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Abstract. We describe in this paper the new version of
LANL ∗, an artificial neural network (ANN) for calculating
the magnetic drift invariantL∗. This quantity is used for
modeling radiation belt dynamics and for space weather ap-
plications. We have implemented the following enhance-
ments in the new version: (1) we have removed the limita-
tion to geosynchronous orbit and the model can now be used
for a much larger region. (2) The new version is based on
the improved magnetic field model byTsyganenko and Sit-
nov(2005) (TS05) instead of the older model byTsyganenko
et al. (2003). We have validated the model and compared
our results toL∗ calculations with the TS05 model based
on ephemerides for CRRES, Polar, GPS, a LANL geosyn-
chronous satellite, and a virtual RBSP type orbit. We find
that the neural network performs very well for all these orbits
with an error typically1L∗ < 0.2 which corresponds to an
error of 3 % at geosynchronous orbit. This new LANL∗ V2.0
artificial neural network is orders of magnitudes faster than
traditional numerical field line integration techniques with
the TS05 model. It has applications to real-time radiation belt
forecasting, analysis of data sets involving decades of satel-
lite of observations, and other problems in space weather.

1 Introduction

The Earth’s radiation belts or Van Allen belts describe a
doughnut shaped region surrounding Earth that is filled with
highly energetic charged particles which are trapped in the
Earth’s magnetic field. The radiation belts are dynamic and
particles are energetic enough to penetrate the surfaces of
spacecraft and/or instruments and can pose a significant haz-
ard to our assets in space. For example, electron fluxes in the
radiation belts can vary by six orders of magnitude within
hours due to wave-particle interactions. These wave-particle
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interactions are very important to understand for inferring the
dynamics of the radiation belts. There is a significant need
for measuring and modeling this environment and to accu-
rately understand the physical processes causing the dynam-
ics of the electron and ion fluxes. This paper is not about
understanding these processes but the aim is at calculating
L∗ which allows researchers to analyze the radiation belts in
an adiabatic invariant space and determine the effects of non-
adiabatic processes including wave-particle interactions.

The large scale motion of charged particles in the Earth’s
magnetosphere are dominated by the structure of the global
geomagnetic and geoelectric fields. At sufficiently high en-
ergies (tens or hundreds of keV) the influence of the electric
field can be neglected and particle motion can be described
by three periodic motions: gyration around the magnetic
field, bounce along the magnetic field between magnetic mir-
ror points, and gradient/curvature drift across the magnetic
field in an azimuthal direction around the Earth. Each peri-
odic motion has a Hamiltonian invariant and in the Earth’s
field they are well separated by their adiabatic time scales.
The cyclotron-invariant is the magnetic moment,µ, which is
invariant on millisecond time scales. The bounce invariant,
given byK, is related to the integral along the magnetic field
line between mirror points and has time scales of seconds.
The drift invariant,8, is related to the contour integral along
the azimuthal drift shell around the Earth. If the magnetic
field changes slowly relative to a drift period (hours) then the
drift path is closed and8 is adiabatically conserved. A more
convenient quantity isL∗ (L-star) which is defined as

L∗
= −

2 π k0

8 RE
, (1)

wherek0 is the Earth’s dipole moment,RE is the radius of
the Earth (6370 km) and8 is defined as

8 =

∫
S

B · d S. (2)

In a dipole magnetic field,L∗ is the distance from the cen-
ter of the Earth to the equatorial point of a given field line,
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in units of Earth radii. In a dipole field, particles of any
pitch angle would also have the sameL∗ for a given point
in space (see also,Roederer, 1970; Schulz and Lanzerotti,
1974; Schulz, 1991). However, a simple dipole magnetic
field is not a sufficiently accurate representation, especially
for geosynchronous orbit atRE = 6.6 and beyond. In realis-
tic fields, particles with different pitch angles have different
L∗’s for the same point in space.

One important challenge for modeling of the radiation
belts (and other populations in space) is that the charged par-
ticles moving in space form complex current systems that in
turn distort the geomagnetic field. The interaction of the so-
lar wind, magnetospheric, and ionospheric current systems
form an interconnected dynamic system that produces strong
distortions of the Earth’s field such that it no longer approxi-
mates a dipole and, indeed, requires sophisticated numerical
field models that are themselves subject of intensive research
(e.g.Chen et al., 2006; Wolf, 1996).

Many models of the geomagnetic field have been devel-
oped but both the pace of development and the numerical
sophistication of the models has increased dramatically in
the last several decades. Numerically simple models such
as the static Olson-Pfitzer model (Olson, 1974) have given
way to dynamic, statistical models driven by solar wind and
geomagnetic inputs. The models developed by Tsyganenko
and colleagues are representative and are among the most
widely used (Tsyganenko et al., 2003; Tsyganenko and Sit-
nov, 2005). The most recent version of these models (Tsy-
ganenko and Sitnov, 2007) is also the most computation-
ally intensive model. At an even higher level of complexity
are global magnetohydrodynamic models or physics based
plasma/field model (e.g.Zaharia et al., 2006) but both of
these models are sufficiently computer-intensive that they are
typically only used for analysis in limited and targeted stud-
ies.

The motion of particles in complex, realistic geomag-
netic field configurations can be closely approximated using
“guiding center” theory representing motion as functions of
the three adiabatic invariants,µ, K, andL∗. The first two in-
variants are relatively easy to calculate even in sophisticated
modern field models because they involve only the local field
and a one-dimensional integral along a single field line. The
third invariantL∗ is much more difficult and computation-
ally expensive to calculate because it is both two-dimensional
and global (McCollough et al., 2008). Typical integration re-
quires on the order of 105 calls to the magnetic field model
for obtaining the magnetic field vector. The resulting lengthy
computation times often push researchers to compromise and
force them to use simpler, less accurate magnetic field mod-
els which may produce large inaccuracies and even wrong
conclusions (Huang et al., 2008).

Further development of radiation belt and space weather
models requires techniques that are computationally feasible
and still use the most accurate magnetic field models avail-
able. Direct numerical integration of the magnetic field can

Table 1. Input parameters for the neural networkLANLstar .

Number Parameter Description

1 tY Integer number representing the year
2 tDOY Day of the year (int)
3 tUT Universal Time in units of hours (float)
4 Dst Disturbance storm time index (nT)
5 psw Solar wind dynamic pressure (nPa)
6 By Y component of the IMF field (nT)
7 Bz Z component of the IMF field (nT)
8–13 W1−6 SeeTsyganenko and Sitnov(2005)
14 Lm McIllwain value;Roederer(1970)
15 Bmirr Magnetic field strength at mirror point (nT)
16 αloc Local pitch angle (deg)
17 rGSM Radial coordinate in GSM system (RE)
18 θGSM Latitudinal coordinate in GSM (deg)
19 ϕGSM Longitudinal coordinate in GSM (deg)

use standard numerical techniques together with the brute
force of many processors but other approaches that do not
sacrifice accuracy for speed are also possible as we describe
below.

In this follow-on paper toKoller et al.(2009), we describe
the recently improved and updated version of LANL∗ V2.0.
The model is based on the same artificial neural network
(ANN) technique that was used for the first version but now
includes two major enhancements: (1) the model can now be
used for any type of orbit above 2000 km and is not limited
to geosynchronous orbit anymore. (2) The new model is now
based on the improved magnetic field model byTsyganenko
and Sitnov(2005) (TS05) instead of the older model byTsy-
ganenko et al.(2003).

In the following sections we describe the ANN setup and
the underlying TS05 model that was used for training the
neural network. In Sect. 4 we show validation studies and
conclude with Sect. 5.

2 The Tsyganenko and Sitnov 2005 Model – TS05

We used the recent magnetic field model TS05 byTsyga-
nenko and Sitnov(2005). This magnetic field model is cur-
rently the most accurate model out of the Tsyganenko model
series (Huang et al., 2008). The Tsyganenko magnetic field
models are all semi-empirical models based on decades of
magnetic field measurements. The models calculate quasi-
static states of the Earth’s dynamic magnetic field based on
solar wind conditions and geomagnetic indices. The quasi-
static state is a statistical average for a given set of solar wind
conditions but is not a true equilibrium state. The TS05
model is based on space magnetometer data taken during
37 major geomagnetic storms in 1996–2000 and concurrent
observations of the solar wind and the interplanetary mag-
netic field. It accounts for external contributions from the
magnetopause, magnetotail current sheet, ring current, and
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Table 2. Input parameters for the neural networkLANLmax.

Number Parameter Description

1 tY Integer number representing the year
2 tDOY Day of the year (int)
3 tUT Universal Time in units of hours (float)
4 Dst Disturbance storm time index (nT)
5 psw Solar wind dynamic pressure (nPa)
6 By Y component of the IMF field (nT)
7 Bz Z component of the IMF field (nT)
8–13 W1−6 SeeTsyganenko and Sitnov(2005)
14 αeq equatorial pitch angle (deg)

Birkeland current. It also includes a partial ring current with
field-aligned closure currents which allows it to account for
local time asymmetries of the inner magnetospheric field.
These currents are driven by separate variables calculated
as a time integral for a combination of geoeffective param-
eters of solar wind density, speed, and the magnitude of the
southward component of the interplanetary magnetic field.
As with the actual geomagnetic field, the TS05 model is
compressed on the sunward side by the solar wind and ex-
tended on the antisunward side in a comet-like magnetic tail.
The model also defines the boundary (a “magnetopause”) be-
tween the Earth’s geomagnetic field and the external solar
wind fields. The model includes six parametersW1−6 rep-
resenting the time-integrated driving effect of the solar wind
on the magnetosphere (Tsyganenko and Sitnov, 2005). We
used theirbem-lib (Boscher et al., 2010) implementation
of the magnetic field model TS05 in the SpacePy software
library (Morley et al., 2011).

3 Artificial Neural Networks (ANN)

An artificial neural network consists of a number of non-
linear processing units that are interconnected through
weighted communication lines (seeReed and Marks, 1999,
for an introduction). The units, called “neurons”, receive in-
put signals from a number of other nodes and produce a sin-
gle scalar output which then can be used as input to other
neurons via new weighted connections.

Neural networks are organized in layers. The first layer
provides a node for each input element. In our case the in-
put layer forLANLstar , which is the name of the library,
consists of 19 nodes (Table1), one for each input parame-
ter for the TS05 model plus additional nodes (node 14-15)
to help specify the drift shell. The hidden layer in our neural
network contains 20 neurons that are connected to each input
node and one output node to produceL∗.

Typical ephemerides of orbits in the inner magnetosphere
are located on closed drift shells. However, during geo-
magnetic storm conditions, the magnetosphere can be com-
pressed by the solar wind and higher drift orbits can connect

Fig. 1. Validation of neural network with LANL geosynchronous
satellite 1990-095 ephemerides. Top: scatter plot ofL∗ values from
model (target) against neural network results. Green-dashed line
indicates a perfect fit and red solid line indicates the least-square fit
to the scatter plot. One thousand ephemeris points and solar wind
conditions were randomly chosen between 15 October 2001 and
30 June 2005. Middle: histogram plot of overall residuals from
scatter plot. Bottom: residual plot as a function ofL∗.

to the magnetopause for which the magnetic flux integral
(Eq. 2) is not defined. Such a discontinuity inL∗ requires
a separate ANN. Otherwise, the ANN would simply extrapo-
lateL∗ into regions where it is in reality not defined. There-
fore, we created a second neural networkLANLmax to de-
scribe the maximum possible value forL∗ under the specified
solar wind conditions. The maximumL∗ is often referred to
as the last closed drift shell. Table2 lists the input parame-
ters necessary for calculatingLmax. SinceLmax is describing
a global configuration, the neural networkLANLmaxis inde-
pendent of specific ephemerides (r, θ, ϕ) but still a function
of equatorial pitch angleαeq due to the drift-shell splitting
effect.

Similar to the real nervous system, artificial neural net-
works have to be trained by learning from examples. We
used the latest version of theirbem-lib library in SpacePy
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Fig. 2. Validation of neural network with CRRES satellite
ephemerides. Top: scatter plot ofL∗ values from TS05 model (tar-
get) against neural network results. Green-dashed line indicates a
perfect fit and red solid line indicates the least-square fit to the scat-
ter plot. One thousand ephemeris points and solar wind conditions
were randomly chosen between 1 March 1991 and 1 April 1991
and include the geomagnetic superstorm on 24 March 1991 with
Dst≈ −300. Middle: histogram plot of overall residuals from scat-
ter plot. Bottom: residual plot as a function ofL∗.

to generate the input-output database (see alsoKoller et al.,
2009). We created one million samples with a uniform ran-
dom number generator for ephemeris (1.03RE < rGEO< 11
RE , −180◦ < θ < +180◦, −90◦ < ϕ < +90◦) and pitch angle
values (10◦ < αloc < 90◦). The solar wind conditions for all
samples are based on randomly selected conditions during a
full solar cycle from 1996 to 2007. Solar wind conditions
and magnetic field parameters were taken from the Virtual
Radiation Belt Observatory (VIRBO,http://virbo.org) based
on Qin et al. (2007) using the implementation in SpacePy
(Morley et al., 2011).

The second neural networkLANLmaxwas trained with the
last closed drift shell calculated withirbem-lib as well.
We generated 10 000 training examples by using a bisection
search algorithm stepping radially outward towards dusk in

Fig. 3. Validation of neural network with GPS-ns41 satellite
ephemerides. Top: scatter plot ofL∗ values from TS05 model
(target) against neural network results. Green-dashed line indicates
a perfect fit and red solid line indicates the least-square fit to the
scatter plot. One thousand ephemeris points and solar wind con-
ditions were randomly chosen between 1–30 April 2004. Middle:
histogram plot of overall residuals from scatter plot. Bottom: resid-
ual plot as a function ofL∗.

a cartesian solar magnetic (SM) coordinate system. The ac-
curacy of the bisection search algorithm forL∗

max was set
to 1L∗

= 0.01. Note, our neural network software only in-
cludes a max drift shell modelLANLmaxbut not a separate
model for the inner boundary drift loss cone which could
be important for low Earth orbiting satellites. However, a
standard IGRF model (International Geomagnetic Reference
Field) should be sufficient for these altitudes.

We used a constrained truncated Newton algorithm in
the ffnet python module (Wojciechowski, 2009) to train
an ANN on the input-target data for both neural networks
LANLstar and LANLmax. The training algorithms were
specified with a tolerance of 10−6.

Neural networks can show a degree of fault tolerance due
to the redundant parallel structure. Many nodes draw infor-
mation from a number of other nodes to produce one overall
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Fig. 4. Validation of neural network with Polar satellite
ephemerides. Top: scatter plot ofL∗ values from TS05 model (tar-
get) against neural network results. Green-dashed line indicates a
perfect fit and red solid line indicates the least-square fit to the scat-
ter plot. One thousand ephemeris points and solar wind conditions
were randomly chosen between 1996–2005 covering a wide range
of ephemerides due the precession of the spacecraft. Middle: his-
togram plot of overall residuals from scatter plot. Bottom: residual
plot as a function ofL∗.

output. In the case that a certain input value is not available,
the system will degrade but not necessarily completely fail
because the correlation functions are distributed over several
other nodes (Reed and Marks, 1999). Our neural network
requires the magnetic field strengthBmirr at the mirror point
and the McIlwainLm value. For a self-consistent calculation,
one would use the TS05 model to obtain these values. How-
ever, one could also use the graceful degradation property of
neural networks and calculate these numbers based on a sim-
pler magnetic field model or, perhaps, even a dipole field. We
will perform a detailed study in a future publication. For this
study, however, we have used the self-consistent calculation
using TS05 for the validation below.

Using additional, and to some degree redundant, input
parameters for a neural network can lead to overfitting.

Fig. 5. Validation of neural network with ephemerides from one
of the RBSP satellites using an example ephemeris file of this fu-
ture mission and mapping them to solar wind condition between
February 2000 and January 2002. Top: scatter plot ofL∗ values
from TS05 model (target) against neural network results. Green-
dashed line indicates a perfect fit and red solid line indicates the
least-square fit to the scatter plot. One thousand ephemeris points
and solar wind conditions were randomly chosen for the above time
period. Middle: histogram plot of overall residuals from scatter
plot. Bottom: residual plot as a function ofL∗.

Overfitting can occur when learning was performed for too
long or not enough training samples were used. In these
cases, the neural network could adjust to very specific ran-
dom features of the training data that are not real and have no
causal relationship between the input parameters andL∗. For
example, we have tried to add additional input like Kp but
found that the neural network is not significantly improved
with this additional input. To address the overfitting prob-
lem, we have performed a detailed validation study (see next
Section) with out of sample data and showed that no overfit-
ting occurred and the neural network is able to predict and
interpolate new data very well.
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Fig. 6. Calculating theL∗ time series during a moderate storm
with Dst =−100 nT following the ephemerides of LANL geosyn-
chronous satellite 1990-095. The geomagnetic storm had its Dst
minimum close to 25 October 2002 (DOY = 298). TheL∗ values
from the underlying TS05 model (blue) and from the LANL∗ neu-
ral network (red) are compared for 90, 60, 30◦ pitch angles. The
bottom panel shows the disturbance storm time index (Dst) for this
period.

4 Validation study

We validated both neural networks with completely indepen-
dent data using a selection of actual satellite ephemerides.
These ephemerides and solar wind conditions where not part
of the training data set. The first example is shown in Fig.1
using LANL geosynchronous satellite 1990-095. We ran-
domly selected 1000 ephemeris locations between 15 Oc-
tober 2001 and 30 June 2005 and calculatedL∗ based on
both the TS05 model and LANL∗. They agree quite well
with a standard error of1L∗

≈ 0.088 which corresponds to
1.3 %. This accuracy is sufficient for a scientific studies as it
is much better than the accuracy of the underlying magnetic
field model. However, it does not reflect the accuracy of the
integration method.

Fig. 7. Time series plot of the last closed drift shellLmax as it
was calculated for solar wind conditions from 23 October 2002 to
4 November 2002 using TS05 (blue) and the LANL* neural net-
work (red) for pitch angleαloc = 90◦. Even for a moderate storm,
the last closed drift shell can vary betweenL∗ = 6−9.5.

Pitch angles for this and all other validation were randomly
selected between 10◦ < αloc < 90◦.

Another independent validation is shown in Fig.2.
We randomly selected 1000 ephemeris points between
1 March 1991 and 1 April 1991 from the CRRES satellite
orbit. Note that this is outside of the solar cycle data used
for the training data. This also includes the extreme storm
from 24 March 1991 with a Dstmin ≈ −300 nT. The neural
network performs very well for this geo-transfer orbit with a
standard error of1L∗

≈ 0.1.
We achieved the best result with GPS-ns41 ephemerides

(Fig. 3). GSP-ns41 is in a circular orbit withr ≈ 4.2RE.
Again, we selected 1000 random ephemeris locations be-
tween 1–30 April 2004. The standard error is1L∗

≈ 0.04,
which corresponds to a 1 % error.

The 1000 ephemeris locations for the Polar satellite
(Fig. 4) were randomly selected between 1996–2005 cover-
ing a wide range of ephemerides due the precession of the
spacecraft. The standard error for this polar type orbit is
1L∗

≈ 0.1 for randomly chosen local pitch angles.
Figure5 shows the validation study for a “virtual” RBSP

satellite (Radiation Belt Storm Probes) which is a future
NASA mission, planned to launch in May 2012. The fu-
ture ephemeris was mapped back in time to start in Febru-
ary 2000. We selected 1000 random point between Febru-
ary 2000 and January 2002 for the validation. The standard
error is1L∗

≈ 0.06.
We also provide a time series figure for a particular

storm on 25 October 2002. This geomagnetic storm com-
menced due to a high speed solar wind stream resulting in
a Dst =−100 nT. Figure6 shows a comparison of the neural
network LANL∗ versus the TS05 model for three different
local pitch anglesαloc = 90◦, 60◦, 30◦. Figure7 shows a time
series for the last closed drift shell modelLANLmax for the
same time period from 23 October 2002 to 4 November 2002
for αloc = 90◦.
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5 Conclusion and summary

We have presented a new version of our LANL∗ model to
calculateL∗, which is a computationally intensive but im-
portant input parameter for radiation belt models. Accurate
magnetic field models have been neglected for calculating
this value due to the computational burden and often a sim-
ple dipole field is used instead. Our model can calculateL∗

based on a sophisticated dynamic magnetic field model at a
fraction of the time required for full drift shell integration us-
ing a neural network technique. Once all input parameters
for the neural network are assembled, one million calcula-
tion will only take a few seconds to run on a modern desktop
computer. This is a speedup of almost six orders of magni-
tudes while adding only a few percent of error to the output
which is negligible considering the uncertainty in the under-
lying magnetic field model TS05 itself.

This new, computationally efficient model is particularly
important for real-time processing of space weather applica-
tions and studies involving solar cycles of data sets. While
this particular version has only been trained with the TS05
model, the technique itself is applicable to other magnetic
field models as well. We are currently working on develop-
ing a neural network for a variety of empirical magnetic field
models and self-consistent physics based numerical models
like RAM-SCB (Zaharia et al., 2006).

The LANL∗ neural network model is available for down-
load athttp://www.lanlstar.net.
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