JULES was based on the Met Office Surface Exchange System (MOSES), the
land surface model used in the Unified Model (UM) of the UK Met Office. After that initial split,
the MOSES and JULES code bases evolved separately, but with JULES2.1 these differences were
reconciled, so that all versions since v2.1 have had identical code in both the standalone version (as
described here) and in the UM.

Further information can be found on the JULES website: http://www.jchmr.org/jules.

1.1. What’s new in version 2.2

Along with fixes for known bugs, the changes made for version 2.2 mostly consist of several small
additions to the science code. Changes to the control code have mostly been limited to bug-fixes.

® New options for treatment of urban tiles - inclusion of the Met Office Reading Urban Surface
Exchange Scheme (MORUSES) and a simple two tile urban scheme

e Effects of ozone damage on stomata from Stephen Sitch at the University of Leeds

e New treatment of direct/diffuse radiation in the canopy from Lina Mercado at CEH

¢ A new switch allows the competing vegetation portion of TRIFFID to be switched on and off
independently of the rest of TRIFFID (i.e. it is now possible to use the RothC soil carbon
without having changing vegetation fractions)

There have also been changes made to the way JULES is compiled, due to the re-integration with
the Met Office Unified Model. The Unified Model uses pre-processor directives to compile
different versions of routines depending on the selected science options. For compatability with
this system, JULES will now require a compiler with a pre-processor. This should not be noticed
by the majority of users — most modern compilers include a pre-processor and the Makefile deals
with setting up the appropriate pre-compiler options.

1.2. What’s new in version 2.1?

Version 2.1 of JULES includes extensive modifications to the descriptions of the processes and to
the control-level code (such as input and output). These are covered briefly below. Several bug
fixes and minor changes to make the code more robust have also been applied. All files are now
technically FORTRAN90 (.f90) although many are simply reformatted FORTRAN77 files in which
continuation lines are now indicated by the use of the ‘&’ character.

1.2.1. Process descriptions

The main change is that a new multi-layer snow scheme is available (see nsmax in Section 6.2).
This scheme was developed by Richard Essery at the University of Edinburgh and co-workers. At
the time of writing there is little scientific documentation of this development, but this will be made
available as soon as possible. In brief, the older, simple scheme represents the snowpack as a single
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layer with prescribed properties such as density, whereas the new scheme has a variable number of
layers according to the depth of snow present, and each layer has prognostic temperature, density,
grain size, and solid and liquid water content. The new scheme reverts to the previous, simpler
scheme if nsmax=0 or when the snowpack becomes very thin.

A four-pool soil carbon model based on the RothC model now replaces the single pool model when
dynamic vegetation (TRIFFID) is selected.

There have been several major changes that most users will not notice or need be concerned about.
These include a change in the linearization procedure that is used in the calculation of surface
energy fluxes (described in the technical documentation). A standard interface is now used to
calculate fluxes over land, sea and sea ice. Each surface tile now has an elevation relative to the
gridbox mean.

These changes mean that, even with the new snow scheme switched off (nsmax=0), results from
v2.1 will generally not be identical to those from v2.0.

1.2.2. Control-level code

The major change at v2.1 to the control-level code is that netCDF output is now supported. Both
diagnostic and restart files (dumps) can be in netCDF format. There have been several changes to
the run control file (see Section 6), partly to reflect new science but also in an attempt to organise
the file better. These changes mean that run control and restart files from JULES v2.0 are not
compatible with v2.1 (although they could be reformatted without too much difficulty).

1.3. What’s new in version 2.0?

The physical processes and their representation in version 2.0 have not changed from version 1.
However, version 2.0 is much more flexible in terms of input and output, and allows JULES to be
run on a grid of points. New features include:

¢ Ability to run on a grid.

e Choice of ASCII or binary formats for input and output files (also limited support of netCDF
input).

More flexible surface types — number and types can vary.

Optional time-varying, prescribed vegetation properties.

More choice of meteorological input variables.

Optional automatic spin up.

Enhanced diagnostics — large choice of variables, frequency of output, sampling frequency, etc.
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2. Overview of JULES

This section provides a brief overview of JULES, largely so as to provide background information
and introduce terms used in the rest of the manual. Further details on the science and process
descriptions contained in JULES can be found at the JULES website http://www.jchmr.org/jules.

JULES views each gridbox as consisting of a number of surface types. The fractional area of each
surface type is either prescribed by the user or modelled by the TRIFFID sub-model. Each surface
type is represented by a tile, and a separate energy balance is calculated for each tile. The gridbox
average energy balance is found by weighting the values from each tile. In its standard form,
JULES recognises nine surface types: broadleaf trees, needleleaf trees, C3 (temperate) grass, C4
(tropical) grass, shrubs, urban, inland water, bare soil and ice. These 9 types are modelled as 9 tiles.
A land gridbox is either any mixture of the first 8 surface types, or is land ice. Note that, from
version 2.0, one is not limited to these 9 standard surface types (unless running TRIFFID).

Soil processes are modelled in several layers, but all tiles lie over and interact with the same soil
column. Each gridbox requires meteorological driving variables (such as air temperature) and
variables that describe the soil properties at that location. It is also possible to prescribe certain
characteristics of the vegetation, such as Leaf Area Index, to vary between gridboxes.

JULES can be run for any number of gridboxes from one upwards. The number of gridboxes is
limited by the availability of computing power and suitable input data. When run on a grid, JULES
models the average state of the land surface within the area of the gridbox and most quantities are
taken to be homogeneous within the gridbox (with options to include subgrid-scale variability of a
few, such as rainfall). In that case, the input data are also area averages. JULES can also be run “at
a point”, with inputs that are taken to represent conditions at that point — this configuration might
be used when field measurements of meteorological conditions are available.
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3. Building and running JULES

Building a JULES executable requires two pieces of software:
¢ a Fortran 90 compiler with a pre-processor
¢ a version of the ‘make’ utility

It may also be desirable, but not essential, to have available the following software:
e the Fortran 90 netCDF' interface library

3.1. The make utility

The Makefile supplied with the JULES code should be compliant with most versions of make,
but is only guaranteed to work with GNU Make® (also known as gmake), which is available on
most Linux and UNIX systems and also for Windows. Once the Makefile is set up for the user’s
system, JULES is built simply by entering ‘make’ at the command prompt while in the directory
containing the Makefile. This will compile all of the JULES source code, make a library
libjules.a, and finally link the compiled source to create and executable file with a default
name of jules.exe. To remove all the files created during the build process enter ‘make
clean’ at the command prompt.

The make utility uses architecture- and compiler-specific variables that must be set by the user to
the appropriate values for their system. These values may be set in the files
Makefile.common.mk and Makefile.comp.*. (The user should not have to edit the file
named Makefile.) There are two convenience options, COMPILER and BUILD, which should
be passed to make from the command line to tell that program where the appropriate values should
be taken from. The COMPILER option allows the user to define a list of compiler-specific
variables (including compiler flags) without having to edit the Makefile. The BUILD option
allows the user to build with sets of predefined flags for different situations, e.g. debugging. The
Type and permitted values for each of these options are described in Table 1, and additional
information is given in the comments at the head of Makefile.

The compiler-specific variables are specified in individual files named Makefile.comp.* fora
handful of common compilers, e.g. Makefile.comp.sun. The list of tested compilers
includes three (Intel, gfortran and G95) that can be downloaded for no cost via the URLs in Table 1
(certain conditions apply to these downloads). To use a compiler that is not listed, the user should
replace the ‘@@’ strings in the blank compiler file Makefile.comp.misc with values
appropriate to their compiler and invoke make with the option COMP ILER=misc.

Table 1 Options that can be passed to make when building JULES.

Variable Type and Notes
permitted values
COMPILER Sun Use options for Sun Studio compiler series (previously known
as Workshop and Forte).

' The netCDF interface library can be downloaded for no cost from http://www.unidata.ucar.edu/software/netcdf/
? The GNU Make utility can be downloaded for no cost from http://www.gnu.org/software/make/
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Intel Use options for Intel Fortran compiler for Linux, Windows and
MacOS (http://www3.intel.com/cd/software/products/asmo-
na/eng/compilers/284132.htm). Version 9.0 was used for testing
of JULES2.0 and it was found that two lines in the source code
had to be changed — find these and the suggested replacements
by searching the code for “Intel”.
g95 Use options for G95 compiler (http://www.g95.0rg).
Gfortran Use options for the GNU fortran compiler
(http://gcc.gnu.org/wiki/GFortran).
Nag Use options for NAGWare compiler.
Pgf Use options for Portland Group compiler.
Misc Use options for an unlisted compiler.
Run Default option; for normal compilation of JULES.
BUILD Debug Switch on compiler debug flags.
Fast Switch on compiler optimisation flags for faster execution.
False Use a precompiled netCDF library.
CDFDUMMY True Use the dummy netCDF library provided with JULES.

3.2. The JULES netCDF library

To build JULES, the user must also pass make some information about the netCDF interface
library. If the user has access to a pre-compiled netCDF interface library, then they should pass
make the options CDF_LIB_PATH and CDF_MOD_PATH. The values for these options are the
directories in which the pre-compiled netCDF library (1ibnc.a) and Fortran 90 module files
(those with .mod extension) are located respectively. This can be done also by editing the
Makefile itself, but the recommended method is by specifying the variables as options when
make 18 invoked, e.g., ‘make CDF_LIB_PATH=$HOME/mynetcdf/lib
CDF_MOD_PATH=$HOME /mynetcdf/mod’.

If the user does not have access to a pre-compiled netCDF library, then JULES may be compiled by
specifying ‘CDFDUMMY=true’ when make is invoked rather than setting the CDF_LIB_PATH
and CDF_MOD_PATH variables. This option compiles a set of dummy netCDF interface functions,
which merely allows the rest of the JULES code to compile correctly and provides no functionality.
When this option is used JULES will neither read nor write netCDF files. The user must then
ensure that netCDF input/output options are not selected at any point in any JULES control file
(described in Section 0) used with an executable produced using this option.

Example build linesTo build JULES using the normal Sun compiler options and link with a netCDF
library:

make COMPILER=sun BUILD=run CDF_LIB_PATH=$HOME/mynetcdf/lib \
CDF_MOD_PATH=$HOME /mynetcdf/mod

To build JULES using the fast Intel compiler options and not link with a netCDF library:

make COMPILER=intel BUILD=fast CDFDUMMY=true

These command lines can become quite long and tedious to keep typing, so it’s a good idea to set
the list of frequently used ones as environment variables:
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export JULESBUILD="COMPILER=sun BUILD=run \
CDF_LIB_PATH=S$HOME/mynetcdf/lib \
CDF_MOD_PATH=$HOME /mynetcdf/mod”

make $JULESBUILD

It is then possible to override options specified in that variable by adding revised ones at the end:

make SJULESBUILD BUILD=debug

3.3. Running JULES

A JULES executable is run by redirecting standard input to a file that contains all the information
needed to describe a run, e.g.,
jules.exe < runl.jin

The format of this input file is described in Section 6, with some example runs described in Section
6.23.

The file extension “.jin” is meant to suggest “JULES input file”, but there is no need to use this or
any other extension.
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4. Overview of the JULES code

The general structure of the JULES source code, including the order in which routines are called, is
illustrated below. For the sake of clarity, the full details are not shown here. In particular, the
initialisation and output steps (subroutines init and output) can call several routines. The focus
below is on the calling order for land points (rather than sea or sea-ice).

Jjules——|
| ——init——|
| | -—init calls various initialisation routines
\
(top of timestep loop)
\
| -——drive_update
\
| -——veg_update
\
| ——control———|
| | -——zenith
\
|-——tile_albedo——|

\

\

\ \ | -—albpft

| | | ——albsnow

| | | -——canyonalb (MORUSES)-——|

\ \ \ | ——matinv
\ \

\ | -——generate_anthropogenic_heat

\ \

\ | ——sf_expl—-—|

\ \ | -—tilepts

\ \ | ——physiol-—|

\ \ \ | ——albpft

\ \ \ | ——root_frac

\ \ \ | ——smc_ext

| | \ | ——raero

\ \ \ | ——sf_stom——|

\ \ \ \ | -—gsat

| \ \ \ |-—leaf_limits
\ \ \ \ |-——leaf

\ \ \ | -——soil_evap

\ \ \ |-—leaf_1lit

\ \ \ | -——cancap

| | \ | -——urbanemis (MORUSES)——|
\ \ \ \ | ——matinv
\ \ \ | -——microbe

\ \ \

\ \ | -——heat_con

| | | ——snowtherm

\ \ | -——hcons_snow

\ \ \

| | | -——sf_exch——|

| | | ——elevate——|

\ \ \ | -—dewpnt

\ \ \ | -——gsat

\ \ | -—gsat_mix

\ \ | -——urbanz0 (MORUSES)-—|

\ \ \ | ——get_us
\ \

| -—sf_orog



——sf_impl-—|

|-——im_sf_pt
| -——sf_evap
| -—sf_melt
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| -——sf_resist
|-—sf_rib
| ——sf_orog
| -——fcdch————|
| | ——phi_m_h
| -—sf_resist
| -——sf_flux
| ——stdevl
| -—sfl_int———|
| | ——phi_m_h
| -—sf_orog_gb
| -——sf_aero——|
| -——dustresb——|
| ——vgrav

| ——screen_tg——|

——sSnow—-—|

| ——canopysnow

| ——layersnow

| ——snowtherm

| ——snowpack——|

| -—tridag

| ——snowgrain
| ——compactsnow

| -——gsat

| -——relayersnow——|

——hydrol———|

| -——layersnow

| ——surf_hyd—-—|

| -——frunoff
| -——sieve
| ——pdm

| -——calc_baseflow
| -—soil_hyd-—|

| ——hyd_con_ic——|

\ | -——hyd_con_ch/vg

| -——darcy_ic——|

| | -——darcy_ch/vg——|

\ hyd_con_ch/vg
| -——gauss

| -——calc_zw

| -—soil_htc——|

| -——ice_htc
| ——soilmc

| -—soilt

| -——ch4_wetl

——-sice_htf

-—veg2——|

|-—tilepts

| ——phenol

|——triffid——|

| -——vegcarb——|

| -——heat_con
| ——gauss



\ \ \ \ | -—growth
\ \ \ | -——lotka——|

| | | \ | —— compete
\ \ \ \

| | | | -——soilcarb——|

\ \ \ \ | ——dpm_rpm
\ \ \ \ | -——decay
| | |-—tilepts

\ \ | ——sparm—-— |

| | | ——pft_sparm

\ | ——vegl-—|

| |-——tilepts

\ | -——phenol

\ | ——sparm-—|

| | ——pft_sparm

| ——output
| ——new_time——|
\ | -——spin_check
\
(bottom of timestep loop)
\

| ——jules_final
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5. File formats and the JULES grid

5.1. Overview of file formats

JULES aims to support input and output in three formats: ASCII, netCDF and a generic binary
format (simply called ‘binary’ below). The implementation of netCDF input is fairly limited, in that
only certain dimension names are allowed (see Section 5.2.2). Input can also be read from many PP
files (a format used by the UK Met Office). The binary and netCDF files are compatible with the
GrADS® package, amongst others. A run control file might indicate that data are to be read from
several files, using one or more of these file formats. For example, soil data might be in an ASCII
file, while meteorological driving data are in netCDF files.

A “self-describing file” (SDF) is one in a format that contains metadata describing the contents of
the file. For JULES, only a netCDF file is presently considered to be a SDF. Minimal use is made
of any metadata contained within a file, including SDFs and PP files. For example, a SDF might
contain data that describes the grid or the times of data, but these are not used by JULES. Instead,
this information is provided via the run control file and all input data must be provided on the same
grid.

For all non-SDF files, the data model is based on that used by GrADS. Each variable is viewed as
being 4-dimensional in (X, y, z, t) on a regular grid. Although we will talk of x and y in terms of
West-East and South-North compass directions, in general the grid can be any rectilinear grid, with
West-East being replaced by “left to right”. x varies in the direction from West to East, y varies
from South to North (this default can be changed), and z varies from bottom to top. All variables in
any one file must have the same grid size in x and y (i.e. all variables are on a grid of nx*ny
points), and have a value at all times (although that value could indicate a missing datum). The data
are stored as a series of xy slices, with x varying fastest, then y, then z, and t varying slowest. For
example, say we have a file with two variables (A and B) on a grid with nx=2, ny=2. A has
nz=1, and B has nz=2. In the JULES/GrADS model, the data must be stored in the input file in
the order:

A(x=1,y=1,z=1,t=1) # 1st xy plane of A at t=1
A(x=2,y=1,z=1,t=1)
A(x=1,y=2,z=1,t=1)
A(x=2,y=2,z=1,t=1)
B(x=1,y=1,z=1,t=1) # 1lst xy plane of B at t=1
B(x=2,y=1,z=1,t=1)
B(x=1,y=2,z=1,t=1)
B(x=2,y=2,z=1,t=1)
B(x=1,y=1,z=2,t=1) # 2" xy plane of B at t=1
B(x=2,y=1,z=2,t=1)
B(x=1,y=2,z=2,t=1)
B(x=2,y=2,z=2,t=1)
A(x=1,y=1,z=1,t=2) # 1st xy plane of A at t=2
A(x=2,y=1,z=1,t=2)
etc

3 The GrADS software can be downloaded for no cost from http://grads.iges.org/grads/gadoc/index.html
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For clarity, this example has shown each datum on a separate line, but in fact any number of data
within a single field (see below) can be on the same line.

A data “field” is considered to be a single x-y plane of data (i.e., nx*ny values). Header records
can be present at the start of a file, at the start of each time within the file, and at the start of each
field.

Note that this means that JULES reads and writes data in terms of ‘maps’ (all values of one field,
then all values of another field), rather than using a ‘point-by-point’ data model (all fields for one
point, then all fields for another point).

A related concept used in JULES, is that of the point number in input or output files. This is used to
select individual points from a larger grid. The point number runs from 1 at the gridpoint in the SW
corner of the grid, across rows (so the bottommost row contains gridpoints 1 to nx), and then from
South to North up the grid. Examples and further discussion of JULES grids can be found in
Section 6.4.

5.2. Describing the format of an input file

Variables that describe how data are arranged in files are used in several sections later in this
document. These variables are summarised in Table 2. Often the information that JULES will read
and use from the control file depends on the file format of any one data file. The information
required for an ASCII, binary or PP file is generally fairly similar, while netCDF files are rather
different.

Table 2 Frequently used control file options

Variable name | Type Notes

readFile Logical Switch that indicates source of data.
TRUE: data are read from a named, external file
FALSE: data are read from the run control file

fileFormat | Character Flag indicating the file format. Case sensitive.
Only used if readFile=.TRUE.

‘asc’: ASCII

‘bin’: generic binary (including GrADS)
‘nc’ : netCDF

‘prp’ : PP format

5.2.1. ASCII or binary input files

If fileFormat=‘asc’, ‘bin’ or ‘pp’ or ‘pp’ some or all of the following information
is read from a section that starts with the tag ‘>ASCBIN’. Exactly what information is needed
varies between cases (for example, it is assumed that there is a single time “level” in a file of soil
properties, so nheaderTime is not needed).

Table 3 Options used to specify the reading of ASCII, binary and PP format files.

| Variable name | Type | Notes
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nheaderFile Integer The number of header records at the top of a file.

For an ASCII file, a header record is a line in the file.

For a binary file, a header record is an individual word or
record (e.g. a single ‘real’ value).

Not used for a PP file.

nheaderTime Integer The number of header records that precedes the data for
each time level within a file.
Not used for a PP file.

nheaderField | Integer The number of header records that precedes each field (x-
y plane) of data.
Not used for a PP file.

fieldNumber Integer This is used to locate a given field (xy plane) within all

the fields available at each time level. If there are
nFieldFile fields of data at each time level, and
fieldNumber=2 for a particular variable, the second
field of data is used for this variable.

Blank lines between fields in an ASCII input file can cause the code to read the wrong data, and
should be avoided. If blank lines are present between fields, they should be interpreted as header
lines.

There are restrictions on what PP files JULES can read. Each field must have no trailing “extra
data” (i.e. header (20) must be zero). It is also assumed that the data are ordered as in the
JULES/GrADS model outlined above (so, for example, we do NOT have all times of field 1, then
all times of field 2), so that the required data can be found without using the information contained
in the field headers. The headers are used to check that the size of the field and the STASH code
are as expected. The STASH code for each variable is currently hardwired in the code. At the time
of writing the PP-reading code has no known bugs, but it has been used much less than other
options, so any more obscure bugs might not have been triggered.

5.2.1.1. An example ASCII input file

Table 4 shows part of an example ASCII file that could be read by JULES, with
nheaderFile=2, nheaderTime=1, nheaderField=1. The size of the input grid is assumed
to be nxIn=3, nyIn=2. There are 2 variables, A which has a single level, and B which has 2
levels, giving a total of 3 fields per time. Annotation after any “!” (and shown in italics) would
NOT be present in the actual file. The data are shown on 2 lines per field, but this is not important —
nx*ny values will be read however they are presented.




Table 4 Part of an example ASCII file that could be read by JULES.
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This file contains example data.

There are 2 variables, the 2nd with 2 levels.
Time level 1.

Variable A

12.0 15.6 17.1
-1.0 23.9 53.2
Variable B, level 1
22.0 25.6 12.1
-1.0 22.9 23.2
Variable B, level 2
32.0 11.6 12.1
-9.1 72.9 43.7
Time level 2.
Variable A

9.2 67.3 -7.6
11.5 23.9 -8.3

Variable B, level 1
—-——— rest of file not shown —--—-—

1st file header
2nd file header

header for
header for
data for A

header for
data for B

header for
data for B

time=1
1st field
at t=1

2nd field

at t=1, 1lst level

3rd field

at t=1, 2nd level

header for time=2
header for 1st field
data for A at t=2

header for 2nd field
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5.2.2. netCDF input files

If fileFormat='"nc’, the required information is read from a section that starts with the tag
‘>NC’. The only information that is required is the name of the netCDF variable.

To be used with JULES, a netCDF file must meet certain requirements and be in the format of one
of several “types” which are summarised in Table 6. The types are used to summarise the names
and order of the dimensions of variables in the file (see Table 6). The type of netCDF files to be
read in a particular run is specified by the variable ncType (see Section 6.2), except that the type
of meteorological data is specified by ncTypeDrive (Section 6.18). The provision for netCDF
input and the creation of these types have been added in a rather ad hoc manner as need has arisen.
Provision for netCDF input will likely be improved in a future version of JULES. In general there
is more flexibility for reading driving (meteorological) data from netCDf files. If other types of
input are in netCDf files that do not conform to the requirements, they need to be rewritten with the
required dimension names, or converted to another file format. Another alternative is that the user
can modify the JULES code — it is fairly easy to add another netCDF “type” (most of the relevant
codeisin jules_netcdf.f90).

Table 5 Recognised types of netCDF input file

Type name Notes

gswp2 Refers to the Global Soil Wetness Project 2 (http://www.iges.org/gswp2 -
although data are no longer available from that site).

pilps2e Can only be used for meteorological data.

The PILPS2e experiment is described in Bowling, L.C. and co-authors, 2003,
Simulation of high latitude hydrological processes in the Torne-Kalix basin:
PILPS Phase 2(e), 1: Experiment design and summary intercomparisons, Global
and Planetary Change, 38 (1-2): 1-30.

The data are not widely available.

princet Can only be used for meteorological data.

These data from Princeton University are described in Sheffield, J., G.Goteti and
E.F.Wood, 2006, Development of a 50-yr high-resolution global dataset of
meteorological forcings forland surface modelling, J.Climate, 19: 3088-3111,
and can be downloaded from http://hydrology.princeton.edu/data.pgf.php.

tseries Can only be used for meteorological data.
A simple format for time series at a single point.
watch The Water and Global Change project (WATCH; www.eu-watch.org) is an EU

FP6 project which is producing meteorological data for model input, amongst
other aims. These data are not yet widely available.
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Table 6 Dimensions in netCDF input files

Related section of run

Allowable values of

Required dimension names

control file ncType (case and order are important)
(see Section 6). (ncTypeDrive for
INIT_DRIVE)
INIT _LAND, gswp2 Land
INIT_LATLON watch land
INIT_FRAC gswp2 Land, Psuedo, Time"
watch land, pseudo
INIT_SOIL gswp2 Land
Note that vertically-varying soil data cannot be read from
a netCDF file and the code will stop at any attempt to do
SO.
watch land
INIT_HGT gswp2 Land, Psuedo
watch land, pseudo
INIT_TOP gswp2 Land
watch land
INIT VEG_VARY gswp2 Land, Psuedo, Time
watch land, pseudo, tstep
INIT_URBAN gswp2 Land
watch land
INIT_AGRIC gswp2 Land
watch land
INIT _DRIVE gswp2, watch land, tstep
pilps2e X, Y, tstep
princet longitude, latitude, z, time
series time
INIT_IC gswp2 Land, Psuedo, Soil

Note that these dimensions are insufficient to cope with
all possible variables. If an attempt is made to read
another kind of variable, the code will report an error and
stop.

* Note the typographical error for files of type ‘gswp2’— Psuedo rather than Pseudo! This crept in when those files were
created and files of this type continue to have to use Psuedo. Consider using files of type ‘watch’ instead.
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6. The JULES control file

6.1. Introduction

Each run of the JULES code is controlled by a text file that is called the “run control file”. Broadly
speaking, the run control file holds three types of information:

¢ the general details of the run, such as start and end dates
¢ the values for parameters of the model, such as albedo
¢ the specification of the required output

The JULES code is designed to be moderately flexible, in that there are switches that allow the user
to select between different configurations, and it can accommodate input data in several different
file formats. This flexibility means that the run control file may be relatively long and the user has
to check that all values are set correctly. The documentation below aims to help the user in this
task. Example input files can be found as described in Section 6.23.

The run control file has a particular format, in that the lines must be in a particular order and must
contain various headers. The file is read by various routines arranged under the subroutine INIT,
using FORTRAN list-directed input [i.e. the format is given as “*” in a READ statement of the form
READ (unit, *)]. The JULES executable is run with standard input redirected to this control file,
e.g. jules.exe < control_file. jin. The use of list-directed input means that there may
be more than one arrangement of input values that can be read by the code — for example a single
line with 10 values or 2 lines with 5 values each. Repeated numerical values can often be specified
using the “*” notation (e.g. 100 values of 1.0 can be entered as 100*1.0), which can sometimes
be useful in specifying a large but constant field.

“Tags” are used to indicate the start of each section, and allow the code to skip directly to this point
ignoring any intermediate lines. Each tag is of the form,

>SECTION_NAME

and must be included exactly as in the example run control files, using capital letters and with no
space before or after the initial >. These section tags are listed in Table 7.

Table 7 Sections in a JULES control file.

. L Described in manual
Section name Description .
section

INIT_OPTS General model options. 6.2

INIT_TIME Start and end times for simulation, timestep | 6.3
lengths, spin up.

INIT_GRID Set up the model grid. 6.4

INIT_LAND

INIT_LATLON

INIT_FRAC Set gridbox tile fractional coverage options. 6.5

INIT_SOIL Set model soil parameters. 6.6

INIT_TOP Set values for a TOPMODEL-type | 6.7
parameterisation of runoff.
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INIT_PDM Set parameters for a PDM-type parameterisation | 6.8
of surface runoff.

INIT_HGT Set the relative elevation of each tile. 6.9

INIT_VEG_PFT Set uniform parameters for vegetation tiles. 6.10

INIT_VEG_VARY | Set parameters for vegetation tiles that vary in | 6.11
either space or time.

INIT_NONVEG Set parameters for non-vegetation tiles. 6.12

INIT_URBAN Urban model configuration, geometry & material | 6.13
characteristics

INIT_SNOW Set snow related parameters. 6.14

INIT_TRIF Set parameters for TRIFFID dynamic vegetation | 6.15
model.

INIT_AGRIC Set fraction of each gridbox that is agriculture for | 6.16
use with TRIFFID.

INIT_MISC Set miscellaneous carbon-cycle parameters. 6.17

INIT_DRIVE Set input driving data options. 6.18

INIT_IC Set initial conditions of all prognostic variables. 6.19

INIT_OUT Set options for model output. 6.20
General output options 6.20.1
NEWPROF: Set up an output profile. 6.20.2

The user can annotate the run control file, for example to add comments, but these must not
interfere with the reading of the rest of the file. Depending upon the details of the run, there are
various locations in which it is “safe” to include annotation, but the only really safe location is on
the lines immediately preceding a “tag” (described above). Annotation can also often be placed on
the same line as the data at the end of any data field (i.e. so that the code reads the values required
and will not see the annotation).

Values of character variables, such as file names, should be enclosed within quotation marks (either
single * * or double “ ). Character variables have a maximum length specified in the code, which
are sometimes given in this documentation, e.g. character*8 indicates a variable of length 8.
Logical values can be entered in any of the formats understood by FORTRAN, e.g. T, true or
.TRUE. may all be used to represent true. In the sections below, the sizes of certain arrays are
indicated using brackets: e.g. myArray (1:20) requires values for the 20 elements numbered 1 to
20.

Although a spatial field can be read from the run control file, in practice this becomes unwieldy for
large grids, and most spatial fields are likely to be stored in separate files, the names of which can
be listed in the run control file.

In the following sections, the first column lists the variables that are to be read from a line, and
subsequent columns give the type and a brief description of each variable. The variable names
given are generally those used to declare the corresponding FORTRAN variables (except where the
code uses temporary workspace and a more meaningful variable name is given in this
documentation).




6.2. INIT_OPTS: General model options

This section starts with the tag >INIT_OPTS.
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>INIT_OPTS

npft, nnvg
1_aggregate
pftName (l:npft)
nvgname (1 :nnvg)

nxIn, nyIn

sm_levels

nsmax

can_model

can_rad_mod, ilayers

1_cosz, 1_spec_albedo

1_phenol, 1_triffid, 1_veg_ compete,
1_top,l_pdm

1_anthrop_heat_src, 1_moruses
1_o3_damage

i_scrn_t_diag

l_trif_eqg

yrevIin
ncType
echo
print_step

Table 8 Description of variables in INIT_OPTS section.

Variable name Type and Notes
permitted
values
Npft integer The number of plant functional types to be modelled.
>=]
Nnvg integer The number of non-plant surface types to be modelled.
>=1 The total number of surface types to be modelled is called

ntype, and is given by ntype=npft+nnvg. In the
standard setup, JULES models 5 vegetation types and 4 non-
vegetation types (npft=5, nnvg=4). However, the model
domain need not contain all 9 types — e.g. the domain could
consist of a single point with 100% grass. The amount of
each type in the domain is set in the section INIT_FRAC
(Section 6.5).
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1_aggregate logical Switch controlling number of tiles for each gridbox.
This is used to set the number of surface energy balances
that are solved for each gridbox (ntiles).
FALSE: A separate energy balance is calculated for each
surface type. This option sets nt i les=ntype.
TRUE: Aggregate parameter values are used to solve a
single energy balance per gridbox. This option sets
ntiles=1.
Generally 1_aggregate=FALSE. is preferred, TRUE
can be used to reduce the computational cost.
pftName (1:npf | character Names of PFTs. When JULES looks for parameter values
t) array for the PFTs, it looks for these names.
nvgName (1:nnv | character Names of non-vegetation surface types. When JULES looks
g) array for parameter values for the surface types, it looks for these
Must include | names.
‘soil’.
nxIn integer The number of columns of data in the input grid (see further
>=1 discussion of the grid in Section 6.4).
nyIn integer The number of rows of data in the input grid.
>=]
The total number of points in the input grid is thus
nxIn*nyIn. If the input data consists of a single point,
nxIn=nyIn=1. A vector of points is specified by setting
nyIn=1. Although the notation may suggest a regular,
rectangular grid, the model can be run at any number of
arbitrary locations, the most likely way of doing so being to
set nyIn=1, nxIn=number of points.
sm_levels integer Number of soil layers.
>=1 A value of 4 is often used.
Nsmax integer Maximum possible number of snow layers.
>=0 0: a composite soil/snow layer is used. This value gives the

behaviour found in JULES2.0 and earlier.

>0: the state of up to nsmax separate snow layers is
modelled. Values of nsmax=3 or more are recommended.
The minimum depth of each layer is set in Section 6.14.
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can_model integer Choice of canopy model for vegetation:
1,2,30r4
1: No canopy.

2: Radiative canopy with no heat capacity.

3: Radiative canopy with heat capacity. This option is
deprecated, with 4 preferred.

4: As 3 but with a representation of snow beneath the
canopy. This option is preferred to 3.

® NB can_model=1 does not mean that there is no
vegetation canopy. It means that the surface is
represented as a single entity, rather than having distinct
surface and canopy levels for the purposes of radiative
processes.
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can_rad_mod

integer
1,23,40r5

Switch for treatment of canopy radiation.

1: A single canopy layer for which radiation absorption is
calculated using Beer’s law. Leaf-level photosynthesis is
scaled to the canopy level using the “big leaf” approach.
Leaf nitrogen, photosynthetic capacity, i.e the Vcmax
parameter and leaf photosynthesis vary exponentially
through the canopy with radiation.

2: Multi-layer approach for radiation interception following
the 2-stream approach of Sellers et al. (1992). This approach
takes into account leaf angle distribution, zenith angle, and
differentiates absorption of direct and diffuse radiation.
Leaf-level photosynthesis is calculated using a vertically-
varying light-limited rate, and constant Rubisco and export
velocities, consistent with the assumption of constant leaf N
through the canopy. Canopy photosynthesis and conductance
are calculated as the sum over all layers.

3: As 2, but photosynthesis calculated separately for sunlit
and shaded leaves for the whole canopy (i.e not at each
layer). The definition of sunlit and shaded leaves is based on
a threshold of absorbed radiation at each layer.

4. This is a modification of option 2. Instead of constant leaf
N through the canopy, it has an exponential decline of leaf N
with canopy height. Additionaly includes inhibition of leaf
respiration in the light.

5. This is an improvement of option 4. This includes, 1)
sunfleck penetration though the canopy, ii) division of sunlit
and shaded leaves within each canoy level and iii) a
modified version of inhibition of leaf respiration in the light.

When using can_rad_mod=4 or 5, it is recommended
to use driving data that contains direct and diffuse radiation
separately rather than a constant diffuse fraction.

Descriptions 1, 2 and 3 can be found in Jogireddy et al.
(2006) , an application of option 4 can be found in Mercado
et al. (2007) and all will be described in Clark et al (in prep).

References:
Jogireddy, V.R. et al., 2006, Hadley Centre technical note
63. Available from:

http://www.metoffice.gov.uk/publications/HCTN.
Sellers, P. et al., 1992, Remote Sens. Environ., 42: 187-216.
Mercado et al. 1997, Tellus B, 59, 553-565

ilayers

integer
>1

Number of layers for canopy radiation model.

Only used if can_rad_mod is 2 or 3.

These layers are used for the calculations of radiation
interception and photosynthesis.

A value of 10 is recommended.
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1_cosz logical Switch for calculation of solar zenith angle. For land points,
this switch is only relevant if 1_spec_albedo=TRUE
(otherwise it is better set to FALSE to prevent unnecessary
calculations).
TRUE: calculate zenith angle.
FALSE: assume constant zenith angle of zero, meaning sun
is directly overhead.

1 _spec_albedo | logical Switch for albedo model.
TRUE: use spectral albedo. This includes a prognostic snow
albedo.
FALSE: use a single (averaged) waveband albedo.

1_phenol logical Switch for vegetation phenology model.
TRUE: use phenology model.
FALSE: do not use phenology model.

1 _triffid logical Switch for dynamic vegetation model (TRIFFID) except for
competition.
TRUE: use TRIFFID. In this case soil carbon is modelled
using four pools (biomass, humus, decomposable plant
material, resistant plant material).
FALSE: do not use TRIFFID. A single sol carbon pool is
also used.

1 _veg_compete | logical Switch for competing vegetation. This is only used if
1_triffid=TRUE.
TRUE: TRIFFID will let the different PFTs compete against
each other and modify the vegetation fractions
FALSE: Vegetation fractions do not change

1 trif eq logical Switch for equilibrium vegetation model (i.e., an equilibrium
solution of TRIFFID). This is only wused if
1_triffid=TRUE.
TRUE: use equilibrium TRIFFID.
FALSE: do not use equilibrium TRIFFID.

1 _top logical Switch for a TOPMODEL-type model of runoff production.

TRUE: use a TOPMODEL-type scheme. This is based on
Gedney and Cox (2003); see also Clark and Gedney (2008).
FALSE: no TOPMODEL scheme.

References:

Gedney, N. and P.M.Cox, 2003 , The sensitivity of global
climate model simulations to the representation of soil
moisture heterogeneity, J. Hydrometeorology, 4, 1265-1275.
Clark and Gedney, 2008, Representing the effects of subgrid
variability of soil moisture on runoff generation in a land
surface model, Journal of Geophysical Research —
Atmospheres, 113, D10111, doi:10.1029/2007JD008940.
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1_pdm

logical

Switch for a PDM-type model of runoff production.
PDM is the Probability Distributed Model (Moore, 1985 ),
implemented in JULES following Clark and Gedney (2008).

TRUE: use a PDM scheme.
FALSE: no PDM scheme.

References:

Moore, R. J. (1985), The probability-distributed principle
and runoff production at point and basin scales, Hydrol. Sci.
J., 30, 273-297.

Clark and Gedney, 2008, Representing the effects of subgrid
variability of soil moisture on runoff generation in a land
surface model, Journal of Geophysical Research —
Atmospheres, 113, D10111, doi:10.1029/2007JD008940.

1_anthrop_hea
t_src

logical

Switch for inclusion of anthropogenic contribution to the
surface heat flux from urban tiles. The relevant code is found
in subroutine generate_anthropogenic_heat.

TRUE: add anthropogenic effect

FALSE: no effect

1 _moruses

logical

Switch for turning on MORUSES. Configuration of and
urban parameters required for MORUSES are set in
INIT_URBAN (Section 6.13)

TRUE: use MORUSES parametrisations. Requires
nvgName types ‘urban_roof’ and
‘urban_canyon’ >

FALSE: do not use MORUSES parametrisations. Use
urban tile parameters, set in INIT_NONVEG (Section 6.12),
instead.

References:

Porson, A., et al. (2010), Implementation of a new urban
energy budget scheme in the MetUM. Part I: Description
and idealized simulations, Quarterly Journal of the Royal
Meteorological Society, 136: 1514-1529. doi:
10.1002/qj.668

Porson, A., et al. (2010), Implementation of a new urban
energy budget scheme into MetUM. Part II: Validation
against observations and model Intercomparison, Quarterly
Journal of the Royal Meteorological Society, 136: 1530—
1542. doi: 10.1002/qj.572

> Both the two tile schemes, URBAN-2T & MORUSES, will also run with the *urban’ surface type as the code
converts this to the ‘urban_canyon’ type itself as long as the *‘urban_roof"’ tile is present. However, they will
fail to run if both ‘urban’ and ‘urban_canyon’ are present. When entering the urban fraction data the total
urban fraction should be entered in the *urban_canyon’ or ‘urban’ tile, whichever is named.
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1_o3_damage

logical

Switch for ozone damage.

TRUE: Ozone damage is on. Ozone concentration in ppb
must be supplied as a driving variable

FALSE: No effect

i_scrn_t_diag

Integer
Oorl

Switch  controlling method for diagnosing screen
temperature.

0: use surface similarity theory. This is the default and
acceptable for most users.

1: use surface similarity theory but allow decoupling in very
stable conditions based on the quasi-equilibrium radiative
solution

yrevIn

logical

Switch indicating if the order of the rows in the input data is
not the JULES standard.

TRUE: Input data are arranged in North to South order (i.e.
first data are from northernmost row).

FALSE: Input data are arranged in South to North order (the
JULES standard).

Note that this does not affect how JULES numbers points on
its internal grids — within JULES the numbering always runs
from South to North.

This switch applies to all input files.

ncType

character

Indicates the type (format) of any netCDF input files (see
Section 5.2.2). This does not refer to files for meteorological
data which are covered in Section 6.18.

echo

logical

Switch controlling output of messages to standard output
(e.g. screen).

TRUE: print messages to screen. This will print the values of
parameters, and also print messages when files are opened or
closed. This is useful while checking that a run is correctly
set up, but can result in a large volume of data if the model
grid is large.

FALSE: suppress printing of most messages to screen

print_step

integer
>=1

The number of timesteps in between the printing of timestep
information.

Every print_step timesteps, the model prints the current
timestep number and date to standard output.

While this can be a useful way to follow the progress of a
model integration, frequent messages can generate a large
amount of unnecessary output during long integrations.
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6.3. INIT_ TIME: Date and time information

This section sets the start and end time of the run and can also be used to specify a spin-up
procedure. It starts with the tag >INIT_TIME.

It is recommended that all times entered in JULES use Greenwich Mean Time (GMT or
UTC), not local time. The use of GMT is essential if certain options are set (1_cosz=TRUE).

>INIT_TIME

timestep

dateMainRun (1),
dateMainRun (2),

1_360

timeRun (1)
timeRun (2)

phenol_period, triffid_period

dateSpin(1:2),

spinFail
>VARS

nspin

spinVarName (1), spinTolPercent (1), spinTol (1)
—-—— Repeat for each variable. --—-

>ENDVARS

Table 9 Description of variables in the INIT TIME section

Variable name

Type and Notes

permitted
values
timestep integer Timestep length (seconds).
>=1 A typical timestep is 30 to 60 minutes.
If the timestep is too long, the model becomes
numerically unstable.
dateMainRun (1:2) integer These specify the start and end times for the
timeRun (1:2) array, integration. Each run of JULES consists of an optional
character® | spin-up period and the “main run” that follows the spin
8 array up. See below for more about the specification of the

spin up. For simplicity, the same times of day are used
for both the spin-up and main periods.

The main run starts at timeRun (1) on
dateMainRun (1) and ends at timeRun (2) on
dateMainRun (2).

Dates should be given in format yyyymmdd. All dates
must be >0. Times should be given in format
hh:mm:ss. It is recommended that all times entered
in JULES use Greenwich Mean Time (GMT or
UTC), not local time. The use of GMT is essential if
certain options are set (1_cosz=TRUE) - but see
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6.3.1 for a possible, if not recommended, use of local
time!

1_360

logical

Switch indicating use of 360 day years.

TRUE: each year consists of 360 days. This is
sometimes used for idealised experiments.

FALSE: each year consists of 365 or 366 days.

phenol_period

integer
>=1

Period for calls to phenology model (days). Only
relevant if 1_phenol=TRUE.

triffid_period

integer
>=1

Period for calls to TRIFFID model (days). Only
relevant if one of I TRIFFID or IL_TRIF_EQ is
TRUE.

dateSpin(1:2)

integer
array

The dates for the spin-up period, in the format

yyyymmdd.

Elements 1 and 2 are the start and end dates

respectively.

The spin-up phase of the integration must be over

times that either,

¢ immediately precede the main run. In this case the
spin-up phase is from timeRun(l) on
dateSpin (1) to timeRun (1) on dateSpin(2)
[where dateSpin(2) equals dateMainRun(1)]

OR

¢ are the same as those for the main run. In this case
the spin-up phase is from timeRun (1) on
dateMainRun (1) to timeRun (2) on
dateMainRun (2).

Examples are given below.

nspin

integer
>=0

The maximum number of times the spin-up period is to
be repeated:

0: no spin up

>0: at least 1 and at most nspin repetitions of spin up
are used.

After each repetition, the model tests whether the
selected variables have changed by more than a
specified amount over the last repetition (see below).
If the change is less than this amount, the model is
considered to have spun up, and the model moves on
to the main run.

spinFail

logical

Switch controlling behaviour at the end of spin up
period, if the model has not passed the spin-up test.
Only used if nspin>0.

TRUE: End the run if model has not spun up.

FALSE: Continue the run.

If nspin>0, details of the variables used
p to two variables can be listed.

>VARS and >SENDVARS. Uj

to assess the spin up are looked for between the tags

spinVarName

character
Acceptable
values are:

‘smcl’

The name of a variable to be used to determine if the
model has spun up. Spin up can be assessed in terms of
soil temperature and soil moisture.

‘smcl’: moisture content of each soil layer (kg m~)
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3

t_soil’ ‘t_soil’: temperature of each soil layer (K)

spinTolPercent logical Switch indicating whether the tolerance for this
variable is expressed as a percentage.

TRUE: tolerance is a percentage

FALSE: tolerance is an absolute value

spinTol real Tolerance for spin up of this variable.

For each spin-up variable, this is the maximum change
over a repetition of spin up that is allowed if the model
is to be considered as spun-up. If the absolute value of
the change (the  percentage  change  if
spinTolPercent = TRUE) is less than or equal to
spinTol, the variable is considered to have spun up.
For example, spinTol=0.1 means that the variable
in question must change by less than 0.1 over a cycle
of spin up if it is to be considered spun up. See notes
below on using a negative tolerance to prescribe the
number of cycles that are attempted.

Spin up is assessed using the difference between
instantaneous values at the end of consecutive cycles
of spin up. For example, if the spin up period is from
15 Jan 2005 to 15 Jan 2006, every time the model gets
to 15 Jan 2006 the spin-up variables are compared with
their value at the end of the previous cycle.

6.3.1. Note on time convention and solar zenith angle

If a run requires that the solar zenith angle be calculated (1__cosz=TRUE), then times must be in
Greenwich Mean Time (UTC), so that the code can calculate the zenith angle at each location and
time.

If 1_cosz=FALSE, the user might prefer to use Local Time, particularly if this is used for input or
validation data, as the timestamp on model output will then match that on the other data. However
the use of local time is not recommended as if the user later switches to 1_cosz=TRUE without
adjusting the time values, the model results will be in error.

6.3.2. Examples of dates and times

1. A run without spin up

19970101, '00:00:00" ! start date and time
19990101, '01:00:00" ! end date and time
19970101, 19970102, O ! dateSpin, nspin

This specifies a run from midnight on 1* January 1997 until 01:00 GMT on 1* January 1999.
nspin=0 means there is no spin up.
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2. A run with spin up over a period that immediately precedes the main run

19970101, '00:00:00" ! start date and time for main run
19990101, '01:00:00" ! end date and time for main run
19960101, 19970101, 5 ! dateSpin, nspin

This specifies a spin-up period from midnight on 1* January 1996 to midnight on 1* January 1997
(the time of day is taken from the first line). This spin-up will be repeated up to 5 times, before the
main run from midnight on 1% January 1997 until 01:00 GMT on 1% January 1999.

3. A run with spin up over a period that overlaps the main run

19970101, '00:00:00" ! start date and time for main run
19990101, '01:00:00" ! end date and time for main run
19970101, 19980101, 5 ! dateSpin, nspin

This specifies a spin-up period from midnight on 1* January 1997 to midnight on 1% January 1998
(the time of day is taken from the first line). This spin-up will be repeated up to 5 times, before the
main run from midnight on 1% January 1997 until 01:00 GMT on 1% January 1999.

4. Example of specifying requirements for spin up

T ! terminate run if spin-up fails (T,F)
smcl F 1.0 !  spinVarName, spinTolPercent, spinTol
t_soil T 0.1 !

The first value, spinFail=TRUE, means that if the spin-up has not “converged” after nspin
cycles, the run will end. Convergence is measured using moisture content and temperature of each
soil layer. At every point and in every layer, soil moisture must change by less than 1 kg m?, while
soil temperature must change by less than 0.1%.

6.3.3. Notes on spin up

Note that at present the analysis of whether the model has spun up or not is limited to aspects of the
“physical” state of the system, and does not explicitly consider carbon stores, making it less useful
for runs with interactive vegetation (TRIFFID; the equilibrium mode of TRIFFID is designed to
spin up TRIFFID) or prognostic soil carbon.

During the spin-up phase of a run, the JULES code provides the correct driving data (for example,
meteorological data) as the model time “cycles” round over the spin up period. Consider the case of
a spin up over 1 Jan 2005 to 31 Dec 2005. At or near the end of 31 Dec 2005 during the spin up, the
driving data will start to adjust to the values for 1 Jan 2005. The calculated driving data may vary
slightly between the start or end of the first cycle and similar times in later cycles, because of the
need to match the data at the end of each cycle to that at the start of the next cycle. Generally this
does not cause a problem.

Depending upon the details of the input data and any temporal interpolation, the driving data may
vary rapidly at the end of a cycle of spin up, causing an extreme response from the model. In most
cases the model will adjust, possibly with large heat fluxes over a few hours, but the user should be
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aware that unusual behaviour near the end/start of a spin up cycle may be the result of this
adjustment. Consider the case of a spin up over 1 Jan 2005 to 31 Dec 2005. At or near the end of 31
Dec 2005 during the spin up, the driving data will start to adjust to the values for 1 Jan 2005, which
could be very different from conditions on 31 Dec 2005. The length of time over which the driving
data adjust depends on the frequency of the data, and the choice of temporal interpolation. For
example, with 3-hourly data that is interpolated onto a one hour timestep, the adjustment will take
place over 3 hours. However, hourly data and an hourly timestep will force an instantaneous
adjustment at the start of 1 Jan 2005.

Although nspin specifies the maximum number of spin up cycles, some of which might not be
used if the model is considered to have spun up earlier, it is possible to specify the exact number of
cycles that will be performed. This can be done by demanding an impossible level of convergence
by setting spinTol<0 (remember that spinTol is compared with the absolute change over a
cycle) and setting spinFail=FALSE so that the integration continues when spin up is judged to
have failed after nspin cycles.

Although it is expected that a spin up phase will be followed by the main run in the same
integration, it is possible to do the spin up and main run in separate integrations. This can be done
by demanding an impossible level of convergence by setting spinTol<0, setting
spinFail=TRUE so that the integration stops when spin up is judged to have failed, and setting
dumpFreq (see Section 6.20.1) to any value that writes a final dump. The final state of the model,
after nspin cycles of spin up, will be written to the final dump, and a subsequent simulation
started from this dump.

A limitation of the current code is that it cannot cope with a spin up cycle that is short in
comparison to the period of any input data. For example, a spin up cycle of 1 day cannot use 10-
day vegetation data. The code will likely run but the evolution of the vegetation data will probably
not be what the user intended! However, it is unlikely that a user would want to try such a run.

Occasionally, the model fails to diagnose a spun up state when in fact the integration has reached a
quasi-steady state that is not detected by the procedure of assessing spin up through comparison of
instantaneous values at the end of consecutive cycles of spin up. An example of this is “period-2”
behaviour, where the model state repeats itself over a period of 2 cycles. Such behaviour should be
apparent in the model output during spin up, and the user can opt to repeat the integration over a
given number of spin up cycles, and not to wait for a spun-up state to be diagnosed.
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6.4. Grid description

The process of setting up the model grid involves three parts of the run control file: INIT_GRID,
INIT_LAND and INIT_LATLON.

INIT_GRID is used to select how the model grid will be specified, e.g. all points within a given
range of latitude and longitude.

INIT_LAND is used to set a land/sea mask.

INIT_LATLON specifies the latitude and longitude of each point.

These three sections are then followed by the DATA_POINTS, DATA_LAND and DATA_LATLON
sections which provide input data (if that is to come from the run control file).

Each run of JULES involves two grids: the input grid, and the model grid. The input grid is the grid
on which all input data are held. The model grid is the set of points on which the model is run. The
model grid is a subset of the input grid.

The JULES grid is a rectangle of size nx*ny points, including the special case of ny=1 when the
grid is a vector of points. The points to be modelled may be selected from a larger input grid, by
specifying one or more of (1) a list of point numbers (2) a range of latitude and longitude (3) that
only land points (really points at which a mask is >0) are to be selected. The grid may contain both
land and sea points, but at present JULES is only deals correctly with land points, so results for sea
points will be meaningless and are therefore better omitted as described later. A vector of points
can be used to select locations that are not adjacent in the real world - for example, one might only
want to run the model at locations within a catchment for which observations are available. In this
case although the model could be run on a grid that included the whole catchment, it is more
efficient to run only at the selected points.

6.4.1. INIT_GRID: Setting up the grid

>INIT_GRID

pointsList, coord, coordLL
landOnly

subArea, subArealatLon
xcoord(l:2),ycoord(1l:2)

npoints
readFilePoints
fileNamePoints
Table 10 Description of variables in the INIT_GRID section
Variable name Type and Notes
permitted values
pointsList logical Switch indicating whether the model grid is to be

specified as a list of points.




Page 35 of 126

TRUE: Points to be modelled are selected from the
input grid via a list provided by the user. In this case,
the points to be modelled are selected via a list of point
numbers (or coordinate pairs, see below).

FALSE: All points in the input grid are modelled -
subject to elimination by subArea or landOnly
(see below). The value of npoints (qg.v.) is set by the
model, and equals the number of points that are
modelled.

coord logical Switch indicating if a list of points is given as co-
ordinate pairs. Only used if point sList=TRUE.
TRUE: The list of points will be given as co-ordinate
pairs.
FALSE: The list of points will be given in terms of
single per point, describing the location in the grid.
coordLL logical Switch indicating if co-ordinate pairs are (x,y) or
(longitude,latitude). Only used if coord=TRUE.
TRUE: Co-ordinates are (longitude,latitude).
FALSE: Co-ordinates are (x,y) in the input grid.
landOnly logical Switch indicating if only land points are to be modelled.
If pointsList=TRUE, landOnly must be FALSE.
TRUE: Only land points are modelled. Sea points are
excluded from the model grid. More correctly, only
points with f1landg (see later) >0 are modelled,
so this option can be used with a suitable input field to
select a subset of land points (e.g. those in a particular
catchment).
FALSE: All points are modelled (land and sea).
subArea logical Switch indicating if a subset of the input grid is to be
selected. Only used if pointsList=FALSE.
TRUE: a subsection of the input grid will be used (see
xcoord and ycoord below)
FALSE: the full input grid is considered.
subArealLatLon | logical If subArea=TRUE, this indicates how to interpret the
coordinates xcoord and ycoord.
TRUE: co-ordinates are longitude and latitude.
FALSE: co-ordinates are x and y indices (column and
row numbers).
xcoord (1:2) real array x-coordinates of the sub-area to be considered.

Depending on subArealLatLon, these are longitudes
(in range -180 to 360°) or column numbers.
See notes on grid definition in Section 6.4. If values are
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column numbers, the code uses the nearest integer to the
input value.

ycoord (1:2) real array As xcoord, expect in latitudinal (y) direction.
npoints integer The number of points that are to be modelled.

Only used if pointsList=TRUE.
readFilePoints | logical Switch controlling source of list of point numbers. Only

used if pointsList=TRUE.

TRUE: read from an external ASCII file

FALSE: read from the run control file. Points are
specified at the sub-section marked >DATA_POINTS
(see Section 6.4.3).

fileNamePoints | character Name of file containing list of points. Only used if
pointsList=TRUE.

6.4.2. INIT LAND: Land fraction

This section describes how the land fraction field is set. Originally land fraction described the
fraction of each gridbox that is land, but (offline) JULES can use the “land fraction” field as a mask
that allows a subset of points to be modelled - e.g. “land fraction” can be set to 1 at all locations
within a catchment, and to zero (or less) at all other points (such as land points outside the
catchment). For this latter use, 1andOnly should be TRUE.

>INIT_LAND

readFileland

fileFormatLand

fileNameLand

>ASCBIN

nheaderFilelLand, nheaderFieldLand

fieldLand

>NC

varNameLand
Table 11 Description of variables in the INIT_LAND section
Type and Notes

Variable name permitted values

readFileLand logical Switch controlling source of land fraction data.

TRUE: read from an external file
FALSE: read from the run control file, at the section
marked >DATA_LAND (see Section 6.4.3).

fileFormatLand | character Format of file containing land fraction data.
See Section 5.2.
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fileNameLand | character | Name of file containing land fraction data.

The following are read only if readFileLand=TRUE. Only values for the appropriate file format
are read.

>ASCBIN: If fileFormatLand='asc’,‘bin’ or ‘pp’:

nheaderFile integer The number of headers at the start of the land fraction
>=0 file. See Section 5.2.
nheaderField integer The number of headers before each field in the land
>=0 fraction file. See Section 5.2.
fieldLand Integer The field number in the file that holds data for the first
>=1 level of this variable. See discussion of fields in Section
5.1.

SNC: If fileFormatLand="nc’:

varNameLand | character array | The name of the variable containing the land fraction.

6.4.3. INIT LATLON: Latitude and longitude

>INIT_LATLON

regLatLon
reglatl, reglonl
regDlat, regDlon
readFilelLatLon
fileFormatLatLon
fileNameLatLon

>ASCBIN
nheaderFile, nheaderField
fieldLat, fieldLon

>NC
varNameLat, varNamelLon

>DATA_POINTS

pointList (1:npoints)
>DATA_LAND
flandg(l:nxIn,1l:nyIn)
>DATA_LATLON

latitude (1:nxIn,l:nyIn)
longitude (l:nxIn,l:nyIn)

Table 12 Description of variables in the INIT_LATLON section.

Variable name Type and Notes
permitted values
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regLatLon

logical

Switch indicating if the input grid is ‘regular’ (and will
be described by origin and increment) or if latitude and
longitude fields are to be read.

TRUE: the grid is ‘regular' and can be specified by
its origin and gridbox size. There is then no need to
read lat/lon values for each gridpoint.

FALSE: read latitude and longitude values for each
gridpoint.

reglLatl

real

The Ilatitude (decimal degrees North) of the
southernmost row of gridpoints in the input grid (NOT
necessarily the model grid). The gridpoint is in the
centre of the gridbox.

reglLonl

real
-180 to 360

The longitude (decimal degrees East) of the westernmost
column of gridpoints in the input grid (NOT necessarily
the model grid).

regDlat

real
>0.0

The size of a gridbox in the NS direction (decimal
degrees of latitude).

Note: regLatl and regLonl are only used if
regLatLon=TRUE. regDlat and regDlon may be
used even if regLatLon=FALSE, if there is a need to
establish the area of each gridbox (which is needed by
some parameterisations and to label output).

regDlon

real
>0.0

The size of a gridbox in the EW direction (decimal
degrees of longitude).

readFilelLatLon

logical

Switch controlling source of latitude and longitude data.
Only used if pointsList=FALSE and
regLatLon=FALSE.

TRUE: read from an external file

FALSE: read from the run control file, at the section
marked >SDATA_LATLON.

fileFormatLatL
on

character

Format of file containing latitude and longitude data.

fileNameLatLon

character

Name of file containing latitude and longitude data.

The following are read only if readFileLatLon=TRUE. Only values for the appropriate file

format are read.

>ASCBIN: If fileFormatLatLon='asc’,

‘bin’ or ‘pp’:

nheaderFile integer The number of headers at the start of the lat/lon file.
>=0 See Section 5.2.

nheaderField integer The number of headers before each field in the lat/lon
>=0 file. See Section 5.2.

fieldLat integer The field number in the file that holds latitude data.
>=] See discussion of fields in Section 5.1.

fieldLon integer The field number in the file that holds longitude data.
>=]

SNC: If fileFormatLatLon='nc’:

varNameLat character The name of the variable containing the latitude data.

varNameLon character The name of the variable containing the longitude data.

The following sections are used only if the switches above indicate that the fields are to be read
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from the run control file.

pointList (1:np | integer array A list of the points that are to be modelled. These are
oints) >=1 point numbers in the input grid.

NB If the input data run from North to South (i.e. not the
JULES S to N order), the point numbers should still be
calculated following the JULES S to N convention. Thus
point number 1 is in the SW corner of the grid, which
will not be the first point in the input data if yrevIn=T
(unless nyIn=1).

flandg (l:nxIn, |real array The fraction of each gridbox that is land.

l:nyIn) If 1andOnly=TRUE, only locations with flandg>0 are
modelled.

Latitude (1:nxI | real array The latitude of each gridpoint.

n,l:nylIn)

Longitude (1:nx | real array The longitude of each gridpoint. All values should be in

In,1l:nyIn) -180 to 360 the range of either -180 to 180° or 0 to 360°.

The special case of an equal angle grid (all gridboxes have same extent in terms of latitude and
longitude) in which the rows run WE and the columns SN (hereafter referred to as an equal angle
grid), can be set up via a simple option. All other grids, including a vector of points, require the
latitude and longitude of all points to be input.

If regLatLon=TRUE, the input data must be presented in the default JULES order (starting
bottom left at (regLatl, regLonl) and proceeding row-wise). If regLatLon=FALSE, the
input data need not be in order of lat/lon coordinates — each point in the grid will use the lat/lon
read in for that point.

6.4.4. Examples of grid description

The latitude and longitude of the grid must be specified for all runs. For many model runs, the
location of the grid is important, since it controls important factors such as the angle of the sun.
Other, more idealised, runs might not need this information, but in this case the location may still
be required so that the model output can be correctly mapped. If the location is not needed for
either purpose, the user should enter an arbitrary location (e.g., 0°N, 0°E).

Grid example 1: A single point run.
This covers the simplest case: the input contains a single point. We assume that nxIn=1 and nyIn

=1 (see Section 6.2). All values are obtained from the run control file — no other file is involved.
Only the lines in bold are relevant, and irrelevant sections have been omitted.

>INIT_GRID

T F,F ! pointsList, coord, coordLL
F ! landOnly

F,F ! subArea, subArealLatLon
1,2,3,4 ! xcoord(l:2),ycoord(1:2)
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1 ! npoints
F ! readFilePoints
‘points.txt’ ! fileNamePoints

>INIT_LAND

F ! readFileland
‘bin’ ! fileFormatLand
‘grid.gra’ !  fileNameLand

>INIT_LATLON

T ! reglLatLon

40.0, 50.0 ! reglatl, reglonl
1.0,1.0 ! regDlat, regDlon
F ! readFileLatLon
‘bin’ ! fileFormatLatLon
‘latlon.gra’ ! fileNameLatLon
>DATA_POINTS

1 ! pointList
>DATA_TLAND

1.0 ! flandg
>DATA_TLATLON

0.0 ! latitude

5.0 !  longitude

pointsList=T indicates that the grid will be described by a list of points.

npoints=1 shows that this run is for a single point

readFilePoints=F indicates that the point numbers are read from the >DATA_POINTS
section, where point number 1 is indicated (the only possibility for an input grid of one point).
readFileLand=F indicates that the land fraction field is read from the >DATA_LAND section,
where the value 1.0 shows that the single gridbox is 100% land.

regLatLon=T indicates that the grid is ‘regular’ and will be described by its origin (regLat]1,
regLonl) and gridbox size (regDlat, regDlon). There is then no need for any further
information about coordinates — in particular the data at >DATA_LATLON are not read.

Grid example 2: Selecting points in a given range of latitude and longitude.

The grids used in this example are shown in Figure 1. The input grid has nxIn=5, nyIn=4, and
we wish to model the area 55-57°N 355-357°E (5°W-3°W). To do this, we use the following entries
in the run control file. Only the lines in bold are relevant, and irrelevant sections have been
omitted.

>INIT_GRID

F,F,F ! pointsLlist, coord, coordLL
F ! landOnly
T, T ! subArea, subArealatLon
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355.0,357.0,55.0,57.0 xcoord(1l:2) ,ycoord(1:2)

1
1 ! npoints
F ! readFilePoints
‘points.dat’ ! fileNamePoints
>INIT_LAND
T ! readFileland
‘bin’ ! fileFormatLand
‘grid.gra’ ! fileNameland
>ASCBIN
0,0 ! nheaderFileland, nheaderFieldLand
1 ! fieldLand
>INIT_LATLON
T !  regLatLon
55.5, 353.5 ! reglatl, reglonl
1.0, 1.0 ! regDlat, regDlon
F ! readFileLatLon
‘bin’ ! fileFormatLatLon
‘grid.gra’ ! fileNameLatLon

pointsList=F indicates that the model grid will be determined by the land fraction field (and
also latitude and longitude in this case).

landOnly=F indicates that both sea and land points will be selected.

subArea=T indicates a sub-section of the input grid is requested. subAreaLatLon=T indicates
that the sub-section will be specified by a range of latitude and longitude, shown by xcoord and
ycoord to be 355°E to 357°E,55-0°N to 57-0°N (note we could enter the longitude range as -5 to -
3).

npoints is irrelevant because the number of points will be determined as the number of points
the model finds within the given lat/lon range.

readFileLand=T indicates that the land fraction field is read from the binary file called
‘grid.gra’, which has no headers and contains land fraction as the first field.

regLatLon=T indicates that the input grid is a ‘regular’ grid, with origin (the gridpoint in the
southwest corner) shown by reglatl, regl.on1 to be 55.5°N 355.5°E, and gridbox size 1°x1°.

With this information, JULES determines that there are 4 gridpoints within the given lat/lon range,
and that the model grid will be a square of side 2 gridboxes. The land fraction field shows that these
are all land points, meaning that the land vector also has 4 points. Note that these points could also
have been selected by providing a list of the point numbers, indicated by point sList=TRUE,
npoints=4, and then entering the point numbers (3, 4, 8, 9) after >DATA_POINTS.

Figure 1. Example of grid selection based on longitude and latitude.

Grid Example 3: Selecting only land points in a given range of latitude and longitude.
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This example is similar to Example 2, but this time we only wish to model land points within a
given area. The grids used in this example are shown in Figure 2 and we wish to model land points
in 55-57°N 354-356°E (6°W-4°W).

To do this, we use the following entries in the run control file. Only the lines in bold are relevant,
and irrelevant sections have been omitted.

>INIT_GRID

F,F,F ! pointslist, coord, coordLL
T ! landOnly

T,T ! subArea, subArealatLon
-6.0,-4.0,55.0,57.0 ! xcoord(1l:2),ycoord(1l:2)
1 ! npoints

F ! readFilePoints
‘points.dat’ ! fileNamePoints
>INIT_LAND

T ! readFileland

‘bin’ ! fileFormatLand

‘grid.gra’ ! fileNameLland

pointsList=F indicates that the model grid will be determined by the land fraction field (and
also latitude and longitude in this case).

landOnly=T indicates that only land points will be selected.

subArea=T indicates a sub-section of the input grid is requested. subAreaLatLon=T indicates
that the sub-section will be specified by a range of latitude and longitude, shown by xcoord and
ycoord to be 6°W to 4°E, 55°N to 57°N.

npoints is irrelevant because the number of points will be determined as the number of land
points the model finds within the given lat/lon range.

readFileLand=T indicates that the land fraction field is read from the binary file called
‘grid.gra’, which has no headers and contains land fraction as the first field.

With this information, JULES determines that there are 4 gridpoints within the given lat/lon range,

but only 3 are land. As the 3 land points do not form a rectangle, the model grid is a vector of 3
points. As we are only modelling land points, the land grid is identical to the model grid.

Figure 2 Example of grid selection based on longitude and latitude, taking land points only.
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6.5. INIT_FRAC: Fractional coverage of land surface types

In this section, we specify the fraction of the land area in each gridbox that is covered by each of
the surface types. Under certain circumstances (described below), this information may be acquired
later, via another section.

>INIT_FRAC

readFracIC
readFile
fileFormat
filename

>ASCBIN
nheaderFile, nheaderField
fieldNum

>NC
varName

>DATA
frac(l:nxIn,l:nyIn)

Table 13 Description of variables in the INIT_FRAC section.

Variable name Type and Notes
permitted values
readFracIC logical Switch indicating location of fractional cover data.

TRUE: fractional cover is provided as part of the
initial condition in section INIT_IC (see Section 6.19)
and is not provided here.

FALSE: fractional cover will be read from this
section.

For runs with dynamic vegetation
(1_veg_compete=TRUE), the fraction cover is a
prognostic variable and it must be read with the initial
condition (readFracIC=TRUE).

readFile logical Switch controlling location of fractional cover data.
Only used if readFracIC=FALSE.

TRUE: read from an external file
FALSE: read from the run control file.

fileFormat character Format of data. Only used if readFile=TRUE.
See notes in
Section 5.2.

filename character Name of file containing data. Only wused if
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readFile=TRUE.

The following are read only if readFile=TRUE . Only values for the appropriate file format are
read.

>ASCBIN: The following are used if fileFormat="‘asc’, ‘bin’ or ‘pp’.

nheaderFile integer The number of headers at the start of the file.
>=0 See Section 5.2.

nheaderField integer The number of headers before each field.
>=0 See Section 5.2.

fieldNum integer The number of the first field to be used from the input
>=1 file (this represents the first surface type). See

discussion of fields in Section 5.1.

>NC: The following are used if fileFormat='nc’.

varName character The name of the variable containing data.

>DATA: The following are used if readFile=FALSE.

frac(l:nxIn, 1l: |real array The fractional coverage of each surface type. The
nyIn,l:ntype) >=0.0 fractions should sum to 1 (this is checked by the code).
These values are only read if readFile=F, and must
be located after the tag >DATA.

NB: If using either URBAN-2T or MORUSES then the
total urban fraction should be entered in the
‘urban_canyon’tﬂgﬁ.

Note that all land points must be either soil points (indicated by values > 0 of the saturated soil
moisture content), or land ice points (indicated by the fractional coverage of the ice surface type [if
used] being one). The fractional cover of the ice surface type in each gridbox must be either zero or
one — there cannot be partial coverage of ice within a gridbox.

6.5.1. Example: Reading £rac from the run control file.

We assume nxIn=nyIn=npoints=Il, and ntype=9. Only the lines relevant to this case are
shown.

>INIT_FRAC

F ! readFracIC

F ! readFile

>DATA

0.55, 0.15, 0.20, 0.00, 0.05, 0.00, 0.05, 0.00 ! frac(l,1,l:ntype)

readFracIC=F indicates that frac is read here, rather than as part of the initial condition.
readFile=F indicates that data will be read from the run control file, not from another file.
The 9 values of frac are positioned after the >DATA tag.

® The total urban fraction only should be entered because the canyon and roof fractions are calculated using the canyon
fraction (W/R). The canyon fraction is set in INIT_URBAN (Section 6.13) and can either be prescribed by the user or
calculated by an empirical formula described in Table 25 under 1_urban_empirical.
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6.5.2. Example: Setting the same tile fractions on all land points

If we have more than one point on the input grid and 9 defined surface types (npoints>l1,
ntype=9), then it is possible to set the same fractions over all gridboxes without having to make
separate input files that would contain the same information repeated npoints times. In this case
with, say, npoints=1000, the relevant lines in the run control file are,

>INIT_FRAC

F ! readFracIC
F ! readFile

>DATA

1000*0.55

1000*0.15

1000*0.20

1000*0.00

1000*0.05

1000*0.00

1000*0.00

1000*0.05

1000*0.00 ! frac

It is significant that the data for each JULES surface type are written on a separate line, in contrast
to the single grid point case where all values are written on one line and separated by commas. This
is because these frac data are read one type at a time in blocks of all grid points (unless the input
grid is a single point to be read from the run control file).
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6.6. INIT_SOIL: Soil layer depths and hydraulic and thermal characteristics

In this section we specify the depth of each soil layer and also the hydraulic and thermal
characteristics of the soil.

>INIT_SOIL

1_vg_soil

1l _soil_sat_down
1_glo0
soilhc_method

useSoilType
constZ, zrev
readFile
fileFormat
fileName
LUTfileName

>ASCBIN

nheaderFile, nheaderField

>VARS

name (1) fieldNumber (1)

—-——— Repeated for each variable. —-—-
>ENDVARS

>NC

>VARS

name (1) , SDFname (1)

—-——— Repeated for each variable. —-—-
>VARS

>DATA_DZSOIL
dzsoil (l:sm_levels)
albSoilConst

>DATA
data wvalues

Table 14 Description of variables in the INIT_SOIL section.

Variable name Type and Notes
permitted
values
1 _vg_soil logical Switch for van Genuchten soil hydraulic model.
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TRUE: use van Genuchten model.
FALSE: use Brooks and Corey model.”

References:

Brooks, R.H. and A.T. Corey, 1964, Hydraulic properties of
porous media. Colorado State University Hydrology Papers
3.

van Genuchten, M.T., 1980, A Closed-form Equation for
Predicting the Hydraulic Conductivity of Unsaturated Soils.
Soil Science Society of America Journal, 44:892-898.

1 _soil_sat_d | logical Switch for dealing with supersaturated soil layers. If a soil

own layer becomes supersaturated, the water in excess of
saturation will be put into the layer below or above
according to this switch.
TRUE: any excess is put into the layer below. Any excess
from the bottom layer becomes subsurface runoff.
FALSE: any excess is put into the layer above. Any
excess from the top layer becomes surface runoff. This
option was used in JULES2.0.

1 _gl0 logical Switch for use of Q10 approach when calculating soil
respiration.
TRUE: use Q10 approach. This is always used if TRIFFID
is switched off (I_triffid=FALSE) and was used in
JULES2.0.
FALSE: use the approach of the RothC model.

soilhc_metho | Integer Switch for soil thermal conductivity model..

d Allowable 1: use approach of Cox et al (1999), as in JULES2.0.

values: 1 or 2.

2: use approach of Johansen (1975).

useSoilType

logical

Switch controlling how soil characteristics are input.

TRUE: a map of soil types (classes) will be provided, along
with a look-up table (LUT) giving the soil characteristics for
each soil type. Each gridbox contains a single soil type, but
the soil properties of that type can vary with depth.

FALSE: maps of soil properties are provided.

const?z

logical

Switch indicating if soil characteristics are to be uniform
with depth at each gridbox. Not used if useSoilType=TRUE.
TRUE: soil characteristics do not vary with depth.
FALSE: soil characteristics vary with depth.

zrev

logical

Switch indicating if input data are stored in reverse order of
levels compared with JULES’s expectation.
TRUE: vertical order is reversed, with data stored in

7 In the JULES2.0 User Manual this was described as the “Clapp and Hornberger” model and the JULES code still
refers to “Clapp and Hornberger” rather than “Brooks and Corey”. In fact there are important differences between these
two hydraulic models (Toby Marthews, pers comm.). There has been confusion in the literature and in past
documentation of MOSES/JULES, resulting in these differences often being ignored, but JULES uses the Brooks and
Corey model. Hopefully this confusion will be removed from future releases.

Reference: Clapp, R.B. and G.M.Hornberger, 1978, Empirical Equations for Some Soil Hydraulic Properties. Water
Resources Research 14:601-604.
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“bottom to top” order (i.e. bottom layer first).

FALSE: standard vertical order, with data stored in “top
to bottom” order (i.e. uppermost layer first).

Must be FALSE if useSoilType=TRUE.

readFile logical Switch controlling location of soil data.
TRUE: read from an external file
FALSE: read from the run control file.

fileFormat character Format of data file. Only used if readFi1e=TRUE.

fileName character Name of file containing data. Only used if
readFile=TRUE.

LUTfileName | character Name of file containing the look-up table (LUT) of soil

characteristics for each soil type. Only used if
useSoilType=TRUE. This is an ASCII file, the format of
which is described in Section 0.

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’, or if
readFile=FALSE.

nheaderFile | integer The number of headers at the start of the file (not used if
>=0 readFile=FALSE). See Section 5.2.

nheaderField | integer The number of headers before each field (not used if
>=0 readFile=FALSE). See Section 5.2.

Each variable is described by a line with two values (name and fieldNumber), separated by
spaces (NB no commas). The list of variables is preceded by the tag >VARS, and followed by the
tag >ENDVARS.

Name character The name of a soil variable. These names must be chosen
from the list in Table 15 List of soil parameters. below. If
useSoilType=TRUE, only the soil type should be provided,
otherwise all 9 other variables must be provided.

fieldNumber | integer The field number of the first level of data in the input file
that is to be used for a variable. See discussion of fields in
Section 5.1.

(Note that if readFile=FALSE, this is interpreted slightly
differently — it is the variable number, not field number.)

>NC: The following are used if fileFormat='nc’.

name character See under >ASCBIN above.

SDFname character The name of a variable containing data, as it appears in the
SDF.

>DATA_DZSOIL

dzSoil (1:sm_ | real array The soil layer depths (m), starting with the uppermost layer.

levels) Note that the soil layer depths (and hence the total soil

depth) are constant across the domain.
In its standard setup, JULES uses layer depths of 0.1, 0.25,
0.65 and 2.0m, giving a total depth of 3.0m.

albSoilConst | Real A value of soil albedo that is to be used at all locations.
Only used if useSoi1Type=TRUE.

>DATA:
If readFile=FALSE, data for the soil variables should be listed here in the order given in Table
15 List of soil parameters. .
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Table 15 List of soil parameters.

Name Description

albsoil Soil albedo. A single (averaged) waveband is used.

b Exponent in soil hydraulic characteristics.

hcap Dry heat capacity (J m™ K)

hcon Dry thermal conductivity (W m" K)

satcon Hydraulic conductivity at saturation (kg m~”s™")

sathh If 1_vg_soil=TRUE (using van Genuchten model), sathh=1/a (m™), where a is a
parameter of the van Genuchten model.
If 1_vg_soil=FALSE (using Brooks and Corey model), sathh is the absolute
value of the soil matric suction at saturation (m).
The suction at saturation is generally less than zero, but JULES uses the absolute
value.

sm_crit Volumetric soil moisture content at the critical point (m> water per m> soil). The
critical point is that at which soil moisture stress starts to restrict transpiration

sm_sat Volumetric soil moisture content at saturation (m° water per m° soil). Note that this
field is used to distinguish between soil points and land ice points. sm_sat>0
indicates a soil point.

sm_wilt Volumetric soil moisture content at the wilting point (m® water per m> soil). The
wilting point is that at which soil moisture stress completely prevents transpiration

soilType | The soil type (class). Although this is an integer variable, it is treated as a real

variable for convenience during input and output.

Names must be entered exactly as specified here (including case).
If useSoil1Type=FALSE, all variables other than soilType are required.
If useSoi1Type=TRUE, only soilType is required.

6.6.1. The soil look-up table file

The soil look-up table should be formatted as shown below, with the meaning of the variables
described in Table 16.

### Header lines (e.g. containing a description of data sources)
### that are not to be read by JULES should begin with # or !.

nz

dzSoilLUT (1l:nz)

nsoil

sollNum

soilChar(isoil,1:8,iz=1)

soilChar(isoil, 1:8,iz=nz)
———— Repeated for each soil type ———-

Table 16 List of variables in soil look-up table.
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Variable name Type and permitted values Notes
nz integer Only used to check that LUT is
Must equal sm_levels. consistent with current soil
configuration.
dzSoil(1:nz) integer array Only used to check that LUT is
Must equal dzSoil. consistent with current soil
configuration.
nsoil integer The number of soil types in the

file. Not all of these need to be
present in the map of soil
types. The

soilNum integer The soil number (a class or
ID). These need not be
consecutive. This number is
used to map each value of
soilType found in the map
of soil types to a set of

characteristics.
soilChar(1:nsoil,1:8,1:sm | real array The soil characteristics for
_levels) each soil type and each layer.

NB Values are required for
each layer, that is, a soil type
implies a profile of values.

The 8 characteristics must be
given in the following order
(see Table 15 List of soil
parameters. for explanation of
names):

sathh, b, hcap, hcon, satcon,
sm_crit,sm_sat,sm_wilt.

6.7. INIT_TOP: parameters for TOPMODEL

This section reads parameter values for the TOPMODEL-type parameterisation of runoff. It is only
read if I_top=TRUE. The description below is very brief. For further details references under
1_top in Section 6.2.

>INIT_TOP

ZwW_max
ti_max
ti_wetl

readFile
fileFormat
fileName
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>ASCBIN

nheaderFile, nheaderField

>VARS

name (1) fieldNumber (1)
———— Repeated for each variable. —-—-

>ENDVARS

>NC
>VARS

name (1), SDFname (1)
—-——— Repeated for each variable. —-—-

>VARS

>DATA
data values

Table 17 Description of variables in the INIT_TOP section

ZW_max real The maximum allowed depth to the water table (m). This
is the depth to the bottom of an additional layer below the
sm_levels soil layers and hence should be set to a value
greater than SUM (dzSoil). Values of 10 to 15m have
been used.

ti_max real The maximum possible value of the topographic index. A
value of 10 has been used successfully.

ti_wetl real A calibration parameter used in the calculation of the
wetland fraction. It is used to increment the “critical” value
of the topographic index that is used to calculate the
saturated fraction of the gridbox. It excludes locations with
large values of the topographic index from the wetland
fraction. See Gedney and Cox (2003). A value of 2 has
been used.

readFile logical Switch controlling location of soil data.

TRUE: read from an external file
FALSE: read from the run control file.

fileFormat character | Format of data file. Only used if readFile=TRUE.

fileName character | Name of file containing data. Only wused if
readFile=TRUE.

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’, or if

readFile=FALSE.

nheaderFile integer The number of headers at the start of the file (not used if

>=0 readFile=FALSE). See Section 5.2.
nheaderField integer The number of headers before each field (not used if
>=0 readFile=FALSE). See Section 5.2.

Each variable is described by a line with two values (name and fieldNumber), separated by
spaces (NB no commas). The list of variables is preceded by the tag >VARS, and followed by the

tag >ENDVARS.

name

| character | The name of a variable. These names must be chosen from
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the list in Table 18 below.

flag

Integer
-1 or >0

Flag indicating how this variable should be set.

-1: the following value of constVal will be used to set the
value at all locations

>0: The field number of the first level of data in the input
file that is to be used for a variable. See discussion of
fields in Section 5.1. (Note that if readFile=FALSE,
this is interpreted slightly differently — it is the variable
number, not field number.)

constVal

real

A value that is used to set a spatially constant field.
Only used if flag=-1.

>NC: The following are us

edif fileFormat='nc’.

name character | See under >ASCBIN above.
SDFname character | The name of a variable containing data, as it appears in the
SDF.
flag integer Flag indicating how this variable should be set.
-1: the following value of constVal will be used to set the
value at all locations
All other values are ignored and data from the SDF are
used.
constVal real See under >ASCBIN above.
>DATA:
If readFile=FALSE, data for the TOPMODEL variables should be listed here in the order given
in Table 18.
Table 18 List of TOPMODEL parameters
Name* Description
fexp Decay factor describing how the saturated hydraulic conductivity decreases with
depth below the standard soil column (m'l).
ti_mean Mean value of the topographic index in each gridbox.
ti_sig Standard deviation of the topographic index in each gridbox.

* Names must be entered exactly as specified here (including case).

6.8. INIT_PDM: parameters for PDM

This section reads parameter values for the PDM-type parameterisation of surface runoff. It is only
read if 1_pdm=TRUE. Note that these parameters are held constant across the model domain. For
further details of PDM, see references under 1_pdm in Section 6.2.

>INIT_PDM

dz_pdm
b_pdm

Table 19 Description of variables in the INIT_PDM section.
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dz_pdm real The depth of soil considered by PDM (m).
A value of ~Im can be used.
b_pdm real Shape factor for the pdf.

6.9. INIT_HGT: elevation of tiles

This section sets the elevation of each surface tile, relative to the gridbox mean elevation. Note
that the gridbox mean elevation is not required anywhere in JULES but is implicit in the near-
surface meteorological data that are provided (e.g. higher locations will tend to be colder). The
elevation of each tile is used to alter the values of the air temperature and humidity over that tile.
All tile elevations must be greater than zero, i.e. tile can only be higher than the gridbox average,
because the assumptions used to alter the air temperature and humidity only hold for moving to
higher elevations. For many applications, the tile elevation can be set to zero.

>INIT_HG
zeroHeight

readFile
fileFormat
fileName

>ASCBIN
nheaderFile, nheaderField
fieldNum

>NC
SDFname

>DATA
data wvalues

Table 20 Description of variables in the INIT_HGT section

zeroHeight logical Switch used to simplify the initialisation of tile elevation.

TRUE: set all tile elevations to zero. This is a very
common configuration and is made easier by this switch.
FALSE: set all tile heights using data to follow.

readFile logical Switch controlling location of elevation data.
TRUE: read from an external file
FALSE: read from the run control file.

fileFormat character | Format of data file. Only used if readFile=TRUE.

fileName character | Name of file containing data. Only used if
readFile=TRUE.

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’, or if
readFile=FALSE.
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nheaderFile integer The number of headers at the start of the file (not used if
>=0 readFile=FALSE). See Section 5.2.

nheaderField integer The number of headers before each field (not used if
>=0 readFile=FALSE). See Section 5.2.

fieldNum integer The number of the first field to be used from the input file
>=1 (this represents the first surface tile). See discussion of

fields in Section 5.1.

>NC: The following are used if fileFormat='nc’.

SDFname character | The name of a variable containing data, as it appears in the
SDF.

>DATA:
If readFile=FALSE, data for the tile elevations variables should be listed here. Values for each
tile should be listed on a separate line.

6.10. INIT VEG_PFT: Time-invariant parameters for plant functional types

This section reads the values of parameters for each of the plant functional types (PFTs). These
parameters are a function of PFT only. Parameters that also vary with time and/or location are
dealt with in control file section INIT_VEG_VARY (see guide Section 6.11). Parameters that are
only required if the dynamic vegetation (TRIFFID) or phenology sections are requested are read
separately in control file section INIT_TRIF (see guide Section 6.15).

For many applications, the best approach may be to read the PFT parameters from the standard
parameter files provided with the JULES code (readFile=TRUE,
filename='PARAM/standard_pft_param.dat’), since this removes the risk that values
can be changed by an accidental edit to the run control file. The description of INIT_VEG_PFT
options is given in Table 21 and the list of required variables is given in Section 6.10.

>INIT_VEG_PFT

readFile
fileName
npftInFile

>DATA

varl (1),varl (2),...,varl (npft)
var2 (l),var2(2),...,var2 (npft)
...... data values .. ..

Table 21 Description of variables in the INIT_VEG_PFT section.

Variable name Type and | Notes
permitted
values
readFile logical Switch controlling location of data.
TRUE: read from an external file
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FALSE: read from the run control file.
filename character The name of the external file containing the data. Only
used if readFile=TRUE.
npftInFile integer The number of PFTs for which parameters are given in
>npft the input file.
>DATA:

If readFile=FALSE, the data should be listed here (on the line after >DATA) in the order given
in Section 6.2. Each variable should start on a new line, and npft InF1ile values should be given.

Each parameter has a separate value for each PFT, npftInFile values are read for each parameter.
All values are of type REAL, unless stated otherwise. Parameters for the TRIFFID or phenology
modules are described in Section 6.15.

HCTN24 and 30 refer to Hadley Centre technical notes 24 and 30, available from
http://www.metoffice.gov.uk/publications/HCTN

Table 22 List of PFT parameters.

Variable name

Description

typeName

Character. Name of each PFT. This list must include the PFTs used in this run —
see pftName in section INIT_OPTS (Section 6.2). These names are for the
user’s convenience, and do not have any special significance within JULES.

c3

Integer. Flag indicating whether PFT is C3 type.
0: notC3 (i.e.C4)
1: C3

canht_ft

The height of each PFT (m), also known as the canopy height. The value read
here is only used if TRIFFID is not active (1_trif=FALSE). If TRIFFID is
active, canht_ft is a prognostic variable and its initial value is read as
described in Section 6.19 below.

LAT

The leaf area index (LAI) of each PFT. The value read here is only used if
TRIFFID is not active (1_trif=FALSE). If TRIFFID is active, LAI is a
prognostic variable and its initial value is read as described in Section 6.19
below.

catchO

Minimum canopy capacity (kg m™). This is the minimum amount of water that
can be held on the canopy. See HCTN30 p7.

dcatch_dlai

Rate of change of canopy capacity with LAI (kg m™). Canopy capacity is
calculated as catch0 + dcatch_dlai*lai.See HCTN30 p7.

dz0v_dh

Rate of change of vegetation roughness length for momentum with height.
Roughness length is calculated as dz0Ov_dh*canht_ft. See HCTN30 p5.

Z0h_z0m

Ratio of the roughness length for heat to the roughness length for momentum.
This is generally assumed to be 0.1. See HCTN30 p6. Note that this is the ratio
of the roughness length for heat to that for momentum. It does not alter the
roughness length for momentum, which is calculated using canht_ft and
dz0v_dh (see above).

infil_f

Infiltration enhancement factor.

The maximum infiltration rate defined by the soil parameters for the whole
gridbox may be modified for each PFT to account for tile-dependent factors, such
as macro-pores related to vegetation roots. See HCTN30 p14 for full details.

rootd_ft

Root depth (m).
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An exponential distribution with depth is assumed, with e-folding depth
rootd_ft. Note that this means that generally some of the roots exist at depths
greater than rootd_ft. See HCTN30 Eq.32.

snowCanPFT

Flag indicating whether snow can be held under the canopy of each PFT. Only
used if can_model=4 (see Section 6.2). The model of snow under the canopy
is currently only suitable for coniferous trees.

Acceptable values are:

0: snow cannot be held under the canopy.

1: snow can be held under the canopy.

albsnc_max

Snow-covered albedo for large leaf area index. Only wused if
1_spec_albedo=FALSE. See HCTN30 Eq.2

albsnc_min

Snow-covered albedo for zero leaf area index.
Only used if 1_spec_albedo=FALSE. See HCTN30 Eq.2.

albsnf max

Snow-free albedo for large LAL
Onlyused if 1_spec_albedo=FALSE. See HCTN30 Eq.1.

kext Light extinction coefficient - used with Beer’s Law for light absorption through
tile canopies. See HCTN30 Eq.3.

kpar PAR Extinction coefficient (m” leaf/m? ground)

orient Flag indicating leaf angle distribution.
0 : spherical
1 : horizontal

alpha Quantum efficiency (mol CO, per mol PAR photons).

alnir Leaf reflection coefficient for NIR.
HCTN30 Table 3

alpar Leaf reflection coefficient for VIS.
HCTN30 Table 3

omega Leaf scattering coefficient for PAR.

omnir Leaf scattering coefficient for NIR.

a_wl Allometric coefficient relating the target woody biomass to the leaf area index
(kg carbon m'z).

a_ws Woody biomass as a multiple of live stem biomass.

b_wl Allometric exponent relating the target woody biomass to the leaf area index.
This is 5/3 in HCTN24 Eq.8.

eta_sl Live stemwood coefficient (kg C/m/LAI)

g_leaf_ 0 Minimum turnover rate for leaves (/360days).

dgl_dm Rate of change of leaf turnover rate with moisture availability.

dgl_dt Rate of change of leaf turnover rate with temperature (K.
This is 9 in HCTN24 Eq.10.

glmin Minimum leaf conductance for H,O (m s™).

dgcrit Critical humidity deficit (kg H,O / kg air).
See Eqn.17 of Cox et al. (1999).

fd Scale factor for dark respiration. See HCTN 24 Eq. 56.

f0 CI/CAforDQ = 0.See HCTN 24 Eq. 32.

fsmc_of Moisture availability below which leaves are dropped.

neff Scale factor relating V. max with leaf nitrogen concentration. See HCTN 24 Eq.
S1.

nlo Top leaf nitrogen concentration (kg N/kg C).

nr_nl Ratio of root nitrogen concentration to leaf nitrogen concentration
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ns_nl Ratio of stem nitrogen concentration to leaf nitrogen concentration.

r_grow Growth respiration fraction

sigl Specific density of leaf carbon (kg C/m2 leaf).

tleaf_of Temperature below which leaves are dropped (K).

Tlow Lower temperature for photosynthesis (deg C).

Tupp Upper temperature for photosynthesis (deg C).

emis_pft Surface emissivity

fl_o3_ct Critical flux of O3 to vegetation (nmol/m?2/s)

dfp_dcuo Fractional reduction of photosynthesis with the cumulative uptake of O3 by
leaves (/mmol/m2)
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6.11. INIT VEG_VARY: Time-/space- varying parameters for plant functional types

This section describes prescribed characteristics of the vegetation that vary with time and/or
location, in addition to varying with PFT.

>INIT_VEG_VARY

nvegvVar

vegDataPer, vegUpdatePer
nvegFileTime, vegFilePer
vegClim

readList

fileName
vegFileDate(1l),vegFileTime (1)
vegEndTime

fileFormat

>ASCBIN

nfieldFile

nheaderFile, nheaderField

noNewLineVeg

varName (1), flag(l), fieldNumber (1), interp (1), nameFile (1)
——— Repeated for each of nvegVar variables.-——

>NC
varName (1) ,flag(l), interp (1), SDFname (1), nameFile (1)
—-—— Repeated for each of nvegVar variables.-—-—

Table 23 Description of variables in the INIT_VEG_VARY section.

Variable name Type and | Notes
permitted
values

nvegVar integer The number of prescribed characteristics that vary
0<nvegVar< | with time and/or location. The three characteristics
3 that may vary are vegetation height, leaf area index

and root depth. If nvegVar=0, nothing more is
read from this section.

vegDataPer integer The period (s) of time-varying data. If there are no
time-varying fields, enter 0.
Special cases: -1 indicates monthly data.

vegUpdatePer integer The period (s) between updates of time-varying
fields. This must be less than or equal to the data
period (vegDataPer). For example,
vegDataPer=86400, vegUpdatePer=3600,
indicates that the data are daily values and these
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should be updated (by interpolation) on an hourly
basis. Special cases:

0: update every timestep

-1: update once a month

nvegFileTime

integer
>1

The number of data files available for each variable,
each file holding data for different times. If all
variables are held together, this is the number of data
files. If variables are held in separate files, this is the
number of files for any one variable.

vegFilePer

integer

The period (s) of the files containing the data. This
must be at least as large as the period of the data
(vegDataPer), and must be a multiple of the model
timestep.

Special cases:

-1: monthly files

-2: annual files

vegClim

logical

Switch indicating if time-varying vegetation data are
to be treated as climatological, in the sense that the
same data are to be used regardless of the year.
TRUE: data are climatological. The year given for
each file is ignored.

FALSE: data are not climatological

readList

logical

Switch controlling how the names of the files
containing the vegetation data, and the times
covered by each, are read.

TRUE: a list of names and times is read from
another file. This is required if nvegFileTime>1.

FALSE: a single name and file are read from the run
control file. This option is only allowed if
nvegFileTime=1 (see above).

filename

If nvegFileTime=1 this is the name of the single
data file (or the template).

If nvegFileTime>1, this is the name of a file that
lists the names and times of the data files. The first
line of this file will be skipped (and so can be used
for comments). All other lines are to be of the form
filename, startDate, "startTime”,
where fileName may contain variable-name-
templating (see Section 6.21). startDate is in
the format yyyymmdd, and time is in the format
hh:mm:ss.

vegFileDate

integer

Date of first data in vegetation file, in format
yyyymmdd. Only used if readList=FALSE
(otherwise read from an external file).

vegFileTime

character

Time of first data in vegetation file, in format
hh:mm:ss. Only used if readList=FALSE
(otherwise read from an external file). It is
recommended that all times entered in JULES
use Greenwich Mean Time (GMT or UTC), not
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local time. The time zone used here must match that
under INIT_TIME (see Section 6.3).

vegEndTime logical Flag used with vegetation file templating. TRUE
means that time in filename refers to the final data in
the file, FALSE means the time in the filename
refers to the first data in the file.

fileFormat character Format of vegetation data files.

See Section
5.2.

The following are read only if readFile=TRUE. Only values for the appropriate file format are

read.

>ASCBIN: If fileFormat="asc’,

‘bin’ or ‘pp’:

nfieldFile integer Number of fields in each file.
nHeaderFile integer The number of headers at the start of each file - see
>=0 Section 5.2.
nHeaderTime integer The number of headers at the start of each time - see
>=() Section 5.2.
nHeaderField integer The number of headers at the start of each field - see
>=() Section 5.2.
noNewLineVeg logical Switch describing format of ASCII file.
TRUE means that variables are arranged across one
or more lines, and each variable does not necessarily
start a new line. This option should be used if all the
data for each time are one line of the input file
(although it can also be used if the data continue
onto subsequent lines). TRUE is only allowed if the
fields are not functions of position (i.e.
vegFlag=’'t', see above).
FALSE means that each variable starts on a new
line.
varName character | The name of the variable. This is used to identify the
‘canht’, variable in the code, and is set in the code. These
‘lai’, must be entered exactly as listed, and are case-
‘rootd’ sensitive. Acceptable values:
‘lai’ for leaf area index
‘canht’ for canopy height
‘rootd’ for root depth
flag character |Flag indicating how the characteristic varies.
‘v, ‘tx’, | Acceptable values:
‘x! t: function of PFT and time only
t x: function of PFT, time and location
x: function of PFT and location only
At present, all nvegVar variables must have the
same value for this flag.
rootd can only use flag ‘t’ (i.e. root depth cannot
vary with location in the current code).
fieldNumber integer The field number of the first level of data in the
input file that is to be used for a variable.
interpFlag character Flag indicating how variable is to be interpolated in
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See Table 43. | time.

nameFile

character

The substitution string used in the names of files that
contain this variable. Only used if variable name
templating is used (see Section 6.21).

SNC: If fileFormat='nc’:

character

varName See above under >ASCBIN.

flag character See above under >ASCBIN.

interpFlag character See above under >ASCBIN.

SDFname character The name of the variable as it appears in a SDF.
nameFile character See above under >ASCBIN.

6.11.1. Examples of INIT VEG_VARY

Example 1: Time-varying Leaf Area Index.

Leaf Area Index is to vary with time (but not with position on the grid). Climatological monthly
data are to be used, with values updated at the start of each day. Note that the values are always
assumed to be a function of PFT. The ASCII input file is illustrated in Figure 3 and contains one
month of data (for all PFTs) on a single line.

Month pl p2 P3
1 0.5 4.0 1.0
2 0.7 4.0 1.1
3 0.9 4.2 1.5
4 2.0 4.5 2.0
-——— rest of file

jo! pb5
2.0 1.0
2.0 1.5
2.0 2.0
2.0 2.5

not shown-—--—-

Figure 3 Schematic of an ASCII file with monthly LAI data

The relevant entries in the run control file are shown below. Only the lines in bold are relevant, and
irrelevant sections have been omitted.

>INIT_VEG_VARY

1 !
-1,86400 !
1,1 !
T !
F !
‘lai_monthly.dat’
20120115,’00:00:00
‘asc’

>ASCBIN
6 !
1,0 !

nvegVar

vegDataPer, vegUpdatePer
nvegFileTime, vegFilePer

vegClim

readList

! fileName
" 1 vegFileDate(l),vegFileTime (1)
! fileFormat

nfieldFile
nheaderFile, nheaderField
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T ! noNewLineVeg
‘lai’, ‘t’, 2, ‘i’, "notused’ ! name, flag, field, interp, nameFile

nvegVar=1 indicates that we only want to vary one vegetation characteristic.
vegFileDate=20120115, but since vegClim=T, the year is discarded (effectively leaving
0115=15 January), meaning that each time of data is valid on the 15™ of the month.
nfieldFile=6 because we have data for each of 5 PFTs, plus there is a ‘timestamp’ variable
that will not be used (see Figure 3). The final line shows that we want to vary LAI as a function of
time (and PFT) only. The LAI data start with field #2. The ‘I’ and vegUpdatePer=86400
indicate that the monthly data will be interpolated between the monthly values and updated once
every 86400s (once a day).
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6.12. INIT NONVEG: Parameters for non-vegetation surface types

>INIT_NONVEG

readFile
fileName
nnvgInFile

>DATA

dataVarl (l),datavVarl(2),...,dataVarl (nnvgInFile)
dataVar2(1l),datavar2(2),...,datavar2 (nnvgInFile)
...... data values .. ..

Table 24 Description of variables in the INIT_NONVEG section.

Variable name Type and | Notes
permitted
values
readFile logical Switch controlling location of data.

TRUE: read from an external file
FALSE: read from the run control file.

filename character | The name of the file to be read. Only used if
readFile=TRUE. Note: For many applications, the best
approach may be to read the parameters from the files
provided with the JULES code (via readFile=TRUE),
since this removes the risk that values can be changed by an
accidental edit to the run control file.

nnvgInFile integer The number of non-vegetation surface types for which
>nnvg parameters are available in the input file.

>DATA

The following is the list of dataVar parameters that must be defined for each non-PFT tile type.
HCTN30  refers to  Hadley Centre  technical note 30, available from
http://www.metoffice.gov.uk/publications/HCTN

typeName charact | Name of each surface type. This list must include the non-
er vegetation surface types used in this run as defined in
INIT_OPTS variable nvgName (see Section 6.2).

Special cases:

‘soil’ — this surface type must always be present.
‘water’ — this is used to indicate open water, such as
lakes.

‘ice’ —thisis used to indicate land ice, such as glaciers.
‘urban_roof’ — this is used to indicate the urban roof
tile. It enables the two-tile urban schemes and should be
used in conjunction with ‘urban_canyon’ (though see
footnote 5 on page 4)

‘urban_canyon’ — this is used to indicate the urban
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canyon tile. Must be wused in conjunction with
‘urban_roof’ and cannot be used with *‘urban’

Each special type must be represented by not more than one
type (e.g. we cannot have two ‘soil’ types).

albsnc_nvg real Snow-covered albedo.
Only used if 1_spec_albedo=FALSE.
See HCTN30 Table 1

albsnf_nvg real Snow-free albedo.
See HCTN30 Table 1
Only used if 1_spec_albedo=FALSE.

catch_nvg real Capacity for water (kg m™).
See HCTN30 p7

gs_nvg real Surface conductance (m s™).
See HCTN30 p7
Soil conductance is modified by soil moisture according to
HCTN30 Eq 35.

infil_nvg real Infiltration enhancement factor.
The maximum infiltration rate defined by the soil
parameters for the whole gridbox may be modified for each
tile to account for tile-dependent factors. See HCTN30 p14

z0_nvg real Roughness length for momentum (m).
See HCTN30 Table 4

z0h_zOm real Ratio of the roughness length for heat to the roughness
length for momentum. This is generally assumed to be 0.1.
See HCTN30 p6. Note that this is the ratio of the roughness
length for heat to that for momentum. It does not alter the
roughness length for momentum, which is given by
z0_nvg above.

ch_nvg real Heat capacity of this surface type (J K’ m™). Used only if
can_modelis3 or4 (See INIT_OPTS, Section 6.2).

vi_nvg real Fractional coverage of non-vegetation “canopy”. Typically

0<vf_nv | set to 0.0, but value of 1.0 used if tile should have a heat
g<l capacity in conjunction with can_model options 3 or 4

(See INIT_OPTS, Section 6.2)

emis_nvg real Surface emissivity.
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6.13. INIT_ URBAN: Urban model configuration, geometry & material characteristics

This section reads in model configuration choices, geometry & material characteristics data for the
urban schemes URBAN-2T and MORUSES. Both these schemes must have an ‘urban_roof’
tile and an ‘urban_canyon’ tile (though see footnote 5 on page 4). This section is only read if
either of the two-tile urban schemes are enabled by including the ‘urban_roof’ tile. The
‘urban_roof’ and ‘urban_canyon’ tile type parameters specified in INIT_NONVEG
(Section 6.12) will be used for values that MORUSES does not parameterise, and for any
MORUSES parametrisations that are turned off, according to Table 26. Further information on
MORUSES, including references, can be found in the technical documentation and under
1_morusesin INIT_OPTS (Section 6.2)

>INIT_ URBAN
1_urban_empirical, l_moruses_macdonald
1_moruses_albedo, l_moruses_emissivity, 1_moruses_rough

1_moruses_storage, 1_moruses_storage_thin

anthrop_heat_scale

readFile

fileFormat

fileName

>ASCBIN

nheaderFile, nheaderField

>VARS

varName (1) varFlag (1) constVval (1)

varName (2) varFlag(2) constVal (2)

—-—— Repeat for each wvariable. —-—-

>ENDVARS

>NC

>VARS

varName (1) varFlag(1l) constVal (1) SDFname (1)
varName (2) varFlag (2) constVal (2) SDFname (2)
——— Repeat for each wvariable. —-—-

>ENDVARS

# Data fields to be read from this file should appear below here.
>DATA
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Table 25 Description of variables that are required in the INIT_URBAN section.

Variable name Type and | Notes
permitted
values
1 _urban_empiric | logical Switch to use empirical relationships for urban geometry,

al

based on total urban fraction. Dimensions calculated are
W/R, H/'W & H (see Table 27)

URBAN-2T uses W/R only.

Used in calculation of the canyon and roof fractions and
also to distribute anthropogenic heat between roof and
canyon if 1_anthrop_heat_src = TRUE

TRUE: Use empirical relationships for urban geometry.
FALSE: Appropriate data needs to be supplied instead

NB: These are only valid for high resolutions (~1 km)

References:

Bohnenstengel SI, Evans S, Clark P, Belcher SE (2010).
Simulations of the London urban heat island, Quarterly
Journal of the Royal Meteorological Society (submitted)

The following are the parameterisation switches for the configuration of MORUSES. Where
appropriate Table 26 gives the ‘urban_roof’ and ‘urban_canyon’ parameters that are
required to be set in INIT_NONVEG (Section 6.12).

1 _moruses_macdo
nald

logical

MORUSES switch for using MacDonald et al. (1998) to
calculate effective roughness length of urban areas and
displacement height from urban geometry (H, H/W and
W/R, see Table 27).

TRUE: Use MacDonald et al. (1998) formulations
FALSE: Appropriate data needs to be supplied instead

NB: If 1_urban_empirical = TRUE then
1 _moruses_macdonald = TRUE, which the code
enforces this.

References:

Macdonald RW, Griffiths RF, Hall D. 1998. An improved
method for the estimation of surface roughness of obstacle
arrays. Atmos. Env. 32: 1857-1864

1 _moruses_albed
o)

logical

MORUSES switch for effective canyon albedo
parameterisation. The roof albedo is given by
INIT_NONVEG (Section 6.12).

TRUE: Use MORUSES parameterisation. Requires that
1_cosz = TRUE, which the code automatically enables.
FALSE See Table 26
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1 moruses_emiss
ivity

logical

MORUSES switch for effective canyon emissivity
parameterisation. The roof emissivity is given by
INIT_NONVEG (Section 6.12).

TRUE: Use MORUSES parameterisation
FALSE See Table 26

1_moruses_rough

logical

MORUSES switch for effective roughness length for heat
parameterisation.

TRUE: Use MORUSES parameterisation
FALSE See Table 26

1l _moruses_stora
ge

logical

MORUSES switch for thermal inertia and coupling with
underlying soil parameterisation

TRUE: Use MORUSES parameterisation
FALSE See Table 26

1l _moruses_stora
ge_thin

logical

MORUSES switch to use a thin roof to simulate the effects
of insulation.
Only used if 1_moruses_storage = TRUE

TRUE: Use thin, insulated roof
FALSE: Use damping depth based on diffusivity of roofing
materials

Other URBAN-2T and MORUSES options

anthrop_heat_sc
ale

real

Distribution scaling factor, which allows the anthropogenic
heat flux to be spread between the urban_canyon
and urban_roof tiles such that:

H_roof = anthrop_heat_scale X H_canyon
H_canyon x (W/R) + H_roof x ( 1.0 — W/R) = anthrop_heat

Has a value 0.0 - 1.0 where the extremes correspond to:
0.0 = all released within the canyon
1.0 = evenly spread between canyon and roof

Only used if 1_anthrop_heat_src = TRUE

The following are give
material properties

information

about the source of data for urban geometry and building

readFile

logical

Switch that indicates source of data.

TRUE: data are read from a named, external file

FALSE: data are read from the run control file after the
section marked >DATA

fileFormat

character

Flag indicating the file format. Case sensitive.
Only used if readFile=.TRUE.

‘asc’: ASCII

‘bin’: generic binary (including GrADS)
‘nc’ : netCDF

‘pp’ : PP format
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fileName

Name of file containing urban geometry & building
material characteristics
Only used if readFile=.TRUE.

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’, or ‘pp’, or if
readfFile = FALSE.

nheaderFile

integer

The number of headers at the start of the file.
See Section 5.2

nheaderField

integer

The number of headers at the start of a field.
See Section 5.2

varName

character

The name of the variable (see Table 27 Description of
urban geometry & building material variables).

varFlag

integer
>-1

Flag indicating how the variable is initialised. Acceptable
values:

>0: The field number in the file that holds data for this
variable. See discussion of fields in Section 5.1.

-1: The field will be set to the value constvVal (see
below) at all points. This option can be used to specify an
idealised initial condition.

constVal

real

The value to be used at all points. Only used if f1ag=-1.

>NC: The following are used if fileFormat='nc’.

varName character | See under >ASCBIN above.
varFlag integer Flag indicating how the variable is initialised. Acceptable
>-1 values:
>0: Default (effectively is ignored).
-1: See under >ASCBIN above.
constVal real See under >ASCBIN above.
SDFname character | The name of the variable as it appears in the SDF.
>DATA

If readFile =

line.

FALSE, data should now appear in the run control file, in the order indicated by
the value of varFlag for each variable (see >ASCBIN above) with each starting on a separate
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Table 26 Parameters that may be used from INIT_NONVEG (Section 6.12) for the ‘urban_roof’ and
‘urban_canyon’ tile types depending on MORUSES switch configuration. Any non-vegetation parameters
not referenced in this table are always used from INIT NONVEG.

MORUSES switch Tile type TRUE FALSE

urban_canyon | MORUSES
albsnf_nvg,
albsnc_nvg

albsnf_nvg,
albsnc_nvg

1 _moruses_albedo
(1_cosz) urban_roof

urban_canyon | MORUSES

1l_moruses_emissivity emis_nvg

urban_roof emis_nvg
urban_canyon z0_nvg,
1_moruses_rough urban roof MORUSES 20h 7 0m
b
1_moruses_storage HEDAn_CanYOol | \fORUSES ch_nvg, vf_nvg

urban_roof

Table 27 Description of urban geometry & building material variables

Variable | Description® Notes on when data is not used. If not used / updated with
name calculated values then the variable could be set to
constVal instead.

WIrry Repeating width ratio | If 1_urban_empirical = TRUE then this is updated

(or canyon fraction, | with calculated values.
W/R)
The following refer to MORUSES only
hwr Height-to-width  ratio | See for wrr above
H/W)
hgt Building height (H) See for wrr above
ztm Effective roughness | If 1_moruses_macdonald = TRUE (or
length of urban areas 1_urban_empirical = TRUE) then this is updated
with calculated values.
disp Displacement height See for ztm above
albwl Wall albedo Data only used if 1_moruses_albedo = TRUE
albrd Road albedo See for albwl above
emisw Wall emissivity Data only used if 1_moruses_emissivity = TRUE
emisr Road emissivity See for emi sw above

¥ For more information on the urban geometry used please see the JULES technical documentation
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6.14. INIT_ SNOW: Snow parameters

>INIT_SNOW

dzSnow

rho_snow_const

snow_hcap, snow_hcon

snowLigCap

r0, rmax

snow_ggr (1:3)

amax (1:2)

dtland, kland

maskd

snowLoadLAI, snowInterceptFact, snowUnloadFact

Table 28 Description of variables in the INIT_SNOW section

HCTN30  refers to  Hadley Centre technical note 30, available  from
http://www.metoffice.gov.uk/publications/HCTN.

Variable name Type and | Notes

permitted values
dzSnow (1:nsm | array Prescribed thickness of each snow layer (m).
ax) Only used if nsmax > 0.

The interpretation of dzSnow is slightly complicated and
an example of the evolution of the snow layers is given in
Table 29.

dzSnow gives the thickness of each layer when it is not the
bottom layer.

For the top layer (#1), the minimum thickness 1is
dzSnow (1) and the maximum  thickness is
2*dzSnow (1). For all other layers (iz), the minimum
thickness is dzSnow (iz-1), i.e. the given thickness of
the previous layer, and the maximum thickness 1is
2*dzSnow (iz), 1i.e. twice the layer dzSnow value,
except for the last possible layer (nsMax) which has no
upper limit.

As a snowpack deepens, the bottom layer (closest to the
soil; label this as layer b) thickens until it reaches its
maximum allowed thickness, at which point it will split into
a layer of depth dzSnow (b) and a new bottom layer b+1
is added to hold the remaining snow. If a layer becomes
thinner than its value in dzSnow it is removed and the
snow partitioned between the remaining layers. Whenever a
layer splits or is removed, the properties of the layer (e.g.
temperature) are allocated to the remaining layers.

Note that dzSnow (nsMax), the final thickness, is not used
but a value must be input.
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rho_snow_con
st

real

Constant density of lying snow (kg m™).
This is used if nsmax=0, or if the snowpack is very thin. It
is also used as the density of fresh snow.

snow_hcap

real

Thermal capacity of lying snow (J K m™)
Typical value=0. -3e6

snow_hcon

real

Thermal conductivity of lying snow (W m” K)
See HCTN30 Eq.42
Typical value= 0-265

snowLigCap

real

Liquid water holding capacity of lying snow, as a fraction
of snow mass.
Only used if nsmax>0.

r0

real

Grain size for fresh snow (um).

See HCTN30 Eq.15.

A typical value is 50-0.

Only used if 1_spec_albedo=TRUE.

rmax

real

Maximum snow grain size (pm).

See HCTN30 p4.

A typical value 2000.0

Only used if 1_spec_albedo=TRUE.

snow_ggr (1:3
)

real array

Snow grain area growth rates (um ° s).. Only used if
1_spec_albedo=TRUE.

See HCTN30 Eq.16

The 3 values are for melting snow, cold fresh snow and cold
aged snow respectively.

Typical values are 0-6, 0-06, 0-23e6

amax (1:2)

real array

Maximum albedo for fresh snow.
1_spec_albedo=TRUE.

Values 1 and 2 are for VIS and NIR wavebands
respectively.

Typical values=0-98, 0. -7

Only wused if

dtland

real

Degrees Celsius below zero at which snow albedo equals
cold deep snow albedo. This is 2-0 in HCTN30 Eqg4.
Only used if 1_spec_albedo=FALSE.

kland

real

Used in snow-ageing effect on albedo.

This is 0-3 in HCTN30 Eg4 (note the last term of that
equation should be divided by dtland, i.e. kland as
specified here includes a factor dtland in the
denominator).

Only used if 1_spec_albedo=FALSE.

Must not be zero.

maskd

real

Used in exponent of equation weighting snow-covered and
snow-free albedo. This is 0-2 in HCTN30 Eq.5.

snowLoadLAT

real

Ratio of maximum canopy snow load to leaf area index (kg
m?). This is 4-4 in JULESI. Only used if can_model=4.

snowlIntercep
tFact

real

Constant in relationship between mass of intercepted snow
and snowfall rate. This is 0-7 in JULES1. Only used if

can_model=4

snowUnloadFa
ct

real

Constant in relationship between canopy snow unloading
and canopy snow melt rate. This is 0-4 in JULESI1. Only
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used if can_ model=4

Table 29 gives an example of how the number and thickness of snow layers varies with total snow

depth for the case of nsmax=3 and dzSnow=(0.1, 0.15, 0.2). Note that if the values given by the user for
dzSnow are a decreasing series with dzSnow (i) <=2*dzSnow (i-1), the algorithm will result in layers i and i+1
beign added at the same time. Don’t panic - this should not be a problem for the simulation.

Table 29 An example of the evolution of snow layer thickness.

Snow depth | Number | Layer thickness,
(m) of uppermost layer Comments
layers first (m)

<0.1 0 While the depth of snow is less than dzSnow(1), the
layer model is not active and snow and soil are
combined in a composite layer.

0.1to<0.2 |1 Total snow depth. | The single layer grows until it is twice as thick as
dzSnow(1).

02to<04 |2 0.1,remainder Above 0.2m, the single layer splits into a top layer of
0.1m and the remaining snow in the bottom layer.

>0.40 3 0.1,0.15,remainder | At 0.4m depth, layer 2 [which has grown to 0.3m

thick, i.e. 2*dzSnow(2)], splits into a layer of 0.15m
and a new bottom layer holding the the remaining
0.15m. As all layers are now in use, any subsequent
deepening of the pack is dealt with by increasing the
thickness in this bottom layer.
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6.15. INIT TRIF: Parameters for the TRIFFID model

This section is used to read PFT parameters that are only needed by the dynamic vegetation model
(TRIFFID). Values are not read if TRIFFID is not selected. TRIFFID also uses many other PFT-
specific variables that are also used in other parts of JULES, and are read in Section 6.10 above.

>INIT_TRIF

readFile
fileName
nnvgInFile

>DATA

dataVvarl (1) ,datavarl (2),..,dataVarl (nP£ft)
datavar2 (1) ,datavar2(2),..,datavVar2 (nPft)
...... data values .. ..

Table 30 Description of variables in the INIT_TRIF section.

Variable name Type and | Notes
permitted
values
readFile logical Switch controlling location of data.
TRUE: read from an external file
FALSE: read from the run control file.
filename characte | The name of the file to be read. Only used if
r readFile=TRUE.
npftInFile integer | The number of PFTs for which parameters are available in
2npft the input file.
>DATA
If readFi1e=FALSE, the dataVar parameters should be listed in the order given below.
pftName character Name of each PFT. These must match those given in
Section 6.2.
crop integer Flag indicating whether the PFT is a crop.
Oorl Only crop PFTs are allowed to grow in the agricultural
area.
0 : not a crop
1: acrop
g_area real Disturbance rate (/360days).
g_grow real Rate of leaf growth (/360days).
g_root real Turnover rate for root biomass (/360days).
g_wood real Turnover rate for woody biomass (/360days)
lai_max real Maximum LAI
lai_min real Minimum LAI

Note that where a quantity is said to have units of “/360days”, this means that it is an amount per
360 days.
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6.16. INIT AGRIC: Fractional coverage by agriculture

If the TRIFFID vegetation model is used, the fractional area of agricultural land in each gridbox is
read in this section. Otherwise, this section is not used.

>INIT_AGRIC

readFile
fileFormat
fileName

>ASCBIN
nheaderFile, nheaderField
fieldNum

>NC
varName

# Data fields to be read from this file should appear below here.
>DATA
frac_agr(l:nxIn,l:nyIn)

Table 31 Description of variables in the INIT_ AGRIC section

Variable name Type and | Notes
permitted
values
readFile logical Switch controlling location of soil layer data.

TRUE: read from an external file
FALSE: read from the run control file.

fileFormat character Format of data file. Only used if readFi1e=TRUE.

filename character Name of file containing data. Only wused if
readFile=TRUE.

The following are read only if readFile=TRUE. Only values for the appropriate file format are
read.

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’.

nheaderFile integer The number of headers at the start of the file,
>=0

nheaderField integer The number of headers before each field.
>=0

fieldNum integer The field number of the first field to be used from the
>=1 input file.

>NC: The following are used if fileFormat='nc’.

SDFName character The name of the variable containing data, as it appears

in the SDF.
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>DATA: The following are used if readFile=FALSE.

frac_agr(l:nxIn,1 |real array
:nyIn)

The fraction that is agriculture.
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6.17. INIT MISC: Miscellaneous surface, carbon and vegetation parameters

>INIT_MISC

hleaf, hwood
betal, beta?2
fwe_c3, fwe_c4
glO_leaf

kaps
kaps_roth(1:4)
glO_soil
cs_min

coZ_mmr
frac_min, frac_seed
pow

HCTN24 and 30 refer to Hadley Centre technical notes 24 and 30, available from
http://www.metoffice.gov.uk/publications/HCTN

Table 32 Description of variables in the INIT_MISC section

Variable name | Type and | Notes
permitted values

hleaf real Specific heat capacity of leaves (J K™ per kg carbon).
HCTN30 p6
Typical value=5.7E4

hwood real Specific heat capacity of wood (J K’ per kg carbon).
HCTN30 p6
Typical value=1.1e4

betal real Coupling coefficient for co-limitation in photosynthesis
model.

Cox et al. (1999), Eq.61
Typical value=0.83

beta2 real Coupling coefficient for co-limitation in photosynthesis
model.

Cox et al. (1999), Eq.62

Typical value=0.93

fwe_c3 real Constant in expression for limitation of photosynthesis by
transport of products, for C3 plants. This is 0.5 in Eq.60 of
Cox et al. (1999).

fwe_c4 real Constant in expression for limitation of photosynthesis by
transport of products, for C4 plants. This is 2.0x10* in
Eq.60 of Cox et al. (1999).

glO_leaf real Q10 factor for plant respiration.
Cox et al. (1999) Eq.66
Typical value=2.0

kaps real Specific soil respiration rate at 25 degC and optimum soil
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moisture (s7).

Only used if not using TRIFFID (1_trif=FALSE).
HCTN24 Eq.16.

Typical value=5e-9

Kaps_roth (1l | real Specific soil respiration rate for the RothC submodel for
14) each soil carbon pool.

Only used if using the TRIFFID vegetation model
(I_trif=TRUE), in which case soil carbon is modelled
using four pools (biomass, humus, decomposable plant
material, resistant plant material).

ql0_soil real Q10 factor for soil respiration.
Only used if 1_g10=TRUE.
HCTN24 Eq.17

Typical value=2.0

cs_min real Minimum allowed soil carbon (kg m~)
Typical value=1.0e-6

co2_mmr real Concentration of atmospheric CO2, expressed as a mass
mixing ratio.

frac_min real Minimum fraction that a PFT is allowed to cover if
TRIFFID is used.
Typical value=1.0e-6

frac_seed real Seed fraction for TRIFFID.
Typical value=0.01

pow real Power in sigmodial function used to get competition
coefficients.

This is 20.0 in HCTN24 Eq.3.
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>INIT_DRIVE

driveDataPer

ndriveFileTime, driveFilePer
readList

fileName
driveFileDate(l),driveFileTime (1)
driveFormat

ioPrecipType,l_point_data
tForSnow

tForConv, conFrac
io_rad_type, ioWindSpeed
useDiffRad,diffFracConst
zl_uv, zl_tqg

ndriveExtra

>ASCBIN

byteSwapDrive

nfieldDriveFile

ndriveHeaderFile, ndriveHeaderTime, ndriveHeaderField
noNewLineDrive

>VARS

name (1) fieldNumber (1) interp (1) nameFile (1)

name (2) fieldNumber (2) interp (2) nameFile (2)

——— Repeat for each wvariable. —-—-

>ENDVARS

>NC

ncTypeDrive

>VARS

name (1) SDFname (1) nameFile (1) interp (1)

name (2) SDFname (2) nameFile (2) interp (2)

——— Repeat for each wvariable. —-—-

>ENDVARS
Table 33 Description of variables in the INIT_DRIVE section

Variable name Type and | Notes
permitted values

driveDataPer integer The time step (seconds) of the driving data. This must
1 — 86400 (see | be a multiple of the model timestep and must be at most
notes) 86400s (one day). 86400 must be a multiple of

driveDataPer, so that data are read at the same
times each day.
ndriveFileTime | integer The number of data files available for each variable,
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each file holding data for different times. If all variables
are held together, this is the number of data files. If
variables are held in separate files, this is the number of
files for any one variable. If time templating is used (see
Section 6.21), ndriveFileTime should be 1.

driveFilePer

integer

The period (seconds) of the files containing the driving
data.

This is only used if time templating is used (see Section
6.21).

This must be at least as large as the period of the data
(driveDataPer), and must be a multiple of the
model timestep.

Special cases:

-1: monthly files

-2: annual files

readList

logical

Switch controlling how the names of the files containing
the driving data, and the times covered by each, are
read.

TRUE: names are read from another file

FALSE: names are read from the run control file. This
option is only allowed if ndriveFileTime=1.

filename (1)

character

If ndriveFileTime=1 this is the name of the single
data file (or the template name).

If ndriveFileTime>1, this is the name of a file that
lists the names and times of the data files. The first line
of this file will be skipped (and so can be used for
comments). All other lines are to be of the form:
filename, startDate,”startTime”

where

fileName may contain variable-name-templating (see
Section 6.21)

startDate is in format yyyymmdd

time isin format hh:mm:ss.

Starting time and date for first driving data file. Only used if readList=FALSE (otherwise these
values are read from an external file).

driveFileDate | integer Date of first data in the driving data file, in format
yyyymmdd.
driveFileTime | character Time of day of first data in the driving data file in
format hh:mm: ss. It is recommended that all times
entered in JULES use Greenwich Mean Time (GMT
or UTC), not local time. The time zone used here must
match that under INIT_TIME (see Section 6.3).
driveFormat character Format of data files.
See Section 5.2.
ioPrecipType integer Flag indicating which precipitation variables are input,
1 to 4. and how they are treated. (Note that all precipitation in

JULES is considered to be either rainfall or snowfall.)
1: A single precipitation field is input. This represents
the total precipitation (rainfall and snowfall). The total
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is partitioned between snowfall and rainfall using
tForSnow (see below), and rainfall is then further
partitioned into large-scale and convective components
using tForSnow. Convective snowfall is assumed to
be zero.

2: Two precipitation fields are input, namely rainfall and
snowfall. The rainfall is partitioned between large-scale
and convective, using tForConv (see below).
Convective snowfall is assumed to be zero.

3: Three precipitation fields are input, namely large-
scale rainfall, large-scale snowfall and convective
rainfall. This cannot be used with
1_point_data=TRUE. Convective snowfall is
assumed to be zero, and tForSnow and tForConv
are not used.

4: Four precipitation fields are input, namely large-scale
rainfall, large-scale snowfall, convective rainfall and
convective snowfall. This cannot be wused with
1_point_data=TRUE. tForSnow and tForConv
are not used. Note that this is the only option that
considers convective snowfall.

The concept of convective and large-scale (or
dynamical) components of precipitation comes from
atmospheric models, in which the precipitation from
small-scale (convective) and large-scale motions is often
calculated separately. If JULES is to be driven by the
output from such a model, the driving data might
include these components..

1_point_data

logical

Flag indicating if driving data are point or area-average
values. This affects the treatment of precipitation input
and how snow affects the albedo.

TRUE: driving data are point data. Precipitation is not
distributed in space (see FALSE below) and is all
assumed to be “large-scale” in origin. The albedo
formulation is suitable for a point.

FALSE: driving data are area averages. The
precipitation inputs are assumed to be exponentially
distributed in space, as in UMDP25, and can include
convective and large-scale components. The albedo
formulation is suitable for a gridbox.

tForSnow

real
>0

If ioPrecipType is 1 or 2, tForSnow is the near-
surface air temperature (K) at or below which the
precipitation is assumed to be snowfall. At higher
temperatures, all the precipitation is assumed to be
liquid.

tForConv

real
>0

If ioPrecipType islor2, tForConv is the near-
surface air temperature (K) at or above which the
precipitation is assumed to be convective in origin. At
lower temperatures, all the precipitation is assumed to
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be “large-scale” in origin. Also see conFrac.
tForConv is not used if 1_point_data is TRUE,
since then there is no convective precipitation.
tForSnow must be less than tForConv, implying
that all solid precipitation is large-scale in origin (unless
ioPrecipType=4, in which case tForSnow and
tForConv are irrelevant).

conFrac

real
>0

Convective precipitation covers the fraction conFrac
of the gridbox.

io_rad_type

integer
1,2o0r3

Flag indicating what radiation fluxes are input.

1: Downward fluxes of short- and longwave radiation
are input. Normally this is the preferred option.

2: Downward shortwave and net (all wavelengths)
downward radiation are input. The modelled albedo and
surface temperature are used to calculate the downward
longwave flux.

3: Net downward fluxes of short- and longwave
radiation are input. The modelled albedo and surface
temperature are used to calculate the downward fluxes
of shortwave and longwave radiation.

iowindSpeed

logical

Switch indicating how wind data are input.

TRUE: the wind speed is input

FALSE: the two components of the horizontal wind
(e.g. the southerly and westerly components) are input.

useDiffRad

logical

Switch for input of diffuse radiation.

TRUE: diffuse radiation is a time-varying input. Only
allowed if io_rad_type=1 or 2.

FALSE: diffuse radiation is set to a constant fraction
(diffFracConst) of the total downward shortwave
radiation.

diffFracConst

real

A constant value used to calculate diffuse radiation from
the total downward shortwave radiation.
Only used if useD1i f fRad=FALSE.

zl_uv

real
>0.0

The height (m) at which the wind data are valid. This
height is relative to the zero-plane not the ground.

z1l_tqg

real
>0.0

The height (m) at which the temperature and humidity
data are valid. This height is relative to the zero-plane
not the ground.

ndriveExtra

integer
O<ndriveExtra<=
ndriveExtraMax

The number of “extra” (additional) driving variables
that are to be input. These are additional to the variables
that must be input. This facility has been added to
provide the user with a relatively easy way to ingest new
variables (that might be needed for a new development)
with the minimal amount of coding. The maximum
possible number of additional variables is determined by
the parameter ndriveExtraMax, which is currently
set to 10. Further details of each “extra” variable are
provided below.

Set to zero to turn off this facility (i.e. to provide no
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extra variables).
See notes in Section 6.18.1.
>ASCBIN: If driveFormat=’asc’, ‘bin’ or ‘pp’:
byteSwapDrive | logical Switch controlling byteswapping of binary data.
Only used if driveFormat="bin’.
TRUE: the order of the bytes will be reversed after
reading. This option allows data files written on a “little-
endian” machine to be used on a “big-endian” machine,
or vice versa. Some compilers have options that allow
this behaviour.
FALSE: no change will be made
nfieldFile integer Number of fields in each file.
nHeaderFile integer The number of headers at the start of each file - see
>=0 Section 5.2.
nHeaderTime integer The number of headers at the start of each time - see
>=0 Section 5.2.
nHeaderField integer The number of headers at the start of field - see Section
>=0 5.2
noNewLineDrive | logical Switch describing format of an ASCII data file.
TRUE: variables are arranged across one or more lines,
and each variable does not necessarily start a new line.
This option should be used if all the driving data for
each time are one line of the input file (although it can
also be used if the data are continued onto subsequent
lines).
FALSE: each variable starts on a new line.
Only used if there is only one point in the input grid
(and hence only one point in the model grid) and driving
data are in ASCII files.
name character The name of the variable. This is used to identify the
variable in the code, and is set in the code. Acceptable
values are shown in Table 34. These must be entered
exactly as listed in the table, and are case-sensitive.
fieldNumber integer The field number in the file that holds data for this
>=1 variable. See discussion of fields in Section 5.
interpFlag character Flag indicating how variable is to be interpolated in time
See Table 43.
varNameFile character The substitution string used in the names of files that
contain this variable. Only used if variable name
templating is used in file names.
>NC: If driveFormat='nc’:
ncTypeDrive character Flag indicating the format (dimension names) of
netCDF files. See Section 5.2.2.
name character See above under >ASCBIN.
SDFName character The name of the variable as used in a SDF. See
discussion of SDF in Section 5.2.2.
varNameFile character See above under >ASCBIN.
interpFlag character See above under >ASCBIN.
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| See Table 43. |

The meteorological variables required by a run of JULES are determined by the choice of flags
such as 1oPrecipType. The variables that are listed must then match this expectation.

Table 34 Names of meteorological driving variables.

Name Description Comments
diff_rad | Diffuse radiation (W m™) Used if useDi f fRad=TRUE.
lw_down Downward longwave radiation (W m”~). Used with rad_type=1.
lw_net Net downward longwave radiation (W m>). Used with rad_type=3.
sw_down Downward shortwave radiation (W m'z). Used with rad_type=1 or 2.
sw_net Net downward shortwave radiation (W m™). Used with rad_type=3.
rad_net 12\Iet (all wavelength) downward radiation (W m™ | Used with rad_type=2.

).

precip Precipitation rate (kg m™ s™). Used with
ioPrecipType=l.

precipCR Convective rainfall rate (kg m™s™). Used with ioPrecipType=3
and 4.

precipCs Convective snowfall rate (kg m=-s™). Used with
ioPrecipType=4.

precipLR Large-scale rainfall rate (kg m™ s™). Used with ioPrecipType=3
and 4.

precipLS Large-scale snowfall rate (kg m™s™). Used with ioPrecipType=3
and 4.

precipTR Rainfall rate (kg m™s™) Used with
ioPrecipType=2.

precipTS Snowfall rate (kg m~s-1). Used with ioPrecipType=2
and 3.

pstar Air pressure (Pa)

q Specific humidity (kg kg™")

t Air temperature (K)

u Zonal component of the wind (m sh. Used with
ioWindSpeed=FALSE.

\% Meridional component of the wind (m s. Used with
ioWindSpeed=FALSE.

wind (Total) wind speed (m s™). Used with
ioWindSpeed=TRUE.

ozone Surface ozone concentration (ppb) Used with
1_o03_damage=TRUE

extraXX Additional driving variable (see ndriveExtra). | Used if ndriveExtra > 0.

XX should be  replaced by  OI,
02,....min[ndriveExtra,
ndriveExtraMax].

6.18.1. Inputting extra driving variables
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The facility to read in additional driving variables by setting ndriveExtra>0 is intended as a
simple mechanism to allow access to additional data, particularly during model development. For
example, a time-varying field of ozone concentration could be input after just a few lines of editing
of the code. The additional variables must have the same frequency as the other variables and will
be interpolated following the interp flags specified. The data can then be loaded into a new
FORTRAN variable that the user has to create — this is best done in subroutine drive_update (look
for comments containing “iposExtra’). The new variable itself could be provided via a module
(e.g. module forcing).

6.18.2. Examples of specifying driving data

Example 1: single point driving data

In this example, we consider a case with one point in the input file, and all driving data for each
time held on a single line of an ASCII input file. The input file is illustrated in Figure 4. The
relevant entries in the run control file are shown below. Only the lines in bold are relevant, and
irrelevant sections have been omitted.

>INIT_DRIVE

3600 ! driveDataPer

1,-9 ! ndriveFileTime, driveFilePer
F ! readlist

‘datal.dat’ ! fileName

19970101,’00:00:00" ! driveFileDate(l),driveFileTime (1)
‘asc’ ! driveFormat

2,T ! ioPrecipType,l_point_data
275.0 ! tForSnow

375.0,0.2 ! tForConv, conFrac

1, T ! io_rad_type, ioWindSpeed
F,0.1 ! useDiffRad,diffFracConst
10.0,10.0 !' 2zl uv, zl_tqg

0 ! ndriveExtra

>ASCBIN

F ! byteSwapDrive

10 ! nfieldDriveFile

1,0,0 ! ndriveHeaderFile, ndriveHeaderTime, ndriveHeaderField
T ! noNewlLineDrive

>VARS

pstar 9 nf psfc ! name, field, flag, name

t 6 nf t

a 10 nf g

wind 8 nf u

lw_down 3 nf 1w

sw_down 2 nf sw

precipTR 4 nf ligp

precipTsS 5 nf solp

>ENDVARS
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ndriveFileTime=1 indicates that all data are in one file.

readList=FALSE indicates that the name of the file is read from the run control file (not from a
separate file).

useDiffRad=FALSE indicates that diffuse radiation is not input, rather it is calculated as 0.1
(the value of di ffFracConst) of the total shortwave radiation.

ndriveHeaderFile=l1 indicates that there is a single header line at the top of the file.
noNewLineDrive=TRUE shows that each variable is not on a new line (in fact all variables are
on one line).

The entries following >VAR indicate where each variable lies in the input file. Note that we can
skip the unrequired ‘time’ and ‘obsl’ fields in Figure 4.

Time solar long rain sSnow temp obsl wind press humid

1 3.3 187.8 0.0 0.0 259.10 83.0 3.610 102400.5 1.351E-03
2 89.5 185.8 0.0 0.0 259.45 24.1 3.140 102401.9 1.357E-03
3 142.3 186.4 0.0 0.0 259.85 56.9 2.890 102401.0 1.369E-03

————— data for later times —--—-

Figure 4. Lines of an example file of meteorological driving data in ASCII format.

Example 2: Driving data from binary files, one variable per file.
The relevant entries in the run control file are shown below. Only the lines in bold are relevant and
irrelevant sections have been omitted.

>INIT_DRIVE

3600 ! driveDataPer

162,-9 ! ndriveFileTime, driveFilePer
T ! readList

‘file list.txt’ ! fileName

19820701,’03:00:00" ! driveFileDate(l),driveFileTime (1)
‘bin’ ! driveFormat

2,F ! ioPrecipType,l_point_data
275.0 ! tForSnow

298.2,0.3 ! tForConv,conFrac

1,F ! io_rad_type, ioWindSpeed
T,0.1 ! useDiffRad,diffFracConst
10.0,10.0 !' 2zl uv, zl_tqg

2 ! ndriveExtra

>ASCBIN

F ! byteSwapDrive

1 ! nfieldDriveFile

0,0,0 ! ndriveHeaderFile, ndriveHeaderTime, ndriveHeaderField
T ! noNewlLineDrive

>VARS

pstar 1 nf psfc ! name, field, flag, name

t 1 nf temp

q 1 nf humid
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u 1 nf uwind
v 1 nf wvwind
lw_down 1 nf 1long
sw_down 1l nf solar
precipTR 1 nf 1ligp
precipTs 1 nf solp
diff rad 1 nf diffRad
extrall 1 nf ozone
extral2 1 nf co2
>ENDVARS

ndriveFileTime=162 indicates the number of files (for each variable).
readList=TRUE indicates that the names and times of each file are read from the file
‘file_list.txt’. The first few lines of this file are shown in Figure 5.

# List of meteorological data files. Columns are:

# file name, start date (yyyymmdd), start time (hh:mm:ss).
'met_data/%$vv_data/%vv198207.dat', 19820701, '03:00:00"'
'met_data/%$vv_data/%$vv198208.dat', 19820801, '03:00:00"'
'met_data/%vv_data/%vv198209.dat', 19820901, '03:00:00"'
—————— rest of file not shown -----

Figure 5. Example list of driving data files using file name templating.

The presence of ‘svv’ in each file name shows that we are using variable name templating (see
Section 6.21). The dates show that we in fact have monthly files (but note that we cannot use time
templating for these files because the start time of 03H does not conform to the requirements
described in Table 41). Furthermore, files for each variable are stored in separate directories. For
example, skipping ahead to after >VARS, we see that the humidity variable is held in files such as
‘met_data/humid_data/humid198207.dat’, while the surface pressure is held in the
likes of ‘met_data/psfc_data/psfcl98207.dat’.

The ioPrecipType value of 2 shows that we read in two components of precipitation: total
solid and total liquid. The liquid is considered to be convective precipitation when the temperature
is above tForConv, which here has a value of 298.2 K.

useDiffRad=TRUE indicates that diffuse radiation will be provided.
byteSwapDrive=FALSE indicates that the data will not be byteswaped after input.
nfieldDriveFile=I shows that each data file contains a single field, which is consistent with
the £ield number shown for each variable (all 1).

ndriveExtra=2 indciates that two additional, non-standard variables will be read in. These are
listed as extra0l and extra02 in the list of variables. The filenames shown suggest that they are for
ozone and CO,, but they could represent any quantity that the user wants to input.




Page 87 of 126

6.19. INIT_ IC: Specification of the initial state

The values of all prognostic variables must be set at the start of a run. This initial state, or initial
condition, can be read from a “dump” from an earlier run of the model, or may be read from any
other file. Another option is to prescribe a simple or idealised initial state, and this may be done via
the run control file. It is also possible to set some fields using values from a file (e.g. a dump) but to
set others using idealised values from the run control file (that is, effectively to override the values
in the external file).

>INIT_IC

readFile
fileFormat (quoted)
dumpFile, allDump
fileName (quoted)
zrevSoil, zrevSnow
totalWetness
totalSnow

>ASCBIN

nheaderFile, nheaderField

>VARS

varName (1) varFlag (1) constVval (1)
varName (2) varFlag (2) constVal (2)
—-—— Repeat for each variable. -—-
>ENDVARS

>NC

>VARS

varName (1) varFlag(1l) constVal (1) SDFname (1)
varName (2) varFlag(2) constVal (2) SDFname (2)
——— Repeat for each wvariable. —-—-

>ENDVARS

# Data fields to be read from this file should appear below here.
>DATA

Table 35 Description of variables for INIT IC section.

Variable name Type and | Notes
permitted
values
readFile logical Switch controlling location of initial state data.

TRUE: read from an external file (including a model dump)
FALSE: read from the run control file.

fileFormat character Format of data. Only used if readFile=TRUE.
See Section | Note that any dump file that is to be read (see dumpFile)
5.2. can only be of type ‘asc’ or ‘nc’.
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dumpFile logical Switch indicating if file to be read is a model dump.
Only used if readFi1e=TRUE.
TRUE: the file is a model dump (restart) file that was
written by this version of JULES. A dump file has known
structure that can be navigated by JULES using header
information.
FALSE: the file is not a dump file

allDump logical Switch to allow easy use of all data in a dump file.
Only used if dumpFi1le=TRUE, that is, if the file to be
read is a model dump.
TRUE: all variables required to initialise the run will be
read from the given dump file. If a required field is not in
the dump (e.g. if the dynamic vegetation model was not
active in the earlier run but is now required), initialisation
will fail and the run will stop. This option ignores all later
input in the >ASCBIN and >NC sections. This is the easiest
way to start from a dump file, as the user does not need to
say what variables are to be found where — the model will
look for all data in the dump file.
FALSE: the information in the >ASCBIN and >NC sections
is used to identify whether a field is to be read or set to a
constant value, as usual.

filename character Name of file containing data. Only wused if
readFile=TRUE.

zrevSoil logical Switch indicating if soil data are stored in reverse order of
levels.
Not used if data are to be read from a dump file.
TRUE: wvertical order is reversed, with data stored in
“bottom to top” order (i.e. bottom layer first)
FALSE: standard vertical order, with data stored in “top to
bottom™ order (i.e. uppermost layer first)

zrevsSnow logical Switch indicating if snow data are stored in reverse order of
levels.
Only used if nsmax>0. Not used if data are to be read from
a dump file.
TRUE: wvertical order is reversed, with data stored in
“bottom to top” order (i.e. bottom layer first)
FALSE: standard vertical order, with data stored in “top to
bottom” order (i.e. uppermost layer first)

totalWetness logical Switch controlling type of soil moisture data.
Not used if soil wetness is to be read from a dump file.
TRUE: soil wetness is prescribed as the total wetness (the
sum of frozen and liquid components).
FALSE: soil wetness is prescribed using two components
(the frozen and liquid fractions separately).

totalSnow logical Switch controlling simplified initialisation of snow

variables.
Not used if snow data are to be read from a dump file.
TRUE: only the total mass of snow on each tile (see
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snow_tile in Table 36) is required to be input, and all
related variables will be calculated from this or simple
assumptions made. All the snow is assumed to be on the
ground (not in the canopy). This option can be used
regardless of the value of nsmax. If nsmax>(, this option
is recommended as it means the user can avoid the
complications of setting several snow variables in a
consistent manner.

FALSE: all snow variables required for the current
configuration must be input separately. The variables are
listed in Table 36.

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’, ‘dump’
or ‘pp’, or if readFile=FALSE.

nheaderFile integer The number of headers at the start of the file.
See Section 5.2
nheaderField integer The number of headers at the start of a field.
See Section 5.2
varName character The name of the variable. See Table 36.
varFlag integer Flag indicating how the variable is initialised. Acceptable
>-1 values:

>0: The field number in the file that holds data for this
variable. See discussion of fields in Section 5.1. If a dump
file is being read, any integer >0 is accepted and then
effectively ignored — this indicates that the field is to be
taken from the dump and the exact field number is not
required.

-1: The field will be set to the value constVval (see
below) at all points. This option can be used to specify an
idealised initial condition.

constVal real The value to be used at all points. Only used if f1lag=-1.
>NC: The following are used if fileFormat="nc’.
varName character The name of the variable.
See Section
52.2
varFlag integer Flag indicating how the variable is initialised. Acceptable
>-1 values:

>0: Default (effectively is ignored).

-1: The field will be set to the value constVal (see
below) at all points. This option can be used to specify an
idealised initial condition.

constVal real See under >ASCBIN above.
SDFvarName character The name of the netCDF variable that is to be used.
>DATA

If further initial data are to be read from the run control file (readFile=FALSE), these should
now appear in the file, in the order indicated by the value of flag for each variable (see above). For
example, if tstar is given a value of flag=1, and cs has flag=2, data for tstar and cs
should then be listed, with each variable starting on a separate line.
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Some of these variables may not be required for a particular run, depending on the model
configuration. The size of each variable is defined in terms of the following variables:

land_pts - the number of gridboxes that contain any land.
sm_levels - the number of soil layers.
ntiles - the number of tiles at each gridbox.

ntype - the number of surface types.

npft — the number of plant functional types.
nsmax — the maximum possible number of snow layers.

See Section 6.2 for further information about some of these variables.

Table 36 JULES variables that require to be specified to define the initial model state.

Note that this is a list of variables that have to be specifically listed in the input section. If all
variables are to come from a model dump (a1l1Dump=TRUE), none of these variables needs to be
listed. All variables names should be entered exactly as shown, including case.

Name | Shape | Description. | Notes
General variables
canopy (land_pts, Amount of | Always required.
ntiles) intercepted ~ water
that is held on each
tile (kg m'z).
tstar_tile | (land_pts, Temperature of each | Always required.
ntiles) tile (K). This is the
surface or  skin
temperature.
gs (land_pts) Stomatal Always required. This is used to
conductance for | start the iterative calculation of
}Nater vapour (m s | gs for the first timestep only.
).

Soil layer variables

t _soil (land_pts, Temperature of each | Always required.
sm_levels) soil layer (K).
sthuf (land_pts, Soil wetness for each | Only required if totalWetness
sm_levels) soil layer. This is the | =TRUE.
mass of soil water | Either sthuf or its components
(liquid and frozen), | sthu and sthf are always
expressed as a fraction | required.
of the water content at
saturation.
sthf (land_pts, Frozen soil wetness | Only required if totalWetness

sm_levels)

for each soil layer.
This is the mass of
frozen water,
expressed as a fraction
of the water content at
saturation. Note that

=FALSE.
Either sthuf or its components
sthu and sthf are always
required.
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the partitioning of
water between liquid
and solid fractions
may be altered during
initialisation. The
procedure  conserves
the total water
content, and uses the
soil temperature
(t_soil) to partition
between the phases.

sthu

(land_pts,
sm_levels)

Unfrozen soil wetness
for each soil layer.
This is the mass of
unfrozen water,
expressed as a fraction
of the water content at
saturation. See notes
for sthf above.

Only required if totalWetness
=FALSE.
Either sthuf or its components
sthu and sthf are always
required.

Snow variables

snow_tile (land_pts, Amount of snow on | Always required.
ntiles) each tile (kg m'z). .
If totalSnow = TRUE,
snow_tile holds the total snow
mass on each tile. If
can_model=4, this will be used
to set the snow on the ground
under the canopy.
See Table 37 for further
discussion.
snow_grnd (land_pts, Amount of snow on | Only required if can_mode1=4.
ntiles) the ground, beneath | Not required if
the canopy (kg m®), | totalsnow=TRUE.
on each tile. A value should be given for all
tiles, but it is only updated for tiles
that refer to PFTs that have
snowCanPFT=1 (see Section
6.10).
rho_snow (land_pts, Bulk density of lying | Only required if
ntiles) snow (kg m'3). totalSnow=FALSE.
rgrain (land_pts, Snow surface grain | Only required if
ntiles) size (um) on each tile. | 1_spec_albedo = TRUE.
nsnow (land_pts, The number of snow | Only required if nsmax>0 and
ntiles) layers on each tile. totalSnow=FALSE.

Although this is an integer
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quantity, it is treated as a real
number for convenience during
input and output.

snowDepth (land_pts, Depth of snow (kg m). | Only required if nsmax>0 and
ntiles) totalSnow=FALSE.

snowDs (land_pts, Depth of snow in each | Only required if nsmax>0 and
ntiles,nsmax | layer (kg m). totalSnow=FALSE.
)

snowlce (land_pts, Mass of frozen water | Only required if nsmax>0 and
ntiles,nsmax | in each snow layer (kg | t otalSnow=FALSE.
) m?).

snowLig (land_pts, Mass of liquid water | Only required if nsmax>0 and
ntiles,nsmax | in each snow layer (kg | t otalSnow=FALSE.
) m?).

tSnow (land_pts, Temperature of each | Only required if nsmax>0 and
ntiles,nsmax | snow layer (K). totalSnow=FALSE.
)

rgraink (land_pts, Snow grain size (um) | Only required if
ntiles,nsmax |on each tile in each | 1_spec_albedo = TRUE and
) snow layer. nsmax>0 and

totalSnow=FALSE.
TOPMODEL variables
zZw (land_pts) Depth  from  the | Only required if 1_t op=TRUE.
surface to the water
table (m).
sthzw (land_pts) Soil wetness in the | Only required if 1_t op=TRUE.

deep (“water table”)
layer beneath the
standard soil column
This is the mass of
soil water (liquid and
frozen), expressed as a
fraction of the water
content at saturation.

Soil and vegetation carbon variables

cs (land_pts,di
m2)

See notes
for dim2.

Soil carbon (kg m”)

Always required.

dim2=1 if TRIFFID is not being
used (1_triffid=FALSE), in
which case the total soil carbon is
input.

dim2=4 if TRIFFID is being used,
to hold the 4 pools of the RothC
model
(biomass,humus,decomposable
plant material and resistant pant
material).

Note that cs is a prognostic (time-
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evolving)  variable only if
TRIFFID is selected.

frac

(land_pts,
ntype)

The fraction of land
area of each gridbox
that is covered by
each surface type.

Always required, but can be read
at INIT_ FRAC. This variable has
to be set either in this section of
the run control file, or in the
section tagged INIT_FRAC (see
Section 6.5). If
1_veg_compete=TRUE (see
Section 6.2), frac must be set
here, as part of the initial condition
(e.g. from a model dump). If
1_veg_compete=FALSE (i.e.
the fraction of each type is static),
the fraction may be set here, as
part of the initial condition, or in
INIT_FRAC. The switch
readFracIC, described in that
section, is important in this case.

lai

(land_pts,
npft)

Leaf area index of
each PFT.

Only initialised here if phenology
is switched on in INIT OPTS
(see Section 6.2). If phenology is
off, LAl is not a prognostic
variable and it is initialised in
either INIT_VEG_PFT or
INIT_VEG_VARY.

canht

(land_pts,
npft)

Height (m) of each
PFT.

Only initialised here if TRIFFID is
switched on in INIT_OPTS (see
Section 6.2). If TRIFFID is off,
canht is not a prognostic variable
and it is initialised in either
INIT_VEG_PFT or
INIT_VEG_VARY.

Note that it might appear that nsmax>0 requires an excessive number of variables, some of which
are redundant. However, many of the details as to why all these variables must be input relate to
subtleties and the needs of implementation in the Unified Model (weather forecast and climate
model). It is true that the values of several of these variables must be consistent (e.g. snow depth
and snow depths in layer), and t ot al Snow=TRUE is useful in allowing a simple initialisation.

Table 37 Further details of snow variables

Name Description Required if | Required if | Notes
nsmax= | totalS
0? now
=TRUE?
snow_ti | Mass of snow Y Y If can_model#4, this is the total snow
le on the tile (since there is a single store

which doesn’t distinguish between snow
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on canopy and under canopy).
If can_mode1=4 (and then only at tiles
where snowCanPFT=1), snow_tile is
interpreted as the snow on the canopy,
except as overridden by
totalSnow=TRUE.
If totalSnow=TRUE, snow_tile is
used to hold the total snow on the tile (and
is subsequently put onto the ground at
tiles that distinguish between ground and
canopy stores).
snow_gr | Mass of snow on Only required if can_mode1=4.
nd ground under If totalSnow=T this is set to snow_tile
canopy at tiles where can_model=4 is active, to
zero at all other tiles.
rho_sno | Bulk density of If totalSnow=T, this is set to
w lying snow rho_snow_const.
rgrain Surface grain Only required if
size 1_spec_Albedo=TRUE.
nsnow Number of layers If totalSnow=T this is calculated from
the snow depth.
snowdep | Depth of snow If totalSnow=T, this is calculated from
th mass and density of snow.
snowDs Depth in each If totalSnow=T this is calculated
layer internally.
snowIce | Ice contentin If totalSnow=T all snow is assumed to
each layer be ice.
snowLiqg | Liquid content in If totalSnow=T this is set to zero.
each layer
tSnow Temperature in If totalSnow=T this is set equal to the
each layer temperature of the top soil layer.
rgrainkL | Grain size in Only required if
each layer 1_spec_Albedo=TRUE.
If totalSnow=T this is set to rgrain.

6.19.1. Examples of specification of initial state

Example 1: A single point, state from the run control file

In this example, we consider a run at a single point and read all data from the run control file. The
relevant entries in the run control file are shown below. Only the lines in bold are relevant and
irrelevant sections have been omitted. Assumptions include that nsmax=0, 1_triffid=FALSE.

>INIT_TIC

F ! readFile
'asc' ! fileFormat (quoted)
F,F ! dumpFile, allDump
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'a0001_dump.19970105" fileName (quoted)

|
F,F ! zrevSoil, zrevSnow
T ! totalWetness
T ! totalSnow
>ASCBIN
0,0 ! nheaderFile, nheaderField
>VARS
sthuf 1 0.9 ! wvarName,varFlag, constVal
canopy 2 0.0
snow_tile 3 0.0 ! Note that none of these “constVval”
tstar_tile 4 0.0 ! values are used in this case (because
t_soil 5 0.0 ! varFlag#-1) . Instead, values
cs 6 0.0 ! are listed after >DATA.
gs 7 0.0
>ENDVARS

# Data fields to be read from this file should appear below here.
>DATA

0.749, 0.743, 0.754, 0.759 ! sthuf
9%0.0 ! canopy
9*%0.0 ! snow tile
9*%276.78 ! tstar_tile
276.78,277.46,278.99,282.48 ! t_soil
12.100 ! cs
0.0 ! gs

readFi1e=FALSE indicates that all data will be read from the run control file; no other file is
involved and several of the following lines are not used. In this case, we use the >ASCBIN section
to describe the data.

The seven variables that are required to initialise this particular run are then listed. The second
entry in each line gives the position in the input data for each field. Since all the data are to be read
from the run control file, which is easily edited, it is easiest to list these variables in the order in
which the data will be presented (i.e. field numbers should be 1, 2, 3,...). In this example, all the
field numbers are >0, indicating that the data will be read from the >DATA section (and that the
constVal entries will be ignored).

Note that data for soil variables are presented in the order “top to bottom”, i.e. surface layer first.

Example 2: Initial state specified as a mixture of spatial fields and constant values

In this example, we consider a run at a single point and read all data from the run control file. The
relevant entries in the run control file are shown below. Only the lines in bold are relevant and
irrelevant sections have been omitted.

>INIT_IC

T readFile

'bin' fileFormat (quoted)
F,F dumpFile, allDump

'a00l1_initial_ state.gra’
F,F

fileName (quoted)
zrevSoil, zrevSnow
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T ! totalWetness

T ! totalSnow
>ASCBIN

0,0 ! nheaderFile,nheaderField
>VARS

sthuf 7 0.9 ! wvarName,varFlag, constVal
canopy -1 0.0

snow_tile -1 0.0

tstar tile -1 275.0

t_soil -1 278.0

cs -1 10.0

gs -1 0.0

>ENDVARS

readFi1e=TRUE indicates that the binary file “a001_initial_state.gra” will be used to
set the initial state (for some variables).

The seven variables that are required to initialise this particular run are then listed. The second
entry in each line gives the position in the input data for each field. For most variables, the value -1
indicates that the field is to be initialised as spatially constant using the value given under
constVal. For example, the temperature in each soil layer (t_soil) will be set to 278K at all
locations in the model grid. For soil wetness (sthuf), the field number is given as 7 — meaning
that soil wetness will be set using the data starting at field 7 in the named input file. Since
zrev=TRUE, these data are stored in the file in “non-standard” order (i.e. bottom to top), so that
field 7 is the deepest layer (and, assuming 4 soil layers, field 10 will be used for the uppermost
layer).

Example 3: Initial state specified from an existing dump file.

In this example, we use an existing dump file (from a previous run) to set the initial values of all
variables. Consider a run at a single point and read all data from the run control file. The relevant
entries in the run control file are shown below. Only the lines in bold are relevant and irrelevant
sections have been omitted.

>INIT_IC
T ! readFile
'nc' ! fileFormat (quoted)
T,T ! dumpFile, allDump
1

'a001_dump.nc’ fileName (quoted)

readFile=TRUE indicates that the netCDF file “a001_dump.nc” will be used. dumpFile=T
indicates that this is a dump file from an earlier run, and al1Dump=T indicates that all variables
are to be set using values from the dump file and therefore all subsequent entries in the INIT_IC
section of the run control file are ignored.
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6.20. INIT_ OUT: Specification of output from the model

JULES separates output into one or more output ‘profiles’ or streams. Within each profile, all
variables selected for output are written to the same file, with the same frequency, although the
time-processing can differ between variables (e.g. instantaneous values and time-averages can
appear in the same profile). Each profile can be considered as a separate data stream. By using
more than one profile the user can, for example,

Output one set of variables to one file, and other variables to another file

Write instantaneous values to one file, and time-averaged values to another.

Write low-frequency output from the entire model grid to one file, and high-frequency output
from a subset of points to another file.

Write low-frequency output throughout the run to one file, and high-frequency output from a
smaller part of the run (e.g. a “Special Observation period”) to another file.

This flexibility comes at the expense of having to set several values in the run control file.
However, default values allow the user to select certain configurations relatively easily.

The first values in this section of the run control file concern general details of the output, such as

the file format, that apply to all output profiles. This is followed by a separate section for each
output profile, describing the variables, the grid and time sampling for that profile.

6.20.1. INIT_OUT: General values related to output

This section starts with the tag >INIT_OUT.

>INIT_OUT

run_id
outDir

dumpFreq
dumpFormat
dumpStatus

nout
outFormat
gradsNc
outStatus
yrevOut
zrevOutSoil, zrevOut Snow
numMonth
useTemplate
undefOut
zsmc, zst
outEndian
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Table 38 Description of variables in the INIT OUT section.

Variable name

Type and permitted
values

Notes

runlD

character*10

A name or identifier for the run. This is used to name
output files and any model dumps.

outDir

character*150

The directory used for output files. This can be an

[T3R2]

absolute or relative path. Enter “.” to write output to
the directory from which JULES is run.

dumpFreq

integer
Oto4

Flag indicating how often the model state is to be
‘dumped’ (written to a file).

Acceptable values are:

0: no dumps are written

1: only the final state of the model (at the end of the
integration) is dumped

2: dump initial and final model states

3: as 2 but also write a dump at the end of the spin-up
phase

4: as 3 but also write a dump at the end of each
calendar year.

A model dump captures the state of the model at a
given point in the integration. If a final dump is saved,
the integration can later be extended by starting another
run from this final dump. For long integrations, or large
domains, it is recommended that dumps are saved for
every year, so that in the event of any trouble such as a
model crash, the integration can be completed without
having to start again from the initial state. NB A run
that is carried out in several steps, each starting from
the model dump for the previous step, will generally
not evolve identically to a single run that proceeds
without the intermediate dumps. This is due, in part, to
a loss of precision when the model state is written to
the dump file.

dumpFormat

character
‘asc’ or ‘nc’

Format for dump files. ASCII or netCDF.

dumpStatus

character
‘new’ or ‘replace’

The file status used when writing a model dump.
Acceptable values are:

‘new’ — if a file with the same name already exists, the
run will terminate.

‘replace’ — if a file with the same name already
exists, it will be overwritten.

nOut

integer

The number of output profiles. Each profile generates a
separate stream of data, as explained above.

outFormat

character

The format for output files. Acceptable values are:
‘asc’: ASCII files

‘bin’: flat binary files

‘nc’: netCDF files

gradsNc

logical

Switch controlling details of netCDF output files.
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Only used if outFormat="nc’.

TRUE: netCDF output will be constructed so as to be
readable by GrADS. In particular, snow layer variables
will be split so that each tile is represented with a
separate variable (otherwise there are too many
dimensions for GrADS to cope with).

FALSE: netCDF output might not be readable by
GrADS (but in many cases is).

outStatus

character
‘new’ or ‘replace’

The status used when opening files. This is the value
given to the FORTRAN “status” argument of an OPEN
statement [ e.g. open (1, status="new’) ], or the
equivalent for netCDF files.

‘new’: file must not already exist. If the code tries to
create a file with the same name as an existing file, the
run will terminate.

‘replace’: If the file exists, delete it and replace with
a new version.

yrevOut

logical

TRUE: reverse the order of the rows in the output, so
that these are written in “North to South” order.
FALSE: use the default “South to North” order, with
the southernmost row of data being the first in the file.

zrevOutSoil

logical

Switch indicating if soil layer data are to be output in
reverse order of levels compared with JULES’s default.
TRUE: reverse the order of the vertical levels in the
output, so that these are written in “bottom to top”
order (i.e. bottom layer first).

FALSE: use the default “top to bottom” order (i.e. top
layer first).

zrevOutSnow

logical

Switch indicating if snow layer data are to be output in
reverse order of levels compared with JULES’s default.
TRUE: reverse the order of the vertical levels in the
output, so that these are written in “bottom to top”
order (i.e. bottom layer, closest to soil, first).

FALSE: use the default “top to bottom” order (i.e. top
layer first).

numMonth

logical

Switch controlling the date format used in file names.
TRUE: months are represented by the numbers 1 to 12.
FALSE: months are represented by 3-character strings
(jan, feb, mar,...)

useTemplate

logical

This relates to GrADS files (generated by
outFormat='bin’ or ‘nc’).

Switch to activate the writing of template ‘. ct 1’ files.
A template ctl file allows GrADS to access several data

files via one ctl file.

TRUE: all suitable ctl files will use the template
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option.
FALSE: generate a separate ctl file for each data file.

Note: A template ctl file will not be able to describe the
data if there are any missing times at the start of a file —
this is a limitation of the current JULES code, rather
than GrADS. For example, if daily data are to be
written to monthly files, with a template ctl, but the run
starts midway through the month, JULES will only
write output data for the latter part of the month.
GrADS will look for data for all days in the month, but
not be able to find them, so the user will not be able to
plot the first month.

undefOut real The value written to output files to represent “missing”
or “undefined” data.

Zsmc real If a depth-averaged soil moisture diagnostic 1is
requested, the average is calculated from the surface to
this depth (m).

zst real If a depth-averaged soil temperature diagnostic is
requested, the average is calculated from the surface to
this depth (m).

outEndian character Only used for GrADS output files

‘little_endian’
or ‘big_endian’

(outFormat="bin’), this describes the byte
ordering of the computers on which JULES is run. It is
only included in the ‘options’ line of GrADS ctl files,
i.e., in metadata describing the file. It does NOT alter
the byte order of the output.

Acceptable values are:

‘little_endian’ — for little endian computers (e.g.
PCs)

‘big_endian’ — for big endian computers (e.g. Suns)

6.20.2. NEWPROF': details of each output profile

This section starts with the tag >NEWPROF .

Each of the nout output profiles requires a section that describes that profile, such as the times
when output is to be generated, which points are to be output, which variables are to be output, and
more. The size of a regular latitude/longitude gridbox (input as regDlat, regDlon in control file
— see Section 6.4.3) is also used as the size of a gridbox in the output.

>NEWPROF

outName

outPer, outFilePer

outSamPer

outDate (1), outTime (1)
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outDate (2),outTime (2)

pointsFlag(l:2)

outAreall
outRangeX (1:2), ocutRangeY (1:2)
outCompress, outLLorder

readFile
fileName

pointsOut
mapOut (1:pointsOut, 1)
mapOut (1:pointsOut, 2)

>GRID
outGridNx, outGridNy

>VARS

flag name useName

—-—-repeat for each output variable —-
>ENDVARS

Table 39 Description of variables for each output profile.

Variable name | Type and | Notes
permitte
d values

outName character | The name of this output profile. This is used in file names and
(len=10) | should be specified, even if there is only one profile. The names
might reflect the variables in the file (e.g. ‘soil’), the data
frequency (e.g. ‘daily’ ), or if several profiles are used they
could be given arbitrary names such as ‘pl’,’ p2’,..., etc.

outPer’ integer The period for output (seconds). This must be a multiple of the
timestep length (except for the special cases <0 given below). It
must not exceed 30 days (2592000 seconds), except for the special
cases.

Special cases:

0: generate output every timestep.

—1: monthly period

—2: annual period (calendar years)

outFilePer’ integer The period for output files (seconds), i.e. the time interval within
which all output goes to the same file. This must not exceed 30 days
(2592000 seconds), except for the special cases given below. The
file period must be consistent with the output period (e.g. we can’t
have daily files for monthly output).

Output may be generated for only part of a run (see
outDateStart below), and outFilePer controls how the data

? Many variables that are input in terms of seconds (such as out Per and out FilePer) are converted within the
code to a number of model timesteps.
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are stored during that part of the run when the output is “active”.
Special cases:

0: output is every timestep, and a new file is created every timestep
—1: monthly files (all output for a month goes to the same file)

—2: annual files (calendar years)

—7: all output goes to one file, but each cycle of spin up creates a
separate file

—8: all output goes to one file, but all output during spin up goes to
a separate file

-9: all output (for all times) from this profile goes to one file

outSamPer”’ integer

The sampling period (seconds) for time-averages and
accumulations. This must be a factor of the output period
(outPer).

Special case: 0 means sample every timestep.

The recommended setting is out SamPer=(.

However, in some cases sampling every timestep adds a
considerable computational burden, and acceptable output can be
achieved by sampling less frequently. For example, with a large
domain, many output diagnostics, and a timestep of 30 minutes, a
monthly average would be calculated from several hundred values if
every timestep was used. For variables that evolve relatively slowly,
an acceptable monthly average might be obtained by sampling only
every 12 hours.

Remember that if fields are not sampled every timestep, the output
averages will only be approximations.

outDateStart | integer

Date in format yyyymmdd. Output from this profile is first
generated at the date and time indicated by outDateStart and
outTimeStart. These must be within the “main run”, except for
the special cases noted below. Note that output is only generated at
the end of a timestep, except for the special cases noted below.
Special cases for outDateStart:

0: output all times through the run, including any spin-up'’

-1: output at all times after spin-up is complete

-2: output only at the start of the first timestep of the run (used to
output the initial state only).

Note that, at present, the only time at which output can be generated
at the start of a timestep is at the start of the run, when
outDateStart=-2 will output the initial state. Thus the only
way in which the initial state can be output is to have an output
profile with outDateStart=-2. All output at later times then has
to be generated via another output profile. (This is a slight
oversimplification — see footnote 10!)

Note (a complication that you can ignore, but to really understand

' Under some circumstances, outDateStart=0 will also output the initial state of the model. These circumstances
are that the period of the output equals the timestep (i.e. information for every timestep) and that all output goes to a
single file (outFilePer=-9). The timestamp information included with the output allows the user to determine
whether this initial state has been output.
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your output you might need to follow this!): For time-averaged
output, outDateStart and outTimeStart specify the first
time at which data will be included in the accumulation that is used
to calculate the average (call this time t1). If t1 happens to be a time
when any earlier average would be complete (i.e. had the output
been started earlier, an average would have been calculated at tl),
the average cannot be calculated at this start time and a “missing
value” is output.

Example: Hourly averages starting at midnight 1* Jan 1996, and
using a model timestep of 1800s (outPer = 3600,
outPutDateStart = 19960101, outTimeStart =
00:00:00). At midnight 1% Jan 1996, this output stream is
“activated”. The code then realises that the average over the
previous hour should be calculated immediately (because an hourly
average is always calculated “on the hour”), but because sufficient
times have not been accumulated, the first value of this average
(representing the average over the hour ending at midnight) is set to
“missing”. The first “good” value will be the average ending O1H.
On the other hand, instantaneous values can be output at OH in this
case because there is no need to accumulate any earlier values.

outTimeStart | character | Time of day (in format hh:mm:ss) at which output begins. Not used
*8 if outDateStart is one of the special cases.
outDateEnd integer Date on which output ends. Not used if outDateStart is one of
the special cases.
out TimeEnd character | Time of day at which output ends. Not used if outDateStart is
*8 one of the special cases.
pointsFlag(l) | integer Flag indicating how the points to be output are selected.
0,1,2 0 = all points in the model grid will be output
1 = points in a rectangular subsection will be output.
2 = the points to be output will be listed individually
pointsFlag(2) | integer Flag indicating how the locations in the output grid of output points
Oto5 will be calculated.

0: the output grid will be the model grid

1: the output grid will be the rectangular subsection specified via
pointsFlag (1)=1. This option can only be used in conjunction
with pointsFlag(1)=1.

2: the location of each output point will be listed individually. This
option can only be used in conjunction with pointsFlag (1) =2.
3: the output grid will be the smallest rectangle that contains all the
output points. This option requires that the model grid is rectilinear
(or is a subset of such a grid).

4: the output grid will be the same as the input grid.

5: the output grid is a vector. This option can only be used in
conjunction with pointsFlag (1)=2. In this case, the points to
be output were specified by reading a list and they are simply
written in the same order to an output vector. This option can be
useful if a disparate set of points from an irregular grid has been
selected for output, and saves having to specify a trivial mapping via
pointsFlag(2)=2.
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Depending upon the shapes of the input and model grids, it may be
possible to produce the same output grid via different combinations
of the values of pointsF1lag. Similarly, certain combinations will
be less useful for particular grids.

outAreall

logical

Switch indicating how to interpret the coordinates outRangeX and
outRangeY. Only used if pointsFlag(1l)=1.

TRUE: co-ordinates are longitude and latitude.
FALSE: co-ordinates are x and y indices (column and row
numbers).

outRangeX (1l:2
)

real array

x-coordinates of the sub-area to be output. Depending on
outArealatLon, these are longitudes (in range -180 to 360°) or
column numbers. Only used if pointsFlag(1l)=1. Column
numbers are those in the INPUT grid.

If values are column numbers, the code uses the nearest integer to
the input value.

outRangeY (1:2
)

real array

As outRangeX, expect in latitudinal (y) direction.

outCompress

logical

Switch indicating if output data are to be “compressed” so that only
model points are output.

TRUE: Only output model points. Also output the mapping between
the model points and the output grid (e.g. how to scatter the output
points across a larger grid). The mapping is output in a form suitable
for use with GrADS’ pdef.

FALSE: If the output grid is larger than the number of points to be
output, the grid is filled with “missing data” or padding values.

See Section 6.20.3 for further discussion of output compression. If
the output grid is the same size as the number of points to be output
(so no compression is possible), outCompress=TRUE may still
cause output to differ in format from out Compress=FALSE (the
points may be written in a different order), so outCompress
should always be set to FALSE unless needed otherwise.

Note that if outCompress=TRUE, then yrevOut is ignored for
the profile (it becomes irrelevant).

outLLorder

logical

Switch indicating the coordinate system to be used to determine the
locations of the output points in the output grid. Only used if
pointsFlag (2)=1or3.

TRUE: use the latitude and longitude of each point to determine its
location in the output grid.

FALSE: use the row and column number in the INPUT grid to
determine where each point goes in output grid.

This option is particularly useful if the input grid is rectilinear but is
not regular in latitude and longitude (e.g. it could be a rotated grid).
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The output can then be placed on the same rectilinear grid.
readFile logical Switch controlling location of output mapping.
Only used if pointsFlag (1) =2 (i.e. a mapping is to be input).
TRUE: read from an external file
FALSE: read from the run control file.
filename character | The name of the file that contains output mapping. Only used if
readFile=TRUE.
pointsOut integer The number of points to be output. This is only used if
1 to size | pointsFlag(1l)=2.
of grid
mapOut (1:poin | integer A list of the points that are to be output. The list gives the locations
tsOut, 1) array (point numbers) in the INPUT grid (which need not be the same as
the model grid).
Only used if pointsFlag (1) =2.
mapOut (1:poin | integer A list giving the destination (location in output grid) for each output
tsOut, 2 array point. The list gives the point number in the output grid.
Only used if pointsFlag(2) =2
outGridNx integer Number of columns in the output grid. This is the full,
uncompressed output grid. If compression is applied, the actual
output may be smaller, but can be scattered across a grid with this
number of columns.
Only used if pointsFlag (2) =2, in which case the user specifies
all aspects of the output grid and mappings. Otherwise the size of
the output grid is calculated by the model.
outGridNy integer As out GridNx, but number of rows.
>VARS

A list of variables to be

and >ENDVARS.

output is provided between the tags >VARS

flag

character*1
S,Mor A

Flag indicating type of processing. Acceptable values are,

S: Instantaneous or snapshot value.
M: Time mean value.
A: Accumulation over time.

For time averaged variables, the period over which each time
average is calculated is given by outPer. For time-
accumulation variables, outPer gives the period for output
of an updated accumulation (i.e., how often the value if
reported). For both time averages and accumulations, the
sampling frequency is set via out SamPer.

NB A time-accumulation is initialised at the start of a run
(actually at the start of each section of a run so that it is
reinitialised after any spin up is completed — see Section
6.3.3) and thereafter accumulates until the end of the run
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(actually to the end of each section of a run). This may mean
that accuracy is lost, particularly towards the end of long
runs, if small increments are added to an already large sum.

name character

The name of an output variable (one word). This is the
internal name as used in the model code. A list of available
variables is provided in Section 9. This list was correct at the
time of writing, but the most reliable way to determine
exactly which variables are available for a particular version
of JULES is to look at the variables listed in the subroutine
init_out_wvarlist, and which can be echoed to screen
at the start of a JULES run by setting echo=TRUE in
INIT_OPTS (see Section 6.2). A variable may appear more
than once in an output profile, as long as each time it appears
with a different time flag — e.g. instantaneous and time-
average values.

useName character

The name to be used in the output (one word). This variable
need not be specified. If useName is not provided, the code
will substitute name instead. This facility allows the user to
choose to call output variables by names other than those
used in the code, for example to use names that are more
memorable, or shorter names to avoid typing! Although the
name should be a single word, characters such as underscore
(“_") may be used.

6.20.3. Compression of the output grid

As noted above, outCompress=TRUE can be used to compress the output data so that any
“missing” points are not written and file size is reduced. Although this facility was designed to
work with the pdef option of GrADS, it might be useful with other packages too, with the proviso
that the user may have to tell another package how to use the available information.

This facility will be described by considering an example in which we have global input data on a
1° grid, and JULES is run at land points only. We would like to visualise the output plotted on the
full globe. The input grid is of size 360x180=64800 points, of which only about 25% are land
points at which the model is run. If we set outCompress=TRUE, the output files will contain
data only for the land points, and a mapping is defined so that the land points can be plotted in their
correct positions on the Earth. This leads to considerable saving on disc space. The data in the
output file is written as a vector (of ~15000 points in this case), in the order that they are held in the
model grid. The mapping is written to a binary file that contains 3 fields on the full, expanded grid
(360x180 points in this example, starting from the southwest corner, proceeding across each row,
then onto next row — i.e. the default JULES order). The first field is integer, and gives the location
in the output vector (of ~15000 points) that should be plotted at this location in the globe. If there
are no data for a point (i.e. a sea point in this case), the missing data value is inserted. The second
field is real, and is 1.0 at points with data, elsewhere 0.0. The third field is not used by JULES (it
deals with wind rotation) and will consist of the missing data value.

GrADS’ pdef option can be used to display just such a thinned grid, i.e. the “full” grid is populated
with values from the “thinned” grid, with missing data values inserted at all other points. Note that
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outCompress as implemented in JULES is a subset of the full pdef available in GrADS, namely
where pdef is used with a supplementary file, and each point in the “thinned” output grid maps onto
a single point in the “full” grid — effectively there is no interpolation. Thus the latitudes and
longitudes of the model gridpoints (specified in INIT_GRID above) must be consistent with those
specified here for the “full” grid.

If a package other than GrADS is being used to display the thinned data, the user will have to either
work out how to use the GrADS mapping between the vector and the full grid, or create new
mapping data.

6.20.4. An example of output grids and mapping

This example uses the grids shown in Figure 6. The model grid has nx=5, ny=4 as shown, and is
regular in latitude and longitude. For simplicity, we will assume that the input grid was identical to
the model grid. The user wishes to output the 3 shaded points to an output grid with nxOut=2,
nyOut=2, maintaining their relative positions (as given by latitude and longitude).

59 16 17 18 19 20 57 9 10
o8 11 12 13 14 15 Py 3 4
z 5
%57 6 7 8 9 10 %56 4 5
g E
|
o6 1 2 3 4 5 1 2
555 6 7 8 9 10 29
Longitude (°E) 8 Lomg'\tudge (°E) 10
model point #
output point #
Model grid Output grid

Figure 6. An example of the grids used in output mapping.

The easiest way to achieve this is to use the following lines in the run control file (irrelevant lines
have been omitted):

2,3 ! pointsFlag(l:2)
F, T !  outCompress, outLLorder
F ! readFile

3 ! pointsOut
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4,5,10 ! mapOut (l:pointsOut, 1)

pointsFlag (1) =1 means that the chosen points will be listed individually.

pointsFlag (2)=3 means the output grid is to be the smallest rectangle that includes all output
points.

outCompress=F means the output grid will be padded as necessary. In this case, it means that
output point #3 in Figure 6 will be filled with the missing data value.

outLLorder=T means the location of each point in the output grid is calculated using the latitude
and longitude of the point.

pointsOut=3 indicates that 3 points are to be output.

mapOut (1:pointsOut, 1) indicates that the points to be output are numbers 4, 5 and 10 in the
input grid (which is identical to the model grid in this case).

The model uses the latitude and longitude of each point to establish that the chosen points should
occupy locations 1, 2 and 4 in the output grid, and that location 3 should be filled with the missing
data flag (undefOut).

The same effect could be achieved by using pointsFlag(l)=2, pointsFlag(2)=2,
mapOut (:,2)=1, 2, 4, outGridNxy=2, 2, i.e. the user can completely specify the mapping
and grid shape. Calculating mapOut (:, 2) is trivial in this example, but would involve the user in
more and unnecessary work if many more points were to be output.

6.20.5. Notes on output

1. A warning is raised if any output is not generated because the output interval is not
completed. This can occur when a run starts or ends partway through an output period, or if
a spin up cycle ends partway through an output period. For example, if monthly average
diagnostics are requested, but the run ends on the 10" day of a month, the final monthly
average is incomplete. In such cases, a value is still written to the output file, but the details
of this value vary between cases. In short, a monthly or annual average is calculated if a
“large fraction” of the month or year has been simulated, but averages over shorter periods
are not calculated and a “missing data” value is output. For details, see the code.

2. GrADS output: A control file (.ctl file), that describes GrADS output, includes a
specification of the number of times of output that are contained in the associated data files
(the TDEEF line). When a data file is first opened, a control file is written, with an estimate
of the expected number of times that will be written. Sometimes this initial estimate will
prove wrong (for example, if the model is spinning up the number of spin up cycles may not
be known in advance), and the .ct1 file is later rewritten when the data file is complete.
Under most circumstances, this procedure is carried out without any problem. However, if
the user opens the .ct1 file in GrADS while the integration is still underway, it may not
correctly specify the number of times. In that case, the .ct 1 file will be correct if reopened
at a later time. However, if the user has moved the .ct1 file while the integration is
underway, it cannot be rewritten and a warning is raised if an attempt is made to rewrite it.

3. Driving data, such as meteorological or vegetation data, may not be correctly represented in
output at the start of the first timestep of the run (i.e. time=0), depending upon the
frequency of data and any temporal interpolation. The problem arises because the initial
output is generated before the procedures that update the driving data are called. Under
some circumstances, the driving data will already have been updated during the
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initialisation, and so the output will be correct. In other cases, the initial output will have
“nonsense” values such as zero for the driving data.

The code that generates output contains many options and has to deal with a variety of
possibilities in terms of output frequency, run dates, spin up and the likes. Until the code
has been thoroughly tested by the user community, early versions of JULES are quite likely
to contain bugs, particularly in the output code. If a user finds an error with the output, the
bug should be reported, but in the meanwhile JULES will hopefully run correctly if
“simpler output” is requested. Two simplifying options, that may not always be practicable
for the user, are to request snapshot diagnostics (rather than time averages; in cases of
extreme difficulty these snapshots should be every timestep), and to send all output to a
single file.

6.21. File name templating

If the names of input files follow particular patterns, JULES can use a substitution template rather
than requiring a potentially long list of file names''. Templating comes in two forms, time
templating and variable name templating, which can be used separately or together.

Valid substitution strings are listed in Table 40. These are 3-character strings, starting with “%”.
Note that any file name that contains “%? is assumed to use templating.

Table 40 Valid substitution strings for substitution templates.

Substitution string | Description

Time templating

$tc 1-character representation of decade (Met Office files)

$v4 4-digit year

$y2 2-digit year

$yc 1-character representation of year (Met Office files)

$m2 2-digit month

$ml 1- or 2-digit month

$mc 3-character month abbreviation

Smm 1-character representation of month (Met Office files)

$d2 2-digit day of month

$dl 1- or 2-digit day of month

sdm 1-character representation of day of month (Met Office files)
$h2 2-digit hour of day

$hl 1- or 2-digit hour of day

$hc 1-character representation of hour of day (Met Office files)
$n2 2 digit minute (leading zero if needed)

Variable name templating

Svv

| A character variable

" JULES templating is similar to that used by GrADS, with a few important differences. JULES only allows a subset
of the GrADS substitution strings (not including the %ch string used with chsub), but is more flexible in how it deals
with time-templating.
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6.21.1. Time templating

Information about the time of each file is contained in the file name. Valid substitution strings are
listed in Table 40 and examples of the use of time templating are given in Table 42.

The substitution template must be compatible with the period (frequency) of the data files. If a
substitution template includes a substitution string that refers to a period of a day or longer, each
file must contain data for no more than one period. For example, if $m2 appears in the template,
each file must contain data from at most one calendar month. For periods less than one day (i.e.
hours and minutes), data for more than one period can be held in the same file, but the file period
must be a factor of one daylz.

The start time of each file must also follow (slightly complicated) rules that are laid out in Table
41. The rules ensure that the first data in a file represent the first time that the time-templating
expects to find in that file. Essentially they require that each file holds all possible data for the time
period — there cannot be any missing times. Some of these rules are demonstrated in the example
section below. If these rules are not followed, the code will detect an error and stop. In Table 41,
dataPerUnits and filePerUnits are the time units that are used to describe the period of
the data and the files respectively, chosen from 1 year, 1 month, days, hours and minutes. If a file
or data period can be described by more than one time unit, the longer unit is used. For example, a
period of 60 minutes is described as 1 hour.

For example, consider daily data held in one file per month. This gives dataPerUnits="day’
and filePerUnits="1 month’. Table 41 shows that the first data in each file must represent the
1% of the month, as might be expected. A file that started with data for the 2™ of the month cannot
be used with time templating, even if a particular run does not require the data at that time.

Table 41 Requirements for the time of first data in time templated files.

dataPerUnits
1 year 1 month days hours minutes
filePerUnits 1 year none Jan 01Jan OOH O1Jan | OOH OlJan
1 month - none 1% of O0H 1*of | OOH 1" of
month month month

days - - none O00OH 00H

hours - - - none OOH

minutes - - - - none

6.21.2. Variable-name templating

Variable-name templating is so called because it is expected to be used when related variables are
stored in separate files, with file names that are identical apart from a section that indicates what
variable is in each file. For example, variable #1 could be in “filel.dat”, while variable #2 is in
“file2.dat”. Examples of the use of this type of templating are given in the next section. If

2 Users of GrADS should note that, for these shorter substitution string periods (hours and minutes), JULES can use
files that cannot be described by a GrADS template control file. GrADS (at v1.9v4) insists that each file contains data
that covers at most one period, whereas JULES allows data for more than one period. For example, if the substitution
template includes %h2, GrADS insists that each file contains data for at most one hour, whereas JULES allows each
file to have 1, 2, 3, 4..etc hours of data.
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using variable name templating with non-SDF formats, the layout of each file must be similar — the
number of headers and the number of fields in any time level must be the same in all files.

Table 42 Examples of the use of file name templating.

Substitution template Description | Valid Example file names Comments
of files template?

/data/met_data_%y4%mc.dat Monthly Yes /data/met_data_1990jan.dat
files /data/met_data_1990feb.dat

J%y4/met_data_%y4%mc.dat | Monthly Yes /1990/met_data_1990jan.dat | A substitution string can
files appear more than once.

Here data for each year are
stored in a separate
directory.

Yovv_%oy4 Yearly Yes Rain_1990.dat Variable name and time
files, with Wind_1990.dat templating used together.
each The strings that are to be
variable in substituted for %vv will be
a separate provided by the user via
file the run control file.

Data_%d?2.dat Hourly No Each file can contain at
data, each most 1 day of data. For
file substitution strings that
containing refer to years, months or
data for 10 days, more than one
days year/month/day of data

can be stored in each file.

Data_%h2.dat Hourly Yes Data_00.dat For substitution strings
data, each Data_06.dat that refer to hours or
file Data_12.dat minutes, more than one
containing Data_18.dat hour or minute of data can
data for 6 be stored in each file.
hours.

Data_%mc.dat Hourly data | Yes Data_jan.dat
in monthly Data_feb.dat
files. The
time of the
first data is
00OH
01Jun1990.

Data_%mc.dat Hourly data | No Data_jan.dat Similar to the previous
in monthly Data_feb.dat case, but with first data
files. The one hour later. In this case,
time of the the first data in each file
first data is must represent 0OH on the
01H 1** of a month. These data
01Jun1990. cannot be described by a

time template and instead
the name and time of each
data file must be listed
(see appropriate section).

Data_%y4.dat Monthly Yes Data_1990.dat In this case, the time of the
data in Data_1991.dat first data must be in
yearly files. January. Here it is shown
The time of to be a value at
the first approximately mid-month.
data is
given  as

00H
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| 15Jan1990. |

6.22. Notes on temporal interpolation
Time-varying input data to JULES require the user to specify how the data should be interpolated

onto the model timestep. The permitted interpolation flags are shown in Table 43. These flags are
case-sensitive.

Table 43 Time interpolation flags.

Flag value | Notes

b Backward time average, ending at given time. Will be interpolated with time.

c Centred time average, centred on given time. Will be interpolated with time.

f Forward time average, starting at given time. Will be interpolated with time.

i Instantaneous value at the given time. Will be linearly interpolated with time.

nb Backward time average, ending at given time. Value will be held constant with time.
nc Centred time average, centred on given time. Value will be held constant with time.
nf Forward time average, starting at given time. Value will be held constant with time.

Depending upon the time interpolation flags, driving data may need to be supplied for one or two
times that fall before or after the times for the integration. The interpolation scheme implemented in
JULES for flags 'b', 'c' and 'f"' is a simplified version of the Sheng and Zwiers (1998)"
method that conserves the period means of the driving data file. In order to ensure conservation of
the average, these flags can be used only if the data period is an even multiple of the model
timestep (i.e., if driveDataPer=2*n*timestep; n=1, 2, 3,..). In these cases the curve-
fitting process tends to produce occasional values near turning points that fall outside the range of
the input values. Note that for centred data (flags ‘c’ and ‘nc’) the time of the data should be given
as that at the start of the averaging period, rather than the centre. e.g. the 3-hour average over 06H
to O9H, centred at 07:30H, should be treated as having timestamp O6H.

" Sheng and Zwiers (1998) “An improved scheme for time-dependent boundary conditions in atmospheric general
circulation models”, Climate Dynamics, 14, 609—613.
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Figure 7. Schematic of JULES interpolation of driving variable from a 3 hour timestep to a 45 minute timestep.
Simulation start time is 0000Z (on an arbitrary day) and end time is 1200Z. Blue circles indicate driving data
required to complete a JULES simulation from £t=0 to t=16. See text for discussion of requirements for

driving variables that are forward or backward means.
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6.23. Example run control files

Two example run control files come bundled with the JULES source code, in the top-level
directory.

point_loobos_example. jin

for a single point simulation forced with weather station data. This run requires a single input file
(meteorological data) that is also included as part of the JULES distribution, in the “LOOBOS”
directory. The results of running this code are also provided in the same directory, so the user can
check that their installation of JULES produces results that are acceptably close to those of this
standard run.

point_loobos_triffid example.jin

for a single point simulation forced with weather station data. This is similar to
point_loobos_example.jin above, but with the TRIFFID dynamic vegetation model
switched on. No results are provided.

point_VL92_1T_example.jin, point_VL92_2T example.jin,
point_VL92_M_example. jin

for a single point run simulation, including the urban land surface types, forced with weather
station data. These serve as an example of the original one tile urban scheme, the simple two-tile
urban scheme (URBAN-2T) and MORUSES.

grid_gswp2_example. jin
for a gridded domain simulation forced with GSWP2 weather data. This run requires a large
amount of input data that is not distributed with JULES, and merely serves as an example of a run
control file for a gridded domain.
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7. Aspects of the code

7.1. Low-level i/o code

In the course of adding to JULES, a user may well want to read new variables into the model. Most
of the input/output of spatial fields is handled by subroutines provided by the module
READWRITE_MOD. Particularly important procedures that deal with input are summarised in
Table 44. To use this code to read in a new variable, the appropriate procedure should be identified
based on the type of variable that is to be read in. For example, to read a field that is only defined
on land points, a call to readVar2dComp is appropriate. All these procedures require arguments that
define the mapping between the input grid and the model grid.

Note that the choice of procedure is governed solely by the type of variable and is not affected by

the shape of the input grid. The correct use of these procedures and the arguments required can be
learned by studying the exiting code.

Table 44 Key procedures for reading data.

Name Summary

readvVar2d Reads a variable that is defined at all possible points (both land and sea).
The result is a variable on the model grid (this is considered to be a 2-
dimensional variable on (x,y), even if the model grid is effectively a vector
with ny=1).

For example, air temperature is defined at all possible points, both land
and sea.

readVar2dComp Reads a variable that is only defined on a subset of points (for example
land points).

The result is a vector.

For example, a land variable can be read from a 2-D (x,y) map (that may
contain both land and sea points), and the result is a vector on land points.
(The “Comp” in the name is meant to suggest “‘compression’ to a vector!)

readVar3dComp As readVar2dComp, but the variable is also a function of the vertical
level (e.g. a soil variable on several levels). This 3d version works by
looping over the vertical levels, calling the 2d version for each level.

7.2. How to implement new diagnostics for output

The steps needed to add a new diagnostic vary according to what variables are needed in order to
calculate the diagnostic. These are covered in the next sections.

7.2.1. Output of existing variables

The data are already held in an existing FORTRAN variable, in a module. This is the easiest case,
since the data are easily accessed. The name that is used to select the diagnostic should be added to
subroutine init_out_varlist, following the existing examples. Care should be taken to
specify the correct type of diagnostic (e.g., land points only, soil layers). If the desired diagnostic
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does not fit any of the existing types, the user may have to closely study the code to work out how
to add a new type, and/or contact the JULES developers. Finally, code to load the values into the
output space has to be added to subroutine 1oadout (in module OUTPUT_MOD). This code may
have to calculate the diagnostic using other variables.

7.2.2. Output of new variables

Diagnostics that require variables that the user had added, or that must be calculated in a section of
the model code other than the output routines, are more complex to add to JULES. In such a case,
it may be easiest to declare a new variable in a FORTRAN module, and to use this variable to hold
the values of the diagnostic. Space for the new variable will likely have to be allocated, and the
tidiest way to do this would be in the subroutine allocate_arrays (which is called at various
points during initialisation). The variable can then be accessed by the output procedures and the
steps outlined in case 1 above should be followed.

A more sophisticated scheme which only allocated space for a diagnostic if it was required, and
loaded the value from any subroutine (avoiding the need to hold the variable in a module, or pass it
through the code) has been implemented in some versions of JULES but is not available in the
release versions because it is not compatible for use in the Unified Model. If you are keen to get
this code, contact the JULES developers.
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8. Known limitations of and bugs in the code

1.Limit to longest possible run

The longest possible run that can be attempted with JULES is approximately 100 years. Any longer
run should be split into smaller sections, with each later section starting from the final dump of the
previous section. This restriction on run length arises because some of the time variables can
become too large for the declared type of variable meaning that calculations return incorrect results
and the program will probably crash. The size of each variable is in part affected by the compiler
used, but a maximum run length of ~100 years appears to be a common case for 32-bit machines.
Note that JULES uses the compiler’s default KIND for each type of variable. Changes to the KIND
of any variable would have to be propagated through the code.

2. Lack of more generic i/o code

If a user wants to introduce new time-varying data that cannot be made to fit into the existing code
for vegetation or meteorological data (for example, the new data would need to have the same
frequency as the other data type), they may have a substantial job on their hands! For many
purposes, a simple ‘hack’ may suffice (e.g. write code to read a particular data set for a particular
run), but this will lack generality and options such as automatic spin up will be hard to
accommodate. At present there is no good solution — we don’t have any flexible coupling code that
can be told to fetch suitable values of an arbitrary field, although JULES may move towards this in
future.

3. Spin up over short periods

The current code cannot cope with a spin up cycle that is short in comparison to the period of any
input data. For example, a spin up cycle of 1 day cannot use 10-day vegetation data. The code will
likely run but the evolution of the vegetation data will probably not be what the user intended!
However, it is unlikely that a user would want to try such a run.
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9. Variables available for output

Variables that are available for output from JULES are listed in the tables of this section, separated
according to their type. Types of variables are:

SINGLE: a single value at all gridpoints (land and sea) (Table 45).

LAND: a single value at land gridpoints (Table 46).

PFT: a value for each of npft PFTs at each land gridpoint (Table 47).

TILE: a value for each of nt iles tiles at each land gridpoint (Table 48).

TYPE: a value for each of nt ype surface types at each land gridpoint (Table 49).

SOIL: a value for each of sm_1levels soil layers at each land gridpoint (Table 50).

SNOW: a value for each of nsmax snow layers at each tile at each land gridpoint (Table 51).

SC: a value for each of N soil carbon pools at each land gridpoint (Table 52). N=1 if
1_triffid=FALSE, else N=4.

These tables were correct at the time of writing, but the most reliable way to determine exactly
which variables are available for a particular version of JULES is to look at the variables listed in
the subroutine init_out_varlist, and which can be echoed to screen at the start of a JULES
run by setting echo=TRUE (see Section 6.2).

A few variables are not available in the standard release (for reasons of compatibility with the
Unified Model - see Section 7.2.2), but can be accessed with the addition of extra code which can
be requested from the JULES office. These “offline” variables are shown in italics in the tables
below.
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Table 45 A list of output variables that have a single value at each gridpoint.

Name Description
conRain Gridbox convective rainfall (kg m-s’)
conSnow Gridbox convective snowfall(kg m-s")
cosz Cosine of the zenith angle (-)
diffFrac Gridbox fraction of radiation that is diffuse (-)
ecan Gridbox mean evaporation from canopy/surface store (kgm™s™)
el Gridbox sublimation from lying snow or sea-ice (kg m~s")
esoil Gridbox surface evapotranspiration from soil moisture store (kg m~s)
faw Gridbox moisture flux from surface (kg m-s’)
ftl Gridbox surface sensible heat flux (W m™)
landAlbedol Gridbox albedo for waveband 1 (direct beam visible)
landAlbedo?2 Gridbox albedo for waveband 2 (diffuse visible)
landAlbedo3 Gridbox albedo for waveband 3 (direct beam NIR)
landAlbedo4 Gridbox albedo for waveband 4 (diffuse NIR)
latentHeat Gridbox surface latent heat flux (W m™)
latitude Gridbox latitude (°)
longitude Gridbox longitude (°)
1sRain Gridbox large-scale rainfall (kg m™s™)
1sSnow Gridbox large-scale snowfall (kg m™s")
LWdown Gridbox surface downward LW radiation (W m™)
precip Gridbox precipitation rate (kg m-sh)
pstar Gridbox surface pressure (Pa)
glpbm Gridbox specific humidity at 1.5m height (kg kg")
qwl Gridbox specific humidity (total water content) (kg kg'l)
rainfall Gridbox rainfall rate (kg m-s?)
snomltSurfHtf Gridbox heat flux used for surface melting of snow (W m~)
snowfall Gridbox snowfall rate (kg m-s’)
snowMass Gridbox snowmass (kg m~)
surfHtFlux Gridbox net downward heat flux at surface over land and sea-ice fraction

of gridbox (W m'z)

SWdown Gridbox surface downward SW radiation (W m™)
tlp5m Gridbox temperature at 1.5m height (K)
tauxl Gridbox westerly component of surface wind stress (N m™~)
tauyl Gridbox southerly component of surface wind stress (N m™)
tll Gridbox ice/liquid water temperature (K)
tstar Gridbox surface temperature (K)
ul Gridbox westerly wind component (m s')
ulOm Gridbox westerly wind component at 10 m height (m s™)
vl Gridbox southerly wind component (m s™')
v10m Gridbox southerly wind component at 10m height (m s)
wind Gridbox wind speed (m s1)
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Table 46 A list of output variables that have a single value at each land gridpoint.

Name Description
albedoLand Gridbox albedo (as used to calculate net shortwave radiation) (-)
canopy Gridbox canopy water content (kg m”)
cs Gridbox total soil carbon (kg C m~)
cv Gridbox mean vegetation carbon (kg C m™)
depthFrozen Gridbox depth of frozen ground at surface (m)
depthUnfrozen Gridbox depth of unfrozen ground at surface (m)
drain Gridbox drainage at bottom of soil column (kg m-s’)
elake Gridbox mean evaporation from lakes (kg m™s)
emis Gridbox emissivity
fchd_wetl Gridbox scaled methane flux from wetland fraction (10™ kg C m-s’)
fsat Gridbox surface saturated fraction (-)
fsmc Gridbox soil moisture availability factor (beta) (-)
fwetl Gridbox wetland fraction (-)
gpp Gridbox gross primary productivity (kg C m™s™)
gs Gridbox surface conductance to evaporation (m s1)
hfSnowMelt Gridbox snowmelt heat flux (W m™)
landIndex Index (gridbox number) of land points
liceIndex Index (gridbox number) of land ice points
1itCMn Gridbox mean carbon litter (kg C m” (360days)'1)
LWnet Gridbox surface net LW radiation (W m™)

LWup Gridbox surface upward LW radiation (W m™)
npp Gridbox net primary productivity (kg C m™~s™)
gbase Gridbox baseflow (lateral subsurface runoff) (kg m-s’)

gbase_zw

Gridbox baseflow (lateral subsurface runoff) from deep layer (kg m™ s

N

radnet Surface net radiation (W m™)

respP Gridbox plant respiration (kg C m™ s™)

resps Gridbox total soil respiration (kg C m-s?)

respSDrOut Gridbox mean soil respiration for driving TRIFFID (kg C m™
(360days)™)

runoff Gridbox runoff rate (kg m-s’)

sat_excess_roff Gridbox saturation excess runoff rate (kg m-s’)

smcAvailTop Gridbox available moisture in surface layer of depth given by zsmc
(kg m?)

smcAvailTot Gridbox available moisture in soil column (kg m”)

smcTot Gridbox total soil moisture in column (kg m~)

snomltSubHtf Grdbox sub-canopy snowmelt heat flux (W m™)

snowCan Gridbox snow on canopy (kg m™)

snowDepth Gridbox depth of snow (m)

snowFrac Gridbox snow-covered fraction of land points (-)

snowFracAlb Gridbox average weight given to snow for albedo (-)

snowGrCan Gridbox average snow beneath canopy (snow_grnd) (kg m™)

snowIceTot Gridbox frozen water in snowpack (kg m™)
Only available if nsmax>0.

snowLigTot Gridbox liquid water in snowpack (kg m™~)
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Only available if nsmax>0.

snowMelt Gridbox rate of snowmelt (kg m-sh)

soilIndex Index (gridbox number) of soil points

sthzw Sol wetness in the deep (water table) layer (-)
subSurfRoff Gridbox sub-surface runoff (kg m-s’)

surfRoff Gridbox surface runoff (kg m-s’)

surfRoffInf Gridbox infiltration excess surface runoff (kg m~s™)
swetLigTot Gridbox unfrozen soil moisture as fraction of saturation (-)
swetTot Gridbox soil moisture as fraction of saturation (-)

SWnet Gribox net shortwave radiation at the surface (W m™)
tfall Gridbox throughfall (kg m™ s™)

trad Gridbox effective radiative temperature (K)

wFluxSfc Gridbox downwards moisture flux at soil surface (kg m-s’)
ZwW Gridbox depth to water table (m)
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Table 47 A list of output variables that have a single value for each PFT at each land gridpoint.

Name Description
cVegP PFT total carbon content of the vegetation (kg C m™)
canhtP PFT canopy height (m)
CciP PFT internal CO2 pressure (Pa)
flux03Stom PFT flux of O3 to stomata (mol m-2 s-1)
fsmcP PFT soil moisture availability factor (-)
gLeafP PFT leaf turnover rate ([360days] ™)
gLeafDayP PFT mean leaf turnover rate for input to PHENOL ([360days] ")
gLeafDrOutP PFT mean leaf turnover rate for driving TRIFFID ([360days]'1)
gLeafPhenP PFT mean leaf turnover rate over phenology period([360days]™”)
gstomP PFT bulk (canopy) stomatal conductance for water vapour (m s7)
gppP PFT gross primary productivity (kg C m~s™)
laiP PFT leaf area index (-)
laiPhenP PFT leaf area index after phenology (-)
1itCP PFT carbon litter (kg C m™~ (360days) ")
nppDroutP PFT mean NPP for driving TRIFFID (kg C m™ (360days) ")
nppP PFT net primary productivity (kg C m~s™)
o3ExpFac PFT ozone exposure factor
rdcP Canopy dark respiration, without soil water dependence (mol CO, m” s™)
respPP PFT plant respiration (kg C m~s™)
respWDroutP PFT mean wood respiration for driving TRIFFID (kg C m™~ (360days)™)
respWP PFT wood respiration (kg C m-s?)
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Table 48 A list of output variables that have a single value for each tile at each land gridpoint.

Name Desciption
alblT Tile land albedo, waveband 1 (direct beam visible)
alb2T Tile land albedo, waveband 2 (diffuse visible)
alb3T Tile land albedo, waveband 3 (direct beam NIR)
alb4T Tile land albedo, waveband 4 (diffuse visible)
anthropHtF1uxT | Anthropogenic heat flux for each tile (W m™)
canopyT Tile surface/canopy water for snow-free land tiles (kg m~)
catchT Tile surface/canopy water capacity of snow-free land tiles (kg m™)
ecanT 2Tille evaporation from canopy/surface store for snow-free land tiles (kg m°
s)
eiT Tile sublimation from lying snow for land tiles (kg m™ s™)
emisT Tile emissivity
esoilT Tile surface evapotranspiration from soil moisture store for snow-free
land tile (kg m? s'l)
fawT Tile surface moisture flux for land tiles (kg m-s?)
ftlT Tile surface sensible heat flux for land tiles (W m™)
gcT Tile surface conductance to evaporation for land tiles(m s1)
leT Tile surface latent heat flux for land tiles (W m™)
nsnow Tile number of snow layers (-)
glp5mT Tile specific humidity at 1.5m over land tiles (kg kg™)
radnetT Tile surface net radiation (W m™)
rgrainT Tile snow surface grain size (um)
snowCanMeltT Tile melt of snow on canopy (kg m™~s™)
snowCanT Tile snow on canopy (kg m™)
snowDepthT Tile snow depth (m)
snowGrCanMeltT | Tile melt of snow under canopy (kg m~s")
snowGroundRhoT | Tile bulk density of snow on ground (kg m™)
snowGrCanT Tile snow on ground below canopy (kg m™)
snowGroundT Tile snow on ground (snow_tile or snow_grnd) (kg m”)
snowIceT Tile total frozen mass in snow on ground (kg m™~)
Only available if nsmax>0.
snowLigT Tile total liquid mass in snow on ground (kg m™)
Only available if nsmax>0.
snowMassT Tile lying snow (total) (kg m™)
snowMeltT Tile snow melt rate (melt_tile) (kg m-s")
surfHtFluxT Downward heat flux for each tile (W m™)
surfHtStoreT C*(dT/dt) for each tile (W m™)
tlp5mT Tile temperature at 1.5m over land tiles (K)
tstarT Tile surface temperature (K)
z0T Tile surface roughness (m)

Table 49 A list of output variables that have a single value for each tile type at each land gridpoint.

Name Description
frac Fractional cover of each surface type.
tileIndex Index (gridbox number) of land points with each surface type
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Table 50 A list of output variables that have a single value for each soil level at each land gridpoint.

Name Description
bSoil Brooks-Corey exponent for each soil layer (-)
ext Extraction of water from each soil layer (kgm™s™)
hCapSoil Soil heat capacity (J K m™) for each soil layer
hConSoil Soil thermal conductivity (W m™ K™) for each soil layer
satCon Saturated hydraulic conductivity (kg m™ s™) for each soil layer
sathh Saturated soil water pressure (m) for each soil layer
smcl Moisture content of each soil layer (kg m™~)
soilWet Total moisture content of each soil layer, as fraction of saturation (-)
sthf Frozen moisture content of each soil layer as a fraction of saturation (-)
sthu Unfrozen moisture content of each soil layer as a fraction of saturation (-)
tSoil Sub-surface temperature of each layer (K)
vsmcCrit Volumetric moisture content at critical point for each soil layer (-)
vsmcSat Volumetric moisture content at saturation for each soil layer (-)
vsmcWilt Volumetric moisture content at wilting point for each soil layer (-)
wF1lux Downwards moisture flux at bottom of each soil layer (kg m™ s™)

Table 51 A list of output variables that have a single value for each snow layer at tile each land gridpoint.

Name Description
rGrainL Grain size in snow layers for each tile (um)
snowDs Depth of each snow layer for each tile (m)
snowlce Mass of ice in each snow layer for each tile (kg m™~)
snowLig Mass of liquid water in each snow layer for each tile (kg m™)
tsnow Temperature of each snow layer (K)

Table 52 A list of output variables that have a single value for each soil carbon pool at each land gridpoint.

Name Description
csPool Carbon in each soil pool (kgC m”)
respSPool Respiration rate from each soil carbon pool (kgC m™s™)
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