
Page 1 of 126 

 

 

 

 

 

 

 

 

Joint UK Land Environment Simulator 

(JULES) 

 

 

 

Version 2.2 

 

 

User Manual 



Page 2 of 126 

Authors: Douglas Clark, Phil Harris, Matt Pryor, Margaret Hendry 

 

Last revised by Matt.Pryor on 22 November 2010. 

 

This version describes JULES v2.2. 

 

Acknowledgements 
Thank you to all those JULES users who reported errors or omissions in the previous manual. 

Hopefully we haven’t repeated too many in this version. And thanks in particular for all 

suggestions for improvements. 



Page 3 of 126 

 
1. Introduction and what’s new ...........................................................................................................4 

1.1. What’s new in version 2.2 .....................................................................................................4 

1.2. What’s new in version 2.1? ...................................................................................................4 

1.2.1. Process descriptions.....................................................................................................4 

1.2.2. Control-level code .......................................................................................................4 

1.3. What’s new in version 2.0? ...................................................................................................4 

2. Overview of JULES.........................................................................................................................4 

3. Building and running JULES...........................................................................................................4 

3.1. The make utility....................................................................................................................4 

3.2. The JULES netCDF library ...................................................................................................4 

3.3. Running JULES.....................................................................................................................4 

4. Overview of the JULES code ..........................................................................................................4 

5. File formats and the JULES grid .....................................................................................................4 

5.1. Overview of file formats........................................................................................................4 

5.2. Describing the format of an input file ...................................................................................4 

5.2.1. ASCII or binary input files ..........................................................................................4 

5.2.2. netCDF input files .......................................................................................................4 

6. The JULES control file....................................................................................................................4 

6.1. Introduction ...........................................................................................................................4 

6.2. INIT_OPTS: General model options..................................................................................4 

6.3. INIT_TIME: Date and time information............................................................................4 

6.3.1. Note on time convention and solar zenith angle .........................................................4 

6.3.2. Examples of dates and times .......................................................................................4 

6.3.3. Notes on spin up ..........................................................................................................4 

6.4. Grid description .....................................................................................................................4 

6.4.1. INIT_GRID: Setting up the grid ..............................................................................4 

6.4.2. INIT_LAND: Land fraction ......................................................................................4 

6.4.3. INIT_LATLON: Latitude and longitude ...................................................................4 

6.4.4. Examples of grid description.......................................................................................4 

6.5. INIT_FRAC: Fractional coverage of land surface types ....................................................4 

6.5.1. Example: Reading frac from the run control file. ....................................................4 

6.5.2. Example: Setting the same tile fractions on all land points.........................................4 

6.6. INIT_SOIL: Soil layer depths and hydraulic and thermal characteristics ........................4 

6.6.1. The soil look-up table file............................................................................................4 

6.7. INIT_TOP: parameters for TOPMODEL..............................................................................4 

6.8. INIT_PDM: parameters for PDM..........................................................................................4 

6.9. INIT_HGT: elevation of tiles ................................................................................................4 

6.10. INIT_VEG_PFT: Time-invariant parameters for plant functional types .........................4 

6.11. INIT_VEG_VARY: Time-/space- varying parameters for plant functional types ............4 

6.11.1. Examples of INIT_VEG_VARY...............................................................................4 

6.12. INIT_NONVEG: Parameters for non-vegetation surface types.........................................4 

6.13. INIT_URBAN: Urban model configuration, geometry & material characteristics ...........4 

6.14. INIT_SNOW: Snow parameters ........................................................................................4 

6.15. INIT_TRIF: Parameters for the TRIFFID model............................................................4 

6.16. INIT_AGRIC: Fractional coverage by agriculture...........................................................4 

6.17. INIT_MISC: Miscellaneous surface, carbon and vegetation parameters.........................4 

6.18. INIT_DRIVE: Meteorological driving data .....................................................................4 

6.18.1. Inputting extra driving variables ...............................................................................4 



Page 4 of 126 

6.18.2. Examples of specifying driving data .........................................................................4 

6.19. INIT_IC: Specification of the initial state .......................................................................4 

6.19.1. Examples of specification of initial state...................................................................4 

6.20. INIT_OUT: Specification of output from the model ........................................................4 

6.20.1. INIT_OUT: General values related to output............................................................4 

6.20.2. NEWPROF: details of each output profile.................................................................4 

6.20.3. Compression of the output grid .................................................................................4 

6.20.4. An example of output grids and mapping .................................................................4 

6.20.5. Notes on output..........................................................................................................4 

6.21. File name templating ...........................................................................................................4 

6.21.1. Time templating.........................................................................................................4 

6.21.2. Variable-name templating .........................................................................................4 

6.22. Notes on temporal interpolation ..........................................................................................4 

6.23. Example run control files ....................................................................................................4 

7. Aspects of the code..........................................................................................................................4 

7.1. Low-level i/o code .................................................................................................................4 

7.2. How to implement new diagnostics for output......................................................................4 

7.2.1. Output of existing variables.........................................................................................4 

7.2.2. Output of new variables...............................................................................................4 

8. Known limitations of and bugs in the code .....................................................................................4 

9. Variables available for output..........................................................................................................4 

10. List of Tables .................................................................................................................................4 
 



Page 5 of 126 

1. Introduction and what’s new 

The Joint UK Land Environment Simulator (JULES) is a computer model that simulates many soil 

and vegetation processes. This document describes how to run version 2.2 of JULES. It primarily 

describes the format of the input and output files, and does not include detailed descriptions of the 

science and representation of the processes in the model.  

 

The first version of JULES was based on the Met Office Surface Exchange System (MOSES), the 

land surface model used in the Unified Model (UM) of the UK Met Office. After that initial split, 

the MOSES and JULES code bases evolved separately, but with JULES2.1 these differences were 

reconciled, so that all versions since v2.1 have had identical code in both the standalone version (as 

described here) and in the UM. 

 

Further information can be found on the JULES website: http://www.jchmr.org/jules. 

 

1.1. What’s new in version 2.2 

Along with fixes for known bugs, the changes made for version 2.2 mostly consist of several small 

additions to the science code. Changes to the control code have mostly been limited to bug-fixes. 

 

• New options for treatment of urban tiles - inclusion of the Met Office Reading Urban Surface 

Exchange Scheme (MORUSES) and a simple two tile urban scheme 

• Effects of ozone damage on stomata from Stephen Sitch at the University of Leeds 

• New treatment of direct/diffuse radiation in the canopy from Lina Mercado at CEH 

• A new switch allows the competing vegetation portion of TRIFFID to be switched on and off 

independently of the rest of TRIFFID (i.e. it is now possible to use the RothC soil carbon 

without having changing vegetation fractions) 

 

There have also been changes made to the way JULES is compiled, due to the re-integration with 

the Met Office Unified Model. The Unified Model uses pre-processor directives to compile 

different versions of routines depending on the selected science options. For compatability with 

this system, JULES will now require a compiler with a pre-processor. This should not be noticed 

by the majority of users – most modern compilers include a pre-processor and the Makefile deals 

with setting up the appropriate pre-compiler options. 

1.2. What’s new in version 2.1? 

Version 2.1 of JULES includes extensive modifications to the descriptions of the processes and to 

the control-level code (such as input and output). These are covered briefly below. Several bug 

fixes and minor changes to make the code more robust have also been applied. All files are now 

technically FORTRAN90 (.f90) although many are simply reformatted FORTRAN77 files in which 

continuation lines are now indicated by the use of the ‘&’ character. 

1.2.1. Process descriptions 

The main change is that a new multi-layer snow scheme is available (see nsmax in Section  6.2). 

This scheme was developed by Richard Essery at the University of Edinburgh and co-workers. At 

the time of writing there is little scientific documentation of this development, but this will be made 

available as soon as possible. In brief, the older, simple scheme represents the snowpack as a single 



Page 6 of 126 

layer with prescribed properties such as density, whereas the new scheme has a variable number of 

layers according to the depth of snow present, and each layer has prognostic temperature, density, 

grain size, and solid and liquid water content. The new scheme reverts to the previous, simpler 

scheme if nsmax=0 or when the snowpack becomes very thin. 

 

A four-pool soil carbon model based on the RothC model now replaces the single pool model when 

dynamic vegetation (TRIFFID) is selected. 

 

There have been several major changes that most users will not notice or need be concerned about. 

These include a change in the linearization procedure that is used in the calculation of surface 

energy fluxes (described in the technical documentation). A standard interface is now used to 

calculate fluxes over land, sea and sea ice. Each surface tile now has an elevation relative to the 

gridbox mean. 

 

These changes mean that, even with the new snow scheme switched off (nsmax=0), results from 

v2.1 will generally not be identical to those from v2.0. 

 

1.2.2. Control-level code 

The major change at v2.1 to the control-level code is that netCDF output is now supported. Both 

diagnostic and restart files (dumps) can be in netCDF format.  There have been several changes to 

the run control file (see Section  6), partly to reflect new science but also in an attempt to organise 

the file better.  These changes mean that run control and restart files from JULES v2.0 are not 

compatible with v2.1 (although they could be reformatted without too much difficulty). 

1.3. What’s new in version 2.0? 

The physical processes and their representation in version 2.0 have not changed from version 1. 

However, version 2.0 is much more flexible in terms of input and output, and allows JULES to be 

run on a grid of points. New features include: 

 

• Ability to run on a grid. 

• Choice of ASCII or binary formats for input and output files (also limited support of netCDF 

input).  

• More flexible surface types – number and types can vary. 

• Optional time-varying, prescribed vegetation properties. 

• More choice of meteorological input variables. 

• Optional automatic spin up. 

• Enhanced diagnostics – large choice of variables, frequency of output, sampling frequency, etc. 

 



Page 7 of 126 

2. Overview of JULES 

 

This section provides a brief overview of JULES, largely so as to provide background information 

and introduce terms used in the rest of the manual. Further details on the science and process 

descriptions contained in JULES can be found at the JULES website http://www.jchmr.org/jules. 

 

JULES views each gridbox as consisting of a number of surface types. The fractional area of each 

surface type is either prescribed by the user or modelled by the TRIFFID sub-model. Each surface 

type is represented by a tile, and a separate energy balance is calculated for each tile. The gridbox 

average energy balance is found by weighting the values from each tile. In its standard form, 

JULES recognises nine surface types: broadleaf trees, needleleaf trees, C3 (temperate) grass, C4 

(tropical) grass, shrubs, urban, inland water, bare soil and ice. These 9 types are modelled as 9 tiles. 

A land gridbox is either any mixture of the first 8 surface types, or is land ice. Note that, from 

version 2.0, one is not limited to these 9 standard surface types (unless running TRIFFID). 

 

Soil processes are modelled in several layers, but all tiles lie over and interact with the same soil 

column. Each gridbox requires meteorological driving variables (such as air temperature) and 

variables that describe the soil properties at that location. It is also possible to prescribe certain 

characteristics of the vegetation, such as Leaf Area Index, to vary between gridboxes. 

 

JULES can be run for any number of gridboxes from one upwards. The number of gridboxes is 

limited by the availability of computing power and suitable input data. When run on a grid, JULES 

models the average state of the land surface within the area of the gridbox and most quantities are 

taken to be homogeneous within the gridbox (with options to include subgrid-scale variability of a 

few, such as rainfall). In that case, the input data are also area averages. JULES can also be run “at 

a point”, with inputs that are taken to represent conditions at that point – this configuration might 

be used when field measurements of meteorological conditions are available. 

 



Page 8 of 126 

3. Building and running JULES 

 

Building a JULES executable requires two pieces of software:  

• a Fortran 90 compiler with a pre-processor 

• a version of the ‘make’ utility 

 

It may also be desirable, but not essential, to have available the following software: 

• the Fortran 90 netCDF
1
 interface library 

 

3.1. The make utility 

The Makefile supplied with the JULES code should be compliant with most versions of make, 

but is only guaranteed to work with GNU Make
2
 (also known as gmake), which is available on 

most Linux and UNIX systems and also for Windows.  Once the Makefile is set up for the user’s 

system, JULES is built simply by entering ‘make’ at the command prompt while in the directory 

containing the Makefile.  This will compile all of the JULES source code, make a library 

libjules.a, and finally link the compiled source to create and executable file with a default 

name of jules.exe.  To remove all the files created during the build process enter ‘make 

clean’ at the command prompt. 

 

The make utility uses architecture- and compiler-specific variables that must be set by the user to 

the appropriate values for their system.  These values may be set in the files 

Makefile.common.mk and Makefile.comp.*.  (The user should not have to edit the file 

named Makefile.)  There are two convenience options, COMPILER and BUILD, which should 

be passed to make from the command line to tell that program where the appropriate values should 

be taken from. The COMPILER option allows the user to define a list of compiler-specific 

variables (including compiler flags) without having to edit the Makefile.  The BUILD option 

allows the user to build with sets of predefined flags for different situations, e.g. debugging.  The 

Type and permitted values for each of these options are described in Table 1, and additional 

information is given in the comments at the head of Makefile.   

 

The compiler-specific variables are specified in individual files named Makefile.comp.* for a 

handful of common compilers, e.g. Makefile.comp.sun.    The list of tested compilers 

includes three (Intel, gfortran and G95) that can be downloaded for no cost via the URLs in Table 1 

(certain conditions apply to these downloads).  To use a compiler that is not listed, the user should 

replace the ‘@@’ strings in the blank compiler file Makefile.comp.misc with values 

appropriate to their compiler and invoke make with the option COMPILER=misc. 

 

Table 1 Options that can be passed to make when building JULES. 

Variable Type and 

permitted values 

Notes 

COMPILER 
Sun Use options for Sun Studio compiler series (previously known 

as Workshop and Forte). 

                                                           
1
 The netCDF interface library can be downloaded for no cost from http://www.unidata.ucar.edu/software/netcdf/ 

2
 The GNU Make utility can be downloaded for no cost from http://www.gnu.org/software/make/ 



Page 9 of 126 

Intel Use options for Intel Fortran compiler for Linux, Windows and 

MacOS (http://www3.intel.com/cd/software/products/asmo-

na/eng/compilers/284132.htm). Version 9.0 was used for testing 

of JULES2.0 and it was found that two lines in the source code 

had to be changed – find these and the suggested replacements 

by searching the code for “Intel”.  

g95 Use options for G95 compiler (http://www.g95.org). 

Gfortran Use options for the GNU fortran compiler 

(http://gcc.gnu.org/wiki/GFortran). 

Nag Use options for NAGWare compiler. 

Pgf Use options for Portland Group compiler. 

Misc Use options for an unlisted compiler. 

Run Default option; for normal compilation of JULES. 

Debug Switch on compiler debug flags. BUILD 

Fast Switch on compiler optimisation flags for faster execution. 

False Use a precompiled netCDF library. 
CDFDUMMY 

True Use the dummy netCDF library provided with JULES. 

 

3.2. The JULES netCDF library 

To build JULES, the user must also pass make some information about the netCDF interface 

library.  If the user has access to a pre-compiled netCDF interface library, then they should pass 

make the options CDF_LIB_PATH and CDF_MOD_PATH.  The values for these options are the 

directories in which the pre-compiled netCDF library (libnc.a) and Fortran 90 module files 

(those with .mod extension) are located respectively.  This can be done also by editing the 

Makefile itself, but the recommended method is by specifying the variables as options when 

make is invoked, e.g., ‘make CDF_LIB_PATH=$HOME/mynetcdf/lib 

CDF_MOD_PATH=$HOME/mynetcdf/mod’. 

 

If the user does not have access to a pre-compiled netCDF library, then JULES may be compiled by 

specifying ‘CDFDUMMY=true’ when make is invoked rather than setting the CDF_LIB_PATH 

and CDF_MOD_PATH variables.  This option compiles a set of dummy netCDF interface functions, 

which merely allows the rest of the JULES code to compile correctly and provides no functionality.  

When this option is used JULES will neither read nor write netCDF files.  The user must then 

ensure that netCDF input/output options are not selected at any point in any JULES control file 

(described in Section  0) used with an executable produced using this option. 

Example build linesTo build JULES using the normal Sun compiler options and link with a netCDF 

library: 

 

make COMPILER=sun BUILD=run CDF_LIB_PATH=$HOME/mynetcdf/lib \ 

CDF_MOD_PATH=$HOME/mynetcdf/mod 

 

To build JULES using the fast Intel compiler options and not link with a netCDF library: 

 

make COMPILER=intel BUILD=fast CDFDUMMY=true 

 

These command lines can become quite long and tedious to keep typing, so it’s a good idea to set 

the list of frequently used ones as environment variables: 



Page 10 of 126 

export JULESBUILD=”COMPILER=sun BUILD=run \ 

CDF_LIB_PATH=$HOME/mynetcdf/lib \ 

CDF_MOD_PATH=$HOME/mynetcdf/mod” 

 

make $JULESBUILD 

 

It is then possible to override options specified in that variable by adding revised ones at the end: 

 

make $JULESBUILD BUILD=debug 

 

3.3. Running JULES 

A JULES executable is run by redirecting standard input to a file that contains all the information 

needed to describe a run, e.g., 
jules.exe < run1.jin 

 

The format of this input file is described in Section  6, with some example runs described in Section 

 6.23.  

 

The file extension “.jin” is meant to suggest “JULES input file”, but there is no need to use this or 

any other extension. 



Page 11 of 126 

4. Overview of the JULES code 

The general structure of the JULES source code, including the order in which routines are called, is 

illustrated below. For the sake of clarity, the full details are not shown here. In particular, the 

initialisation and output steps (subroutines init and output) can call several routines. The focus 

below is on the calling order for land points (rather than sea or sea-ice). 

 
jules--| 

       |--init--| 

       |        |--init calls various initialisation routines 

       | 

 (top of timestep loop) 

       |        

       |--drive_update         

       |          

       |--veg_update  

       | 

       |--control---| 

       |            |--zenith 

       |            | 

       |            |--tile_albedo--| 

       |            |               |--albpft 

       |            |               |--albsnow 

       |            |               |--canyonalb (MORUSES)--| 

       |            |               |                       |--matinv 

       |            | 

       |            |--generate_anthropogenic_heat 

       |            | 

       |            |--sf_expl--| 

       |            |           |--tilepts 

       |            |           |--physiol--| 

       |            |           |           |--albpft 

       |            |           |           |--root_frac 

       |            |           |           |--smc_ext 

       |            |           |           |--raero 

       |            |           |           |--sf_stom--| 

       |            |           |           |           |--qsat 

       |            |           |           |           |--leaf_limits 

       |            |           |           |           |--leaf 

       |            |           |           |--soil_evap 

       |            |           |           |--leaf_lit 

       |            |           |           |--cancap 

       |            |           |           |--urbanemis (MORUSES)--| 

       |            |           |           |                       |--matinv 

 

       |            |           |           |--microbe 

       |            |           | 

       |            |           |--heat_con 

       |            |           |--snowtherm 

       |            |           |--hcons_snow 

       |            |           | 

       |            |           |--sf_exch--| 

       |            |                       |--elevate--| 

       |            |                       |           |--dewpnt 

       |            |                       |           |--qsat 

       |            |                       |--qsat_mix 

       |            |                       |--urbanz0 (MORUSES)--|  

       |            |                       |                     |--get_us 

       |            |                       |--sf_orog 



Page 12 of 126 

       |            |                       |--sf_resist 

       |            |                       |--sf_rib 

       |            |                       |--sf_orog 

       |            |                       |--fcdch----| 

       |            |                       |           |--phi_m_h 

       |            |                       |--sf_resist 

       |            |                       |--sf_flux 

       |            |                       |--stdev1 

       |            |                       |--sfl_int---| 

       |            |                       |            |--phi_m_h 

       |            |                       |--sf_orog_gb 

       |            |                       |--sf_aero--| 

       |            |                                   |--dustresb--| 

       |            |                                                |--vgrav 

       |            |--sf_impl--| 

       |            |           |--im_sf_pt 

       |            |           |--sf_evap 

       |            |           |--sf_melt 

       |            |           |--screen_tq--| 

       |            |                         |--qsat 

       |            | 

       |            |--snow--| 

       |            |        |--canopysnow 

       |            |        |--layersnow 

       |            |        |--snowtherm 

       |            |        |--snowpack--| 

       |            |        |            |--tridag 

       |            |        |--snowgrain 

       |            |        |--compactsnow 

       |            |        |--relayersnow--| 

       |            |                        |--layersnow 

       |            |         

       |            |--hydrol---| 

       |            |           |--surf_hyd--| 

       |            |           |            |--frunoff 

       |            |           |            |--sieve 

       |            |           |            |--pdm 

       |            |           |--calc_baseflow 

       |            |           |--soil_hyd--| 

       |            |           |            |--hyd_con_ic--| 

       |            |           |            |              |--hyd_con_ch/vg 

       |            |           |            |--darcy_ic--| 

       |            |           |            |            |--darcy_ch/vg--| 

       |            |           |            |                     hyd_con_ch/vg 

       |            |           |            |--gauss 

       |            |           |            |--calc_zw 

       |            |           |--soil_htc--| 

       |            |           |            |--heat_con 

       |            |           |            |--gauss 

       |            |           |--ice_htc 

       |            |           |--soilmc 

       |            |           |--soilt 

       |            |           |--ch4_wetl 

       |            | 

       |            |--sice_htf 

       |            | 

       |            |--veg2--| 

       |            |        |--tilepts 

       |            |        |--phenol 

       |            |        |--triffid--| 

       |            |        |           |--vegcarb--| 



Page 13 of 126 

       |            |        |           |           |--growth 

       |            |        |           |--lotka--| 

       |            |        |           |         |--  compete 

       |            |        |           | 

       |            |        |           |--soilcarb--| 

       |            |        |           |            |--dpm_rpm 

       |            |        |           |            |--decay 

       |            |        |--tilepts 

       |            |        |--sparm--| 

       |            |                  |--pft_sparm 

       |            |--veg1--| 

       |                     |--tilepts 

       |                     |--phenol 

       |                     |--sparm--| 

       |                               |--pft_sparm 

       |--output             

       |--new_time--| 

       |            |--spin_check             

       | 

 (bottom of timestep loop) 

       | 

       |--jules_final 



Page 14 of 126 

5. File formats and the JULES grid 

5.1. Overview of file formats 

JULES aims to support input and output in three formats: ASCII, netCDF and a generic binary 

format (simply called ‘binary’ below). The implementation of netCDF input is fairly limited, in that 

only certain dimension names are allowed (see Section  5.2.2). Input can also be read from many PP 

files (a format used by the UK Met Office). The binary and netCDF files are compatible with the 

GrADS
3
 package, amongst others. A run control file might indicate that data are to be read from 

several files, using one or more of these file formats. For example, soil data might be in an ASCII 

file, while meteorological driving data are in netCDF files. 

 

A “self-describing file” (SDF) is one in a format that contains metadata describing the contents of 

the file. For JULES, only a netCDF file is presently considered to be a SDF. Minimal use is made 

of any metadata contained within a file, including SDFs and PP files. For example, a SDF might 

contain data that describes the grid or the times of data, but these are not used by JULES. Instead, 

this information is provided via the run control file and all input data must be provided on the same 

grid. 

 

For all non-SDF files, the data model is based on that used by GrADS. Each variable is viewed as 

being 4-dimensional in (x, y, z, t) on a regular grid. Although we will talk of  x and y in terms of  

West-East and South-North compass directions, in general the grid can be any rectilinear grid, with 

West-East being replaced by “left to right”. x varies in the direction from West to East, y varies 

from South to North (this default can be changed), and z varies from bottom to top. All variables in 

any one file must have the same grid size in x and y (i.e. all variables are on a grid of nx*ny 

points), and have a value at all times (although that value could indicate a missing datum). The data 

are stored as a series of xy slices, with x varying fastest, then y, then z, and t varying slowest. For 

example, say we have a file with two variables (A and B) on a grid with nx=2, ny=2. A has 

nz=1, and B has nz=2. In the JULES/GrADS model, the data must be stored in the input file in 

the order: 

 

A(x=1,y=1,z=1,t=1)  # 1st xy plane of A at t=1 

A(x=2,y=1,z=1,t=1) 

A(x=1,y=2,z=1,t=1) 

A(x=2,y=2,z=1,t=1)  

B(x=1,y=1,z=1,t=1) # 1st xy plane of B at t=1 

B(x=2,y=1,z=1,t=1)  

B(x=1,y=2,z=1,t=1) 

B(x=2,y=2,z=1,t=1)  

B(x=1,y=1,z=2,t=1) # 2nd xy plane of B at t=1 

B(x=2,y=1,z=2,t=1)  

B(x=1,y=2,z=2,t=1) 

B(x=2,y=2,z=2,t=1)  

A(x=1,y=1,z=1,t=2)  # 1st xy plane of A at t=2 

A(x=2,y=1,z=1,t=2) 

… etc … 

 

                                                           
3
 The GrADS software can be downloaded for no cost from http://grads.iges.org/grads/gadoc/index.html 



Page 15 of 126 

For clarity, this example has shown each datum on a separate line, but in fact any number of data 

within a single field (see below) can be on the same line. 

 

A data “field” is considered to be a single x-y plane of data (i.e., nx*ny values).  Header records 

can be present at the start of a file, at the start of each time within the file, and at the start of each 

field. 

 

Note that this means that JULES reads and writes data in terms of ‘maps’ (all values of one field, 

then all values of another field), rather than using a ‘point-by-point’ data model (all fields for one 

point, then all fields for another point). 

 

A related concept used in JULES, is that of the point number in input or output files. This is used to 

select individual points from a larger grid. The point number runs from 1 at the gridpoint in the SW 

corner of the grid, across rows (so the bottommost row contains gridpoints 1 to nx), and then from 

South to North up the grid. Examples and further discussion of JULES grids can be found in 

Section  6.4. 

 

5.2. Describing the format of an input file 

Variables that describe how data are arranged in files are used in several sections later in this 

document.  These variables are summarised in Table 2.  Often the information that JULES will read 

and use from the control file depends on the file format of any one data file.  The information 

required for an ASCII, binary or PP file is generally fairly similar, while netCDF files are rather 

different. 

 

Table 2 Frequently used control file options 

Variable name Type Notes 

readFile Logical Switch that indicates source of data. 

TRUE: data are read from a named, external file 

FALSE: data are read from the run control file 

fileFormat Character Flag indicating the file format. Case sensitive. 

Only used if readFile=.TRUE. 

‘asc’: ASCII 

‘bin’: generic binary (including GrADS) 

‘nc’: netCDF 

‘pp’: PP format 

 

5.2.1. ASCII or binary input files 

If fileFormat=‘asc’, ‘bin’ or ‘pp’ or ‘pp’ some or all of the following information 

is read from a section that starts with the tag ‘>ASCBIN’. Exactly what information is needed 

varies between cases (for example, it is assumed that there is a single time “level” in a file of soil 

properties, so nheaderTime is not needed). 

 

Table 3 Options used to specify the reading of ASCII, binary and PP format files. 

Variable name Type Notes 



Page 16 of 126 

nheaderFile Integer The number of header records at the top of a file. 

For an ASCII file, a header record is a line in the file. 

For a binary file, a header record is an individual word or 

record (e.g. a single ‘real’ value). 

Not used for a PP file. 

nheaderTime Integer The number of header records that precedes the data for 

each time level within a file.  

Not used for a PP file. 

nheaderField Integer The number of header records that precedes each field (x-

y plane) of data.  

Not used for a PP file. 

fieldNumber Integer This is used to locate a given field (xy plane) within all 

the fields available at each time level. If there are 

nFieldFile fields of data at each time level, and 

fieldNumber=2 for a particular variable, the second 

field of data is used for this variable. 

 

Blank lines between fields in an ASCII input file can cause the code to read the wrong data, and 

should be avoided. If blank lines are present between fields, they should be interpreted as header 

lines. 

 

There are restrictions on what PP files JULES can read. Each field must have no trailing “extra 

data” (i.e. header(20) must be zero). It is also assumed that the data are ordered as in the 

JULES/GrADS model outlined above (so, for example, we do NOT have all times of field 1, then 

all times of field 2), so that the required data can be found without using the information contained 

in the field headers. The headers are used to check that the size of the field and the STASH code 

are as expected. The STASH code for each variable is currently hardwired in the code. At the time 

of writing the PP-reading code has no known bugs, but it has been used much less than other 

options, so any more obscure bugs might not have been triggered. 

 

5.2.1.1. An example ASCII input file 
Table 4 shows part of an example ASCII file that could be read by JULES, with 

nheaderFile=2, nheaderTime=1, nheaderField=1. The size of the input grid is assumed 

to be nxIn=3, nyIn=2. There are 2 variables, A which has a single level, and B which has 2 

levels, giving a total of 3 fields per time. Annotation after any “!” (and shown in italics) would 

NOT be present in the actual file. The data are shown on 2 lines per field, but this is not important – 

nx*ny values will be read however they are presented. 



Page 17 of 126 

 

Table 4 Part of an example ASCII file that could be read by JULES. 

This file contains example data.                      !  1st file header 

There are 2 variables, the 2nd with 2 levels.         !  2nd file header 

Time level 1.                                         !  header for time=1 

Variable A                                            !  header for 1st field 

12.0   15.6    17.1                                   !  data for A at t=1 

-1.0   23.9    53.2 

Variable B, level 1                                   !  header for 2nd field 

22.0   25.6    12.1                                   !  data for B at t=1, 1st level 

-1.0   22.9     23.2  

Variable B, level 2                                   !  header for 3rd field 

32.0   11.6    12.1                                   !  data for B at t=1, 2nd level 

-9.1   72.9     43.7 

Time level 2.                                         !   header for time=2 

Variable A                                            !   header for 1st field 

9.2     67.3    -7.6                                  !   data for A at t=2 

11.5   23.9    -8.3 

Variable B, level 1                                   !   header for 2nd field 

---- rest of file not shown --- 

 



Page 18 of 126 

 

5.2.2. netCDF input files 

If fileFormat=’nc’, the required information is read from a section that starts with the tag 

‘>NC’. The only information that is required is the name of the netCDF variable. 

 

To be used with JULES, a netCDF file must meet certain requirements and be in the format of one 

of several “types” which are summarised in Table 6. The types are used to summarise the names 

and order of the dimensions of variables in the file (see Table 6). The type of netCDF files to be 

read in a particular run is specified by the variable ncType (see Section  6.2), except that the type 

of meteorological data is specified by ncTypeDrive (Section  6.18). The provision for netCDF 

input and the creation of these types have been added in a rather ad hoc manner as need has arisen. 

Provision for netCDF input will likely be improved in a future version of JULES. In general there 

is more flexibility for reading driving (meteorological) data from netCDf files. If other types of 

input are in netCDf files that do not conform to the requirements, they need to be rewritten with the 

required dimension names, or converted to another file format. Another alternative is that the user 

can modify the JULES code – it is fairly easy to add another netCDF “type” (most of the relevant 

code is in jules_netcdf.f90). 

 

Table 5 Recognised types of netCDF input file 

Type name Notes 

gswp2 Refers to the Global Soil Wetness Project 2 (http://www.iges.org/gswp2 - 

although data are no longer available from that site). 

pilps2e Can only be used for meteorological data. 

The PILPS2e experiment is described in Bowling, L.C. and co-authors, 2003, 

Simulation of high latitude hydrological processes in the Torne-Kalix basin: 

PILPS Phase 2(e), 1: Experiment design and summary intercomparisons, Global 

and Planetary Change, 38 (1-2): 1-30.  

The data are not widely available. 

princet Can only be used for meteorological data. 

These data from Princeton University are described in Sheffield, J., G.Goteti and 

E.F.Wood, 2006, Development of a 50-yr high-resolution global dataset of 

meteorological forcings forland surface modelling, J.Climate, 19: 3088-3111, 

and can be downloaded from http://hydrology.princeton.edu/data.pgf.php. 

tseries Can only be used for meteorological data. 

A simple format for time series at a single point. 

watch The Water and Global Change project (WATCH; www.eu-watch.org) is an EU 

FP6 project which is producing meteorological data for model input, amongst 

other aims. These data are not yet widely available. 

 



Page 19 of 126 

 

Table 6 Dimensions in netCDF input files 

Related section of run 

control file 

(see Section  6). 

Allowable values of 
ncType 

(ncTypeDrive for 

INIT_DRIVE) 

Required dimension names 

 (case and order are important) 

gswp2 Land INIT_LAND, 

INIT_LATLON watch land 

gswp2 Land, Psuedo,Time
4
 

 

INIT_FRAC 

watch land, pseudo 

INIT_SOIL gswp2 Land 
Note that vertically-varying soil data cannot be read from 

a netCDF file and the code will stop at any attempt to do 

so. 

 watch land 

INIT_HGT gswp2 Land, Psuedo 

 watch land, pseudo 

INIT_TOP gswp2 Land 

 watch land 

INIT_VEG_VARY gswp2 Land, Psuedo, Time 

 watch land, pseudo, tstep 

INIT_URBAN gswp2 Land 

 watch land 

INIT_AGRIC gswp2 Land 

 watch land 

gswp2, watch land, tstep 

pilps2e x, y, tstep 

princet longitude, latitude, z, time 

INIT_DRIVE 

series time 

INIT_IC gswp2 Land, Psuedo, Soil 
Note that these dimensions are insufficient to cope with 

all possible variables. If an attempt is made to read 

another kind of variable, the code will report an error and 

stop. 

                                                           
4
 Note the typographical error for files of type ‘gswp2’– Psuedo rather than Pseudo! This crept in when those files were 

created and files of this type continue to have to use Psuedo. Consider using files of type ‘watch’ instead. 



Page 20 of 126 

6. The JULES control file 

6.1. Introduction 

Each run of the JULES code is controlled by a text file that is called the “run control file”. Broadly 

speaking, the run control file holds three types of information:  

 

• the general details of the run, such as start and end dates 

• the values for parameters of the model, such as albedo 

• the specification of the required output 

 

The JULES code is designed to be moderately flexible, in that there are switches that allow the user 

to select between different configurations, and it can accommodate input data in several different 

file formats. This flexibility means that the run control file may be relatively long and the user has 

to check that all values are set correctly. The documentation below aims to help the user in this 

task. Example input files can be found as described in Section  6.23. 

 

The run control file has a particular format, in that the lines must be in a particular order and must 

contain various headers. The file is read by various routines arranged under the subroutine INIT, 

using FORTRAN list-directed input [i.e. the format is given as “*” in a READ statement of the form 

READ(unit,*)]. The JULES executable is run with standard input redirected to this control file, 

e.g. jules.exe < control_file.jin. The use of list-directed input means that there may 

be more than one arrangement of input values that can be read by the code – for example a single 

line with 10 values or 2 lines with 5 values each. Repeated numerical values can often be specified 

using the “*” notation (e.g. 100 values of 1.0 can be entered as 100*1.0), which can sometimes 

be useful in specifying a large but constant field. 

 

“Tags” are used to indicate the start of each section, and allow the code to skip directly to this point 

ignoring any intermediate lines. Each tag is of the form, 

 
>SECTION_NAME 

 

and must be included exactly as in the example run control files, using capital letters and with no 

space before or after the initial >.  These section tags are listed in Table 7. 

 

Table 7 Sections in a JULES control file. 

Section name Description 
Described in manual 

section 

INIT_OPTS General model options.  6.2 

INIT_TIME Start and end times for simulation, timestep 

lengths, spin up. 

 6.3 

INIT_GRID 

INIT_LAND 

INIT_LATLON 

Set up the model grid.  6.4 

INIT_FRAC Set gridbox tile fractional coverage options.  6.5 

INIT_SOIL Set model soil parameters.  6.6 

INIT_TOP Set values for a TOPMODEL-type 

parameterisation of runoff. 

 6.7 



Page 21 of 126 

INIT_PDM Set parameters for a PDM-type parameterisation 

of surface runoff. 

 6.8 

INIT_HGT Set the relative elevation of each tile.  6.9 

INIT_VEG_PFT Set uniform parameters for vegetation tiles.  6.10 

INIT_VEG_VARY Set parameters for vegetation tiles that vary in 

either space or time. 

 6.11 

INIT_NONVEG Set parameters for non-vegetation tiles.  6.12 

INIT_URBAN Urban model configuration, geometry & material 

characteristics 

 6.13 

INIT_SNOW Set snow related parameters.  6.14 

INIT_TRIF Set parameters for TRIFFID dynamic vegetation 

model. 

 6.15 

INIT_AGRIC Set fraction of each gridbox that is agriculture for 

use with TRIFFID. 

 6.16 

INIT_MISC Set miscellaneous carbon-cycle parameters.   6.17 

INIT_DRIVE Set input driving data options.  6.18 

INIT_IC Set initial conditions of all prognostic variables.  6.19 

INIT_OUT Set options for model output.  6.20 

 General output options  6.20.1 

 NEWPROF: Set up an output profile.  6.20.2 

 

 

The user can annotate the run control file, for example to add comments, but these must not 

interfere with the reading of the rest of the file. Depending upon the details of the run, there are 

various locations in which it is “safe” to include annotation, but the only really safe location is on 

the lines immediately preceding a “tag” (described above). Annotation can also often be placed on 

the same line as the data at the end of any data field (i.e. so that the code reads the values required 

and will not see the annotation). 

 

Values of character variables, such as file names, should be enclosed within quotation marks (either 

single ‘ ’ or double “ ”). Character variables have a maximum length specified in the code, which 

are sometimes given in this documentation, e.g. character*8 indicates a variable of length 8. 

Logical values can be entered in any of the formats understood by FORTRAN, e.g. T, true or 

.TRUE. may all be used to represent true. In the sections below, the sizes of certain arrays are 

indicated using brackets: e.g. myArray(1:20) requires values for the 20 elements numbered 1 to 

20. 

 

Although a spatial field can be read from the run control file, in practice this becomes unwieldy for 

large grids, and most spatial fields are likely to be stored in separate files, the names of which can 

be listed in the run control file. 

 

In the following sections, the first column lists the variables that are to be read from a line, and 

subsequent columns give the type and a brief description of each variable. The variable names 

given are generally those used to declare the corresponding FORTRAN variables (except where the 

code uses temporary workspace and a more meaningful variable name is given in this 

documentation). 



Page 22 of 126 

6.2. INIT_OPTS: General model options 

This section starts with the tag >INIT_OPTS. 

 

>INIT_OPTS 

 

npft, nnvg 

l_aggregate 

pftName(1:npft) 

nvgname(1:nnvg) 

 

nxIn, nyIn 

sm_levels 

nsmax 

can_model 

can_rad_mod, ilayers 

l_cosz, l_spec_albedo 

l_phenol, l_triffid, l_veg_compete, l_trif_eq 

l_top,l_pdm 

l_anthrop_heat_src, l_moruses 

l_o3_damage 

 

i_scrn_t_diag 

 

yrevIn 

ncType 

echo 

print_step 

 

 

Table 8 Description of variables in INIT_OPTS section. 

Variable name Type and 

permitted 

values 

Notes 

Npft integer 

>=1 

The number of plant functional types to be modelled. 

Nnvg integer 

>=1 

The number of non-plant surface types to be modelled.  

The total number of surface types to be modelled is called 

ntype, and is given by ntype=npft+nnvg. In the 

standard setup, JULES models 5 vegetation types and 4 non-

vegetation types (npft=5, nnvg=4). However, the model 

domain need not contain all 9 types – e.g. the domain could 

consist of a single point with 100% grass. The amount of 

each type in the domain is set in the section INIT_FRAC 

(Section  6.5). 



Page 23 of 126 

l_aggregate

  

logical 

 

Switch controlling number of tiles for each gridbox. 

This is used to set the number of surface energy balances 

that are solved for each gridbox (ntiles).  

FALSE: A separate energy balance is calculated for each 

surface type. This option sets ntiles=ntype. 

TRUE: Aggregate parameter values are used to solve a 

single energy balance per gridbox. This option sets 

ntiles=1.  

 

Generally l_aggregate=.FALSE. is preferred, TRUE 

can be used to reduce the computational cost.  

pftName(1:npf

t) 

character 

array 

Names of PFTs. When JULES looks for parameter values 

for the PFTs, it looks for these names. 

nvgName(1:nnv

g) 

character 

array 

Must include 

‘soil’. 

Names of non-vegetation surface types. When JULES looks 

for parameter values for the surface types, it looks for these 

names. 

nxIn integer 

>=1 

The number of columns of data in the input grid (see further 

discussion of the grid in Section  6.4). 

nyIn integer 

>=1 

The number of rows of data in the input grid. 

  The total number of points in the input grid is thus 

nxIn*nyIn. If the input data consists of a single point, 

nxIn=nyIn=1. A vector of points is specified by setting 

nyIn=1. Although the notation may suggest a regular, 

rectangular grid, the model can be run at any number of 

arbitrary locations, the most likely way of doing so being to 

set nyIn=1, nxIn=number of points. 

sm_levels integer 

>=1 

Number of soil layers. 

A value of 4 is often used. 

Nsmax integer 

>=0 

Maximum possible number of snow layers. 

0: a composite soil/snow layer is used. This value gives the 

behaviour found in JULES2.0 and earlier. 

>0: the state of up to nsmax separate snow layers is 

modelled. Values of nsmax=3 or more are recommended. 

The minimum depth of each layer is set in Section  6.14.  



Page 24 of 126 

can_model integer 

1, 2, 3 or 4 

Choice of canopy model for vegetation: 

 

1: No canopy. 

2: Radiative canopy with no heat capacity. 

3: Radiative canopy with heat capacity. This option is 

deprecated, with 4 preferred. 

4: As 3 but with a representation of snow beneath the 

canopy. This option is preferred to 3. 

 

• NB can_model=1 does not mean that there is no 

vegetation canopy. It means that the surface is 

represented as a single entity, rather than having distinct 

surface and canopy levels for the purposes of radiative 

processes. 



Page 25 of 126 

can_rad_mod 

 
integer 

1, 2 3, 4 or 5 

Switch for treatment of canopy radiation. 

1: A single canopy layer for which radiation absorption is 

calculated using Beer’s law. Leaf-level photosynthesis is 

scaled to the canopy level using the “big leaf” approach. 

Leaf nitrogen, photosynthetic capacity, i.e the Vcmax 

parameter and leaf photosynthesis vary exponentially 

through the canopy with radiation. 

2: Multi-layer approach for radiation interception following 

the 2-stream approach of Sellers et al. (1992). This approach 

takes into account leaf angle distribution, zenith angle, and 

differentiates absorption of direct and diffuse radiation. 

Leaf-level photosynthesis is calculated using a vertically-

varying light-limited rate, and constant Rubisco and export 

velocities, consistent with the assumption of constant leaf N 

through the canopy. Canopy photosynthesis and conductance 

are calculated as the sum over all layers. 

3: As 2, but photosynthesis calculated separately for sunlit 

and shaded leaves for the whole canopy (i.e not at each 

layer). The definition of sunlit and shaded leaves is based on 

a threshold of absorbed radiation at each layer. 

4. This is a modification of option 2. Instead of constant leaf 

N through the canopy, it has an exponential decline of leaf N 

with canopy height. Additionaly includes inhibition of leaf 

respiration in the light.  

5. This is an improvement of option 4. This includes,  i) 

sunfleck penetration though the canopy, ii) division of sunlit 

and shaded leaves within each canoy level and iii) a 

modified version of inhibition of leaf respiration in the light.  

 

When using can_rad_mod=4 or 5, it is recommended 

to use driving data that contains direct and diffuse radiation 

separately rather than a constant diffuse fraction. 

  

Descriptions 1, 2 and 3 can be found in Jogireddy et al. 

(2006) , an application of option 4 can be found in Mercado 

et al. (2007) and all will be described in Clark et al (in prep). 

  

References: 

Jogireddy, V.R. et al., 2006, Hadley Centre technical note 

63. Available from: 

http://www.metoffice.gov.uk/publications/HCTN. 

Sellers, P. et al., 1992, Remote Sens. Environ., 42: 187-216. 

Mercado et al. 1997, Tellus B, 59, 553–565 

 

ilayers  integer 

≥1 

Number of layers for canopy radiation model. 

Only used if can_rad_mod is 2 or 3. 

These layers are used for the calculations of radiation 

interception and photosynthesis. 

A value of 10 is recommended. 



Page 26 of 126 

l_cosz logical Switch for calculation of solar zenith angle. For land points, 

this switch is only relevant if l_spec_albedo=TRUE 

(otherwise it is better set to FALSE to prevent unnecessary 

calculations). 

TRUE: calculate zenith angle. 

FALSE: assume constant zenith angle of zero, meaning sun 

is directly overhead. 

l_spec_albedo logical Switch for albedo model. 

TRUE: use spectral albedo. This includes a prognostic snow 

albedo. 

FALSE: use a single (averaged) waveband albedo. 

l_phenol logical Switch for vegetation phenology model. 

TRUE: use phenology model. 

FALSE: do not use phenology model. 

l_triffid logical Switch for dynamic vegetation model (TRIFFID) except for 

competition. 

TRUE:  use TRIFFID. In this case soil carbon is modelled 

using four pools (biomass, humus, decomposable plant 

material, resistant plant material). 

FALSE:  do not use TRIFFID. A single sol carbon pool is 

also used. 

l_veg_compete logical Switch for competing vegetation. This is only used if 
l_triffid=TRUE. 

TRUE: TRIFFID will let the different PFTs compete against 

each other and modify the vegetation fractions 

FALSE: Vegetation fractions do not change 

l_trif_eq logical Switch for equilibrium vegetation model (i.e., an equilibrium 

solution of TRIFFID). This is only used if 

l_triffid=TRUE. 

TRUE: use equilibrium TRIFFID. 

FALSE: do not use equilibrium TRIFFID. 

l_top logical Switch for a TOPMODEL-type model of runoff production. 

TRUE: use a TOPMODEL-type scheme. This is based on 

Gedney and Cox (2003); see also Clark and Gedney (2008). 

FALSE: no TOPMODEL scheme. 

 

References:  

Gedney, N. and P.M.Cox, 2003 , The sensitivity of global 

climate model simulations to the representation of soil 

moisture heterogeneity, J. Hydrometeorology, 4, 1265–1275. 

Clark and Gedney, 2008, Representing the effects of subgrid 

variability of soil moisture on runoff generation in a land 

surface model, Journal of Geophysical Research – 

Atmospheres, 113, D10111, doi:10.1029/2007JD008940. 



Page 27 of 126 

l_pdm logical Switch for a PDM-type model of runoff production. 

PDM is the Probability Distributed Model (Moore, 1985 ), 

implemented in JULES following Clark and Gedney (2008). 

 

TRUE: use a PDM scheme. 

FALSE: no PDM scheme. 

 

References:  

Moore, R. J. (1985), The probability-distributed principle 

and runoff production at point and basin scales, Hydrol. Sci. 

J., 30, 273–297. 

Clark and Gedney, 2008, Representing the effects of subgrid 

variability of soil moisture on runoff generation in a land 

surface model, Journal of Geophysical Research – 

Atmospheres, 113, D10111, doi:10.1029/2007JD008940. 

l_anthrop_hea

t_src 

logical Switch for inclusion of anthropogenic contribution to the 

surface heat flux from urban tiles. The relevant code is found 

in subroutine generate_anthropogenic_heat. 

TRUE: add anthropogenic effect 

FALSE: no effect 

l_moruses logical Switch for turning on MORUSES. Configuration of and 

urban parameters required for MORUSES are set in 

INIT_URBAN (Section  6.13) 

 

TRUE:  use MORUSES parametrisations. Requires 

nvgName types ‘urban_roof’ and 

‘urban_canyon’5 

FALSE:  do not use MORUSES parametrisations. Use 

urban tile parameters, set in INIT_NONVEG (Section  6.12), 

instead. 

 

References: 

Porson, A., et al. (2010), Implementation of a new urban 

energy budget scheme in the MetUM. Part I: Description 

and idealized simulations, Quarterly Journal of the Royal 

Meteorological Society, 136: 1514–1529. doi: 

10.1002/qj.668 

Porson, A., et al. (2010), Implementation of a new urban 

energy budget scheme into MetUM. Part II: Validation 

against observations and model Intercomparison, Quarterly 

Journal of the Royal Meteorological Society, 136: 1530–

1542. doi: 10.1002/qj.572 

                                                           
5
 Both the two tile schemes, URBAN-2T & MORUSES, will also run with the ‘urban’ surface type as the code 

converts this to the ‘urban_canyon’ type itself as long as the ‘urban_roof’ tile is present. However, they will 

fail to run if both ‘urban’ and ‘urban_canyon’ are present. When entering the urban fraction data the total 

urban fraction should be entered in the ‘urban_canyon’ or ‘urban’ tile, whichever is named. 



Page 28 of 126 

l_o3_damage logical Switch for ozone damage. 

TRUE: Ozone damage is on. Ozone concentration in ppb 

must be supplied as a driving variable 

FALSE: No effect 

i_scrn_t_diag Integer 

0 or 1 

Switch controlling method for diagnosing screen 

temperature. 

0: use surface similarity theory. This is the default and 

acceptable for most users. 

1: use surface similarity theory but allow decoupling in very 

stable conditions based on the quasi-equilibrium radiative 

solution 

 

yrevIn logical Switch indicating if the order of the rows in the input data is 

not the JULES standard. 

TRUE: Input data are arranged in North to South order (i.e. 

first data are from northernmost row). 

FALSE: Input data are arranged in South to North order (the 

JULES standard). 

Note that this does not affect how JULES numbers points on 

its internal grids – within JULES the numbering always runs 

from South to North. 

This switch applies to all input files. 

ncType character 

 

Indicates the type (format) of any netCDF input files (see 

Section  5.2.2). This does not refer to files for meteorological 

data which are covered in Section  6.18. 

 

echo logical Switch controlling output of messages to standard output 

(e.g. screen). 

TRUE: print messages to screen. This will print the values of 

parameters, and also print messages when files are opened or 

closed. This is useful while checking that a run is correctly 

set up, but can result in a large volume of data if the model 

grid is large. 

FALSE: suppress printing of most messages to screen 

print_step integer 

>=1 

The number of timesteps in between the printing of timestep 

information. 

Every print_step timesteps, the model prints the current 

timestep number and date to standard output.  

While this can be a useful way to follow the progress of a 

model integration, frequent messages can generate a large 

amount of unnecessary output during long integrations. 

 

 

 



Page 29 of 126 

6.3.  INIT_TIME: Date and time information 

This section sets the start and end time of the run and can also be used to specify a spin-up 

procedure. It starts with the tag  >INIT_TIME. 

 

It is recommended that all times entered in JULES use Greenwich Mean Time (GMT or 

UTC), not local time. The use of GMT is essential if certain options are set (l_cosz=TRUE). 

 

>INIT_TIME 

 

timestep 

dateMainRun(1), timeRun(1) 

dateMainRun(2), timeRun(2) 

 

l_360 

phenol_period, triffid_period 

 

dateSpin(1:2), nspin 

spinFail 

>VARS 

spinVarName(1),spinTolPercent(1), spinTol(1)  

--- Repeat for each variable. --- 

>ENDVARS 

 

 

Table 9 Description of variables in the INIT_TIME section 

Variable name Type and 

permitted 

values 

Notes 

timestep integer 

>=1 

Timestep length (seconds).   

A typical timestep is 30 to 60 minutes.  

If the timestep is too long, the model becomes 

numerically unstable. 

dateMainRun(1:2) 

timeRun(1:2) 

integer 

array, 

character*

8 array 

These specify the start and end times for the 

integration. Each run of JULES consists of an optional 

spin-up period and the “main run” that follows the spin 

up. See below for more about the specification of the 

spin up. For simplicity, the same times of day are used 

for both the spin-up and main periods.  

The main run starts at timeRun(1) on 

dateMainRun(1) and ends at timeRun(2) on 

dateMainRun(2). 

Dates should be given in format yyyymmdd. All dates 

must be >0. Times should be given in format 

hh:mm:ss. It is recommended that all times entered 

in JULES use Greenwich Mean Time (GMT or 

UTC), not local time. The use of GMT is essential if 

certain options are set (l_cosz=TRUE) -  but see 



Page 30 of 126 

 6.3.1 for a possible, if not recommended, use of local 

time! 

l_360 logical Switch indicating use of 360 day years. 

TRUE: each year consists of 360 days. This is 

sometimes used for idealised experiments. 

FALSE: each year consists of 365 or 366 days. 

phenol_period integer 
>=1 

Period for calls to phenology model (days). Only 

relevant if l_phenol=TRUE. 

triffid_period  integer 
>=1 

Period for calls to TRIFFID model (days). Only 

relevant if one of L_TRIFFID or L_TRIF_EQ is 

TRUE. 

dateSpin(1:2) integer 

array 

The dates for the spin-up period, in the format 

yyyymmdd.  

Elements 1 and 2 are the start and end dates 

respectively.  

The spin-up phase of the integration must be over 

times that either, 

• immediately precede the main run. In this case the 

spin-up phase is from timeRun(1) on 

dateSpin(1) to timeRun(1) on dateSpin(2) 

[where dateSpin(2) equals dateMainRun(1)] 

OR 

• are the same as those for the main run.  In this case 

the spin-up phase is from timeRun(1) on 

dateMainRun(1) to timeRun(2) on 

dateMainRun(2). 

Examples are given below. 

nspin integer 

>=0 

The maximum number of times the spin-up period is to 

be repeated: 

0: no spin up 

>0: at least 1 and at most nspin repetitions of spin up 

are used.  

After each repetition, the model tests whether the 

selected variables have changed by more than a 

specified amount over the last repetition (see below).  

If the change is less than this amount, the model is 

considered to have spun up, and the model moves on 

to the main run. 

spinFail logical Switch controlling behaviour at the end of spin up 

period, if the model has not passed the spin-up test.  

Only used if nspin>0. 

TRUE: End the run if model has not spun up. 

FALSE: Continue the run. 

If nspin>0, details of the variables used to assess the spin up are looked for between the tags 

>VARS and >ENDVARS. Up to two variables can be listed. 

spinVarName character 

Acceptable 

values are: 

‘smcl’ 

The name of a variable to be used to determine if the 

model has spun up. Spin up can be assessed in terms of 

soil temperature and soil moisture. 

‘smcl’: moisture content of each soil layer (kg m
-2

) 



Page 31 of 126 

‘t_soil’ ‘t_soil’: temperature of each soil layer (K) 

spinTolPercent logical Switch indicating whether the tolerance for this 

variable is expressed as a percentage. 

TRUE: tolerance is a percentage 

FALSE: tolerance is an absolute value 

spinTol real Tolerance for spin up of this variable. 

 

For each spin-up variable, this is the maximum change 

over a repetition of spin up that is allowed if the model 

is to be considered as spun-up. If the absolute value of 

the change (the percentage change if 

spinTolPercent = TRUE) is less than or equal to 

spinTol, the variable is considered to have spun up.  

For example, spinTol=0.1 means that the variable 

in question must change by less than 0.1 over a cycle 

of spin up if it is to be considered spun up. See notes 

below on using a negative tolerance to prescribe the 

number of cycles that are attempted. 

 

Spin up is assessed using the difference between 

instantaneous values at the end of consecutive cycles 

of spin up. For example, if the spin up period is from 

15 Jan 2005 to 15 Jan 2006, every time the model gets 

to 15 Jan 2006 the spin-up variables are compared with 

their value at the end of the previous cycle. 

 

6.3.1. Note on time convention and solar zenith angle 

If a run requires that the solar zenith angle be calculated (l_cosz=TRUE), then times must be in 

Greenwich Mean Time (UTC), so that the code can calculate the zenith angle at each location and 

time. 

If l_cosz=FALSE, the user might prefer to use Local Time, particularly if this is used for input or 

validation data, as the timestamp on model output will then match that on the other data. However 

the use of local time is not recommended as if the user later switches to l_cosz=TRUE without 

adjusting the time values, the model results will be in error. 

 

6.3.2. Examples of dates and times 

 

1. A run without spin up 
 

19970101, '00:00:00'    !  start date and time 

19990101, '01:00:00'    !  end date and time 

19970101, 19970102, 0   !  dateSpin, nspin 

 

This specifies a run from midnight on 1
st
 January 1997 until 01:00 GMT on 1

st
 January 1999. 

nspin=0 means there is no spin up. 

 



Page 32 of 126 

2. A run with spin up over a period that immediately precedes the main run 
 

19970101, '00:00:00'    !  start date and time for main run 

19990101, '01:00:00'    !  end date and time for main run 

19960101, 19970101, 5   !  dateSpin, nspin 

 

This specifies a spin-up period from midnight on 1
st
 January 1996 to midnight on 1

st
 January 1997 

(the time of day is taken from the first line). This spin-up will be repeated up to 5 times, before the 

main run from midnight on 1
st
 January 1997 until 01:00 GMT on 1

st
 January 1999. 

 

3. A run with spin up over a period that overlaps the main run 
 

19970101, '00:00:00'    !  start date and time for main run 

19990101, '01:00:00'    !  end date and time for main run 

19970101, 19980101, 5   !  dateSpin, nspin 

 

This specifies a spin-up period from midnight on 1
st
 January 1997 to midnight on  1

st
 January 1998 

(the time of day is taken from the first line). This spin-up will be repeated up to 5 times, before the 

main run from midnight on 1
st
 January 1997 until 01:00 GMT on 1

st
 January 1999. 

 

4. Example of specifying requirements for spin up 
 

T               !  terminate run if spin-up fails (T,F) 

smcl   F  1.0   !  spinVarName,spinTolPercent,spinTol 

t_soil T  0.1   !   

 

The first value, spinFail=TRUE, means that if the spin-up has not “converged” after nspin 

cycles, the run will end.  Convergence is measured using moisture content and temperature of each 

soil layer. At every point and in every layer, soil moisture must change by less than 1 kg m
-2

, while 

soil temperature must change by less than 0.1%. 

 

6.3.3. Notes on spin up 

Note that at present the analysis of whether the model has spun up or not is limited to aspects of the 

“physical” state of the system, and does not explicitly consider carbon stores, making it less useful 

for runs with interactive vegetation (TRIFFID; the equilibrium mode of TRIFFID is designed to 

spin up TRIFFID) or prognostic soil carbon. 

 

During the spin-up phase of a run, the JULES code provides the correct driving data (for example, 

meteorological data) as the model time “cycles” round over the spin up period. Consider the case of 

a spin up over 1 Jan 2005 to 31 Dec 2005. At or near the end of 31 Dec 2005 during the spin up, the 

driving data will start to adjust to the values for 1 Jan 2005. The calculated driving data may vary 

slightly between the start or end of the first cycle and similar times in later cycles, because of the 

need to match the data at the end of each cycle to that at the start of the next cycle. Generally this 

does not cause a problem. 

 

Depending upon the details of the input data and any temporal interpolation, the driving data may 

vary rapidly at the end of a cycle of spin up, causing an extreme response from the model. In most 

cases the model will adjust, possibly with large heat fluxes over a few hours, but the user should be 



Page 33 of 126 

aware that unusual behaviour near the end/start of a spin up cycle may be the result of this 

adjustment. Consider the case of a spin up over 1 Jan 2005 to 31 Dec 2005. At or near the end of 31 

Dec 2005 during the spin up, the driving data will start to adjust to the values for 1 Jan 2005, which 

could be very different from conditions on 31 Dec 2005. The length of time over which the driving 

data adjust depends on the frequency of the data, and the choice of temporal interpolation. For 

example, with 3-hourly data that is interpolated onto a one hour timestep, the adjustment will take 

place over 3 hours. However, hourly data and an hourly timestep will force an instantaneous 

adjustment at the start of 1 Jan 2005. 

 

Although nspin specifies the maximum number of spin up cycles, some of which might not be 

used if the model is considered to have spun up earlier, it is possible to specify the exact number of 

cycles that will be performed. This can be done by demanding an impossible level of convergence 

by setting spinTol<0 (remember that spinTol is compared with the absolute change over a 

cycle) and setting spinFail=FALSE so that the integration continues when spin up is judged to 

have failed after nspin cycles. 

 

Although it is expected that a spin up phase will be followed by the main run in the same 

integration, it is possible to do the spin up and main run in separate integrations. This can be done 

by demanding an impossible level of convergence by setting spinTol<0, setting 

spinFail=TRUE so that the integration stops when spin up is judged to have failed, and setting 

dumpFreq (see Section  6.20.1) to any value that writes a final dump. The final state of the model, 

after nspin cycles of spin up, will be written to the final dump, and a subsequent simulation 

started from this dump. 

 

A limitation of the current code is that it cannot cope with a spin up cycle that is short in 

comparison to the period of any input data. For example, a spin up cycle of 1 day cannot use 10-

day vegetation data. The code will likely run but the evolution of the vegetation data will probably 

not be what the user intended! However, it is unlikely that a user would want to try such a run. 

 

Occasionally, the model fails to diagnose a spun up state when in fact the integration has reached a 

quasi-steady state that is not detected by the procedure of assessing spin up through comparison of 

instantaneous values at the end of consecutive cycles of spin up. An example of this is “period-2” 

behaviour, where the model state repeats itself over a period of 2 cycles. Such behaviour should be 

apparent in the model output during spin up, and the user can opt to repeat the integration over a 

given number of spin up cycles, and not to wait for a spun-up state to be diagnosed. 



Page 34 of 126 

 

6.4. Grid description 

The process of setting up the model grid involves three parts of the run control file: INIT_GRID, 

INIT_LAND and INIT_LATLON.  

 

INIT_GRID is used to select how the model grid will be specified, e.g. all points within a given 

range of latitude and longitude.  

INIT_LAND is used to set a land/sea mask.  

INIT_LATLON specifies the latitude and longitude of each point. 

These three sections are then followed by the DATA_POINTS, DATA_LAND and DATA_LATLON 

sections which provide input data (if that is to come from the run control file). 

 

Each run of JULES involves two grids: the input grid, and the model grid. The input grid is the grid 

on which all input data are held. The model grid is the set of points on which the model is run. The 

model grid is a subset of the input grid. 

 

The JULES grid is a rectangle of size nx*ny points, including the special case of ny=1 when the 

grid is a vector of points. The points to be modelled may be selected from a larger input grid, by 

specifying one or more of (1) a list of point numbers (2) a range of latitude and longitude (3) that 

only land points (really points at which a mask is >0) are to be selected. The grid may contain both 

land and sea points, but at present JULES is only deals correctly with land points, so results for sea 

points will be meaningless and are therefore better omitted as described later. A vector of points 

can be used to select locations that are not adjacent in the real world - for example, one might only 

want to run the model at locations within a catchment for which observations are available. In this 

case although the model could be run on a grid that included the whole catchment, it is more 

efficient to run only at the selected points. 
 

6.4.1. INIT_GRID: Setting up the grid 

 

>INIT_GRID 

 

pointsList, coord, coordLL 

landOnly 

subArea, subAreaLatLon 

xcoord(1:2),ycoord(1:2) 

npoints 

readFilePoints 

fileNamePoints 

 

Table 10 Description of variables in the INIT_GRID section 

Variable name Type and 

permitted values 

Notes 

pointsList logical Switch indicating whether the model grid is to be 

specified as a list of points. 

 



Page 35 of 126 

TRUE: Points to be modelled are selected from the 
input grid via a list provided by the user. In this case, 

the points to be modelled are selected via a list of point 

numbers (or coordinate pairs, see below). 

 

FALSE: All points in the input grid are modelled – 

subject to elimination by subArea or landOnly 

(see below). The value of npoints (q.v.) is set by the 

model, and equals the number of points that are 

modelled. 

coord logical Switch indicating if a list of points is given as co-

ordinate pairs. Only used if pointsList=TRUE. 

 

TRUE: The list of points will be given as co-ordinate 

pairs. 

FALSE: The list of points will be given in terms of 

single per point, describing the location in the grid. 

coordLL logical Switch indicating if co-ordinate pairs are (x,y) or 

(longitude,latitude). Only used if coord=TRUE. 

 

TRUE: Co-ordinates are (longitude,latitude). 

FALSE: Co-ordinates are (x,y) in the input grid. 

landOnly logical Switch indicating if only land points are to be modelled. 

If pointsList=TRUE, landOnly must be FALSE. 

 

TRUE: Only land points are modelled. Sea points are 
excluded from the model grid. More correctly, only 

points with flandg (see later) >0 are modelled, 

so this option can be used with a suitable input field to 

select a subset of land points (e.g. those in a particular 

catchment). 

 

FALSE: All points are modelled (land and sea). 

subArea logical Switch indicating if a subset of the input grid is to be 

selected. Only used if pointsList=FALSE. 

 

TRUE: a subsection of the input grid will be used (see 

xcoord and ycoord below) 

FALSE: the full input grid is considered. 

subAreaLatLon logical If subArea=TRUE, this indicates how to interpret the 

coordinates xcoord and ycoord. 

 

TRUE: co-ordinates are longitude and latitude. 

FALSE: co-ordinates are x and y indices (column and 

row numbers). 

xcoord(1:2) 

 
real array x-coordinates of the sub-area to be considered. 

Depending on subAreaLatLon, these are longitudes 

(in range -180 to 360º) or column numbers. 

See notes on grid definition in Section  6.4. If values are 



Page 36 of 126 

column numbers, the code uses the nearest integer to the 

input value. 

ycoord(1:2) real array As xcoord, expect in latitudinal (y) direction. 

npoints integer The number of points that are to be modelled. 

Only used if pointsList=TRUE. 

readFilePoints logical Switch controlling source of list of point numbers. Only 

used if pointsList=TRUE. 

 

TRUE: read from an external ASCII file 
FALSE: read from the run control file.  Points are 

specified at the sub-section marked >DATA_POINTS 

(see Section  6.4.3). 

fileNamePoints character Name of file containing list of points. Only used if 

pointsList=TRUE. 

 

 

6.4.2. INIT_LAND: Land fraction 

This section describes how the land fraction field is set. Originally land fraction described the 

fraction of each gridbox that is land, but (offline) JULES can use the “land fraction” field as a mask 

that allows a subset of points to be modelled - e.g. “land fraction” can be set to 1 at all locations 

within a catchment, and to zero (or less) at all other points (such as land points outside the 

catchment). For this latter use, landOnly should be TRUE. 

 

 

>INIT_LAND 

 

readFileLand 

fileFormatLand 

fileNameLand 

 

>ASCBIN 

nheaderFileLand,nheaderFieldLand 

fieldLand 

 

>NC 

varNameLand 

 

Table 11 Description of variables in the INIT_LAND section 

 

Variable name 

Type and 

permitted values 

Notes 

readFileLand logical Switch controlling source of land fraction data.  

TRUE: read from an external file 
FALSE: read from the run control file, at the section 

marked >DATA_LAND (see Section  6.4.3). 

fileFormatLand character 

See Section  5.2. 

Format of file containing land fraction data. 



Page 37 of 126 

fileNameLand character Name of file containing land fraction data. 

The following are read only if readFileLand=TRUE. Only values for the appropriate file format 

are read. 

>ASCBIN: If fileFormatLand=’asc’,‘bin’ or ‘pp’: 

nheaderFile integer 

>=0 

 

The number of headers at the start of the land fraction 

file. See Section  5.2. 

nheaderField integer 

>=0 

 

The number of headers before each field in the land 

fraction file. See Section  5.2. 

fieldLand Integer 

>=1 

The field number in the file that holds data for the first 

level of this variable. See discussion of fields in Section 

 5.1. 

>NC: If fileFormatLand=’nc’: 

varNameLand character array The name of the variable containing the land fraction. 
 

 

6.4.3. INIT_LATLON: Latitude and longitude 

 

>INIT_LATLON 

 

regLatLon 

regLat1, regLon1 

regDlat, regDlon 

readFileLatLon 

fileFormatLatLon 

fileNameLatLon 

 

>ASCBIN 

nheaderFile, nheaderField 

fieldLat, fieldLon 

 

>NC 

varNameLat,varNameLon 

 

>DATA_POINTS 

pointList(1:npoints) 

>DATA_LAND 

flandg(1:nxIn,1:nyIn) 

>DATA_LATLON 

latitude(1:nxIn,1:nyIn) 

longitude(1:nxIn,1:nyIn) 

 

 

Table 12 Description of variables in the INIT_LATLON section. 

Variable name Type and 

permitted values 

Notes 



Page 38 of 126 

regLatLon logical Switch indicating if the input grid is ‘regular’ (and will 

be described by origin and increment) or if latitude and 

longitude fields are to be read. 

TRUE: the grid is ‘regular' and can be specified by 
its origin and gridbox size. There is then no need to 

read lat/lon values for each gridpoint. 

FALSE: read latitude and longitude values for each 

gridpoint. 

regLat1 real The latitude (decimal degrees North) of the 

southernmost row of gridpoints in the input grid (NOT 

necessarily the model grid). The gridpoint is in the 

centre of the gridbox. 

regLon1 real 

-180 to 360 

The longitude (decimal degrees East) of the westernmost 

column of gridpoints in the input grid (NOT necessarily 

the model grid). 

regDlat real 

>0.0 

The size of a gridbox in the NS direction (decimal 

degrees of latitude). 

Note: regLat1 and regLon1 are only used if 

regLatLon=TRUE. regDlat and regDlon may be 

used even if regLatLon=FALSE, if there is a need to 

establish the area of each gridbox (which is needed by 

some parameterisations and to label output). 

regDlon real 

>0.0 

The size of a gridbox in the EW direction (decimal 

degrees of longitude). 

readFileLatLon logical Switch controlling source of latitude and longitude data. 

Only used if pointsList=FALSE and 

regLatLon=FALSE. 

TRUE: read from an external file 

FALSE: read from the run control file, at the section 

marked >DATA_LATLON. 

fileFormatLatL

on 

character Format of file containing latitude and longitude data. 

fileNameLatLon character Name of file containing latitude and longitude data. 

The following are read only if readFileLatLon=TRUE. Only values for the appropriate file 

format are read. 

>ASCBIN: If fileFormatLatLon=’asc’, ‘bin’ or ‘pp’: 

nheaderFile integer 

>=0 

The number of headers at the start of the lat/lon file.  

See Section  5.2. 

nheaderField integer 

>=0 

The number of headers before each field in the lat/lon 

file. See Section  5.2. 

fieldLat integer 

>=1 

The field number in the file that holds latitude data. 

See discussion of fields in Section  5.1. 

fieldLon integer 

>=1 

The field number in the file that holds longitude data. 

>NC: If fileFormatLatLon=’nc’: 

varNameLat character The name of the variable containing the latitude data. 

varNameLon character The name of the variable containing the longitude data. 

The following sections are used only if the switches above indicate that the fields are to be read 



Page 39 of 126 

from the run control file. 

pointList(1:np

oints) 

integer array 

>=1 

A list of the points that are to be modelled. These are 

point numbers in the input grid. 

 

NB If the input data run from North to South (i.e. not the 

JULES S to N order), the point numbers should still be 

calculated following the JULES S to N convention. Thus 

point number 1 is in the SW corner of the grid, which 

will not be the first point in the input data if yrevIn=T 

(unless nyIn=1). 

flandg(1:nxIn,

1:nyIn) 

real array The fraction of each gridbox that is land. 

If landOnly=TRUE, only locations with flandg>0 are 

modelled. 

Latitude(1:nxI

n,1:nyIn) 

real array The latitude of each gridpoint. 

Longitude(1:nx

In,1:nyIn) 

real array 

-180 to 360 

The longitude of each gridpoint. All values should be in 

the range of either -180 to 180º or 0 to 360º. 

 

The special case of an equal angle grid (all gridboxes have same extent in terms of latitude and 

longitude) in which the rows run WE and the columns SN (hereafter referred to as an equal angle 

grid), can be set up via a simple option. All other grids, including a vector of points, require the 

latitude and longitude of all points to be input. 

 

If regLatLon=TRUE, the input data must be presented in the default JULES order (starting 

bottom left at (regLat1,regLon1) and proceeding row-wise). If regLatLon=FALSE, the 

input data need not be in order of lat/lon coordinates – each point in the grid will use the lat/lon 

read in for that point. 

 

6.4.4. Examples of grid description 

The latitude and longitude of the grid must be specified for all runs. For many model runs, the 

location of the grid is important, since it controls important factors such as the angle of the sun. 

Other, more idealised, runs might not need this information, but in this case the location may still 

be required so that the model output can be correctly mapped. If the location is not needed for 

either purpose, the user should enter an arbitrary location (e.g., 0°N, 0°E). 

 

 

Grid example 1: A single point run. 
 

This covers the simplest case: the input contains a single point. We assume that nxIn=1 and nyIn 

=1 (see Section  6.2). All values are obtained from the run control file – no other file is involved. 

Only the lines in bold are relevant, and irrelevant sections have been omitted. 

 

>INIT_GRID 

 

T,F,F            !  pointsList,coord,coordLL 

F                !  landOnly 

F,F              !  subArea, subAreaLatLon 

1,2,3,4          !  xcoord(1:2),ycoord(1:2) 



Page 40 of 126 

1                !  npoints 

F                !  readFilePoints 

‘points.txt’     !  fileNamePoints 

 

>INIT_LAND 

F                !  readFileLand 

‘bin’            !  fileFormatLand 

‘grid.gra’       !  fileNameLand 

 

>INIT_LATLON 

T                !  regLatLon 

40.0, 50.0       !  regLat1, regLon1 

1.0,1.0          !  regDlat, regDlon 

F                !  readFileLatLon 

‘bin’            !  fileFormatLatLon 

‘latlon.gra’      !  fileNameLatLon 

 

>DATA_POINTS 

1                 !  pointList 

 

>DATA_LAND 

1.0               !  flandg 

 

>DATA_LATLON 

0.0               !  latitude 

5.0               !  longitude 

 

pointsList=T indicates that the grid will be described by a list of points. 

npoints=1 shows that this run is for a single point. 

readFilePoints=F indicates that the point numbers are read from the >DATA_POINTS 

section, where point number 1 is indicated (the only possibility for an input grid of one point). 

readFileLand=F indicates that the land fraction field is read from the >DATA_LAND section, 

where the value 1.0 shows that the single gridbox is 100% land. 

regLatLon=T indicates that the grid is ‘regular’ and will be described by its origin (regLat1, 

regLon1) and gridbox size (regDlat, regDlon). There is then no need for any further 

information about coordinates – in particular the data at >DATA_LATLON are not read. 

 

 

Grid example 2: Selecting points in a given range of latitude and longitude. 
 

The grids used in this example are shown in Figure 1. The input grid has nxIn=5, nyIn=4, and 

we wish to model the area 55-57ºN 355-357ºE (5ºW-3ºW).  To do this, we use the following entries 

in the run control file. Only the lines in bold are relevant, and irrelevant sections have been 

omitted. 

 

>INIT_GRID 

 

F,F,F                  !  pointsList,coord,coordLL  

F                      !  landOnly 

T,T                    !  subArea, subAreaLatLon 



Page 41 of 126 

355.0,357.0,55.0,57.0  !  xcoord(1:2),ycoord(1:2) 

1                      !  npoints 

F                      !  readFilePoints 

‘points.dat’           !  fileNamePoints 

 

>INIT_LAND 

T                 !  readFileLand 

‘bin’             !  fileFormatLand 

‘grid.gra’        !  fileNameLand 

 

>ASCBIN 

0,0               !  nheaderFileLand,nheaderFieldLand 

1                 !  fieldLand 

 

>INIT_LATLON 

T                 !  regLatLon 

55.5, 353.5       !  regLat1, regLon1 

1.0, 1.0          !  regDlat, regDlon 

F                 !  readFileLatLon 

‘bin’             !  fileFormatLatLon 

‘grid.gra’        !  fileNameLatLon 

 

 

pointsList=F indicates that the model grid will be determined by the land fraction field (and 

also latitude and longitude in this case). 

landOnly=F indicates that both sea and land points will be selected. 

subArea=T indicates a sub-section of the input grid is requested. subAreaLatLon=T indicates 

that the sub-section will be specified by a range of latitude and longitude, shown by xcoord and 

ycoord to be 355ºE to 357ºE,55·0ºN to 57·0ºN (note we could enter the longitude range as -5 to -

3). 

npoints is irrelevant because the number of points will be determined as the number of points 

the model finds within the given lat/lon range. 

readFileLand=T indicates that the land fraction field is read from the binary file called 

‘grid.gra’, which has no headers and contains land fraction as the first field. 

regLatLon=T indicates that the input grid is a ‘regular’ grid, with origin (the gridpoint in the 

southwest corner) shown by regLat1, regLon1 to be 55.5ºN 355.5ºE, and gridbox size 1º×1º. 

 

With this information, JULES determines that there are 4 gridpoints within the given lat/lon range, 

and that the model grid will be a square of side 2 gridboxes. The land fraction field shows that these 

are all land points, meaning that the land vector also has 4 points. Note that these points could also 

have been selected by providing a list of the point numbers, indicated by pointsList=TRUE, 

npoints=4, and then entering the point numbers (3, 4, 8, 9) after >DATA_POINTS. 

 

Figure 1.  Example of grid selection based on longitude and latitude. 

 

 

 

Grid Example 3:  Selecting only land points in a given range of latitude and longitude. 

 



Page 42 of 126 

This example is similar to Example 2, but this time we only wish to model land points within a 

given area.  The grids used in this example are shown in Figure 2 and we wish to model land points 

in 55-57ºN 354-356ºE (6ºW-4ºW). 

 

To do this, we use the following entries in the run control file. Only the lines in bold are relevant, 

and irrelevant sections have been omitted. 

 

>INIT_GRID 

 

F,F,F                !  pointsList,coord,coordLL 

T                    !  landOnly 

T,T                  !  subArea, subAreaLatLon 

-6.0,-4.0,55.0,57.0  !  xcoord(1:2),ycoord(1:2) 

1                    !  npoints 

F                    !  readFilePoints 

‘points.dat’         !  fileNamePoints 

 

>INIT_LAND 

T                 !  readFileLand 

‘bin’             !  fileFormatLand 

‘grid.gra’        !  fileNameLand 

  

 

pointsList=F indicates that the model grid will be determined by the land fraction field (and 

also latitude and longitude in this case). 

landOnly=T indicates that only land points will be selected. 

subArea=T indicates a sub-section of the input grid is requested. subAreaLatLon=T indicates 

that the sub-section will be specified by a range of latitude and longitude, shown by xcoord and 

ycoord to be 6ºW to 4ºE, 55ºN to 57ºN. 

npoints is irrelevant because the number of points will be determined as the number of land 

points the model finds within the given lat/lon range. 

readFileLand=T indicates that the land fraction field is read from the binary file called 

‘grid.gra’, which has no headers and contains land fraction as the first field. 

 

With this information, JULES determines that there are 4 gridpoints within the given lat/lon range, 

but only 3 are land. As the 3 land points do not form a rectangle, the model grid is a vector of 3 

points. As we are only modelling land points, the land grid is identical to the model grid. 

 

 

Figure 2 Example of grid selection based on longitude and latitude, taking land points only. 

 



Page 43 of 126 

 

6.5. INIT_FRAC: Fractional coverage of land surface types 

In this section, we specify the fraction of the land area in each gridbox that is covered by each of 

the surface types. Under certain circumstances (described below), this information may be acquired 

later, via another section. 

 

>INIT_FRAC 

 

readFracIC 

readFile 

fileFormat 

filename 

 

>ASCBIN 

nheaderFile, nheaderField 

fieldNum 

 

>NC 

varName 

 

>DATA 

frac(1:nxIn,1:nyIn) 

 

 

Table 13 Description of variables in the INIT_FRAC section. 

Variable name  Type and 

permitted values 

Notes 

readFracIC 

 
logical Switch indicating location of fractional cover data. 

TRUE: fractional cover is provided as part of the 
initial condition in section INIT_IC (see Section  6.19) 

and is not provided here. 

FALSE: fractional cover will be read from this 

section. 
For runs with dynamic vegetation 

(l_veg_compete=TRUE), the fraction cover is a 

prognostic variable and it must be read with the initial 

condition (readFracIC=TRUE). 

readFile 

 

logical Switch controlling location of fractional cover data. 

Only used if readFracIC=FALSE. 

 

TRUE: read from an external file 

FALSE: read from the run control file. 

fileFormat 

 
character 

See notes in 

Section  5.2. 

 

Format of data. Only used if readFile=TRUE. 

 

filename character Name of file containing data. Only used if 



Page 44 of 126 

readFile=TRUE. 

The following are read only if readFile=TRUE . Only values for the appropriate file format are 

read. 

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’. 

nheaderFile integer 

>=0 

The number of headers at the start of the file. 

See Section  5.2. 

nheaderField integer 

>=0 

The number of headers before each field.  

See Section  5.2. 

fieldNum integer 

>=1 

The number of the first field to be used from the input 

file (this represents the first surface type).  See 

discussion of fields in Section  5.1. 

>NC: The following are used if fileFormat=’nc’. 

varName 

 
character The name of the variable containing data. 

>DATA: The following are used if readFile=FALSE. 

frac(1:nxIn,1:

nyIn,1:ntype) 

 

real array 

>=0.0 

The fractional coverage of each surface type. The 

fractions should sum to 1 (this is checked by the code). 

These values are only read if readFile=F, and must 

be located after the tag >DATA. 

NB: If using either URBAN-2T or MORUSES then the 

total urban fraction should be entered in the 

‘urban_canyon’ tile
5,6

. 

 

Note that all land points must be either soil points (indicated by values > 0 of the saturated soil 

moisture content), or land ice points (indicated by the fractional coverage of the ice surface type [if 

used] being one). The fractional cover of the ice surface type in each gridbox must be either zero or 

one – there cannot be partial coverage of ice within a gridbox. 

 

6.5.1. Example: Reading frac from the run control file. 

We assume nxIn=nyIn=npoints=1, and ntype=9. Only the lines relevant to this case are 

shown. 

 

>INIT_FRAC 

 

F            !   readFracIC 

F            !   readFile 

 

>DATA 

0.55, 0.15, 0.20, 0.00, 0.05, 0.00, 0.05, 0.00  ! frac(1,1,1:ntype) 

 

readFracIC=F indicates that frac is read here, rather than as part of the initial condition. 

readFile=F indicates that data will be read from the run control file, not from another file. 

The 9 values of frac are positioned after the >DATA tag. 

                                                           
6
 The total urban fraction only should be entered because the canyon and roof fractions are calculated using the canyon 

fraction (W/R). The canyon fraction is set in INIT_URBAN (Section  6.13) and can either be prescribed by the user or 

calculated by an empirical formula described in Table 25 under l_urban_empirical. 

 



Page 45 of 126 

6.5.2. Example: Setting the same tile fractions on all land points 

If we have more than one point on the input grid and 9 defined surface types (npoints>1,  

ntype=9), then it is possible to set the same fractions over all gridboxes without having to make 

separate input files that would contain the same information repeated npoints times.  In this case 

with, say, npoints=1000, the relevant lines in the run control file are, 

 

>INIT_FRAC 

 

F            !   readFracIC 

F            !   readFile 

 

>DATA 

1000*0.55 

1000*0.15 

1000*0.20 

1000*0.00 

1000*0.05 

1000*0.00 

1000*0.00 

1000*0.05 

1000*0.00    !  frac 

 

It is significant that the data for each JULES surface type are written on a separate line, in contrast 

to the single grid point case where all values are written on one line and separated by commas. This 

is because these frac data are read one type at a time in blocks of all grid points (unless the input 

grid is a single point to be read from the run control file). 



Page 46 of 126 

 

6.6. INIT_SOIL: Soil layer depths and hydraulic and thermal characteristics 

In this section we specify the depth of each soil layer and also the hydraulic and thermal 

characteristics of the soil. 

 

>INIT_SOIL 

 

l_vg_soil 

l_soil_sat_down 

l_q10 

soilhc_method 

 

useSoilType 

constZ,zrev 

readFile 

fileFormat 

fileName 

LUTfileName 

 

>ASCBIN 

nheaderFile,nheaderField 

>VARS  

name(1) fieldNumber(1)  

---- Repeated for each variable. --- 

>ENDVARS 

 

>NC 

>VARS 

name(1),SDFname(1) 

---- Repeated for each variable. --- 

>VARS 

 

>DATA_DZSOIL 

dzsoil(1:sm_levels) 

albSoilConst 

 

>DATA 

data values 

 

 

Table 14 Description of variables in the INIT_SOIL section.  

Variable name Type and 

permitted 

values 

Notes 

l_vg_soil logical Switch for van Genuchten soil hydraulic model. 



Page 47 of 126 

TRUE: use van Genuchten model. 

FALSE: use Brooks and Corey model.
7
 

 
References: 

Brooks, R.H. and A.T. Corey, 1964, Hydraulic properties of 

porous media. Colorado State University Hydrology Papers 

3. 

van Genuchten, M.T., 1980, A Closed-form Equation for 

Predicting the Hydraulic Conductivity of Unsaturated Soils. 

Soil Science Society of America Journal, 44:892-898. 

 

l_soil_sat_d

own 

logical Switch for dealing with supersaturated soil layers. If a soil 

layer becomes supersaturated, the water in excess of 

saturation will be put into the layer below or above 

according to this switch. 

TRUE: any excess is put into the layer below. Any excess 

from the bottom layer becomes subsurface runoff. 

FALSE: any excess is put into the layer above. Any 
excess from the top layer becomes surface runoff. This 

option was used in JULES2.0. 

l_q10 logical Switch for use of Q10 approach when calculating soil 

respiration. 

TRUE: use Q10 approach. This is always used if TRIFFID 

is switched off (l_triffid=FALSE) and was used in 

JULES2.0. 

FALSE: use the approach of the RothC model. 
soilhc_metho

d 

Integer 

Allowable 

values: 1 or 2. 

Switch for soil thermal conductivity model.. 

1: use approach of Cox et al (1999), as in JULES2.0. 

2: use approach of Johansen (1975). 
useSoilType logical Switch controlling how soil characteristics are input. 

TRUE: a map of soil types (classes) will be provided, along 

with a look-up table (LUT) giving the soil characteristics for 

each soil type. Each gridbox contains a single soil type, but 

the soil properties of that type can vary with depth. 

FALSE: maps of soil properties are provided. 

constZ logical Switch indicating if soil characteristics are to be uniform 

with depth at each gridbox. Not used if useSoilType=TRUE. 

TRUE: soil characteristics do not vary with depth. 

FALSE: soil characteristics vary with depth. 

zrev  logical Switch indicating if input data are stored in reverse order of 

levels compared with JULES’s expectation. 

TRUE: vertical order is reversed, with data stored in 

                                                           
7
 In the JULES2.0 User Manual this was described as the “Clapp and Hornberger” model and the JULES code still 

refers to “Clapp and Hornberger” rather than “Brooks and Corey”. In fact there are important differences between these 

two hydraulic models (Toby Marthews, pers comm.). There has been confusion in the literature and in past 

documentation of MOSES/JULES, resulting in these differences often being ignored, but JULES uses the Brooks and 

Corey model. Hopefully this confusion will be removed from future releases. 

Reference: Clapp, R.B. and G.M.Hornberger, 1978, Empirical Equations for Some Soil Hydraulic Properties. Water 

Resources Research 14:601-604. 

 



Page 48 of 126 

“bottom to top” order (i.e. bottom layer first). 

FALSE: standard vertical order, with data stored in “top 

to bottom” order (i.e. uppermost layer first). 
Must be FALSE if useSoilType=TRUE. 

readFile 

 

logical Switch controlling location of soil data. 

TRUE: read from an external file 

FALSE: read from the run control file. 
fileFormat character Format of data file. Only used if readFile=TRUE. 

 

fileName character Name of file containing data. Only used if 

readFile=TRUE. 

LUTfileName character Name of file containing the look-up table (LUT) of soil 

characteristics for each soil type. Only used if 

useSoilType=TRUE. This is an ASCII file, the format of 

which is described in Section  0. 

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’, or if 

readFile=FALSE. 

nheaderFile integer 

>=0 

The number of headers at the start of the file (not used if 

readFile=FALSE). See Section  5.2. 

nheaderField integer 

>=0 

The number of headers before each field (not used if 

readFile=FALSE). See Section  5.2. 

Each variable is described by a line with two values (name and fieldNumber), separated by 

spaces (NB no commas). The list of variables is preceded by the tag >VARS, and followed by the 

tag >ENDVARS. 

Name character The name of a soil variable. These names must be chosen 

from the list in Table 15 List of soil parameters.  below. If 

useSoilType=TRUE, only the soil type should be provided, 

otherwise all 9 other variables must be provided.  

fieldNumber integer The field number of the first level of data in the input file 

that is to be used for a variable. See discussion of fields in 

Section  5.1. 

(Note that if readFile=FALSE, this is interpreted slightly 

differently – it is the variable number, not field number.) 

>NC: The following are used if fileFormat=’nc’. 

name character See under >ASCBIN above.  

SDFname character The name of a variable containing data, as it appears in the 

SDF. 

>DATA_DZSOIL 

dzSoil(1:sm_

levels) 

real array The soil layer depths (m), starting with the uppermost layer. 

Note that the soil layer depths (and hence the total soil 

depth) are constant across the domain. 

In its standard setup, JULES uses layer depths of 0.1, 0.25, 

0.65 and 2.0m, giving a total depth of 3.0m. 

albSoilConst Real A value of soil albedo that is to be used at all locations. 

Only used if useSoilType=TRUE. 

>DATA: 

If readFile=FALSE, data for the soil variables should be listed here in the order given in Table 

15 List of soil parameters. . 



Page 49 of 126 

 

 

Table 15 List of soil parameters.  

 

Name Description 

albsoil Soil albedo. A single (averaged) waveband is used.  

b Exponent in soil hydraulic characteristics. 

hcap Dry heat capacity (J m
-3

 K
-1

) 

hcon Dry thermal conductivity (W m
-1

 K
-1

) 

satcon Hydraulic conductivity at saturation (kg m
-2

 s
-1

) 

sathh If l_vg_soil=TRUE (using van Genuchten model), sathh=1/α (m
-1

), where α is a 

parameter of the van Genuchten model. 

If l_vg_soil=FALSE (using Brooks and Corey model), sathh is the absolute 

value of the soil matric suction at saturation (m).  

The suction at saturation is generally less than zero, but JULES uses the absolute 

value. 

sm_crit Volumetric soil moisture content at the critical point (m
3
 water per m

3
 soil). The 

critical point is that at which soil moisture stress starts to restrict transpiration 

sm_sat Volumetric soil moisture content at saturation (m
3
 water per m

3
 soil). Note that this 

field is used to distinguish between soil points and land ice points. sm_sat>0 

indicates a soil point. 

sm_wilt Volumetric soil moisture content at the wilting point (m
3
 water per m

3
 soil). The 

wilting point is that at which soil moisture stress completely prevents transpiration 

soilType The soil type (class). Although this is an integer variable, it is treated as a real 

variable for convenience during input and output. 

 

Names must be entered exactly as specified here (including case). 

If useSoilType=FALSE, all variables other than soilType are required. 

If useSoilType=TRUE, only soilType is required. 

6.6.1. The soil look-up table file 

The soil look-up table should be formatted as shown below, with the meaning of the variables 

described in Table 16. 

### Header lines (e.g. containing a description of data sources) 

### that are not to be read by JULES should begin with # or !. 

nz 

dzSoilLUT(1:nz) 

nsoil 

 

soilNum 

soilChar(isoil,1:8,iz=1) 

… 

soilChar(isoil,1:8,iz=nz) 

---- Repeated for each soil type ---- 

 

Table 16 List of variables in soil look-up table. 



Page 50 of 126 

 

 

Variable name Type and permitted values Notes 

nz integer 

Must equal sm_levels. 

Only used to check that LUT is 

consistent with current soil 

configuration. 

dzSoil(1:nz) integer array 

Must equal dzSoil. 

Only used to check that LUT is 

consistent with current soil 

configuration. 

nsoil integer The number of soil types in the 

file. Not all of these need to be 

present in the map of soil 

types. The  

soilNum integer The soil number (a class or 

ID). These need not be 

consecutive. This number is 

used to map each value of 

soilType found in the map 

of soil types to a set of  

characteristics. 

soilChar(1:nsoil,1:8,1:sm

_levels) 

real array The soil characteristics for 

each soil type and each layer. 

NB Values are required for 

each layer, that is, a soil type 

implies a profile of values. 

The 8 characteristics must be 

given in the following order 

(see Table 15 List of soil 

parameters.  for explanation of 

names): 

sathh, b, hcap, hcon, satcon, 

sm_crit,sm_sat,sm_wilt. 

 

6.7. INIT_TOP: parameters for TOPMODEL 

This section reads parameter values for the TOPMODEL-type parameterisation of runoff. It is only 

read if l_top=TRUE. The description below is very brief. For further details references under 

l_top in Section  6.2. 

 

>INIT_TOP 

 

zw_max 

ti_max 

ti_wetl 

 

readFile 

fileFormat 

fileName 

 



Page 51 of 126 

>ASCBIN 

nheaderFile,nheaderField 

>VARS  

name(1) fieldNumber(1)  

---- Repeated for each variable. --- 

>ENDVARS 

 

>NC 

>VARS 

name(1),SDFname(1) 

---- Repeated for each variable. --- 

>VARS 

 

>DATA 

data values 

 

 

Table 17 Description of variables in the INIT_TOP section 

zw_max real The maximum allowed depth to the water table (m). This 

is the depth to the bottom of an additional layer below the 

sm_levels soil layers and hence should be set to a value 

greater than SUM(dzSoil). Values of 10 to 15m have 

been used. 

ti_max real The maximum possible value of the topographic index. A 

value of 10 has been used successfully. 

ti_wetl real A calibration parameter used in the calculation of the 

wetland fraction. It is used to increment the “critical” value 

of the topographic index that is used to calculate the 

saturated fraction of the gridbox. It excludes locations with 

large values of the topographic index from the wetland 

fraction. See Gedney and Cox (2003). A value of 2 has 

been used. 

readFile 

 

logical Switch controlling location of soil data. 

TRUE: read from an external file 

FALSE: read from the run control file. 

fileFormat character Format of data file. Only used if readFile=TRUE. 

fileName character Name of file containing data. Only used if 

readFile=TRUE. 

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’, or if 

readFile=FALSE. 

nheaderFile integer 

>=0 

The number of headers at the start of the file (not used if 

readFile=FALSE). See Section  5.2. 

nheaderField integer 

>=0 

The number of headers before each field (not used if 

readFile=FALSE). See Section  5.2. 

Each variable is described by a line with two values (name and fieldNumber), separated by 

spaces (NB no commas). The list of variables is preceded by the tag >VARS, and followed by the 

tag >ENDVARS. 

name character The name of a variable. These names must be chosen from 



Page 52 of 126 

the list in Table 18 below.  

flag Integer 

-1 or >0 

Flag indicating how this variable should be set. 

-1: the following value of constVal will be used to set the 

value at all locations 

>0: The field number of the first level of data in the input 

file that is to be used for a variable. See discussion of 

fields in Section  5.1. (Note that if readFile=FALSE, 

this is interpreted slightly differently – it is the variable 

number, not field number.) 

constVal real A value that is used to set a spatially constant field. 

Only used if flag=-1. 

>NC: The following are used if fileFormat=’nc’. 

name character See under >ASCBIN above.  

SDFname character The name of a variable containing data, as it appears in the 

SDF. 

flag integer Flag indicating how this variable should be set. 

-1: the following value of constVal will be used to set the 

value at all locations 

All other values are ignored and data from the SDF are 

used. 

constVal real See under >ASCBIN above. 

>DATA: 

If readFile=FALSE, data for the TOPMODEL variables should be listed here in the order given 

in Table 18. 

 

 

Table 18 List of TOPMODEL parameters 

Name* Description 

fexp Decay factor describing how the saturated hydraulic conductivity decreases with 

depth below the standard soil column (m
-1

).   

ti_mean Mean value of the topographic index in each gridbox. 

ti_sig Standard deviation of the topographic index in each gridbox. 

 

* Names must be entered exactly as specified here (including case). 

 

6.8. INIT_PDM: parameters for PDM 

This section reads parameter values for the PDM-type parameterisation of surface runoff. It is only 

read if l_pdm=TRUE. Note that these parameters are held constant across the model domain. For 

further details of PDM, see references under l_pdm in Section  6.2. 

 

>INIT_PDM 

 

dz_pdm 

b_pdm 

 

Table 19 Description of variables in the INIT_PDM section. 



Page 53 of 126 

dz_pdm real The depth of soil considered by PDM (m). 

A value of ~1m can be used. 

b_pdm real Shape factor for the pdf.  

 

 

6.9. INIT_HGT: elevation of tiles 

This section sets the elevation of each surface tile, relative to the gridbox mean elevation. Note 

that the gridbox mean elevation is not required anywhere in JULES but is implicit in the near-

surface meteorological data that are provided (e.g. higher locations will tend to be colder). The 

elevation of each tile is used to alter the values of the air temperature and humidity over that tile. 

All tile elevations must be greater than zero, i.e. tile can only be higher than the gridbox average, 

because the assumptions used to alter the air temperature and humidity only hold for moving to 

higher elevations. For many applications, the tile elevation can be set to zero. 

 

>INIT_HG 

 

zeroHeight 

 

readFile 

fileFormat 

fileName 

 

>ASCBIN 

nheaderFile,nheaderField 

fieldNum 

 

>NC 

SDFname 

 

>DATA 

data values 

 

 

Table 20 Description of variables in the INIT_HGT section 

zeroHeight logical Switch used to simplify the initialisation of tile elevation. 

 

TRUE: set all tile elevations to zero. This is a very 

common configuration and is made easier by this switch. 

FALSE: set all tile heights using data to follow. 

readFile 

 

logical Switch controlling location of elevation data. 

TRUE: read from an external file 

FALSE: read from the run control file. 
fileFormat character Format of data file. Only used if readFile=TRUE. 

fileName character Name of file containing data. Only used if 

readFile=TRUE. 

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’, or if 

readFile=FALSE. 



Page 54 of 126 

nheaderFile integer 

>=0 

The number of headers at the start of the file (not used if 

readFile=FALSE). See Section  5.2. 

nheaderField integer 

>=0 

The number of headers before each field (not used if 

readFile=FALSE). See Section  5.2. 

fieldNum integer 

>=1 

The number of the first field to be used from the input file 

(this represents the first surface tile).  See discussion of 

fields in Section  5.1. 

>NC: The following are used if fileFormat=’nc’. 

SDFname character The name of a variable containing data, as it appears in the 

SDF. 

>DATA: 

If readFile=FALSE, data for the tile elevations variables should be listed here. Values for each 

tile should be listed on a separate line. 

 

6.10. INIT_VEG_PFT: Time-invariant parameters for plant functional types 

This section reads the values of parameters for each of the plant functional types (PFTs).  These 

parameters are a function of PFT only.  Parameters that also vary with time and/or location are 

dealt with in control file section INIT_VEG_VARY (see guide Section  6.11). Parameters that are 

only required if the dynamic vegetation (TRIFFID) or phenology sections are requested are read 

separately in control file section INIT_TRIF (see guide Section  6.15). 

 

For many applications, the best approach may be to read the PFT parameters from the standard 

parameter files provided with the JULES code (readFile=TRUE, 

filename=’PARAM/standard_pft_param.dat’), since this removes the risk that values 

can be changed by an accidental edit to the run control file.  The description of INIT_VEG_PFT 

options is given in Table 21 and the list of required variables is given in Section  6.10. 

 

>INIT_VEG_PFT 

 

readFile 

fileName 

npftInFile 

 

>DATA 

var1(1),var1(2),...,var1(npft) 

var2(1),var2(2),...,var2(npft) 

… … data values … … 

 

 

Table 21 Description of variables in the INIT_VEG_PFT section. 

Variable name Type and 

permitted 

values 

Notes 

readFile logical Switch controlling location of data. 

TRUE: read from an external file 



Page 55 of 126 

FALSE: read from the run control file. 

filename character The name of the external file containing the data. Only 

used if readFile=TRUE. 

npftInFile integer 

≥ npft 

The number of PFTs for which parameters are given in 

the input file. 

>DATA: 

If readFile=FALSE, the data should be listed here (on the line after >DATA) in the order given 

in Section  6.2. Each variable should start on a new line, and npftInFile values should be given. 

 

 

Each parameter has a separate value for each PFT, npftInFile values are read for each parameter.  

All values are of type REAL, unless stated otherwise. Parameters for the TRIFFID or phenology 

modules are described in Section  6.15. 

HCTN24 and 30 refer to Hadley Centre technical notes 24 and 30, available from 

http://www.metoffice.gov.uk/publications/HCTN 

 

Table 22 List of PFT parameters. 

Variable name Description 

typeName Character. Name of each PFT. This list must include the PFTs used in this run – 

see pftName in section INIT_OPTS (Section  6.2). These names are for the 

user’s convenience, and do not have any special significance within JULES. 

c3 Integer. Flag indicating whether PFT is C3 type. 

 0 :  not C3 (i.e. C4) 

 1 :  C3 

canht_ft The height of each PFT (m), also known as the canopy height. The value read 

here is only used if TRIFFID is not active (l_trif=FALSE). If TRIFFID is 

active, canht_ft is a prognostic variable and its initial value is read as 

described in Section  6.19 below. 

LAI The leaf area index (LAI) of each PFT. The value read here is only used if 

TRIFFID is not active (l_trif=FALSE). If TRIFFID is active, LAI is a 

prognostic variable and its initial value is read as described in Section  6.19 

below. 

catch0 Minimum canopy capacity (kg m
-2

). This is the minimum amount of water that 

can be held on the canopy. See HCTN30 p7. 

dcatch_dlai Rate of change of canopy capacity with LAI (kg m
-2

). Canopy capacity is 

calculated as catch0 + dcatch_dlai*lai. See HCTN30 p7. 

dz0v_dh Rate of change of vegetation roughness length for momentum with height. 

Roughness length is calculated as dz0v_dh*canht_ft. See HCTN30 p5. 

Z0h_z0m Ratio of the roughness length for heat to the roughness length for momentum. 

This is generally assumed to be 0.1. See HCTN30 p6. Note that this is the ratio 

of the roughness length for heat to that for momentum. It does not alter the 

roughness length for momentum, which is calculated using canht_ft and 

dz0v_dh (see above). 

infil_f Infiltration enhancement factor. 

The maximum infiltration rate defined by the soil parameters for the whole 

gridbox may be modified for each PFT to account for tile-dependent factors, such 

as macro-pores related to vegetation roots.  See HCTN30 p14 for full details. 

rootd_ft Root depth (m). 



Page 56 of 126 

An exponential distribution with depth is assumed, with e-folding depth 

rootd_ft. Note that this means that generally some of the roots exist at depths 

greater than rootd_ft. See HCTN30 Eq.32. 

snowCanPFT Flag indicating whether snow can be held under the canopy of each PFT. Only 

used if can_model=4 (see Section  6.2). The model of snow under the canopy 

is currently only suitable for coniferous trees. 

Acceptable values are: 

0: snow cannot be held under the canopy. 

1: snow can be held under the canopy. 

albsnc_max Snow-covered albedo for large leaf area index. Only used if 

l_spec_albedo=FALSE. See HCTN30 Eq.2 

albsnc_min Snow-covered albedo for zero leaf area index.  

Only used if l_spec_albedo=FALSE. See HCTN30 Eq.2. 

albsnf_max Snow-free albedo for large LAI.  

Only used if l_spec_albedo=FALSE. See HCTN30 Eq.1. 

kext Light extinction coefficient - used with Beer’s Law for light absorption through 

tile canopies. See HCTN30 Eq.3. 

kpar PAR Extinction coefficient (m
2
 leaf/m

2
 ground) 

orient Flag indicating leaf angle distribution. 

0 : spherical  

1 : horizontal 

alpha Quantum efficiency (mol CO2 per mol PAR photons). 

alnir Leaf reflection coefficient for NIR.  

HCTN30 Table 3 

alpar Leaf reflection coefficient for VIS. 

HCTN30 Table 3 

omega Leaf scattering coefficient for PAR. 

omnir Leaf scattering coefficient for NIR. 

a_wl Allometric coefficient relating the target woody biomass to the leaf area index 

(kg carbon m
-2

). 

a_ws Woody biomass as a multiple of live stem biomass. 

b_wl Allometric exponent relating the target woody biomass to the leaf area index. 

This is 5/3 in HCTN24 Eq.8. 

eta_sl Live stemwood coefficient (kg C/m/LAI)  

g_leaf_0 Minimum turnover rate for leaves (/360days). 

dgl_dm Rate of change of leaf turnover rate with moisture availability. 

dgl_dt Rate of change of leaf turnover rate with temperature (K
-1

). 

This is 9 in HCTN24 Eq.10. 

glmin Minimum leaf conductance for H2O (m s
-1

). 

dqcrit Critical humidity deficit (kg H2O / kg air). 

See Eqn.17 of Cox et al. (1999). 

fd Scale factor for dark respiration.  See HCTN 24 Eq. 56. 

f0 CI/CA for DQ = 0. See HCTN 24 Eq. 32.  

fsmc_of Moisture availability below which leaves are dropped.  

neff Scale factor relating Vcmax with leaf nitrogen concentration.  See HCTN 24 Eq. 

51. 

nl0 Top leaf nitrogen concentration (kg N/kg C). 

nr_nl Ratio of root nitrogen concentration to leaf nitrogen concentration  



Page 57 of 126 

ns_nl Ratio of stem nitrogen concentration to leaf nitrogen concentration.  

r_grow Growth respiration fraction 

sigl Specific density of leaf carbon (kg C/m2 leaf). 

tleaf_of Temperature below which leaves are dropped (K). 

Tlow Lower temperature for photosynthesis (deg C).  

Tupp Upper temperature for photosynthesis (deg C).  

emis_pft Surface emissivity  

fl_o3_ct Critical flux of O3 to vegetation (nmol/m2/s) 

dfp_dcuo Fractional reduction of photosynthesis with the cumulative uptake of O3 by 

leaves (/mmol/m2) 

 



Page 58 of 126 

 

6.11. INIT_VEG_VARY: Time-/space- varying parameters for plant functional types 

This section describes prescribed characteristics of the vegetation that vary with time and/or 

location, in addition to varying with PFT. 

 

>INIT_VEG_VARY 

 

nvegVar 

vegDataPer, vegUpdatePer 

nvegFileTime, vegFilePer 

vegClim 

readList 

fileName 

vegFileDate(1),vegFileTime(1) 

vegEndTime 

fileFormat 

 

>ASCBIN 

nfieldFile 

nheaderFile,nheaderField 

noNewLineVeg 

varName(1),flag(1),fieldNumber(1),interp(1),nameFile(1) 

--- Repeated for each of nvegVar variables.--- 

 

>NC 

varName(1),flag(1),interp(1),SDFname(1),nameFile(1)  

--- Repeated for each of nvegVar variables.--- 

 

 

 

Table 23 Description of variables in the INIT_VEG_VARY section. 

Variable name Type and 

permitted 

values 

Notes 

nvegVar integer 

0≤nvegVar≤

3 

The number of prescribed characteristics that vary 

with time and/or location. The three characteristics 

that may vary are vegetation height, leaf area index 

and root depth. If nvegVar=0, nothing more is 

read from this section. 

vegDataPer integer The period (s) of time-varying data. If there are no 

time-varying fields, enter 0. 

Special cases: -1 indicates monthly data. 

vegUpdatePer integer The period (s) between updates of time-varying 

fields. This must be less than or equal to the data 

period (vegDataPer). For example, 

vegDataPer=86400, vegUpdatePer=3600, 

indicates that the data are daily values and these 



Page 59 of 126 

should be updated (by interpolation) on an hourly 

basis. Special cases: 

0: update every timestep 

-1: update once a month 

nvegFileTime integer 

≥1 

The number of data files available for each variable, 

each file holding data for different times. If all 

variables are held together, this is the number of data 

files. If variables are held in separate files, this is the 

number of files for any one variable. 

vegFilePer integer The period (s) of the files containing the data. This 

must be at least as large as the period of the data 

(vegDataPer), and must be a multiple of the model 

timestep. 

Special cases: 

-1: monthly files 

-2: annual files 

vegClim logical Switch indicating if time-varying vegetation data are 

to be treated as climatological, in the sense that the 

same data are to be used regardless of the year. 

TRUE: data are climatological. The year given for 

each file is ignored. 

FALSE: data are not climatological 

readList logical Switch controlling how the names of the files 

containing the vegetation data, and the times 

covered by each, are read. 

TRUE: a list of names and times is read from 

another file. This is required if nvegFileTime>1. 

FALSE: a single name and file are read from the run 

control file. This option is only allowed if 

nvegFileTime=1 (see above). 

filename  

 
If nvegFileTime=1 this is the name of the single 

data file (or the template). 

If nvegFileTime>1, this is the name of a file that 

lists the names and times of the data files. The first 

line of this file will be skipped (and so can be used 

for comments). All other lines are to be of the form 

filename, startDate, ”startTime”, 

where fileName may contain variable-name-

templating (see Section  6.21).  startDate is in 

the format yyyymmdd, and time is in the format 

hh:mm:ss. 

vegFileDate integer Date of first data in vegetation file, in format 

yyyymmdd. Only used if readList=FALSE 

(otherwise read from an external file). 

vegFileTime character Time of first data in vegetation file, in format 

hh:mm:ss. Only used if readList=FALSE 

(otherwise read from an external file). It is 

recommended that all times entered in JULES 

use Greenwich Mean Time (GMT or UTC), not 



Page 60 of 126 

local time. The time zone used here must match that 

under INIT_TIME (see Section  6.3). 

vegEndTime logical Flag used with vegetation file templating.  TRUE 

means that time in filename refers to the final data in 

the file, FALSE means the time in the filename 

refers to the first data in the file. 

fileFormat character 

See Section 

 5.2. 

Format of vegetation data files. 

The following are read only if readFile=TRUE. Only values for the appropriate file format are 

read. 

>ASCBIN: If fileFormat=’asc’, ‘bin’ or ‘pp’: 

nfieldFile integer Number of fields in each file. 

nHeaderFile integer 

>=0 

The number of headers at the start of each file - see 

Section  5.2. 

nHeaderTime integer 

>=0 

The number of headers at the start of each time - see 

Section  5.2. 

nHeaderField integer 

>=0 

The number of headers at the start of each field - see 

Section  5.2. 

noNewLineVeg logical Switch describing format of ASCII file. 

TRUE means that variables are arranged across one 

or more lines, and each variable does not necessarily 

start a new line. This option should be used if all the 

data for each time are one line of the input file 

(although it can also be used if the data continue 

onto subsequent lines). TRUE is only allowed if the 

fields are not functions of position (i.e. 

vegFlag=’t’, see above). 

FALSE means that each variable starts on a new 

line. 

varName character 

‘canht’, 

‘lai’, 
‘rootd’ 

The name of the variable. This is used to identify the 

variable in the code, and is set in the code. These 

must be entered exactly as listed, and are case-

sensitive. Acceptable values: 

‘lai’ for leaf area index 

‘canht’ for canopy height 

‘rootd’ for root depth 

flag character 

‘t’, ‘tx’, 
‘x’ 

Flag indicating how the characteristic varies. 

Acceptable values: 

t: function of PFT and time only 

tx: function of PFT, time and location  

x: function of PFT and location only 

At present, all nvegVar variables must have the 

same value for this flag. 

rootd can only use flag ‘t’ (i.e. root depth cannot 

vary with location in the current code). 

fieldNumber integer The field number of the first level of data in the 

input file that is to be used for a variable.  

interpFlag character Flag indicating how variable is to be interpolated in 



Page 61 of 126 

See Table 43. time. 

nameFile character The substitution string used in the names of files that 

contain this variable. Only used if variable name 

templating is used (see Section  6.21). 

>NC: If fileFormat=’nc’: 

varName character See above under >ASCBIN. 

flag character See above under >ASCBIN. 

interpFlag character See above under >ASCBIN. 

SDFname character The name of the variable as it appears in a SDF. 

nameFile character See above under >ASCBIN. 
 

 

6.11.1. Examples of INIT_VEG_VARY 

 

Example 1: Time-varying Leaf Area Index. 

Leaf Area Index is to vary with time (but not with position on the grid). Climatological monthly 

data are to be used, with values updated at the start of each day. Note that the values are always 

assumed to be a function of PFT. The ASCII input file is illustrated in Figure 3 and contains one 

month of data (for all PFTs) on a single line. 

 

Month p1 p2 p3 p4 p5 

1 0.5 4.0 1.0 2.0 1.0 

2 0.7 4.0 1.1 2.0 1.5 

3 0.9 4.2 1.5 2.0 2.0 

4 2.0 4.5 2.0 2.0 2.5 

---- rest of file not shown---  

Figure 3 Schematic of an ASCII file with monthly LAI data 

 

The relevant entries in the run control file are shown below. Only the lines in bold are relevant, and 

irrelevant sections have been omitted. 

 

>INIT_VEG_VARY 

 

1   !  nvegVar 

-1,86400  !  vegDataPer, vegUpdatePer 

1,1   !  nvegFileTime, vegFilePer 

T   !  vegClim 

F   !  readList 

‘lai_monthly.dat’ !  fileName 

20120115,’00:00:00’ !  vegFileDate(1),vegFileTime(1) 

‘asc’   !  fileFormat 

 

>ASCBIN 

6   !  nfieldFile 

1,0   !  nheaderFile,nheaderField 



Page 62 of 126 

T   !  noNewLineVeg 

‘lai’,   ‘t’, 2, ‘i’, ’notused’  ! name, flag, field, interp, nameFile 

 

nvegVar=1 indicates that we only want to vary one vegetation characteristic. 

vegFileDate=20120115, but since vegClim=T, the year is discarded (effectively leaving 

0115=15 January), meaning that each time of data is valid on the 15
th

 of the month. 

nfieldFile=6 because we have data for each of 5 PFTs, plus there is a ‘timestamp’ variable 

that will not be used (see Figure 3). The final line shows that we want to vary LAI as a function of 

time (and PFT) only. The LAI data start with field #2. The ‘I’ and vegUpdatePer=86400 

indicate that the monthly data will be interpolated between the monthly values and updated once 

every 86400s (once a day). 



Page 63 of 126 

 

6.12. INIT_NONVEG: Parameters for non-vegetation surface types 

 

>INIT_NONVEG 

 

readFile 

fileName 

nnvgInFile 

 

>DATA 

dataVar1(1),dataVar1(2),...,dataVar1(nnvgInFile) 

dataVar2(1),dataVar2(2),...,dataVar2(nnvgInFile) 

… … data values … … 

 

 

 Table 24 Description of variables in the INIT_NONVEG section. 

Variable name Type and 

permitted 

values 

Notes 

readFile logical Switch controlling location of data. 

TRUE: read from an external file 

FALSE: read from the run control file. 

filename character The name of the file to be read. Only used if 

readFile=TRUE. Note: For many applications, the best 

approach may be to read the parameters from the files 

provided with the JULES code (via readFile=TRUE), 

since this removes the risk that values can be changed by an 

accidental edit to the run control file. 

nnvgInFile integer 

≥ nnvg 

The number of non-vegetation surface types for which 

parameters are available in the input file. 

>DATA 

The following is the list of dataVar parameters that must be defined for each non-PFT tile type. 

HCTN30 refers to Hadley Centre technical note 30, available from 

http://www.metoffice.gov.uk/publications/HCTN 

typeName charact

er 

 

Name of each surface type. This list must include the non-

vegetation surface types used in this run as defined in 

INIT_OPTS variable nvgName (see Section  6.2). 

Special cases: 

‘soil’ – this surface type must always be present. 

‘water’ – this is used to indicate open water, such as 

lakes. 

‘ice’ – this is used to indicate land ice, such as glaciers. 

‘urban_roof’ – this is used to indicate the urban roof 

tile. It enables the two-tile urban schemes and should be 

used in conjunction with ‘urban_canyon’ (though see 

footnote 5 on page 4) 

‘urban_canyon’ – this is used to indicate the urban 



Page 64 of 126 

canyon tile. Must be used in conjunction with 

‘urban_roof’ and cannot be used with ‘urban’ 

 

Each special type must be represented by not more than one 

type (e.g. we cannot have two ‘soil’ types). 

albsnc_nvg real Snow-covered albedo. 

Only used if l_spec_albedo=FALSE. 

See HCTN30 Table 1  

albsnf_nvg real Snow-free albedo.  

See HCTN30 Table 1 

Only used if l_spec_albedo=FALSE. 

catch_nvg real Capacity for water (kg m
-2

).  

See HCTN30 p7 

gs_nvg real Surface conductance (m s
-1

). 

See HCTN30 p7 

Soil conductance is modified by soil moisture according to 

HCTN30 Eq 35. 

infil_nvg real Infiltration enhancement factor. 

The maximum infiltration rate defined by the soil 

parameters for the whole gridbox may be modified for each 

tile to account for tile-dependent factors.  See HCTN30 p14 

z0_nvg real Roughness length for momentum (m). 

See HCTN30 Table 4 

z0h_z0m real Ratio of the roughness length for heat to the roughness 

length for momentum. This is generally assumed to be 0.1. 

See HCTN30 p6. Note that this is the ratio of the roughness 

length for heat to that for momentum. It does not alter the 

roughness length for momentum, which is given by 

z0_nvg above.  

ch_nvg real Heat capacity of this surface type (J K
-1

 m
-2

).  Used only if 

can_model is 3 or 4 (See INIT_OPTS, Section  6.2). 

vf_nvg real 

0≤vf_nv

g≤1 

Fractional coverage of non-vegetation “canopy”.  Typically 

set to 0.0, but value of 1.0 used if tile should have a heat 

capacity in conjunction with can_model options 3 or 4 

(See INIT_OPTS, Section  6.2) 

emis_nvg real Surface emissivity. 

 



Page 65 of 126 

6.13. INIT_URBAN: Urban model configuration, geometry & material characteristics 

This section reads in model configuration choices, geometry & material characteristics data for the 

urban schemes URBAN-2T and MORUSES. Both these schemes must have an ‘urban_roof’ 

tile and an ‘urban_canyon’ tile (though see footnote 5 on page 4). This section is only read if 

either of the two-tile urban schemes are enabled by including the ‘urban_roof’ tile. The 

‘urban_roof’ and ‘urban_canyon’ tile type parameters specified in INIT_NONVEG 

(Section  6.12) will be used for values that MORUSES does not parameterise, and for any 

MORUSES parametrisations that are turned off, according to Table 26. Further information on 

MORUSES, including references, can be found in the technical documentation and under 

l_moruses in INIT_OPTS (Section  6.2)  

 

 

>INIT_URBAN 

 

l_urban_empirical,l_moruses_macdonald 

l_moruses_albedo,l_moruses_emissivity,l_moruses_rough 

l_moruses_storage,l_moruses_storage_thin 

 

anthrop_heat_scale 

 

readFile 

fileFormat 

fileName 

 

>ASCBIN 

nheaderFile, nheaderField 

>VARS 

varName(1)   varFlag(1)   constVal(1) 

varName(2)   varFlag(2)   constVal(2) 

--- Repeat for each variable. --- 

>ENDVARS 

 

>NC 

>VARS 

varName(1)   varFlag(1)   constVal(1)   SDFname(1)  

varName(2)   varFlag(2)   constVal(2)   SDFname(2)  

--- Repeat for each variable. --- 

>ENDVARS 

 

# Data fields to be read from this file should appear below here. 

>DATA 

 



Page 66 of 126 

 

Table 25 Description of variables that are required in the INIT_URBAN section. 

Variable name Type and 

permitted 

values 

Notes 

l_urban_empiric

al 
logical Switch to use empirical relationships for urban geometry, 

based on total urban fraction. Dimensions calculated are 

W/R, H/W & H (see Table 27) 

 

URBAN-2T uses W/R only. 

Used in calculation of the canyon and roof fractions and 

also to distribute anthropogenic heat between roof and 

canyon if l_anthrop_heat_src = TRUE 

 

TRUE:  Use empirical relationships for urban geometry. 

FALSE:  Appropriate data needs to be supplied instead 

 

NB: These are only valid for high resolutions (~1 km) 

 

References: 

Bohnenstengel SI, Evans S, Clark P, Belcher SE (2010). 

Simulations of the London urban heat island, Quarterly 

Journal of the Royal Meteorological Society (submitted) 

The following are the parameterisation switches for the configuration of MORUSES. Where 

appropriate Table 26 gives the ‘urban_roof’ and ‘urban_canyon’ parameters that are 

required to be set in INIT_NONVEG (Section  6.12). 

l_moruses_macdo

nald 

logical MORUSES switch for using MacDonald et al. (1998) to 

calculate effective roughness length of urban areas and 

displacement height from urban geometry (H, H/W and 

W/R, see Table 27). 

 

TRUE:  Use MacDonald et al. (1998) formulations 

FALSE:  Appropriate data needs to be supplied instead 

 

NB: If l_urban_empirical = TRUE then 

l_moruses_macdonald = TRUE, which the code 

enforces this. 

 

References: 

Macdonald RW, Griffiths RF, Hall D. 1998. An improved 

method for the estimation of surface roughness of obstacle 

arrays. Atmos. Env. 32: 1857–1864 

l_moruses_albed

o 

logical MORUSES switch for effective canyon albedo 

parameterisation. The roof albedo is given by 

INIT_NONVEG (Section  6.12). 

 

TRUE:  Use MORUSES parameterisation. Requires that 

l_cosz = TRUE, which the code automatically enables. 

FALSE  See Table 26 



Page 67 of 126 

l_moruses_emiss

ivity 

logical MORUSES switch for effective canyon emissivity 

parameterisation. The roof emissivity is given by 

INIT_NONVEG (Section  6.12). 

 

TRUE:  Use MORUSES parameterisation 

FALSE  See Table 26 

l_moruses_rough logical MORUSES switch for effective roughness length for heat 

parameterisation. 

 

TRUE:  Use MORUSES parameterisation 

FALSE  See Table 26 

l_moruses_stora

ge 

logical MORUSES switch for thermal inertia and coupling with 

underlying soil parameterisation 

 

TRUE: Use MORUSES parameterisation  

FALSE  See Table 26 

l_moruses_stora

ge_thin 

logical MORUSES switch to use a thin roof to simulate the effects 

of insulation. 

Only used if l_moruses_storage = TRUE 

 

TRUE:  Use thin, insulated roof 

FALSE:  Use damping depth based on diffusivity of roofing 

materials 

Other URBAN-2T and MORUSES options 

anthrop_heat_sc

ale 

real 

 

Distribution scaling factor, which allows the anthropogenic 

heat flux to be spread between the urban_canyon 

and urban_roof tiles such that: 

 

H_roof  =  anthrop_heat_scale × H_canyon 

H_canyon × (W/R) + H_roof × ( 1.0 – W/R )  =  anthrop_heat 

 

Has a value 0.0 - 1.0 where the extremes correspond to: 

0.0  =  all released within the canyon 

1.0  =  evenly spread between canyon and roof 

 

Only used if l_anthrop_heat_src = TRUE 

The following are give information about the source of data for urban geometry and building 

material properties 

readFile logical Switch that indicates source of data. 

TRUE:  data are read from a named, external file 

FALSE:  data are read from the run control file after the 

section marked >DATA 

fileFormat character Flag indicating the file format. Case sensitive. 

Only used if readFile=.TRUE. 

‘asc’: ASCII 

‘bin’: generic binary (including GrADS) 

‘nc’: netCDF 

‘pp’: PP format 



Page 68 of 126 

fileName  Name of file containing urban geometry & building 

material characteristics 

Only used if readFile=.TRUE. 

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’, or ‘pp’, or if 

readFile = FALSE. 

nheaderFile  integer The number of headers at the start of the file. 

See Section  5.2 

nheaderField integer The number of headers at the start of a field. 

See Section  5.2 

varName character The name of the variable (see Table 27 Description of 

urban geometry & building material variables). 

varFlag integer 

≥-1 

Flag indicating how the variable is initialised. Acceptable 

values: 

>0: The field number in the file that holds data for this 

variable. See discussion of fields in Section  5.1. 

-1: The field will be set to the value constVal (see 

below) at all points. This option can be used to specify an 

idealised initial condition. 

constVal real The value to be used at all points. Only used if flag=-1. 

>NC: The following are used if fileFormat=’nc’. 

varName character See under >ASCBIN above. 

varFlag integer 

≥-1 

Flag indicating how the variable is initialised. Acceptable 

values: 

>0: Default (effectively is ignored).  

-1: See under >ASCBIN above. 

constVal real See under >ASCBIN above. 

SDFname character The name of the variable as it appears in the SDF. 

>DATA 

If readFile = FALSE, data should now appear in the run control file, in the order indicated by 

the value of varFlag for each variable (see >ASCBIN above) with each starting on a separate 

line. 

 



Page 69 of 126 

Table 26 Parameters that may be used from INIT_NONVEG (Section  6.12) for the ‘urban_roof’ and 

‘urban_canyon’ tile types depending on MORUSES switch configuration. Any non-vegetation parameters 

not referenced in this table are always used from INIT_NONVEG. 

MORUSES switch Tile type TRUE FALSE 

urban_canyon MORUSES 
l_moruses_albedo 

(l_cosz) urban_roof 
albsnf_nvg, 

albsnc_nvg 

albsnf_nvg, 

albsnc_nvg 

urban_canyon MORUSES 
l_moruses_emissivity 

urban_roof emis_nvg 
emis_nvg 

urban_canyon 
l_moruses_rough 

urban_roof 
MORUSES 

z0_nvg, 

z0h_z0m 

urban_canyon 
l_moruses_storage 

urban_roof 
MORUSES ch_nvg, vf_nvg 

 

 

Table 27 Description of urban geometry & building material variables  

Variable 

name 

Description
8
 Notes on when data is not used. If not used / updated with 

calculated values then the variable could be set to 

constVal instead. 

wrr Repeating width ratio 

(or canyon fraction, 

W/R) 

If l_urban_empirical = TRUE then this is updated 

with calculated values. 

The following refer to MORUSES only 

hwr Height-to-width ratio 

(H/W) 
See for wrr above 

hgt Building height (H) See for wrr above 

ztm Effective roughness 

length of urban areas 
If l_moruses_macdonald = TRUE (or 

l_urban_empirical = TRUE) then this is updated 

with calculated values. 

disp Displacement height See for ztm above 

albwl Wall albedo Data only used if l_moruses_albedo = TRUE 

albrd Road albedo See for albwl above 

emisw Wall emissivity Data only used if l_moruses_emissivity = TRUE 

emisr Road emissivity See for emisw above 

 

                                                           
8
 For more information on the urban geometry used please see the JULES technical documentation 



Page 70 of 126 

6.14. INIT_SNOW: Snow parameters 

 

 >INIT_SNOW 

 

dzSnow 

rho_snow_const 

snow_hcap,snow_hcon 

snowLiqCap 

r0,rmax 

snow_ggr(1:3) 

amax(1:2)  

dtland,kland 

maskd 

snowLoadLAI,snowInterceptFact,snowUnloadFact 

 

 

Table 28 Description of variables in the INIT_SNOW section 

HCTN30 refers to Hadley Centre technical note 30, available from 

http://www.metoffice.gov.uk/publications/HCTN. 

Variable name Type and 

permitted values 

Notes 

dzSnow(1:nsm

ax) 

array Prescribed thickness of each snow layer (m). 

Only used if nsmax > 0. 

The interpretation of dzSnow is slightly complicated and 

an example of the evolution of the snow layers is given in 

Table 29. 

dzSnow gives the thickness of each layer when it is not the 

bottom layer. 

For the top layer (#1), the minimum thickness is 

dzSnow(1) and the maximum thickness is 

2*dzSnow(1). For all other layers (iz), the minimum 

thickness is dzSnow(iz-1),  i.e. the given thickness of 

the previous layer, and the maximum thickness is 

2*dzSnow(iz),  i.e. twice the layer dzSnow value, 

except for the last possible layer (nsMax) which has no 

upper limit. 

As a snowpack deepens, the bottom layer (closest to the 

soil; label this as layer b) thickens until it reaches its 

maximum allowed thickness, at which point it will split into 

a layer of depth dzSnow(b) and a new bottom layer b+1 

is added to hold the remaining snow. If a layer becomes 

thinner than its value in dzSnow it is removed and the 

snow partitioned between the remaining layers. Whenever a 

layer splits or is removed, the properties of the layer (e.g. 

temperature) are allocated to the remaining layers. 

Note that dzSnow(nsMax), the final thickness, is not used 

but a value must be input. 



Page 71 of 126 

rho_snow_con

st 

real Constant density of lying snow (kg m
-3

). 

This is used if nsmax=0, or if the snowpack is very thin. It 

is also used as the density of fresh snow. 

snow_hcap real Thermal capacity of lying snow  (J K
-1

 m
-3

) 

Typical value=0. ·3e6  

snow_hcon real Thermal conductivity of  lying snow (W m
-1

 K
-1

) 

See HCTN30 Eq.42 

Typical value= 0·265   

snowLiqCap real Liquid water holding capacity of lying snow, as a fraction 

of snow mass. 

Only used if nsmax>0. 

r0 real Grain size for fresh snow (µm).  

See HCTN30 Eq.15. 

A typical value is 50·0. 

Only used if l_spec_albedo=TRUE. 

rmax real Maximum snow grain size (µm). 

See HCTN30 p4. 

A typical value 2000.0 

Only used if l_spec_albedo=TRUE. 

snow_ggr(1:3

) 

real array  Snow grain area growth rates (µm
 2

 s
-1

).. Only used if 

l_spec_albedo=TRUE. 

See HCTN30 Eq.16 

The 3 values are for melting snow, cold fresh snow and cold 

aged snow respectively. 

Typical values are 0·6, 0·06, 0·23e6  

amax(1:2) real array Maximum albedo for fresh snow. . Only used if 

l_spec_albedo=TRUE. 

Values 1 and 2 are for VIS and NIR wavebands 

respectively. 

Typical values=0·98, 0. ·7 

dtland real Degrees Celsius below zero at which snow albedo equals 

cold deep snow albedo. This is 2·0 in HCTN30 Eq4. 

Only used if l_spec_albedo=FALSE. 

kland real Used in snow-ageing effect on albedo. 

This is 0·3 in HCTN30 Eq4 (note the last term of that 

equation should be divided by dtland, i.e. kland as 

specified here includes a factor dtland in the 

denominator). 

Only used if l_spec_albedo=FALSE. 

Must not be zero. 

maskd real Used in exponent of equation weighting snow-covered and 

snow-free albedo. This is 0·2 in HCTN30 Eq.5. 

snowLoadLAI real Ratio of maximum canopy snow load to leaf area index (kg 

m
-2

). This is 4·4 in JULES1. Only used if can_model=4. 

snowIntercep

tFact 

 

real Constant in relationship between mass of intercepted snow 

and snowfall rate. This is 0·7 in JULES1. Only used if 

can_model=4 

snowUnloadFa

ct 
real 

 

Constant in relationship between canopy snow unloading 

and canopy snow melt rate. This is 0·4 in JULES1. Only 



Page 72 of 126 

 used if can_model=4 

 

 

Table 29 gives an example of how the number and thickness of snow layers varies with total snow 

depth for the case of nsmax=3 and dzSnow=(0.1, 0.15, 0.2). Note that if the values given by the user for 

dzSnow are a decreasing series with dzSnow(i)<=2*dzSnow(i-1), the algorithm will result in layers i and i+1 

beign added at the same time. Don’t panic - this should not be a problem for the simulation. 

 

Table 29 An example of the evolution of snow layer thickness. 

Snow depth 

(m) 

Number 

of 

layers 

Layer thickness, 

uppermost layer 

first (m) 

 

Comments 

<0.1 0  While the depth of snow is less than dzSnow(1), the 

layer model is not active and snow and soil are 

combined in a composite layer. 

0.1 to <0.2 1 Total snow depth. The single layer grows until it is twice as thick as 

dzSnow(1). 

0.2 to <0.4 2 0.1,remainder Above 0.2m, the single layer splits into a top layer of 

0.1m and the remaining snow in the bottom layer. 

≥0.40 3 0.1,0.15,remainder At 0.4m depth, layer 2 [which has grown to 0.3m 

thick, i.e. 2*dzSnow(2)], splits into a layer of 0.15m 

and a new bottom layer holding the the remaining 

0.15m. As all layers are now in use, any subsequent 

deepening of the pack is dealt with by increasing the 

thickness in this bottom layer. 



Page 73 of 126 

 

6.15. INIT_TRIF: Parameters for the TRIFFID model 

This section is used to read PFT parameters that are only needed by the dynamic vegetation model 

(TRIFFID). Values are not read if TRIFFID is not selected. TRIFFID also uses many other PFT-

specific variables that are also used in other parts of JULES, and are read in Section  6.10 above. 

 

>INIT_TRIF 

 

readFile 

fileName 

nnvgInFile 

 

>DATA 

dataVar1(1),dataVar1(2),…,dataVar1(nPft) 

dataVar2(1),dataVar2(2),…,dataVar2(nPft) 

… … data values … … 

 

 

Table 30 Description of variables in the INIT_TRIF section.  

Variable name Type and 

permitted 

values 

Notes 

readFile logical Switch controlling location of data. 

TRUE: read from an external file 

FALSE: read from the run control file. 

filename characte

r 

The name of the file to be read. Only used if 

readFile=TRUE. 

npftInFile integer 

≥npft 

The number of PFTs for which parameters are available in 

the input file. 

>DATA 

If readFile=FALSE, the dataVar parameters should be listed in the order given below. 

pftName character Name of each PFT. These must match those given in 

Section  6.2. 

crop integer 

0 or 1 

Flag indicating whether the PFT is a crop. 

Only crop PFTs are allowed to grow in the agricultural 

area. 

0 :  not a crop 

1 :  a crop 

g_area real Disturbance rate (/360days). 

g_grow real Rate of leaf growth (/360days). 

g_root real Turnover rate for root biomass (/360days). 

g_wood real Turnover rate for woody biomass (/360days) 

lai_max real Maximum LAI 

lai_min real Minimum LAI  

 

Note that where a quantity is said to have units of “/360days”, this means that it is an amount per 

360 days. 



Page 74 of 126 

 

6.16. INIT_AGRIC: Fractional coverage by agriculture 

If the TRIFFID vegetation model is used, the fractional area of agricultural land in each gridbox is 

read in this section. Otherwise, this section is not used. 

 

>INIT_AGRIC 

 

readFile 

fileFormat 

fileName 

 

>ASCBIN 

nheaderFile,nheaderField 

fieldNum 

 

>NC 

varName 

 

# Data fields to be read from this file should appear below here. 

>DATA 

frac_agr(1:nxIn,1:nyIn) 

 

 

Table 31 Description of variables in the INIT_AGRIC section  

Variable name Type and 

permitted 

values 

Notes 

readFile 

 

logical Switch controlling location of soil layer data. 

TRUE: read from an external file 

FALSE: read from the run control file. 

fileFormat character Format of data file. Only used if readFile=TRUE. 

 

filename character Name of file containing data. Only used if 

readFile=TRUE. 

The following are read only if readFile=TRUE. Only values for the appropriate file format are 

read. 

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’ or ‘pp’. 

nheaderFile integer 

>=0 

The number of headers at the start of the file, 

nheaderField integer 

>=0 

The number of headers before each field. 

fieldNum integer 

>=1 

The field number of the first field to be used from the 

input file. 

>NC: The following are used if fileFormat=’nc’. 

SDFName 

 

character The name of the variable containing data, as it appears 

in the SDF. 



Page 75 of 126 

>DATA: The following are used if readFile=FALSE. 

frac_agr(1:nxIn,1

:nyIn) 

real array The fraction that is agriculture. 

 



Page 76 of 126 

 

6.17. INIT_MISC: Miscellaneous surface, carbon and vegetation parameters 

 

>INIT_MISC 

 

hleaf,hwood 

beta1,beta2 

fwe_c3, fwe_c4 

q10_leaf 

kaps 

kaps_roth(1:4) 

q10_soil 

cs_min 

co2_mmr 

frac_min, frac_seed 

pow 

 

 

HCTN24 and 30 refer to Hadley Centre technical notes 24 and 30, available from 

http://www.metoffice.gov.uk/publications/HCTN 

Table 32 Description of variables in the INIT_MISC section 

Variable name Type and 

permitted values 

Notes 

hleaf real Specific heat capacity of leaves (J K
-1

 per kg carbon). 

HCTN30 p6 

Typical value=5.7E4 

hwood real Specific heat capacity of wood (J K
-1

 per kg carbon). 

HCTN30 p6 

Typical value=1.1e4 

beta1 real Coupling coefficient for co-limitation in photosynthesis 

model. 

Cox et al. (1999), Eq.61 

Typical value=0.83 

beta2 real Coupling coefficient for co-limitation in photosynthesis 

model. 

Cox et al. (1999), Eq.62 

Typical value=0.93 

fwe_c3 real Constant in expression for limitation of photosynthesis by 

transport of products, for C3 plants. This is 0.5 in Eq.60 of 

Cox et al. (1999). 

fwe_c4 real Constant in expression for limitation of photosynthesis by 

transport of products, for C4 plants. This is 2.0×10
4
 in 

Eq.60 of Cox et al. (1999). 

q10_leaf  real Q10 factor for plant respiration. 

Cox et al. (1999) Eq.66 

Typical value=2.0 

kaps real Specific soil respiration rate at 25 degC and optimum soil 



Page 77 of 126 

moisture (s
-1

).  

Only used if not using TRIFFID (l_trif=FALSE). 

HCTN24 Eq.16. 

Typical value=5e-9 

Kaps_roth(1

:4) 

real Specific soil respiration rate for the RothC submodel for 

each soil carbon pool. 

Only used if using the TRIFFID vegetation model 

(l_trif=TRUE), in which case soil carbon is modelled 

using four pools (biomass, humus, decomposable plant 

material, resistant plant material). 

q10_soil real Q10 factor for soil respiration. 

Only used if l_q10=TRUE. 

HCTN24 Eq.17 

Typical value=2.0 

cs_min real Minimum allowed soil carbon (kg m
-2

) 

Typical value=1.0e-6 

co2_mmr real Concentration of atmospheric CO2, expressed as a mass 

mixing ratio. 

frac_min real Minimum fraction that a PFT is allowed to cover if 

TRIFFID is used. 

Typical value=1.0e-6 

frac_seed real Seed fraction for TRIFFID. 

Typical value=0.01 

pow real Power in sigmodial function used to get competition 

coefficients. 

This is 20.0 in HCTN24 Eq.3. 

 



Page 78 of 126 

 

6.18. INIT_DRIVE: Meteorological driving data 

>INIT_DRIVE 

 

driveDataPer 

ndriveFileTime, driveFilePer 

readList 

fileName 

driveFileDate(1),driveFileTime(1) 

driveFormat 

 

ioPrecipType,l_point_data 

tForSnow 

tForConv,conFrac 

io_rad_type,ioWindSpeed 

useDiffRad,diffFracConst 

z1_uv, z1_tq 

 

ndriveExtra 

 

>ASCBIN 

byteSwapDrive 

nfieldDriveFile 

ndriveHeaderFile,ndriveHeaderTime,ndriveHeaderField 

noNewLineDrive 

>VARS 

name(1)   fieldNumber(1)   interp(1)  nameFile(1) 

name(2)   fieldNumber(2)   interp(2)  nameFile(2) 

--- Repeat for each variable. --- 

>ENDVARS 

 

>NC 

ncTypeDrive 

>VARS 

name(1)   SDFname(1)   nameFile(1)   interp(1)  

name(2)   SDFname(2)   nameFile(2)   interp(2)  

--- Repeat for each variable. --- 

>ENDVARS 

 

Table 33 Description of variables in the INIT_DRIVE section 

Variable name Type and 

permitted values 

Notes 

driveDataPer 

 

integer 

1 – 86400 (see 

notes) 

The time step (seconds) of the driving data. This must 

be a multiple of the model timestep and must be at most 

86400s (one day). 86400 must be a multiple of 

driveDataPer, so that data are read at the same 

times each day. 

ndriveFileTime integer The number of data files available for each variable, 



Page 79 of 126 

 

 

>=1 each file holding data for different times. If all variables 

are held together, this is the number of data files. If 

variables are held in separate files, this is the number of 

files for any one variable. If time templating is used (see 

Section  6.21), ndriveFileTime should be 1. 

driveFilePer integer The period (seconds) of the files containing the driving 

data. 

This is only used if time templating is used (see Section 

 6.21). 

 This must be at least as large as the period of the data 

(driveDataPer), and must be a multiple of the 

model timestep. 

Special cases: 

-1: monthly files 

-2: annual files 

readList logical Switch controlling how the names of the files containing 

the driving data, and the times covered by each, are 

read. 

TRUE: names are read from another file 

FALSE: names are read from the run control file. This 

option is only allowed if ndriveFileTime=1. 

filename(1) character If ndriveFileTime=1 this is the name of the single 

data file (or the template name). 

If ndriveFileTime>1, this is the name of a file that 

lists the names and times of the data files. The first line 

of this file will be skipped (and so can be used for 

comments). All other lines are to be of the form: 
filename, startDate,”startTime” 

where 

fileName may contain variable-name-templating (see 

Section  6.21) 

startDate is in format yyyymmdd 

time is in format hh:mm:ss. 

Starting time and date for first driving data file. Only used if readList=FALSE (otherwise these 

values are read from an external file). 

driveFileDate integer Date of first data in the driving data file, in format 

yyyymmdd. 

driveFileTime character Time of day of first data in the driving data file in 

format hh:mm:ss. It is recommended that all times 

entered in JULES use Greenwich Mean Time (GMT 
or UTC), not local time. The time zone used here must 

match that under INIT_TIME (see Section  6.3). 

driveFormat 

 
character 

See Section  5.2. 

Format of data files.  

ioPrecipType 

 
integer 

1 to 4. 

Flag indicating which precipitation variables are input, 

and how they are treated. (Note that all precipitation in 

JULES is considered to be either rainfall or snowfall.) 

1: A single precipitation field is input. This represents 

the total precipitation (rainfall and snowfall). The total 



Page 80 of 126 

is partitioned between snowfall and rainfall using 

tForSnow (see below), and rainfall is then further 

partitioned into large-scale and convective components  

using tForSnow. Convective snowfall is assumed to 

be zero. 

2: Two precipitation fields are input, namely rainfall and 

snowfall. The rainfall is partitioned between large-scale 

and convective, using tForConv (see below). 

Convective snowfall is assumed to be zero. 

3: Three precipitation fields are input, namely large-

scale rainfall, large-scale snowfall and convective 

rainfall. This cannot be used with 

l_point_data=TRUE. Convective snowfall is 

assumed to be zero, and tForSnow and tForConv 

are not used. 

4: Four precipitation fields are input, namely large-scale 

rainfall, large-scale snowfall, convective rainfall and 

convective snowfall. This cannot be used with 

l_point_data=TRUE. tForSnow and tForConv 

are not used. Note that this is the only option that 

considers convective snowfall. 

The concept of convective and large-scale (or 

dynamical) components of precipitation comes from 

atmospheric models, in which the precipitation from 

small-scale (convective) and large-scale motions is often 

calculated separately. If JULES is to be driven by the 

output from such a model, the driving data might 

include these components.. 

l_point_data 

 

logical Flag indicating if driving data are point or area-average 

values. This affects the treatment of precipitation input 

and how snow affects the albedo. 

TRUE: driving data are point data. Precipitation is not 

distributed in space (see FALSE below) and is all 

assumed to be “large-scale” in origin. The albedo 

formulation is suitable for a point. 

FALSE: driving data are area averages. The 

precipitation inputs are assumed to be exponentially 

distributed in space, as in UMDP25, and can include 

convective and large-scale components. The albedo 

formulation is suitable for a gridbox. 

tForSnow 

 

real 

>0 
If ioPrecipType is 1 or 2, tForSnow is the near-

surface air temperature (K) at or below which the 

precipitation is assumed to be snowfall. At higher 

temperatures, all the precipitation is assumed to be 

liquid. 

tForConv real 

>0 
If ioPrecipType is 1 or 2, tForConv is the near-

surface air temperature (K) at or above which the 

precipitation is assumed to be convective in origin. At 

lower temperatures, all the precipitation is assumed to 



Page 81 of 126 

be “large-scale” in origin. Also see conFrac. 

tForConv is not used if l_point_data is TRUE, 

since then there is no convective precipitation. 

tForSnow must be less than tForConv, implying 

that all solid precipitation is large-scale in origin (unless 

ioPrecipType=4, in which case tForSnow and  

tForConv are irrelevant). 

conFrac real  

>0 
Convective precipitation covers the fraction conFrac 

of the gridbox. 

io_rad_type 

 

integer 

1, 2 or 3 

Flag indicating what radiation fluxes are input. 

1: Downward fluxes of short- and longwave radiation 

are input. Normally this is the preferred option. 

2: Downward shortwave and net (all wavelengths) 

downward radiation are input. The modelled albedo and 

surface temperature are used to calculate the downward 

longwave flux. 

3: Net downward fluxes of short- and longwave 

radiation are input. The modelled albedo and surface 

temperature are used to calculate the downward fluxes 

of shortwave and longwave radiation. 

iowindSpeed 

 

logical Switch indicating how wind data are input. 

TRUE: the wind speed is input 

FALSE: the two components of the horizontal wind 

(e.g. the southerly and westerly components) are input. 

useDiffRad logical Switch for input of diffuse radiation. 

TRUE: diffuse radiation is a time-varying input. Only 

allowed if io_rad_type=1 or 2. 

FALSE: diffuse radiation is set to a constant fraction 

(diffFracConst)of the total downward shortwave 

radiation.  

diffFracConst real A constant value used to calculate diffuse radiation from 

the total downward shortwave radiation. 

Only used if useDiffRad=FALSE. 

z1_uv real  

>0.0 

The height (m) at which the wind data are valid.  This 

height is relative to the zero-plane not the ground. 

z1_tq 

 

real  

>0.0 

The height (m) at which the temperature and humidity 

data are valid.  This height is relative to the zero-plane 

not the ground. 

ndriveExtra integer 
0<ndriveExtra<=

ndriveExtraMax 

The number of “extra” (additional) driving variables 

that are to be input. These are additional to the variables 

that must be input. This facility has been added to 

provide the user with a relatively easy way to ingest new 

variables (that might be needed for a new development) 

with the minimal amount of coding. The maximum 

possible number of additional variables is determined by 

the parameter ndriveExtraMax, which is currently 

set to 10. Further details of each “extra” variable are 

provided below. 

Set to zero to turn off this facility (i.e. to provide no 



Page 82 of 126 

extra variables).  

See notes in Section  6.18.1. 

>ASCBIN: If driveFormat=’asc’, ‘bin’ or ‘pp’: 

byteSwapDrive logical Switch controlling byteswapping of binary data. 

Only used if driveFormat=’bin’. 

TRUE: the order of the bytes will be reversed after 

reading. This option allows data files written on a “little-

endian” machine to be used on a “big-endian” machine, 

or vice versa. Some compilers have options that allow 

this behaviour. 

FALSE: no change will be made 

nfieldFile integer Number of fields in each file. 

nHeaderFile integer 

>=0 

The number of headers at the start of each file - see 

Section  5.2. 

nHeaderTime integer 

>=0 

The number of headers at the start of each time - see 

Section  5.2. 

nHeaderField  integer 

>=0 

The number of headers at the start of field - see Section 

 5.2. 

noNewLineDrive 

 
logical Switch describing format of an ASCII data file. 

TRUE: variables are arranged across one or more lines, 

and each variable does not necessarily start a new line. 

This option should be used if all the driving data for 

each time are one line of the input file (although it can 

also be used if the data are continued onto subsequent 

lines). 

FALSE: each variable starts on a new line. 

 

Only used if there is only one point in the input grid 

(and hence only one point in the model grid) and driving 

data are in ASCII files. 

name 

 

character The name of the variable. This is used to identify the 

variable in the code, and is set in the code. Acceptable 

values are shown in Table 34. These must be entered 

exactly as listed in the table, and are case-sensitive. 

fieldNumber 

 

integer 

>=1 

The field number in the file that holds data for this 

variable. See discussion of fields in Section  5. 

interpFlag character 

See Table 43. 

Flag indicating how variable is to be interpolated in time 

 

varNameFile 

 

character The substitution string used in the names of files that 

contain this variable. Only used if variable name 

templating is used in file names. 

>NC: If driveFormat=’nc’: 

ncTypeDrive character Flag indicating the format (dimension names) of  

netCDF files. See Section  5.2.2. 

name character See above under >ASCBIN. 

SDFName 

 

character The name of the variable as used in a SDF. See 

discussion of SDF in Section  5.2.2.  

varNameFile character See above under >ASCBIN. 

interpFlag character See above under >ASCBIN. 



Page 83 of 126 

See Table 43.  

 

The meteorological variables required by a run of JULES are determined by the choice of flags 

such as ioPrecipType. The variables that are listed must then match this expectation. 

 

Table 34 Names of meteorological driving variables. 

Name Description Comments 

diff_rad Diffuse radiation (W m
-2

) Used if useDiffRad=TRUE. 

lw_down Downward longwave radiation (W m
-2

).  Used with rad_type=1. 

lw_net Net downward longwave radiation (W m
-2

).  Used with rad_type=3. 

sw_down Downward shortwave radiation (W m
-2

).  Used with rad_type=1 or 2. 

sw_net Net downward shortwave radiation (W m
-2

). Used with rad_type=3. 

rad_net Net (all wavelength) downward radiation (W m
-

2
) . 

Used with rad_type=2. 

precip Precipitation rate (kg m
-2

 s
-1

).  Used with 

ioPrecipType=1. 

precipCR Convective rainfall rate (kg m
-2

 s
-1

).  Used with ioPrecipType=3 

and 4. 

precipCS Convective snowfall rate (kg m
-2

 s
-1

).  Used with 

ioPrecipType=4. 

precipLR Large-scale rainfall rate (kg m
-2

 s
-1

). Used with ioPrecipType=3 

and 4. 

precipLS Large-scale snowfall rate (kg m
-2

 s
-1

). Used with ioPrecipType=3 

and 4. 

precipTR Rainfall rate (kg m
-2

 s
-1

)  Used with 

ioPrecipType=2. 

precipTS Snowfall rate (kg m
-2

 s-1).  Used with ioPrecipType=2 

and 3. 

pstar Air pressure (Pa)  

q Specific humidity (kg kg
-1

)  

t Air temperature (K)  

u Zonal component of the wind (m s
-1

).  Used with 

ioWindSpeed=FALSE. 

v Meridional component of the wind (m s
-1

). Used with 

ioWindSpeed=FALSE. 

wind (Total) wind speed (m s
-1

).  Used with 

ioWindSpeed=TRUE. 

ozone Surface ozone concentration (ppb) Used with 
l_o3_damage=TRUE 

extraXX Additional driving variable (see ndriveExtra). 

XX should be replaced by 01, 

02,…,min[ndriveExtra, 

ndriveExtraMax]. 

Used if ndriveExtra > 0. 

 

6.18.1. Inputting extra driving variables 



Page 84 of 126 

The facility to read in additional driving variables by setting ndriveExtra>0 is intended as a 

simple mechanism to allow access to additional data, particularly during model development. For 

example, a time-varying field of ozone concentration could be input after just a few lines of editing 

of the code. The additional variables must have the same frequency as the other variables and will 

be interpolated following the interp flags specified. The data can then be loaded into a new 

FORTRAN variable that the user has to create – this is best done in subroutine drive_update (look 

for comments containing “iposExtra”). The new variable itself could be provided via a module 

(e.g. module forcing). 

6.18.2. Examples of specifying driving data 

Example 1: single point driving data 

In this example, we consider a case with one point in the input file, and all driving data for each 

time held on a single line of an ASCII input file. The input file is illustrated in Figure 4.  The 

relevant entries in the run control file are shown below. Only the lines in bold are relevant, and 

irrelevant sections have been omitted. 

 

>INIT_DRIVE 

3600   !  driveDataPer 

1,-9    !  ndriveFileTime, driveFilePer 

F    !  readList 

‘data1.dat’     !  fileName 

19970101,’00:00:00’ !  driveFileDate(1),driveFileTime(1) 

‘asc’   !  driveFormat 

 

2,T    !  ioPrecipType,l_point_data 

275.0   !  tForSnow 

375.0,0.2   !  tForConv,conFrac 

1,T    !  io_rad_type,ioWindSpeed 

F,0.1               !  useDiffRad,diffFracConst 

 

10.0,10.0   !  z1_uv, z1_tq 

0                   !  ndriveExtra 

 

>ASCBIN 

F         !  byteSwapDrive 

10  !  nfieldDriveFile 

1,0,0 !  ndriveHeaderFile,ndriveHeaderTime,ndriveHeaderField 

T  !  noNewLineDrive 

>VARS 

pstar      9  nf  psfc   !  name,field,flag,name 

t          6  nf  t 

q         10  nf  q 

wind       8  nf  u 

lw_down    3  nf  lw 

sw_down    2  nf  sw 

precipTR   4  nf  liqp 

precipTS   5  nf  solp 

>ENDVARS 

 



Page 85 of 126 

 

ndriveFileTime=1 indicates that all data are in one file. 

readList=FALSE indicates that the name of the file is read from the run control file (not from a 

separate file). 

useDiffRad=FALSE indicates that diffuse radiation is not input, rather it is calculated as 0.1 

(the value of diffFracConst) of the total shortwave radiation. 

ndriveHeaderFile=1 indicates that there is a single header line at the top of the file. 

noNewLineDrive=TRUE shows that each variable is not on a new line (in fact all variables are 

on one line). 

The entries following >VAR indicate where each variable lies in the input file. Note that we can 

skip the unrequired ‘time’ and ‘obs1’ fields in Figure 4. 

 
Time solar long rain snow temp    obs1 wind press  humid 

 1 3.3 187.8 0.0 0.0 259.10  83.0 3.610 102400.5 1.351E-03 

 2 89.5 185.8 0.0 0.0 259.45  24.1 3.140 102401.9 1.357E-03 

 3 142.3 186.4 0.0 0.0 259.85  56.9 2.890 102401.0 1.369E-03 

----- data for later times ---- 

Figure 4.  Lines of an example file of meteorological driving data in ASCII format. 

 

 

Example 2: Driving data from binary files, one variable per file. 

The relevant entries in the run control file are shown below. Only the lines in bold are relevant and 

irrelevant sections have been omitted. 

 

>INIT_DRIVE 

 

3600   !  driveDataPer 

162,-9   !  ndriveFileTime, driveFilePer 

T    !  readList 

‘file_list.txt’    !  fileName 

19820701,’03:00:00’ !  driveFileDate(1),driveFileTime(1) 

‘bin’   !  driveFormat 

 

2,F    !  ioPrecipType,l_point_data 

275.0   !  tForSnow 

298.2,0.3   !  tForConv,conFrac 

1,F    !  io_rad_type,ioWindSpeed 

T,0.1               !  useDiffRad,diffFracConst 

10.0,10.0   !  z1_uv, z1_tq 

2                   !  ndriveExtra 

 

>ASCBIN 

F         !  byteSwapDrive 

1  !  nfieldDriveFile 

0,0,0 !  ndriveHeaderFile,ndriveHeaderTime,ndriveHeaderField 

T  !  noNewLineDrive 

>VARS 

pstar      1  nf  psfc   !  name,field,flag,name 

t          1  nf  temp 

q          1  nf  humid  



Page 86 of 126 

u       1  nf  uwind  

v       1  nf  vwind 

lw_down    1  nf  long 

sw_down    1  nf  solar 

precipTR   1  nf  liqp 

precipTS   1  nf  solp 

diff_rad   1  nf  diffRad 

extra01    1  nf  ozone 

extra02    1  nf  co2 

>ENDVARS 

 

ndriveFileTime=162 indicates the number of files (for each variable). 

readList=TRUE indicates that the names and times of each file are read from the file 

‘file_list.txt’.  The first few lines of this file are shown in Figure 5. 

  
# List of meteorological data files. Columns are:  

# file name, start date (yyyymmdd), start time (hh:mm:ss). 

'met_data/%vv_data/%vv198207.dat', 19820701, '03:00:00' 

'met_data/%vv_data/%vv198208.dat', 19820801, '03:00:00' 

'met_data/%vv_data/%vv198209.dat', 19820901, '03:00:00' 

------ rest of file not shown ----- 

Figure 5.  Example list of driving data files using file name templating. 

 

The presence of ‘%vv’ in each file name shows that we are using variable name templating (see 

Section  6.21). The dates show that we in fact have monthly files (but note that we cannot use time 

templating for these files because the start time of 03H does not conform to the requirements 

described in Table 41). Furthermore, files for each variable are stored in separate directories. For 

example, skipping ahead to after >VARS, we see that the humidity variable is held in files such as 

‘met_data/humid_data/humid198207.dat’, while the surface pressure is held in the 

likes of ‘met_data/psfc_data/psfc198207.dat’. 

 

The ioPrecipType value of 2 shows that we read in two components of precipitation: total 

solid and total liquid. The liquid is considered to be convective precipitation when the temperature 

is above tForConv, which here has a value of 298.2 K. 

 

useDiffRad=TRUE indicates that diffuse radiation will be provided. 

byteSwapDrive=FALSE indicates that the data will not be byteswaped after input. 

nfieldDriveFile=1 shows that each data file contains a single field, which is consistent with 

the field number shown for each variable (all 1). 

ndriveExtra=2 indciates that two additional, non-standard variables will be read in. These are 

listed as extra01 and extra02 in the list of variables. The filenames shown suggest that they are for 

ozone and CO2, but they could represent any quantity that the user wants to input. 

 



Page 87 of 126 

 

6.19. INIT_IC: Specification of the initial state 

The values of all prognostic variables must be set at the start of a run. This initial state, or initial 

condition, can be read from a “dump” from an earlier run of the model, or may be read from any 

other file. Another option is to prescribe a simple or idealised initial state, and this may be done via 

the run control file. It is also possible to set some fields using values from a file (e.g. a dump) but to 

set others using idealised values from the run control file (that is, effectively to override the values 

in the external file). 

 

>INIT_IC 

 

readFile 

fileFormat (quoted) 

dumpFile,allDump 

fileName (quoted) 

zrevSoil,zrevSnow 

totalWetness 

totalSnow 

 

>ASCBIN 

nheaderFile, nheaderField 

>VARS 

varName(1)   varFlag(1)   constVal(1) 

varName(2)   varFlag(2)   constVal(2) 

--- Repeat for each variable. --- 

>ENDVARS 

 

>NC 

>VARS 

varName(1)   varFlag(1)   constVal(1)   SDFname(1)  

varName(2)   varFlag(2)   constVal(2)   SDFname(2)  

--- Repeat for each variable. --- 

>ENDVARS 

 

# Data fields to be read from this file should appear below here. 

>DATA 

 

Table 35 Description of variables for INIT_IC section. 

Variable name Type and 

permitted 

values 

Notes 

readFile logical 
 

Switch controlling location of initial state data. 

TRUE: read from an external file (including a model dump) 

FALSE: read from the run control file. 

fileFormat 

 

character 

See Section 

 5.2. 

Format of data. Only used if readFile=TRUE. 

Note that any dump file that is to be read (see dumpFile) 

can only be of type ‘asc’ or ‘nc’. 



Page 88 of 126 

dumpFile logical Switch indicating if file to be read is a model dump. 

Only used if readFile=TRUE. 

TRUE: the file is a model dump (restart) file that was 

written by this version of JULES. A dump file has known 

structure that can be navigated by JULES using header 

information. 

FALSE: the file is not a dump file 

allDump logical Switch to allow easy use of all data in a dump file. 

Only used if dumpFile=TRUE, that is, if the file to be 

read is a model dump. 

TRUE: all variables required to initialise the run will be 

read from the given dump file. If a required field is not in 

the dump (e.g. if the dynamic vegetation model was not 

active in the earlier run but is now required), initialisation 

will fail and the run will stop. This option ignores all later 

input in the >ASCBIN and >NC sections. This is the easiest 

way to start from a dump file, as the user does not need to 

say what variables are to be found where – the model will 

look for all data in the dump file. 

FALSE: the information in the >ASCBIN and >NC sections 

is used to identify whether a field is to be read or set to a 

constant value, as usual. 

filename character Name of file containing data. Only used if 

readFile=TRUE. 

zrevSoil logical Switch indicating if soil data are stored in reverse order of 

levels. 

Not used if data are to be read from a dump file. 

TRUE: vertical order is reversed, with data stored in 

“bottom to top” order (i.e. bottom layer first) 

FALSE: standard vertical order, with data stored in “top to 

bottom” order (i.e. uppermost layer first) 

zrevSnow logical Switch indicating if snow data are stored in reverse order of 

levels. 

Only used if nsmax>0. Not used if data are to be read from 

a dump file. 

TRUE: vertical order is reversed, with data stored in 

“bottom to top” order (i.e. bottom layer first) 

FALSE: standard vertical order, with data stored in “top to 

bottom” order (i.e. uppermost layer first) 

totalWetness logical Switch controlling type of soil moisture data. 

Not used if soil wetness is to be read from a dump file. 

TRUE: soil wetness is prescribed as the total wetness (the 

sum of frozen and liquid components). 

FALSE: soil wetness is prescribed using two components 

(the frozen and liquid fractions separately). 

totalSnow logical Switch controlling simplified initialisation of snow 

variables. 

Not used if snow data are to be read from a dump file. 

TRUE: only the total mass of snow on each tile (see 



Page 89 of 126 

snow_tile in Table 36) is required to be input, and all 

related variables will be calculated from this or simple 

assumptions made. All the snow is assumed to be on the 

ground (not in the canopy). This option can be used 

regardless of the value of nsmax. If nsmax>0, this option 

is recommended as it means the user can avoid the 

complications of setting several snow variables in a 
consistent manner. 

 

FALSE: all snow variables required for the current 

configuration must be input separately. The variables are 

listed in Table 36. 

>ASCBIN: The following are used if fileFormat=‘asc’, ‘bin’, ‘dump’ 

or ‘pp’, or if readFile=FALSE. 

nheaderFile  integer The number of headers at the start of the file. 

See Section  5.2 

nheaderField integer The number of headers at the start of a field. 

See Section  5.2 

varName character The name of the variable. See Table 36. 

varFlag integer 

≥-1 

Flag indicating how the variable is initialised. Acceptable 

values: 

>0: The field number in the file that holds data for this 

variable. See discussion of fields in Section  5.1. If a dump 

file is being read, any integer ≥0 is accepted and then 

effectively ignored – this indicates that the field is to be 

taken from the dump and the exact field number is not 

required. 

-1: The field will be set to the value constVal (see 

below) at all points. This option can be used to specify an 

idealised initial condition. 

constVal real The value to be used at all points. Only used if flag=-1. 

>NC: The following are used if fileFormat=’nc’. 

varName character 

See Section 

 5.2.2 

The name of the variable. 

varFlag integer 

≥-1 

Flag indicating how the variable is initialised. Acceptable 

values: 

>0: Default (effectively is ignored).  

-1: The field will be set to the value constVal (see 

below) at all points. This option can be used to specify an 

idealised initial condition. 

constVal real See under >ASCBIN above. 

SDFvarName character The name of the netCDF variable that is to be used. 

>DATA 

If further initial data are to be read from the run control file (readFile=FALSE), these should 

now appear in the file, in the order indicated by the value of flag for each variable (see above). For 

example, if tstar is given a value of flag=1, and cs has flag=2, data for tstar and cs 

should then be listed, with each variable starting on a separate line.  

 



Page 90 of 126 

 

Some of these variables may not be required for a particular run, depending on the model 

configuration.  The size of each variable is defined in terms of the following variables: 

• land_pts - the number of gridboxes that contain any land. 

• sm_levels - the number of soil layers. 

• ntiles - the number of tiles at each gridbox. 

• ntype - the number of surface types. 

• npft – the number of plant functional types. 

• nsmax – the maximum possible number of snow layers. 

 

See Section  6.2 for further information about some of these variables. 

 

Table 36 JULES variables that require to be specified to define the initial model state. 

Note that this is a list of variables that have to be specifically listed in the input section. If all 

variables are to come from a model dump (allDump=TRUE), none of these variables needs to be 

listed. All variables names should be entered exactly as shown, including case. 

Name Shape Description. Notes 

General variables 

canopy (land_pts, 

ntiles) 

Amount of 

intercepted water 

that is held on each 

tile (kg m
-2

). 

Always required. 

 

tstar_tile  

 

(land_pts, 

ntiles) 

 

Temperature of each 

tile (K). This is the 

surface or skin 

temperature. 

Always required. 

gs (land_pts) 

 

Stomatal 

conductance for 

water vapour (m s
-

1
). 

Always required.  This is used to 

start the iterative calculation of 

gs for the first timestep only. 

Soil layer variables 

t_soil 
 

(land_pts, 

sm_levels) 

 

Temperature of each 

soil layer (K). 

Always required. 

sthuf 

  

  
 

(land_pts, 

sm_levels) 

Soil wetness for each 

soil layer. This is the 

mass of soil water 

(liquid and frozen), 

expressed as a fraction 

of the water content at 

saturation. 

Only required if totalWetness 

=TRUE. 

Either sthuf or its components 

sthu and sthf are always 

required. 

 

sthf 

  

  
 

(land_pts, 

sm_levels) 

 

Frozen soil wetness 

for each soil layer. 

This is the mass of 

frozen water, 

expressed as a fraction 

of the water content at 

saturation. Note that 

Only required if totalWetness 

=FALSE. 

Either sthuf or its components 

sthu and sthf are always 

required. 

 



Page 91 of 126 

the partitioning of 

water between liquid 

and solid fractions 

may be altered during 

initialisation. The 

procedure conserves 

the total water 

content, and uses the 

soil temperature 

(t_soil) to partition 

between the phases. 

sthu 

  

  
 

(land_pts, 

sm_levels) 

 

Unfrozen soil wetness 

for each soil layer. 

This is the mass of 

unfrozen water, 

expressed as a fraction 

of the water content at 

saturation. See notes 

for sthf above. 

Only required if totalWetness 

=FALSE. 

Either sthuf or its components 

sthu and sthf are always 

required. 

 

Snow variables 

snow_tile  
 

(land_pts, 

ntiles) 

 

Amount of snow on 

each tile (kg m
-2

). 

Always required. 

. 

If totalSnow = TRUE, 

snow_tile holds the total snow 

mass on each tile. If 

can_model=4, this will be used 

to set the snow on the ground 

under the canopy.  

 

See Table 37 for further 

discussion. 

 

snow_grnd 

 

(land_pts, 

ntiles) 

 

Amount of snow on 

the ground, beneath 

the canopy (kg m
-2

), 

on each tile. 

Only required if can_model=4. 

Not required if 

totalSnow=TRUE. 

A value should be given for all 

tiles, but it is only updated for tiles 

that refer to PFTs that have 

snowCanPFT=1 (see Section 

 6.10). 

rho_snow (land_pts, 

ntiles) 

Bulk density of lying 

snow (kg m
-3

). 

Only required if 

totalSnow=FALSE. 

 

rgrain  (land_pts, 

ntiles) 

 

Snow surface grain 

size (µm) on each tile. 

Only required if 

l_spec_albedo = TRUE. 

nsnow (land_pts, 

ntiles) 

The number of snow 

layers on each tile. 
Only required if nsmax>0 and 

totalSnow=FALSE. 

Although this is an integer 



Page 92 of 126 

quantity, it is treated as a real 

number for convenience during 

input and output. 

snowDepth (land_pts, 

ntiles) 

Depth of snow (kg m). Only required if nsmax>0 and  

totalSnow=FALSE. 

 

snowDs (land_pts, 

ntiles,nsmax

) 

Depth of snow in each 

layer (kg m). 
Only required if nsmax>0 and  

totalSnow=FALSE. 

 

snowIce (land_pts, 

ntiles,nsmax

) 

Mass of frozen water 

in each snow layer (kg 

m
-2

). 

Only required if nsmax>0 and  

totalSnow=FALSE. 

 

snowLiq (land_pts, 

ntiles,nsmax

) 

Mass of liquid water 

in each snow layer (kg 

m
-2

). 

Only required if nsmax>0 and  

totalSnow=FALSE. 

 

tSnow (land_pts, 

ntiles,nsmax

) 

Temperature of each 

snow layer (K). 
Only required if nsmax>0 and  

totalSnow=FALSE. 

 

rgrainL  (land_pts, 

ntiles,nsmax

) 

 

Snow grain size (µm) 

on each tile in each 

snow layer. 

Only required if 

l_spec_albedo = TRUE and 

nsmax>0 and 

totalSnow=FALSE. 

TOPMODEL variables 

zw (land_pts) 

 

Depth from the 

surface to the water 

table (m). 

Only required if l_top=TRUE. 

sthZw (land_pts) 

 

Soil wetness in the 

deep (“water table”) 

layer beneath the 

standard soil column 

This is the mass of 

soil water (liquid and 

frozen), expressed as a 

fraction of the water 

content at saturation. 

Only required if l_top=TRUE. 

Soil and vegetation carbon variables 

cs  
 

(land_pts,di

m2) 

See notes 

for dim2. 

Soil carbon (kg m
-2

)  Always required. 

dim2=1 if TRIFFID is not being 

used (l_triffid=FALSE), in 

which case the total soil carbon is 

input. 

dim2=4 if TRIFFID is being used, 

to hold the 4 pools of the RothC 

model 

(biomass,humus,decomposable 

plant material and resistant pant 

material). 

Note that cs is a prognostic (time-



Page 93 of 126 

evolving) variable only if 

TRIFFID is selected. 

 frac (land_pts, 

ntype) 

 

The fraction of land 

area of each gridbox 

that is covered by 

each surface type. 

Always required, but can be read 

at INIT_FRAC.  This variable has 

to be set either in this section of 

the run control file, or in the 

section tagged INIT_FRAC (see 

Section  6.5). If 

l_veg_compete=TRUE (see 

Section  6.2), frac must be set 

here, as part of the initial condition 

(e.g. from a model dump). If 

l_veg_compete=FALSE (i.e. 

the fraction of each type is static), 

the fraction may be set here, as 

part of the initial condition, or in 

INIT_FRAC. The switch 

readFracIC, described in that 

section, is important in this case.  

lai 

 

(land_pts, 

npft) 

 

Leaf area index of 

each PFT. 

Only initialised here if phenology 

is switched on in INIT_OPTS 

(see Section  6.2). If phenology is 

off, LAI is not a prognostic 

variable and it is initialised in 

either INIT_VEG_PFT or 

INIT_VEG_VARY. 

canht (land_pts, 

npft) 
Height (m) of each 

PFT.  

Only initialised here if TRIFFID is 

switched on in INIT_OPTS (see 

Section  6.2). If TRIFFID is off, 

canht is not a prognostic variable 

and it is initialised in either 

INIT_VEG_PFT or 

INIT_VEG_VARY. 

 

Note that it might appear that nsmax>0 requires an excessive number of variables, some of which 

are redundant. However, many of the details as to why all these variables must be input relate to 

subtleties and the needs of implementation in the Unified Model (weather forecast and climate 

model).  It is true that the values of several of these variables must be consistent (e.g. snow depth 

and snow depths in layer), and totalSnow=TRUE is useful in allowing a simple initialisation. 

 

Table 37 Further details of snow variables 

Name Description Required if 

nsmax=

0? 

Required if 

totalS

now 

=TRUE? 

Notes 

snow_ti

le 

Mass of snow Y Y If can_model≠4, this is the total snow 

on the tile (since there is a single store 

which doesn’t distinguish between snow 



Page 94 of 126 

on canopy and under canopy). 

If can_model=4 (and then only at tiles 

where snowCanPFT=1), snow_tile is 

interpreted as the snow on the canopy, 

except as overridden by 

totalSnow=TRUE. 

If  totalSnow=TRUE, snow_tile is 

used to hold the total snow on the tile (and 

is subsequently put onto the ground at 

tiles that distinguish between ground and 

canopy stores). 

snow_gr

nd 

Mass of snow on 

ground under 

canopy 

Y N Only required if can_model=4. 

If  totalSnow=T this is set to snow_tile 

at tiles where can_model=4 is active, to 

zero at all other tiles. 

rho_sno

w 

Bulk density of 

lying snow 

Y N If  totalSnow=T, this is set to 

rho_snow_const. 

rgrain Surface grain 

size 

Y Y Only required if 

l_spec_Albedo=TRUE. 

nsnow Number of layers N N If  totalSnow=T this is calculated from 

the snow depth. 

snowdep

th 

Depth of snow N N If  totalSnow=T, this is calculated from 

mass and density of snow. 

snowDs Depth in each 

layer 

N N If  totalSnow=T this is calculated 

internally. 

snowIce Ice content in 

each layer 

N N If  totalSnow=T all snow is assumed to 

be ice. 

snowLiq Liquid content in 

each layer 

N N If  totalSnow=T this is set to zero. 

tSnow Temperature in 

each layer 

N N If  totalSnow=T this is set equal to the 

temperature of the top soil layer. 

rgrainL Grain size in 

each layer 

N N Only required if 

l_spec_Albedo=TRUE. 

If  totalSnow=T this is set to rgrain. 

 

6.19.1. Examples of specification of initial state 

 

Example 1: A single point, state from the run control file 

In this example, we consider a run at a single point and read all data from the run control file. The 

relevant entries in the run control file are shown below. Only the lines in bold are relevant and 

irrelevant sections have been omitted. Assumptions include that nsmax=0, l_triffid=FALSE. 

 

>INIT_IC 

 

F                               !    readFile 

'asc'                           !    fileFormat (quoted) 

F,F                             !    dumpFile,allDump 



Page 95 of 126 

'a0001_dump.19970105'           !    fileName (quoted) 

F,F                             !    zrevSoil,zrevSnow 

T                               !    totalWetness 

T                               !    totalSnow 

 

>ASCBIN 

0,0                       !  nheaderFile,nheaderField 

>VARS 

sthuf        1     0.9   !  varName,varFlag, constVal 

canopy       2     0.0 

snow_tile    3     0.0   ! Note that none of these “constVal” 

tstar_tile   4     0.0   ! values are used in this case (because  

t_soil      5      0.0   ! varFlag≠-1). Instead, values  

cs           6     0.0   ! are listed after >DATA. 

gs           7     0.0 

>ENDVARS 

 

# Data fields to be read from this file should appear below here. 

>DATA 

 0.749, 0.743, 0.754, 0.759  !  sthuf 

9*0.0                        !  canopy 

9*0.0                        !  snow_tile 

9*276.78                     !  tstar_tile 

276.78,277.46,278.99,282.48  !  t_soil 

12.100                       !  cs 

0.0                          !  gs 

 

readFile=FALSE indicates that all data will be read from the run control file; no other file is 

involved and several of the following lines are not used. In this case, we use the >ASCBIN section 

to describe the data. 

The seven variables that are required to initialise this particular run are then listed. The second 

entry in each line gives the position in the input data for each field. Since all the data are to be read 

from the run control file, which is easily edited, it is easiest to list these variables in the order in 

which the data will be presented (i.e. field numbers should be 1, 2, 3,…). In this example, all the 

field numbers are >0, indicating that the data will be read from the >DATA section (and that the 

constVal entries will be ignored). 

Note that data for soil variables are presented in the order “top to bottom”, i.e. surface layer first. 

 

Example 2: Initial state specified as a mixture of spatial fields and constant values 

In this example, we consider a run at a single point and read all data from the run control file. The 

relevant entries in the run control file are shown below. Only the lines in bold are relevant and 

irrelevant sections have been omitted. 

 

>INIT_IC 

 

T                               !    readFile 

'bin'                           !    fileFormat (quoted)  

F,F                             !    dumpFile,allDump 

'a001_initial_state.gra’        !    fileName (quoted) 

F,F                             !    zrevSoil,zrevSnow 



Page 96 of 126 

T                               !    totalWetness 

T                               !    totalSnow 

 

>ASCBIN 

0,0                       !  nheaderFile,nheaderField 

>VARS 

sthuf        7     0.9   !  varName,varFlag, constVal 

canopy      -1     0.0 

snow_tile   -1     0.0 

tstar_tile  -1   275.0 

t_soil      -1   278.0 

cs          -1    10.0 

gs          -1     0.0 

>ENDVARS 

 

readFile=TRUE indicates that the binary file “a001_initial_state.gra” will be used to 

set the initial state (for some variables). 

The seven variables that are required to initialise this particular run are then listed. The second 

entry in each line gives the position in the input data for each field. For most variables, the value -1 

indicates that the field is to be initialised as spatially constant using the value given under 

constVal. For example, the temperature in each soil layer (t_soil) will be set to 278K at all 

locations in the model grid. For soil wetness (sthuf), the field number is given as 7 – meaning 

that soil wetness will be set using the data starting at field 7 in the named input file. Since 

zrev=TRUE, these data are stored in the file in “non-standard” order (i.e. bottom to top), so that 

field 7 is the deepest layer (and, assuming 4 soil layers, field 10 will be used for the uppermost 

layer). 

 

 

Example 3: Initial state specified from an existing dump file. 

In this example, we use an existing dump file (from a previous run) to set the initial values of all 

variables. Consider a run at a single point and read all data from the run control file. The relevant 

entries in the run control file are shown below. Only the lines in bold are relevant and irrelevant 

sections have been omitted. 

 

>INIT_IC 

 

T                               !    readFile 

'nc'                            !    fileFormat (quoted)  

T,T                             !    dumpFile,allDump 

'a001_dump.nc’                  !    fileName (quoted) 

 

 

readFile=TRUE indicates that the netCDF file “a001_dump.nc” will be used. dumpFile=T 

indicates that this is a dump file from an earlier run, and allDump=T indicates that all variables 

are to be set using values from the dump file and therefore all subsequent entries in the INIT_IC 

section of the run control file are ignored. 

 

 



Page 97 of 126 

 

6.20. INIT_OUT: Specification of output from the model 

JULES separates output into one or more output ‘profiles’ or streams. Within each profile, all 

variables selected for output are written to the same file, with the same frequency, although the 

time-processing can differ between variables (e.g. instantaneous values and time-averages can 

appear in the same profile). Each profile can be considered as a separate data stream. By using 

more than one profile the user can, for example, 

 

• Output one set of variables to one file, and other variables to another file 

• Write instantaneous values to one file, and time-averaged values to another. 

• Write low-frequency output from the entire model grid to one file, and high-frequency output 

from a subset of points to another file. 

• Write low-frequency output throughout the run to one file, and high-frequency output from a 

smaller part of the run (e.g. a “Special Observation period”) to another file.  

 

This flexibility comes at the expense of having to set several values in the run control file. 

However, default values allow the user to select certain configurations relatively easily. 

 

The first values in this section of the run control file concern general details of the output, such as 

the file format, that apply to all output profiles. This is followed by a separate section for each 

output profile, describing the variables, the grid and time sampling for that profile. 

 

6.20.1. INIT_OUT: General values related to output 

This section starts with the tag >INIT_OUT. 

 

>INIT_OUT 

 

run_id 

outDir 

 

dumpFreq 

dumpFormat 

dumpStatus 

 

nout 

outFormat 

gradsNc 

outStatus 

yrevOut 

zrevOutSoil,zrevOutSnow 

numMonth 

useTemplate 

undefOut 

zsmc,zst 

outEndian 

 



Page 98 of 126 

Table 38 Description of variables in the INIT_OUT section. 

Variable name Type and permitted 

values 

Notes 

runID character*10 A name or identifier for the run. This is used to name 

output files and any model dumps. 

outDir character*150 The directory used for output files. This can be an 

absolute or relative path. Enter “.” to write output to 

the directory from which JULES is run. 

dumpFreq integer 

0 to 4 
Flag indicating how often the model state is to be 

‘dumped’ (written to a file). 

Acceptable values are: 

0: no dumps are written 

1: only the final state of the model (at the end of the 

integration) is dumped 

2: dump initial and final model states 

3: as 2 but also write a dump at the end of the spin-up 

phase 

4: as 3 but also write a dump at the end of each 

calendar year. 

 

A model dump captures the state of the model at a 

given point in the integration. If a final dump is saved, 

the integration can later be extended by starting another 

run from this final dump. For long integrations, or large 

domains, it is recommended that dumps are saved for 

every year, so that in the event of any trouble such as a 

model crash, the integration can be completed without 

having to start again from the initial state. NB A run 

that is carried out in several steps, each starting from 

the model dump for the previous step, will generally 

not evolve identically to a single run that proceeds 

without the intermediate dumps. This is due, in part, to 

a loss of precision when the model state is written to 

the dump file. 

dumpFormat character 

‘asc’ or ‘nc’ 

Format for dump files. ASCII or netCDF. 

dumpStatus character 

‘new’ or ‘replace’ 

The file status used when writing a model dump. 

Acceptable values are: 

‘new’ – if a file with the same name already exists, the 

run will terminate. 

‘replace’ – if a file with the same name already 

exists, it will be overwritten. 

nOut integer The number of output profiles. Each profile generates a 

separate stream of data, as explained above. 

outFormat character The format for output files. Acceptable values are: 

‘asc’: ASCII files 

‘bin’: flat binary files 

‘nc’: netCDF files 

gradsNc logical Switch controlling details of netCDF output files. 



Page 99 of 126 

Only used if outFormat=’nc’. 

 

TRUE: netCDF output will be constructed so as to be 

readable by GrADS. In particular, snow layer variables 

will be split so that each tile is represented with a 

separate variable (otherwise there are too many 

dimensions for GrADS to cope with). 

 

FALSE: netCDF output might not be readable by 

GrADS (but in many cases is). 

outStatus character 

‘new’ or ‘replace’ 

The status used when opening files. This is the value 

given to the FORTRAN “status” argument of an OPEN 

statement [ e.g. open(1,status=’new’) ], or the 

equivalent for netCDF files. 

‘new’: file must not already exist. If the code tries to 

create a file with the same name as an existing file, the 

run will terminate. 

‘replace’: If the file exists, delete it and replace with 

a new version. 

yrevOut logical TRUE: reverse the order of the rows in the output, so 

that these are written in “North to South” order. 

FALSE: use the default “South to North” order, with 

the southernmost row of data being the first in the file. 

zrevOutSoil logical Switch indicating if soil layer data are to be output in 

reverse order of levels compared with JULES’s default. 

TRUE: reverse the order of the vertical levels in the 

output, so that these are written in “bottom to top” 

order (i.e. bottom layer first). 

FALSE: use the default “top to bottom” order (i.e. top 

layer first). 

zrevOutSnow logical Switch indicating if snow layer data are to be output in 

reverse order of levels compared with JULES’s default. 

TRUE: reverse the order of the vertical levels in the 

output, so that these are written in “bottom to top” 

order (i.e. bottom layer, closest to soil, first). 

FALSE: use the default “top to bottom” order (i.e. top 

layer first). 

numMonth logical Switch controlling the date format used in file names. 

TRUE: months are represented by the numbers 1 to 12. 

FALSE: months are represented by 3-character strings 

(jan, feb, mar,…) 

useTemplate logical This relates to GrADS files (generated by 

outFormat=’bin’ or ‘nc’).   

 

Switch to activate the writing of template ‘.ctl’ files. 

A template ctl file allows GrADS to access several data 

files via one ctl file. 

 

TRUE: all suitable ctl files will use the template 



Page 100 of 126 

option. 

FALSE: generate a separate ctl file for each data file. 

 

Note: A template ctl file will not be able to describe the 

data if there are any missing times at the start of a file – 

this is a limitation of the current JULES code, rather 

than GrADS. For example, if daily data are to be 

written to monthly files, with a template ctl, but the run 

starts midway through the month, JULES will only 

write output data for the latter part of the month. 

GrADS will look for data for all days in the month, but 

not be able to find them, so the user will not be able to 

plot the first month. 

undefOut real The value written to output files to represent “missing” 

or “undefined” data. 

zsmc real If a depth-averaged soil moisture diagnostic is 

requested, the average is calculated from the surface to 

this depth (m). 

zst real If a depth-averaged soil temperature diagnostic is 

requested, the average is calculated from the surface to 

this depth (m). 

outEndian character 

‘little_endian’ 

or ‘big_endian’ 

Only used for GrADS output files 

(outFormat=’bin’), this describes the byte 

ordering of the computers on which JULES is run. It is 

only included in the ‘options’ line of GrADS ctl files, 

i.e., in metadata describing the file.  It does NOT alter 

the byte order of the output. 

Acceptable values are: 

‘little_endian’ – for little endian computers (e.g. 

PCs) 

‘big_endian’ – for big endian computers (e.g. Suns) 

 

 

6.20.2. NEWPROF: details of each output profile 

This section starts with the tag >NEWPROF. 

 

Each of the nout output profiles requires a section that describes that profile, such as the times 

when output is to be generated, which points are to be output, which variables are to be output, and 

more. The size of a regular latitude/longitude gridbox (input as regDlat, regDlon in control file 

– see Section  6.4.3) is also used as the size of a gridbox in the output. 
 

 

>NEWPROF 

 

outName 

outPer,outFilePer 

outSamPer 

outDate(1),outTime(1) 



Page 101 of 126 

outDate(2),outTime(2) 

 

pointsFlag(1:2) 

outAreaLL 

outRangeX(1:2),outRangeY(1:2) 

outCompress,outLLorder 

 

readFile 

fileName 

 

pointsOut 

mapOut(1:pointsOut,1) 

mapOut(1:pointsOut,2) 

 

>GRID 

outGridNx,outGridNy 

 

>VARS 

flag name useName 

--repeat for each output variable -- 

>ENDVARS 

 

Table 39 Description of variables for each output profile. 

Variable name Type and 

permitte

d values 

Notes 

outName character

(len=10) 

The name of this output profile. This is used in file names and 

should be specified, even if there is only one profile. The names 

might reflect the variables in the file (e.g. ‘soil’), the data 

frequency (e.g. ‘daily’ ), or if several profiles are used they 

could be given arbitrary names such as ‘p1’,’p2’,…, etc. 

outPer9 integer The period for output (seconds). This must be a multiple of the 

timestep length (except for the special cases <0 given below). It 

must not exceed 30 days (2592000 seconds), except for the special 

cases. 

Special cases: 

0: generate output every timestep. 

-1: monthly period 

-2: annual period (calendar years) 

outFilePer9 integer The period for output files (seconds), i.e. the time interval within 

which all output goes to the same file. This must not exceed 30 days 

(2592000 seconds), except for the special cases given below. The 

file period must be consistent with the output period (e.g. we can’t 

have daily files for monthly output). 

Output may be generated for only part of a run (see 

outDateStart below), and outFilePer controls how the data 

                                                           
9
 Many variables that are input in terms of seconds (such as outPer and outFilePer) are converted within the 

code to a number of model timesteps. 



Page 102 of 126 

are stored during that part of the run when the output is “active”. 

Special cases: 

0: output is every timestep, and a new file is created every timestep 

-1: monthly files (all output for a month goes to the same file) 

-2: annual files (calendar years) 

-7: all output goes to one file, but each cycle of spin up creates a 

separate file 

-8: all output goes to one file, but all output during spin up goes to 

a separate file 

-9: all output (for all times) from this profile goes to one file 

outSamPer9 integer The sampling period (seconds) for time-averages and 

accumulations. This must be a factor of the output period 

(outPer). 

Special case: 0 means sample every timestep. 

The recommended setting is outSamPer=0. 

However, in some cases sampling every timestep adds a 

considerable computational burden, and acceptable output can be 

achieved by sampling less frequently. For example, with a large 

domain, many output diagnostics, and a timestep of 30 minutes, a 

monthly average would be calculated from several hundred values if 

every timestep was used. For variables that evolve relatively slowly, 

an acceptable monthly average might be obtained by sampling only 

every 12 hours. 

Remember that if fields are not sampled every timestep, the output 

averages will only be approximations. 

outDateStart integer Date in format yyyymmdd. Output from this profile is first 

generated at the date and time indicated by outDateStart and 

outTimeStart. These must be within the “main run”, except for 

the special cases noted below. Note that output is only generated at 

the end of a timestep, except for the special cases noted below. 

Special cases for outDateStart: 

0: output all times through the run, including any spin-up
10

 

-1: output at all times after spin-up is complete 

-2: output only at the start of the first timestep of the run (used to 

output the initial state only). 

 

Note that, at present, the only time at which output can be generated 

at the start of a timestep is at the start of the run, when 

outDateStart=-2 will output the initial state. Thus the only 

way in which the initial state can be output is to have an output 

profile with outDateStart=-2. All output at later times then has 

to be generated via another output profile. (This is a slight 

oversimplification – see footnote 10!) 

 

Note (a complication that you can ignore, but to really understand 

                                                           
10

 Under some circumstances, outDateStart=0 will also output the initial state of the model. These circumstances 

are that the period of the output equals the timestep (i.e. information for every timestep) and that all output goes to a 

single file (outFilePer=-9). The timestamp information included with the output allows the user to determine 

whether this initial state has been output. 



Page 103 of 126 

your output you might need to follow this!): For time-averaged 

output, outDateStart and outTimeStart specify the first 

time at which data will be included in the accumulation that is used 

to calculate the average (call this time t1). If t1 happens to be a time 

when any earlier average would be complete (i.e. had the output 

been started earlier, an average would have been calculated at t1), 

the average cannot be calculated at this start time and a “missing 

value” is output. 

Example: Hourly averages starting at midnight 1
st
 Jan 1996, and 

using a model timestep of 1800s (outPer = 3600, 

outPutDateStart = 19960101, outTimeStart = 

00:00:00). At midnight 1
st
 Jan 1996, this output stream is 

“activated”. The code then realises that the average over the 

previous hour should be calculated immediately (because an hourly 

average is always calculated “on the hour”), but because sufficient 

times have not been accumulated, the first value of this average 

(representing the average over the hour ending at midnight) is set to 

“missing”. The first “good” value will be the average ending 01H. 

On the other hand, instantaneous values can be output at 0H in this 

case because there is no need to accumulate any earlier values. 

outTimeStart character

*8 

Time of day (in format hh:mm:ss) at which output begins. Not used 

if outDateStart is one of the special cases. 

outDateEnd integer Date on which output ends. Not used if outDateStart is one of 

the special cases. 

outTimeEnd character

*8 
Time of day at which output ends. Not used if outDateStart is 

one of the special cases. 

pointsFlag(1) integer 

0, 1, 2 

Flag indicating how the points to be output are selected. 

0 = all points in the model grid will be output 

1 = points in a rectangular subsection will be output. 

2 = the points to be output will be listed individually 

pointsFlag(2) integer 

0 to 5 

Flag indicating how the locations in the output grid of output points 

will be calculated. 

0: the output grid will be the model grid 

1: the output grid will be the rectangular subsection specified via 

pointsFlag(1)=1. This option can only be used in conjunction 

with pointsFlag(1)=1. 

2: the location of each output point will be listed individually. This 

option can only be used in conjunction with pointsFlag(1)=2. 

3: the output grid will be the smallest rectangle that contains all the 

output points. This option requires that the model grid is rectilinear 

(or is a subset of such a grid).  

4: the output grid will be the same as the input grid. 

5: the output grid is a vector. This option can only be used in 

conjunction with pointsFlag(1)=2. In this case, the points to 

be output were specified by reading a list and they are simply 

written in the same order to an output vector. This option can be 

useful if a disparate set of points from an irregular grid has been 

selected for output, and saves having to specify a trivial mapping via 

pointsFlag(2)=2. 



Page 104 of 126 

 

Depending upon the shapes of the input and model grids, it may be 

possible to produce the same output grid via different combinations 

of the values of pointsFlag. Similarly, certain combinations will 

be less useful for particular grids. 

outAreaLL logical Switch indicating how to interpret the coordinates outRangeX and 

outRangeY. Only used if pointsFlag(1)=1.  

 

TRUE: co-ordinates are longitude and latitude. 

FALSE: co-ordinates are x and y indices (column and row 

numbers). 

outRangeX(1:2

) 

real array x-coordinates of the sub-area to be output. Depending on 

outAreaLatLon, these are longitudes (in range -180 to 360º) or 

column numbers. Only used if pointsFlag(1)=1. Column 

numbers are those in the INPUT grid. 

 

If values are column numbers, the code uses the nearest integer to 

the input value.  

outRangeY(1:2

) 

real array As outRangeX, expect in latitudinal (y) direction. 

outCompress logical Switch indicating if output data are to be “compressed” so that only 

model points are output. 

 

TRUE: Only output model points. Also output the mapping between 

the model points and the output grid (e.g. how to scatter the output 

points across a larger grid). The mapping is output in a form suitable 

for use with GrADS’ pdef. 

FALSE: If the output grid is larger than the number of points to be 

output, the grid is filled with “missing data” or padding values. 

 

See Section  6.20.3 for further discussion of output compression.  If 

the output grid is the same size as the number of points to be output 

(so no compression is possible), outCompress=TRUE may still 

cause output to differ in format from outCompress=FALSE (the 

points may be written in a different order), so outCompress 

should always be set to FALSE unless needed otherwise. 

Note that if outCompress=TRUE, then yrevOut is ignored for 

the profile (it becomes irrelevant). 

outLLorder logical Switch indicating the coordinate system to be used to determine the 

locations of the output points in the output grid.  Only used if 

pointsFlag(2)=1 or 3. 

 

TRUE: use the latitude and longitude of each point to determine its 

location in the output grid. 

FALSE: use the row and column number in the INPUT grid to 

determine where each point goes in output grid.  

 

This option is particularly useful if the input grid is rectilinear but is 

not regular in latitude and longitude (e.g. it could be a rotated grid). 



Page 105 of 126 

The output can then be placed on the same rectilinear grid. 

readFile logical Switch controlling location of output mapping. 

Only used if pointsFlag(1)=2 (i.e. a mapping is to be input). 

 

TRUE: read from an external file 

FALSE: read from the run control file. 

filename character The name of the file that contains output mapping. Only used if 

readFile=TRUE. 

pointsOut integer 

1 to size 

of grid 

The number of points to be output. This is only used if 

pointsFlag(1)=2. 

 

mapOut(1:poin

tsOut,1) 

integer 

array 

A list of the points that are to be output. The list gives the locations 

(point numbers) in the INPUT grid (which need not be the same as 

the model grid). 

 

Only used if pointsFlag(1)=2. 

mapOut(1:poin

tsOut,2 

integer 

array 

A list giving the destination (location in output grid) for each output 

point. The list gives the point number in the output grid. 

 

Only used if pointsFlag(2)=2 

outGridNx  integer Number of columns in the output grid. This is the full, 

uncompressed output grid. If compression is applied, the actual 

output may be smaller, but can be scattered across a grid with this 

number of columns. 

 

Only used if pointsFlag(2)=2, in which case the user specifies 

all aspects of the output grid and mappings. Otherwise the size of 

the output grid is calculated by the model. 

outGridNy integer As outGridNx, but number of rows. 

>VARS 

A list of variables to be output is provided between the tags >VARS 

and >ENDVARS. 

flag character*1 

S, M or A 

Flag indicating type of processing.  Acceptable values are, 
 

S: Instantaneous or snapshot value. 

M: Time mean value. 

A: Accumulation over time. 

 

For time averaged variables, the period over which each time 

average is calculated is given by outPer. For time-

accumulation variables, outPer gives the period for output 

of an updated accumulation (i.e., how often the value if 

reported). For both time averages and accumulations, the 

sampling frequency is set via outSamPer. 

 

NB A time-accumulation is initialised at the start of a run 

(actually at the start of each section of a run so that it is 

reinitialised after any spin up is completed – see Section 

 6.3.3) and thereafter accumulates until the end of the run 



Page 106 of 126 

(actually to the end of each section of a run). This may mean 

that accuracy is lost, particularly towards the end of long 

runs, if small increments are added to an already large sum. 

name character The name of an output variable (one word). This is the 

internal name as used in the model code. A list of available 

variables is provided in Section  9. This list was correct at the 

time of writing, but the most reliable way to determine 

exactly which variables are available for a particular version 

of JULES is to look at the variables listed in the subroutine 

init_out_varlist, and which can be echoed to screen 

at the start of a JULES run by setting echo=TRUE in 

INIT_OPTS (see Section  6.2). A variable may appear more 

than once in an output profile, as long as each time it appears 

with a different time flag – e.g. instantaneous and time-

average values. 

useName character The name to be used in the output (one word). This variable 

need not be specified. If useName is not provided, the code 

will substitute name instead. This facility allows the user to 

choose to call output variables by names other than those 

used in the code, for example to use names that are more 

memorable, or shorter names to avoid typing! Although the 

name should be a single word, characters such as underscore 

(“_”) may be used. 

 

 

6.20.3. Compression of the output grid 

As noted above, outCompress=TRUE can be used to compress the output data so that any 

“missing” points are not written and file size is reduced. Although this facility was designed to 

work with the pdef option of GrADS, it might be useful with other packages too, with the proviso 

that the user may have to tell another package how to use the available information. 

 

This facility will be described by considering an example in which we have global input data on a 

1º grid, and JULES is run at land points only. We would like to visualise the output plotted on the 

full globe. The input grid is of size 360×180=64800 points, of which only about 25% are land 

points at which the model is run. If we set outCompress=TRUE, the output files will contain 

data only for the land points, and a mapping is defined so that the land points can be plotted in their 

correct positions on the Earth. This leads to considerable saving on disc space. The data in the 

output file is written as a vector (of ~15000 points in this case), in the order that they are held in the 

model grid. The mapping is written to a binary file that contains 3 fields on the full, expanded grid 

(360x180 points in this example, starting from the southwest corner, proceeding across each row, 

then onto next row – i.e. the default JULES order). The first field is integer, and gives the location 

in the output vector (of ~15000 points) that should be plotted at this location in the globe. If there 

are no data for a point (i.e. a sea point in this case), the missing data value is inserted. The second 

field is real, and is 1.0 at points with data, elsewhere 0.0. The third field is not used by JULES (it 

deals with wind rotation) and will consist of the missing data value. 

 

GrADS’ pdef option can be used to display just such a thinned grid, i.e. the “full” grid is populated 

with values from the “thinned” grid, with missing data values inserted at all other points. Note that 



Page 107 of 126 

outCompress as implemented in JULES is a subset of the full pdef available in GrADS, namely 

where pdef is used with a supplementary file, and each point in the “thinned” output grid maps onto 

a single point in the “full” grid – effectively there is no interpolation. Thus the latitudes and 

longitudes of the model gridpoints (specified in INIT_GRID above) must be consistent with those 

specified here for the “full” grid. 

 

If a package other than GrADS is being used to display the thinned data, the user will have to either 

work out how to use the GrADS mapping between the vector and the full grid, or create new 

mapping data. 

 

 

6.20.4. An example of output grids and mapping 

 

This example uses the grids shown in Figure 6. The model grid has nx=5, ny=4 as shown, and is 

regular in latitude and longitude. For simplicity, we will assume that the input grid was identical to 

the model grid. The user wishes to output the 3 shaded points to an output grid with nxOut=2, 

nyOut=2, maintaining their relative positions (as given by latitude and longitude). 

 

 

Figure 6.  An example of the grids used in output mapping. 

 

The easiest way to achieve this is to use the following lines in the run control file (irrelevant lines 

have been omitted): 

 

2,3          !  pointsFlag(1:2) 

F,T          !  outCompress,outLLorder  

F            !  readFile 

 

3            !  pointsOut 



Page 108 of 126 

4,5,10       !  mapOut(1:pointsOut,1) 

 

pointsFlag(1)=1 means that the chosen points will be listed individually. 

pointsFlag(2)=3 means the output grid is to be the smallest rectangle that includes all output 

points. 

outCompress=F means the output grid will be padded as necessary. In this case, it means that 

output point #3 in Figure 6 will be filled with the missing data value. 

outLLorder=T means the location of each point in the output grid is calculated using the latitude 

and longitude of the point. 

pointsOut=3 indicates that 3 points are to be output. 

mapOut(1:pointsOut,1) indicates that the points to be output are numbers 4, 5 and 10 in the 

input grid (which is identical to the model grid in this case). 

The model uses the latitude and longitude of each point to establish that the chosen points should 

occupy locations 1, 2 and 4 in the output grid, and that location 3 should be filled with the missing 

data flag (undefOut). 

 

The same effect could be achieved by using pointsFlag(1)=2, pointsFlag(2)=2, 

mapOut(:,2)=1, 2, 4, outGridNxy=2, 2, i.e. the user can completely specify the mapping 

and grid shape. Calculating mapOut(:,2) is trivial in this example, but would involve the user in 

more and unnecessary work if many more points were to be output. 

 

6.20.5. Notes on output 

1. A warning is raised if any output is not generated because the output interval is not 

completed. This can occur when a run starts or ends partway through an output period, or if 

a spin up cycle ends partway through an output period. For example, if monthly average 

diagnostics are requested, but the run ends on the 10
th

 day of a month, the final monthly 

average is incomplete. In such cases, a value is still written to the output file, but the details 

of this value vary between cases. In short, a monthly or annual average is calculated if a 

“large fraction” of the month or year has been simulated, but averages over shorter periods 

are not calculated and a “missing data” value is output. For details, see the code. 

2. GrADS output: A control file (.ctl file), that describes GrADS output, includes a 

specification of the number of times of output that are contained in the associated data files 

(the TDEF line). When a data file is first opened, a control file is written, with an estimate 

of the expected number of times that will be written. Sometimes this initial estimate will 

prove wrong (for example, if the model is spinning up the number of spin up cycles may not 

be known in advance), and the .ctl file is later rewritten when the data file is complete. 

Under most circumstances, this procedure is carried out without any problem. However, if 

the user opens the .ctl file in GrADS while the integration is still underway, it may not 

correctly specify the number of times. In that case, the .ctl file will be correct if reopened 

at a later time. However, if the user has moved the .ctl file while the integration is 

underway, it cannot be rewritten and a warning is raised if an attempt is made to rewrite it. 

3. Driving data, such as meteorological or vegetation data, may not be correctly represented in 

output at the start of the first timestep of the run (i.e. time=0), depending upon the 

frequency of data and any temporal interpolation. The problem arises because the initial 

output is generated before the procedures that update the driving data are called. Under 

some circumstances, the driving data will already have been updated during the 



Page 109 of 126 

initialisation, and so the output will be correct. In other cases, the initial output will have 

“nonsense” values such as zero for the driving data. 

4. The code that generates output contains many options and has to deal with a variety of 

possibilities in terms of output frequency, run dates, spin up and the likes. Until the code 

has been thoroughly tested by the user community, early versions of JULES are quite likely 

to contain bugs, particularly in the output code. If a user finds an error with the output, the 

bug should be reported, but in the meanwhile JULES will hopefully run correctly if 

“simpler output” is requested. Two simplifying options, that may not always be practicable 

for the user, are to request snapshot diagnostics (rather than time averages; in cases of 

extreme difficulty these snapshots should be every timestep), and to send all output to a 

single file. 

 

 

6.21. File name templating 

If the names of input files follow particular patterns, JULES can use a substitution template rather 

than requiring a potentially long list of file names
11

. Templating comes in two forms, time 

templating and variable name templating, which can be used separately or together.  

 

Valid substitution strings are listed in Table 40. These are 3-character strings, starting with “%”. 

Note that any file name that contains “%” is assumed to use templating. 

 

Table 40 Valid substitution strings for substitution templates. 

Substitution string Description 

Time templating 

%tc 1-character representation of decade (Met Office files) 

%y4 4-digit year 

%y2 2-digit year 

%yc 1-character representation of year (Met Office files) 

%m2 2-digit month 

%m1 1- or 2-digit month 

%mc 3-character month abbreviation 

%mm 1-character representation of month (Met Office files) 

%d2 2-digit day of month 

%d1 1- or 2-digit day of month 

%dm 1-character representation of day of month (Met Office files) 

%h2 2-digit hour of day 

%h1 1- or 2-digit hour of day 

%hc 1-character representation of hour of day (Met Office files) 

%n2 2 digit minute (leading zero if needed) 

Variable name templating 

%vv A character variable 

 

 

                                                           
11

 JULES templating is similar to that used by GrADS, with a few important differences. JULES only allows a subset 

of the GrADS substitution strings (not including the %ch string used with chsub), but is more flexible in how it deals 

with time-templating. 



Page 110 of 126 

6.21.1. Time templating 

Information about the time of each file is contained in the file name. Valid substitution strings are 

listed in Table 40 and examples of the use of time templating are given in Table 42. 

 

The substitution template must be compatible with the period (frequency) of the data files. If a 

substitution template includes a substitution string that refers to a period of a day or longer, each 

file must contain data for no more than one period. For example, if %m2 appears in the template, 

each file must contain data from at most one calendar month. For periods less than one day (i.e. 

hours and minutes), data for more than one period can be held in the same file, but the file period 

must be a factor of one day
12

. 

 

The start time of each file must also follow (slightly complicated) rules that are laid out in Table 

41. The rules ensure that the first data in a file represent the first time that the time-templating 

expects to find in that file. Essentially they require that each file holds all possible data for the time 

period – there cannot be any missing times. Some of these rules are demonstrated in the example 

section below. If these rules are not followed, the code will detect an error and stop. In Table 41, 

dataPerUnits and filePerUnits are the time units that are used to describe the period of 

the data and the files respectively, chosen from 1 year, 1 month, days, hours and minutes. If a file 

or data period can be described by more than one time unit, the longer unit is used. For example, a 

period of 60 minutes is described as 1 hour. 

For example, consider daily data held in one file per month. This gives dataPerUnits=’day’ 

and filePerUnits=’1 month’.  Table 41 shows that the first data in each file must represent the 

1
st
 of the month, as might be expected.  A file that started with data for the 2

nd
 of the month cannot 

be used with time templating, even if a particular run does not require the data at that time. 

 

Table 41 Requirements for the time of first data in time templated files. 

dataPerUnits  

1 year 1 month days hours minutes 

1 year none Jan 01Jan 00H 01Jan 00H 01Jan 

1 month - none 1
st
 of 

month 

00H 1
st
 of 

month 

00H 1
st
 of 

month 

days - - none 00H 00H 

hours - - - none 00H 

filePerUnits 

minutes - - - - none 

 

 

6.21.2. Variable-name templating 

Variable-name templating is so called because it is expected to be used when related variables are 

stored in separate files, with file names that are identical apart from a section that indicates what 

variable is in each file. For example, variable #1 could be in “file1.dat”, while variable #2 is in 

“file2.dat”. Examples of the use of this type of templating are given in the next section. If 

                                                           
12

 Users of GrADS should note that, for these shorter substitution string periods (hours and minutes), JULES can use 

files that cannot be described by a GrADS template control file. GrADS (at v1.9v4) insists that each file contains data 

that covers at most one period, whereas JULES allows data for more than one period. For example, if the substitution 

template includes %h2, GrADS insists that each file contains data for at most one hour, whereas JULES allows each 

file to have 1, 2, 3, 4..etc hours of data. 



Page 111 of 126 

using variable name templating with non-SDF formats, the layout of each file must be similar – the 

number of headers and the number of fields in any time level must be the same in all files. 
 

Table 42 Examples of the use of file name templating. 

Substitution template Description 

of files 

Valid 

template? 

Example file names Comments 

/data/met_data_%y4%mc.dat Monthly 

files 

Yes /data/met_data_1990jan.dat 

/data/met_data_1990feb.dat 

 

./%y4/met_data_%y4%mc.dat Monthly 

files 

Yes ./1990/met_data_1990jan.dat A substitution string can 

appear more than once. 

Here data for each year are 

stored in a separate 

directory. 

%vv_%y4 Yearly 

files, with 

each 

variable in 

a separate 

file 

Yes Rain_1990.dat 

Wind_1990.dat 

Variable name and time 

templating used together. 

The strings that are to be 

substituted for %vv will be 

provided by the user via 

the run control file. 

Data_%d2.dat Hourly 

data, each 

file 

containing 

data for 10 

days 

No  Each file can contain at 

most 1 day of data. For 

substitution strings that 

refer to years, months or 

days, more than one 

year/month/day of data 

can be stored in each file. 

Data_%h2.dat Hourly 

data, each 

file 

containing 

data for 6 

hours. 

Yes Data_00.dat 

Data_06.dat 

Data_12.dat 

Data_18.dat 

For substitution strings 

that refer to hours or 

minutes, more than one 

hour or minute of data can 

be stored in each file.  

Data_%mc.dat Hourly data 

in monthly 

files. The 

time of the 

first data is 

00H 

01Jun1990. 

Yes Data_jan.dat 

Data_feb.dat 

 

Data_%mc.dat Hourly data 

in monthly 

files. The 

time of the 

first data is 

01H 

01Jun1990. 

No Data_jan.dat 

Data_feb.dat 

Similar to the previous 

case, but with first data 

one hour later. In this case, 

the first data in each file 

must represent 00H on the 

1
st
 of a month. These data 

cannot be described by a 

time template and instead 

the name and time of each 

data file must be listed 

(see appropriate section). 

Data_%y4.dat Monthly 

data in 

yearly files. 

The time of 

the first 

data is 

given as 

00H 

Yes Data_1990.dat 

Data_1991.dat 

In this case, the time of the 

first data must be in 

January. Here it is shown 

to be a value at 

approximately mid-month.  



Page 112 of 126 

15Jan1990. 

 

6.22. Notes on temporal interpolation 

Time-varying input data to JULES require the user to specify how the data should be interpolated 

onto the model timestep.  The permitted interpolation flags are shown in Table 43. These flags are 

case-sensitive. 

 

Table 43 Time interpolation flags. 

Flag value Notes 

b Backward time average, ending at given time. Will be interpolated with time.  

c Centred time average, centred on given time. Will be interpolated with time. 

f Forward time average, starting at given time. Will be interpolated with time. 

i Instantaneous value at the given time. Will be linearly interpolated with time. 

nb Backward time average, ending at given time. Value will be held constant with time. 

nc Centred time average, centred on given time. Value will be held constant with time. 

nf Forward time average, starting at given time. Value will be held constant with time. 

 

Depending upon the time interpolation flags, driving data may need to be supplied for one or two 

times that fall before or after the times for the integration. The interpolation scheme implemented in 

JULES for flags 'b', 'c' and 'f' is a simplified version of the Sheng and Zwiers (1998)
13

 

method that conserves the period means of the driving data file.  In order to ensure conservation of 

the average, these flags can be used only if the data period is an even multiple of the model 

timestep (i.e., if driveDataPer=2*n*timestep; n=1, 2, 3, ...).  In these cases the curve-

fitting process tends to produce occasional values near turning points that fall outside the range of 

the input values. Note that for centred data (flags ‘c’ and ‘nc’) the time of the data should be given 

as that at the start of the averaging period, rather than the centre. e.g. the 3-hour average over 06H 

to 09H, centred at 07:30H, should be treated as having timestamp 06H. 

 

 

                                                           
13

 Sheng and Zwiers (1998) “An improved scheme for time-dependent boundary conditions in atmospheric general 

circulation models”, Climate Dynamics, 14, 609—613. 



Page 113 of 126 

 

Figure 7. Schematic of JULES interpolation of driving variable from a 3 hour timestep to a 45 minute timestep.  

Simulation start time is 0000Z (on an arbitrary day) and end time is 1200Z.  Blue circles indicate driving data 

required to complete a JULES simulation from t=0 to t=16.  See text for discussion of requirements for 

driving variables that are forward or backward means. 



Page 114 of 126 

6.23. Example run control files 

 

Two example run control files come bundled with the JULES source code, in the top-level 

directory. 

 
point_loobos_example.jin 

 for a single point simulation forced with weather station data. This run requires a single input file 

(meteorological data) that is also included as part of the JULES distribution, in the “LOOBOS” 

directory. The results of running this code are also provided in the same directory, so the user can 

check that their installation of JULES produces results that are acceptably close to those of this 

standard run. 

 
point_loobos_triffid_example.jin 

 for a single point simulation forced with weather station data. This is similar to 

point_loobos_example.jin above, but with the TRIFFID dynamic vegetation model 

switched on. No results are provided. 

 
point_VL92_1T_example.jin, point_VL92_2T_example.jin, 

point_VL92_M_example.jin 

for a single point run simulation, including the urban land surface types, forced with weather 

station data. These serve as an example of the original one tile urban scheme, the simple two-tile 

urban scheme (URBAN-2T) and MORUSES. 

 
grid_gswp2_example.jin 

 for a gridded domain simulation forced with GSWP2 weather data. This run requires a large 

amount of input data that is not distributed with JULES, and merely serves as an example of a run 

control file for a gridded domain. 

 



Page 115 of 126 

7. Aspects of the code 

 

7.1. Low-level i/o code 

In the course of adding to JULES, a user may well want to read new variables into the model.  Most 

of the input/output of spatial fields is handled by subroutines provided by the module 

READWRITE_MOD.  Particularly important procedures that deal with input are summarised in 

Table 44. To use this code to read in a new variable, the appropriate procedure should be identified 

based on the type of variable that is to be read in. For example, to read a field that is only defined 

on land points, a call to readVar2dComp is appropriate. All these procedures require arguments that 

define the mapping between the input grid and the model grid. 

 

Note that the choice of procedure is governed solely by the type of variable and is not affected by 

the shape of the input grid.  The correct use of these procedures and the arguments required can be 

learned by studying the exiting code. 

 

Table 44 Key procedures for reading data. 

Name Summary 

readVar2d Reads a variable that is defined at all possible points (both land and sea). 

The result is a variable on the model grid (this is considered to be a 2-

dimensional variable on (x,y), even if the model grid is effectively a vector 

with ny=1). 

For example, air temperature is defined at all possible points, both land 

and sea. 

readVar2dComp Reads a variable that is only defined on a subset of points (for example 

land points). 

The result is a vector. 

For example, a land variable can be read from a 2-D (x,y) map (that may 

contain both land and sea points), and the result is a vector on land points. 

(The “Comp” in the name is meant to suggest “compression” to a vector!) 

readVar3dComp As readVar2dComp, but the variable is also a function of the vertical 

level (e.g. a soil variable on several levels). This 3d version works by 

looping over the vertical levels, calling the 2d version for each level. 

 

 

7.2. How to implement new diagnostics for output 

The steps needed to add a new diagnostic vary according to what variables are needed in order to 

calculate the diagnostic. These are covered in the next sections. 

 

7.2.1. Output of existing variables 

The data are already held in an existing FORTRAN variable, in a module.  This is the easiest case, 

since the data are easily accessed. The name that is used to select the diagnostic should be added to 

subroutine init_out_varlist, following the existing examples.  Care should be taken to 

specify the correct type of diagnostic (e.g., land points only, soil layers). If the desired diagnostic 



Page 116 of 126 

does not fit any of the existing types, the user may have to closely study the code to work out how 

to add a new type, and/or contact the JULES developers. Finally, code to load the values into the 

output space has to be added to subroutine loadout (in module OUTPUT_MOD). This code may 

have to calculate the diagnostic using other variables. 

 

7.2.2. Output of new variables 

Diagnostics that require variables that the user had added, or that must be calculated in a section of 

the model code other than the output routines, are more complex to add to JULES.  In such a case, 

it may be easiest to declare a new variable in a FORTRAN module, and to use this variable to hold 

the values of the diagnostic. Space for the new variable will likely have to be allocated, and the 

tidiest way to do this would be in the subroutine allocate_arrays (which is called at various 

points during initialisation). The variable can then be accessed by the output procedures and the 

steps outlined in case 1 above should be followed. 

 

A more sophisticated scheme which only allocated space for a diagnostic if it was required, and 

loaded the value from any subroutine (avoiding the need to hold the variable in a module, or pass it 

through the code) has been implemented in some versions of JULES but is not available in the 

release versions because it is not compatible for use in the Unified Model. If you are keen to get 

this code, contact the JULES developers. 

 



Page 117 of 126 

8. Known limitations of and bugs in the code 

1.Limit to longest possible run 

The longest possible run that can be attempted with JULES is approximately 100 years. Any longer 

run should be split into smaller sections, with each later section starting from the final dump of the 

previous section. This restriction on run length arises because some of the time variables can 

become too large for the declared type of variable meaning that calculations return incorrect results 

and the program will probably crash. The size of each variable is in part affected by the compiler 

used, but a maximum run length of ~100 years appears to be a common case for 32-bit machines. 

Note that JULES uses the compiler’s default KIND for each type of variable. Changes to the KIND 

of any variable would have to be propagated through the code. 

 

2. Lack of more generic i/o code 

If a user wants to introduce new time-varying data that cannot be made to fit into the existing code 

for vegetation or meteorological data (for example, the new data would need to have the same 

frequency as the other data type), they may have a substantial job on their hands! For many 

purposes, a simple ‘hack’ may suffice (e.g. write code to read a particular data set for a particular 

run), but this will lack generality and options such as automatic spin up will be hard to 

accommodate. At present there is no good solution – we don’t have any flexible coupling code that 

can be told to fetch suitable values of an arbitrary field, although JULES may move towards this in 

future. 

 

3. Spin up over short periods 

The current code cannot cope with a spin up cycle that is short in comparison to the period of any 

input data. For example, a spin up cycle of 1 day cannot use 10-day vegetation data. The code will 

likely run but the evolution of the vegetation data will probably not be what the user intended! 

However, it is unlikely that a user would want to try such a run. 



Page 118 of 126 

9. Variables available for output 

Variables that are available for output from JULES are listed in the tables of this section, separated 

according to their type. Types of variables are: 

 

SINGLE: a single value at all gridpoints (land and sea) (Table 45). 

LAND: a single value at land gridpoints (Table 46). 

PFT: a value for each of npft PFTs at each land gridpoint (Table 47). 

TILE: a value for each of ntiles tiles at each land gridpoint (Table 48). 

TYPE: a value for each of ntype surface types at each land gridpoint (Table 49). 

SOIL: a value for each of sm_levels soil layers at each land gridpoint (Table 50). 

SNOW: a value for each of nsmax snow layers at each tile at each land gridpoint (Table 51). 

SC: a value for each of N soil carbon pools at each land gridpoint (Table 52). N=1 if 

l_triffid=FALSE, else N=4. 

 

 

These tables were correct at the time of writing, but the most reliable way to determine exactly 

which variables are available for a particular version of JULES is to look at the variables listed in 

the subroutine init_out_varlist, and which can be echoed to screen at the start of a JULES 

run by setting echo=TRUE (see Section  6.2). 

 

A few variables are not available in the standard release (for reasons of compatibility with the 

Unified Model - see Section  7.2.2), but can be accessed with the addition of extra code which can 

be requested from the JULES office. These “offline” variables are shown in italics in the tables 

below. 



Page 119 of 126 

 

Table 45 A list of output variables that have a single value at each gridpoint. 

Name Description 

 conRain  Gridbox convective rainfall (kg m
-2

 s
-1

) 

 conSnow  Gridbox convective snowfall(kg m
-2

 s
-1

) 

 cosz  Cosine of the zenith angle (-) 

 diffFrac  Gridbox fraction of radiation that is diffuse (-) 

 ecan  Gridbox mean evaporation from canopy/surface store (kg m
-2

 s
-1

) 

 ei  Gridbox sublimation from lying snow or sea-ice (kg m
-2

 s
-1

) 

 esoil  Gridbox surface evapotranspiration from soil moisture store (kg m
-2

 s
-1

) 

 fqw  Gridbox moisture flux from surface (kg m
-2

 s
-1

) 

 ftl  Gridbox surface sensible heat flux (W m
-2

) 

 landAlbedo1  Gridbox albedo for waveband 1 (direct beam visible) 

 landAlbedo2  Gridbox albedo for waveband 2 (diffuse visible) 

 landAlbedo3  Gridbox albedo for waveband 3 (direct beam NIR) 

 landAlbedo4  Gridbox albedo for waveband 4 (diffuse NIR) 

 latentHeat  Gridbox surface latent heat flux (W m
-2

) 

 latitude  Gridbox latitude (º) 

 longitude  Gridbox longitude (º) 

 lsRain  Gridbox large-scale rainfall (kg m
-2

 s
-1

) 

 lsSnow  Gridbox large-scale snowfall (kg m
-2

 s
-1

) 

 LWdown  Gridbox surface downward LW radiation (W m
-2

) 

 precip  Gridbox precipitation rate (kg m
-2

 s
-1

) 

 pstar  Gridbox surface pressure (Pa) 

 q1p5m  Gridbox specific humidity at 1.5m height (kg kg
-1

) 

 qw1  Gridbox specific humidity (total water content) (kg kg
-1

) 

 rainfall  Gridbox rainfall rate (kg m
-2

 s
-1

) 

 snomltSurfHtf  Gridbox heat flux used for surface melting of snow (W m
-2

) 

 snowfall  Gridbox snowfall rate (kg m
-2

 s
-1

) 

 snowMass  Gridbox snowmass (kg m
-2

) 

 surfHtFlux  Gridbox net downward heat flux at surface over land and sea-ice fraction 

of gridbox (W m
-2

) 

 SWdown  Gridbox surface downward SW radiation (W m
-2

) 

 t1p5m  Gridbox temperature at 1.5m height (K) 

 taux1  Gridbox westerly component of surface wind stress (N m
-2

) 

 tauy1  Gridbox southerly component of surface wind stress (N m
-2

) 

 tl1  Gridbox ice/liquid water temperature (K) 

 tstar  Gridbox surface temperature (K) 

 u1  Gridbox westerly wind component (m s
-1

) 

 u10m  Gridbox westerly wind component at 10 m height (m s
-1

) 

 v1  Gridbox southerly wind component (m s
-1

) 

 v10m  Gridbox southerly wind component at 10m height (m s
-1

) 

 wind  Gridbox wind speed (m s
-1

) 

 

 



Page 120 of 126 

 

Table 46 A list of output variables that have a single value at each land gridpoint. 

Name Description 

 albedoLand  Gridbox albedo (as used to calculate net shortwave radiation) (-) 

 canopy  Gridbox canopy water content (kg m
-2

) 

 cs  Gridbox total soil carbon (kg C m
-2

) 

 cv  Gridbox mean vegetation carbon (kg C m
-2

) 

 depthFrozen  Gridbox depth of frozen ground at surface (m) 

 depthUnfrozen  Gridbox depth of unfrozen ground at surface (m) 

 drain  Gridbox drainage at bottom of soil column (kg m
-2 

s
-1

) 

 elake  Gridbox mean evaporation from lakes (kg m
-2

s
-1

) 

 emis  Gridbox emissivity 

 fch4_wetl  Gridbox scaled methane flux from wetland fraction (10
-9

 kg C m
-2

s
-1

) 

 fsat  Gridbox surface saturated fraction (-) 

 fsmc  Gridbox soil moisture availability factor (beta) (-) 

 fwetl  Gridbox wetland fraction (-) 

 gpp  Gridbox gross primary productivity (kg C m
-2

s
-1

) 

 gs  Gridbox surface conductance to evaporation (m s
-1

) 

 hfSnowMelt  Gridbox snowmelt heat flux (W m
-2

) 

 landIndex  Index (gridbox number) of land points 

 liceIndex  Index (gridbox number) of land ice points 

 litCMn  Gridbox mean carbon litter (kg C m
-2

 (360days)
-1

) 

 LWnet  Gridbox surface net LW radiation (W m
-2

) 

 LWup  Gridbox surface upward LW radiation (W m
-2

) 

 npp  Gridbox net primary productivity (kg C m
-2

 s
-1

) 

 qbase  Gridbox baseflow (lateral subsurface runoff) (kg m
-2 

s
-1

) 

 qbase_zw  Gridbox baseflow (lateral subsurface runoff) from deep layer (kg m
-2 

s
-

1
) 

 radnet  Surface net radiation (W m
-2

) 

 respP  Gridbox plant respiration (kg C m
-2

 s
-1

) 

 respS  Gridbox total soil respiration (kg C m
-2

 s
-1

) 

 respSDrOut  Gridbox mean soil respiration for driving TRIFFID (kg C m
-2

 

(360days)
-1

) 

 runoff  Gridbox runoff rate (kg m
-2

 s
-1

) 

 sat_excess_roff  Gridbox saturation excess runoff rate (kg m
-2

 s
-1

) 

 smcAvailTop  Gridbox available moisture in surface layer of depth given by zsmc 

(kg m
-2

) 

 smcAvailTot  Gridbox available moisture in soil column (kg m
-2

) 

 smcTot  Gridbox total soil moisture in column (kg m
-2

) 

 snomltSubHtf  Grdbox sub-canopy snowmelt heat flux (W m
-2

) 

 snowCan  Gridbox snow on canopy (kg m
-2

) 

 snowDepth  Gridbox depth of snow (m) 

 snowFrac  Gridbox snow-covered fraction of land points (-) 

 snowFracAlb  Gridbox average weight given to snow for albedo (-) 

 snowGrCan  Gridbox average snow beneath canopy (snow_grnd) (kg m
-2

) 

 snowIceTot  Gridbox frozen water in snowpack (kg m
-2

) 

Only available if nsmax>0. 

 snowLiqTot  Gridbox liquid water in snowpack (kg m
-2

)  



Page 121 of 126 

Only available if nsmax>0. 

 snowMelt  Gridbox rate of snowmelt (kg m
-2

 s
-1

) 

 soilIndex  Index (gridbox number) of soil points 

 sthZw  Sol wetness in the deep (water table) layer (-) 

 subSurfRoff  Gridbox sub-surface runoff (kg m
-2

 s
-1

) 

 surfRoff  Gridbox surface runoff (kg m
-2

 s
-1

) 

 surfRoffInf  Gridbox infiltration excess surface runoff (kg m
-2

 s
-1

) 

 swetLiqTot  Gridbox unfrozen soil moisture as fraction of saturation (-) 

 swetTot  Gridbox soil moisture as fraction of saturation (-) 

 SWnet  Gribox net shortwave radiation at the surface (W m
-2

) 

 tfall  Gridbox throughfall (kg m
-2

 s
-1

) 

 trad  Gridbox effective radiative temperature (K) 

 wFluxSfc  Gridbox downwards moisture flux at soil surface (kg m
-2

 s
-1

) 

 zw  Gridbox depth to water table (m) 

 



Page 122 of 126 

 

Table 47 A list of output variables that have a single value for each PFT at each land gridpoint. 

Name Description 

 cVegP  PFT total carbon content of the vegetation (kg C m
-2

) 

 canhtP  PFT canopy height (m) 

 ciP  PFT internal CO2 pressure (Pa) 

 fluxO3Stom  PFT flux of O3 to stomata (mol m-2 s-1) 

 fsmcP  PFT soil moisture availability factor (-) 

 gLeafP  PFT leaf turnover rate ([360days]
-1

) 

 gLeafDayP  PFT mean leaf turnover rate for input to PHENOL ([360days]
-1

) 

 gLeafDrOutP  PFT mean leaf turnover rate for driving TRIFFID ([360days]
-1

) 

 gLeafPhenP  PFT mean leaf turnover rate over phenology period([360days]
-1

) 

 gstomP  PFT bulk (canopy) stomatal conductance for water vapour (m s
-1

) 

 gppP  PFT gross primary productivity (kg C m
-2

 s
-1

) 

 laiP  PFT leaf area index (-) 

 laiPhenP  PFT leaf area index after phenology (-) 

 litCP  PFT carbon litter (kg C m
-2

 (360days)
-1

) 

 nppDrOutP  PFT mean NPP for driving TRIFFID (kg C m
-2

 (360days)
-1

) 

 nppP  PFT net primary productivity (kg C m
-2

 s
-1

) 

 o3ExpFac  PFT ozone exposure factor 

 rdcP  Canopy dark respiration, without soil water dependence (mol CO2 m
2
 s

-1
) 

 respPP  PFT plant respiration (kg C m
-2

 s
-1

) 

 respWDrOutP  PFT mean wood respiration for driving TRIFFID (kg C m
-2 

(360days)
-1

) 

 respWP  PFT wood respiration (kg C m
-2

 s
-1

) 

 



Page 123 of 126 

 

Table 48 A list of output variables that have a single value for each tile at each land gridpoint. 

Name Desciption 

 alb1T  Tile land albedo, waveband 1 (direct beam visible) 

 alb2T  Tile land albedo, waveband 2 (diffuse visible) 

 alb3T  Tile land albedo, waveband 3 (direct beam NIR) 

 alb4T  Tile land albedo, waveband 4 (diffuse visible) 

 anthropHtFluxT  Anthropogenic heat flux for each tile (W m
-2

) 

 canopyT  Tile surface/canopy water for snow-free land tiles (kg m
-2

) 

 catchT  Tile surface/canopy water capacity of snow-free land tiles (kg m
-2

) 

 ecanT  Tile evaporation from canopy/surface store for snow-free land tiles (kg m
-

2
 s

-1
) 

 eiT  Tile sublimation from lying snow for land tiles (kg m
-2

 s
-1

) 

 emisT  Tile emissivity 

 esoilT  Tile surface evapotranspiration from soil moisture store for snow-free 

land tile (kg m
-2

 s
-1

) 

 fqwT  Tile surface moisture flux for land tiles (kg m
-2

 s
-1

) 

 ftlT  Tile surface sensible heat flux for land tiles (W m
-2

) 

 gcT  Tile surface conductance to evaporation for land tiles(m s
-1

) 

 leT  Tile surface latent heat flux for land tiles (W m
-2

) 

 nsnow  Tile number of snow layers (-) 

 q1p5mT  Tile specific humidity at 1.5m over land tiles (kg kg
-1

) 

 radnetT  Tile surface net radiation (W m
-2

) 

 rgrainT  Tile snow surface grain size (µm) 

 snowCanMeltT  Tile melt of snow on canopy (kg m
-2

 s
-1

) 

 snowCanT  Tile snow on canopy (kg m
-2

) 

 snowDepthT  Tile snow depth (m) 

 snowGrCanMeltT  Tile melt of snow under canopy (kg m
-2

 s
-1

) 

 snowGroundRhoT  Tile bulk density of snow on ground (kg m
-3

) 

 snowGrCanT  Tile snow on ground below canopy (kg m
-2

) 

 snowGroundT  Tile snow on ground (snow_tile or snow_grnd) (kg m
-2

) 

 snowIceT  Tile total frozen mass in snow on ground (kg m
-2

) 

Only available if nsmax>0. 

 snowLiqT  Tile total liquid mass in snow on ground (kg m
-2

)  

Only available if nsmax>0. 

 snowMassT  Tile lying snow (total) (kg m
-2

) 

 snowMeltT  Tile snow melt rate (melt_tile) (kg m
-2

 s
-1

) 

 surfHtFluxT  Downward heat flux for each tile (W m
-2

) 

 surfHtStoreT  C*(dT/dt) for each tile (W m
-2

) 

 t1p5mT  Tile temperature at 1.5m over land tiles (K) 

 tstarT  Tile surface temperature (K) 

 z0T  Tile surface roughness (m) 

 

Table 49 A list of output variables that have a single value for each tile type at each land gridpoint. 

Name Description 

frac Fractional cover of each surface type. 

tileIndex  Index (gridbox number) of land points with each surface type 



Page 124 of 126 

 



Page 125 of 126 

 

Table 50 A list of output variables that have a single value for each soil level at each land gridpoint. 

Name Description 

 bSoil Brooks-Corey exponent for each soil layer (-) 

 ext Extraction of water from each soil layer (kg m
-2

 s
-1

) 

 hCapSoil Soil heat capacity (J K
-1

 m
-3

) for each soil layer 

 hConSoil Soil thermal conductivity (W m
-1

 K
-1

) for each soil layer 

 satCon Saturated hydraulic conductivity (kg m
-2

 s
-1

) for each soil layer 

 sathh Saturated soil water pressure (m) for each soil layer 

 smcl Moisture content of each soil layer (kg m
-2

) 

 soilWet Total moisture content of each soil layer, as fraction of saturation (-) 

 sthf Frozen moisture content of each soil layer as a fraction of saturation (-) 

 sthu Unfrozen moisture content of each soil layer as a fraction of saturation (-) 

 tSoil Sub-surface temperature of each layer (K) 

 vsmcCrit Volumetric moisture content at critical point for each soil layer (-) 

 vsmcSat Volumetric moisture content at saturation for each soil layer (-) 

 vsmcWilt Volumetric moisture content at wilting point for each soil layer (-) 

 wFlux Downwards moisture flux at bottom of each soil layer (kg m
-2

 s
-1

) 

 

Table 51 A list of output variables that have a single value for each snow layer at tile each land gridpoint. 

Name Description 

 rGrainL Grain size in snow layers for each tile (µm) 

 snowDs  Depth of each snow layer for each tile (m) 

 snowIce  Mass of ice in each snow layer for each tile (kg m
-2

) 

 snowLiq  Mass of liquid water in each snow layer for each tile (kg m
-2

) 

 tsnow  Temperature of each snow layer (K) 

 

Table 52 A list of output variables that have a single value for each soil carbon pool at each land gridpoint. 

Name Description 

csPool  Carbon in each soil pool (kgC m
-2

) 

respSPool  Respiration rate from each  soil carbon pool (kgC m
-2

 s
-1

) 

 



Page 126 of 126 

10. List of Tables 

 

Table 1 Options that can be passed to make when building JULES..................................................................................4 
Table 2 Frequently used control file options ......................................................................................................................4 
Table 3 Options used to specify the reading of ASCII, binary and PP format files. ..........................................................4 
Table 4 Part of an example ASCII file that could be read by JULES. ...............................................................................4 
Table 5 Recognised types of netCDF input file..................................................................................................................4 
Table 6 Dimensions in netCDF input files .........................................................................................................................4 
Table 7 Sections in a JULES control file. ..........................................................................................................................4 
Table 8 Description of variables in INIT_OPTS section....................................................................................................4 
Table 9 Description of variables in the INIT_TIME section ............................................................................................4 
Table 10 Description of variables in the INIT_GRID section ..........................................................................................4 
Table 11 Description of variables in the INIT_LAND section ..........................................................................................4 
Table 12 Description of variables in the INIT_LATLON section. ....................................................................................4 
Table 13 Description of variables in the INIT_FRAC section. .........................................................................................4 
Table 14 Description of variables in the INIT_SOIL section.............................................................................................4 
Table 15 List of soil parameters. ........................................................................................................................................4 
Table 16 List of variables in soil look-up table. .................................................................................................................4 
Table 17 Description of variables in the INIT_TOP section ..............................................................................................4 
Table 18 List of TOPMODEL parameters .........................................................................................................................4 
Table 19 Description of variables in the INIT_PDM section. ............................................................................................4 
Table 20 Description of variables in the INIT_HGT section .............................................................................................4 
Table 21 Description of variables in the INIT_VEG_PFT section.....................................................................................4 
Table 22 List of PFT parameters. .......................................................................................................................................4 
Table 23 Description of variables in the INIT_VEG_VARY section. ...............................................................................4 
Table 24 Description of variables in the INIT_NONVEG section.....................................................................................4 
Table 25 Description of variables that are required in the INIT_URBAN section.............................................................4 
Table 26 Parameters that may be used from INIT_NONVEG (Section  6.12) for the ‘urban_roof’ and 

‘urban_canyon’ tile types depending on MORUSES switch configuration. Any non-vegetation parameters 

not referenced in this table are always used from INIT_NONVEG. .........................................................................4 
Table 27 Description of urban geometry & building material variables ............................................................................4 
Table 28 Description of variables in the INIT_SNOW section..........................................................................................4 
Table 29 An example of the evolution of snow layer thickness. ........................................................................................4 
Table 30 Description of variables in the INIT_TRIF section. ............................................................................................4 
Table 31 Description of variables in the INIT_AGRIC section........................................................................................4 
Table 32 Description of variables in the INIT_MISC section............................................................................................4 
Table 33 Description of variables in the INIT_DRIVE section .........................................................................................4 
Table 34 Names of meteorological driving variables. ........................................................................................................4 
Table 35 Description of variables for INIT_IC section. ..................................................................................................4 
Table 36 JULES variables that require to be specified to define the initial model state. ...................................................4 
Table 37 Further details of snow variables.........................................................................................................................4 
Table 38 Description of variables in the INIT_OUT section. ...........................................................................................4 
Table 39 Description of variables for each output profile. .................................................................................................4 
Table 40 Valid substitution strings for substitution templates. ..........................................................................................4 
Table 41 Requirements for the time of first data in time templated files. ..........................................................................4 
Table 42 Examples of the use of file name templating. .....................................................................................................4 
Table 43 Time interpolation flags. .....................................................................................................................................4 
Table 44 Key procedures for reading data..........................................................................................................................4 
Table 45 A list of output variables that have a single value at each gridpoint. ..................................................................4 
Table 46 A list of output variables that have a single value at each land gridpoint............................................................4 
Table 47 A list of output variables that have a single value for each PFT at each land gridpoint. .....................................4 
Table 48 A list of output variables that have a single value for each tile at each land gridpoint........................................4 
Table 49 A list of output variables that have a single value for each tile type at each land gridpoint................................4 
Table 50 A list of output variables that have a single value for each soil level at each land gridpoint. .............................4 
Table 51 A list of output variables that have a single value for each snow layer at tile each land gridpoint. ....................4 
Table 52 A list of output variables that have a single value for each soil carbon pool at each land gridpoint. ..................4 
 


