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Abstract. Various semi-Lagrangian methods are tested with
respect to advection in air pollution modeling. The aim is to
find a method fulfilling as many of the desirable properties by
Rasch and Williamson(1990) andMachenhauer et al.(2008)
as possible. The focus in this study is on accuracy and local
mass conservation.

The methods tested are, first, classical semi-Lagrangian
cubic interpolation, see e.g.Durran (1999), second, semi-
Lagrangian cubic cascade interpolation, byNair et al.(2002),
third, semi-Lagrangian cubic interpolation with the modi-
fied interpolation weights, Locally Mass Conserving Semi-
Lagrangian (LMCSL), byKaas (2008), and last, semi-
Lagrangian cubic interpolation with a locally mass conserv-
ing monotonic filter byKaas and Nielsen(2010).

Semi-Lagrangian (SL) interpolation is a classical method
for atmospheric modeling, cascade interpolation is more effi-
cient computationally, modified interpolation weights assure
mass conservation and the locally mass conserving mono-
tonic filter imposes monotonicity.

All schemes are tested with advection alone or with ad-
vection and chemistry together under both typical rural and
urban conditions using different temporal and spatial resolu-
tion. The methods are compared with a current state-of-the-
art scheme, Accurate Space Derivatives (ASD), seeFrohn
et al. (2002), presently used at the National Environmental
Research Institute (NERI) in Denmark. To enable a consis-
tent comparison only non-divergent flow configurations are
tested.

The test cases are based either on the traditional slotted
cylinder or the rotating cone, where the schemes’ ability to
model both steep gradients and slopes are challenged.
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(abu@dmu.dk)

The tests showed that the locally mass conserving mono-
tonic filter improved the results significantly for some of the
test cases, however, not for all. It was found that the semi-
Lagrangian schemes, in almost every case, were not able to
outperform the current ASD scheme used in DEHM with re-
spect to accuracy.

1 Introduction

Semi-Lagrangian (SL) methods (Robert, 1981) do not suffer
from the traditional advective CFL-condition severely lim-
iting the maximum possible length of time step,1t . These
methods have been used widely in the numerical weather pre-
diction (NWP) community, since1t can be defined from ac-
curacy rather than stability considerations. For atmospheric
dynamics it turns out that1t can be chosen several times
larger than the maximum Courant number without signifi-
cant loss of accuracy. A main disadvantage of traditional
SL methods is that they are not mass conservative when ap-
plied to the volume density continuity equation. The SLICE
scheme proposed byZerroukat et al.(2002) andZerroukat
et al.(2004), and the LMCSL scheme byKaas(2008) are ex-
amples of new SL schemes that are mass conserving. There
are two aspects of mass conservation: global and local.
Global conservation can be imposed by correcting the ad-
vected field after determining the global mass loss. However,
this does not ensure local conservation of mass. Local mass
conservation can be achieved by making the scheme inher-
ently conserving. Both the SLICE and LMCSL are examples
of locally mass conserving schemes.

In air pollution modeling, accurate methods are impor-
tant to be able to model steep gradients in the concentration
fields caused by steep gradients in the emission fields and
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by non-linear atmospheric chemistry. In chemical transport
models it is crucial that no negative values are generated. Not
only are they “unphysical” but they also cause the chemi-
cal part of the model to break down. The present advection
scheme in the Danish Eulerian Hemispheric Model (DEHM)
applied to the mixing ratio version of the continuity equa-
tion is the ASD. ASD is very accurate compared to other
schemes, seeDabdub and Seinfeld(1994). The ASD scheme
can, however, create problems near sharp gradients. Spuri-
ous waves known as the Gibbs phenomenon can occur when
such features are present, and they can result in unphysical
negative values.

In this work a new numerical method is proposed for
solving the volume density continuity equation. The aim
of this method is to fulfill as many of the desirable prop-
erties byRasch and Williamson(1990) and Machenhauer
et al. (2008) as possible. The new method is based on the
semi-Lagrangian cubic interpolation combined with cascade
interpolation developed byNair et al. (2002), the modified
interpolation weights suggested byKaas(2008) and the lo-
cally mass conserving monotonic filter byKaas and Nielsen
(2010). An SL forecast of the prognostic variableψ at time
step numbern+1 and Eulerian grid pointi, i.e.ψn+1

i , is ob-
tained via Lagrangian or spline interpolation from Eulerian
points at time stepn surrounding the departure point of that
trajectory ending up in grid pointi after one time step. The
interpolation weights depend on the distance to the departure
point. In the NWP community it has been found that third
order (cubic or cubic spline) interpolation provide a good
compromise between accuracy and numerical cost. For ap-
plication in anN -dimensional problem it is possible to ap-
ply so-called cascade interpolation, i.e. theN -dimensional
interpolation problem is converted intoN one-dimensional
interpolation problems, which simplifies the calculations. In
the cascade method proposed hereN = 2. In a non-divergent
problem the sum of theN -dimensional interpolation weights
given off from a particular Eulerian pointj to all surround-
ing departure points should equal one, see Sect.4.3.4. Gen-
erally, however, in the semi-Lagrangian approach, they do
not. Therefore the raw interpolation weights are normalised
so that the sum of the weights given off from any Eulerian
point, j , at time leveln equals the area/volume represented
by grid cell j . Thereby all mass, of each Eulerian point of
the domain is “used” once and only once. This ensures that
mass is neither created nor lost during interpolation. Which
ensures local and global mass conservation. It still remains
to be seen whether these modified interpolation weights also
will perform better when used in real applications.

The overall purpose of this work is to develop, implement,
and test selected numerical advection algorithms based on
the semi-Lagrangian approach. This has been done by de-
veloping a Fortran code for all methods in order to ensure
the exact same conditions for comparison. This leads to the
following scientific hypothesis which will be tested in the
present study.

2 Hypothesis

The classical cubic semi-Lagrangian approach, including dif-
ferent combinations of cascade interpolation, the mass con-
serving modified interpolation weights and a locally mass
conserving monotonic filter, performs better than the present
advection scheme used in DEHM based on Accurate Space
Derivatives when tested on a non-divergent modified rotation
test including chemistry.

In order to test this hypothesis an advection algorithm has
been developed with the possibility to include and exclude
the different features of the different schemes. In this way
the effect of the different methods can be tested separately
or in combination. The algorithm is tested on “solid body
rotation” of a slotted cylinder as described byZerroukat et al.
(2002) and Sun and Yeh(1997) and of a rotating cone by
Molenkamp(1968) andCrowley(1968).

The present article is composed as follows. In the follow-
ing section, Sect.3, the background for this project is de-
scribed along with the processes considered in air pollution
modelling. In Sect.4 the theory used, for building the differ-
ent advection schemes tested in this work, is described. The
various advection schemes tested in the present study are de-
scribed in detail in Sect.5. In Sect.6, the obtained results are
shown. Lastly, a discussion of the results, the conclusion and
future aspects are given in Sect.7.

3 Background

In air pollution models the equations describe the atmo-
spheric transport and chemistry as well as diffusion and dry
and wet deposition. If the purpose is to model the chemical
development and transport of e.g. O3 and NO2, one would
not obtain good results unless other compounds which inter-
act with these species are included. However, a model usu-
ally contains a limited number of species (typically 30 to 80)
rather than every chemical constituent that exists in the atmo-
sphere. Many of the left out species would not be relevant,
in this case for O3 and NO2, but would just complicate the
calculations.

In order to decide which processes are relevant, one must
consider the time scale of the integration. In addition to
chemical reactions and transport, including diffusion, in the
atmosphere, it is also important to consider sources and
sinks, e.g., emissions into the atmosphere and dry and wet
deposition of species in the atmosphere to the surface.

3.1 Air pollution models

As stated above, different equations are needed to solve dif-
ferent problems. In the case of air pollution models, the mix-
ing ratio continuity equation can be used to model the rele-
vant processes in the atmosphere. To solve this equation nu-
merically it can be advantageous to split it into submodels.
These submodels are solved individually and they describe,
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in DEHM, first, 3-D advection, second, diffusion in three di-
rections and last chemistry, wet deposition and emissions.
The submodels can be solved using the same or different
numerical algorithms. Furthermore, the advection might be
split into a two-dimensional horizontal advection and a one-
dimensional vertical advection, since the horizontal and ver-
tical advection are different in their characteristics, e.g. the
wind componentsu, v andw. For a more detailed discussion
the reader is referred toFrohn et al.(2002).

3.2 Mixing ratio versus volume density

The chemistry component of air pollution models requires as
input (and output) the various mixing ratiosci of the individ-
ual chemical species,i= 1,2,...,q, whereq is the number of
chemical constituents included in the model. Therefore the
mixing ratio continuity equation, which is identical to the ad-
vection equation with source and sink terms, is used directly
as prognostic equation for transporting the individual species
in most air pollution models such as DEHM. Only consider-
ing the processes of atmospheric transport and diffusion the
Eulerian formulation of this equation reads:

∂ci

∂t
= −U ·∇ci+diffusion/mixing (1)

whereU represents the velocity vector. In the present study
we are, however, comparing the performance of numerical
algorithms directly solving Eq. (1) (i.e. DEHM) with other
methods where the full continuity equation, i.e. the volume
density continuity equation, is solved for both dry air and
for each individual chemical species. For such methods the
mixing ratio at any instant must be obtained asci = ρi/ρ,
whereρi andρ are the volume densities of the individual
species and of the dry air, respectively. The Eulerian volume
density continuity equation for chemical species no.i reads:

∂ρi

∂t
= −U ·∇ρi−ρi∇ ·U +diffusion/mixing. (2)

The Lagrangian version of this equation reads:

dρi

dt
= −ρi∇ ·U +diffusion/mixing (3)

In air pollution models employing Eq. (2) or Eq. (3) it is nec-
essary at each time to convertρi to ci , i.e. ci = ρi/ρ, be-
fore calling the modelling components dealing with chem-
istry, and to convert back again to obtain the updated values
of ρi . In the abcense of divergence, it is noted that the prog-
nostic equations forci andρi are identical.

3.3 Numerical treatment of the advection in DEHM

There exist many different numerical methods to solve the
advection equation, each with their own advantages and dis-
advantages. The challenge is to find the most suitable scheme

for the problem considered, see e.g.Brandt(1998). For ex-
ample, inBrandt et al.(1996a), four different Eulerian meth-
ods have been tested, namely, the up-wind method, finite el-
ements, the Bott scheme and Holm’s algorithm. The algo-
rithms were tested for their ability to model advection when
combined with chemistry.

The upwind method is computationally very cheap, but it
produces a lot of artificial numerical diffusion, which makes
it unsuitable for use in air pollution models.

The finite element scheme is relatively fast and it can work
on irregular grids. However, this scheme has a higher sen-
sitivity than others when considering sharp gradients, see
Brandt(1998).

The Bott scheme, byBott (1989), is a flux based method.
It was developed to make a conservative and positive defi-
nite advection scheme with a limited amount of numerical
diffusion. The Bott scheme is used in many regional models
within Europe, e.g. the Danish Meteorological Institute uses
this scheme in Enviro-HIRLAM.

The method is considered computationally very efficient,
seeBott (1989), because it is explicit and forward-in-time.
In most applications it is, however, only first order accurate
in time and space. Small time steps are used in order to pre-
vent violation of the CFL criterion. To reduce the numerical
diffusion, up to tenth order polynomials are used. High order
polynomials might introduce negative values, however, this
is limited by normalising the fluxes and suppression of neg-
ative values. This implies considerable numerical diffusion
near sharp gradients.

The Bott and Holm schemes produce smooth concen-
tration fields with no negative concentrations, but they are
in general more expensive than the upwind or finite ele-
ment schemes. The Holms scheme is the best one among
these methods. However, it is also the most the most time-
consumingBrandt et al.(1996a).

In DEHM, the ASD scheme combined with a Forester fil-
ter was chosen, because it was proven to be the best perform-
ing scheme amongst the Smolarkiewicz method, the Galerkin
finite element method, the numerical method of lines, the
accurate space derivative method, the Bott method and the
Emde method, seeDabdub and Seinfeld(1994).

3.4 General description of DEHM

The Danish Eulerian Hemispheric Model (DEHM) is an Eu-
lerian atmospheric chemistry transport (ACT) model in three
dimensions. The model was originally developed for the
study of long-range transport of SO2 and SO2−

4 into the Arc-
tic, seeChristensen(1995, 1997). The present version of the
model contains 58 photo-chemical species, 9 primary emit-
ted particles, 14 persistent organic pollutants, and 7 mercury
species.

DEHM is an “off-line” atmospheric chemical transport
model. This means that simulations of the driving winds,
precipitation etc. are not part of DEHM. These fields are
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imported from other data sources and interpolated in time
and space to the grid used in DEHM. The meteorological
data used as input to DEHM is produced by the MM5v3
model run at NERI, the model uses the same grid definition
as DEHM and writes output every hour. This means that
there is no spatial interpolation of the data and errors from
temporal interpolation of the data are minimized.

3.4.1 The mixing ratio equation of continuity

The mixing ratio continuity equation describes the change
in mixing ratio of a certain chemical species over time. Ex-
pressed using the Eulerian approach, it contains terms de-
scribing the spatial gradients in concentration as well as dif-
fusion, both horizontally and vertically. Furthermore, terms
accounting for sources and sinks including chemistry, wet
deposition and emissions are included. In DEHM, the fol-
lowing equation is used:

∂ci

∂t
= −

(
u
∂ci

∂x
+v

∂ci

∂y
+ σ̇

∂ci

∂σ

)
+ Kx

∂2ci

∂x2
+Ky

∂2ci

∂y2
+
∂

∂σ

(
Kσ

∂ci

∂σ

)
+ Ei(x,y,σ,t)−3ici (4)

+ Qi(c1,c2,...,cq) (i= 1,2,...,q). (5)

Here,ci is the mixing ratio of chemical speciesi. Theσ
coordinate is a terrain following coordinate, where the pres-
sure is normalized by the surface pressure.σ̇ is the vertical
wind speed in this coordinate system.u, v, andσ̇ represent
the x-, y-, andσ -component of the wind, respectively. Like-
wiseKx,Ky, andKσ are the x-, y-, andσ -components of the
diffusion coefficients. The horizontal diffusion coefficients,
Kx andKy, are assumed to be constant, the vertical diffu-
sion coefficient is both temporal and spatial dependent.Ei
is the emission of a given species,3i is the wet deposition
scavenging coefficient andQi represents the chemistry. Dry
deposition is applied as the lower boundary condition for the
vertical dispersion.i counts theq different chemical species.

Using first order splitting various methods can be used to
solve the different components of the equation.

3.4.2 Chemistry

In this work the extensive chemical version of DEHM, which
includes 58 species is used. Some of the species included are
SOx, NOx, NHx, O3, VOCs and secondary inorganic partic-
ulates (Frohn et al., 2003). The chemical scheme was based
on a scheme with 51 species presented inFlatøy and Hov
(1996), which was an ozone chemistry scheme with most
of the important inorganic species as well as the most abun-
dant hydrocarbons (explicit treatment of alkanes with up to
four carbon atoms, longer alkanes lumped, explicit treat-
ment alkenes with up to three atoms, again, longer alkenes
lumped, xylene, toluene and isoprene). There has been added

reactions to extend the chemistry to be used for eutrophi-
cation issues by using ammonium chemistry based on the
old EMEP acidification model and adding reactions in or-
der to extend to acidification issues by using aqueous chem-
istry based onJonson et al.(2000). The scheme contains
120 chemical reactions where 17 are photolysis reactions cal-
culated by the Phodis routine (Kylling et al., 1998) depending
on sun-angle, altitude, Dobson unit and 3-D cloud cover. The
used chemical scheme is quite similar to the EMEP scheme
described inSimpson et al.(2003).

In this work the sun angle is prescribed to correspond to
the diurnal variation of a summer day. The chemistry can
simulate either urban or rural conditions, by changing the
initial concentrations of NO and NO2.

The chemistry is very stiff and uses a time step much
smaller than the time step of the advection. The chemistry
is calculated using the Euler Backward Iterative method to
calculate the first time step of the chemistry. Afterwards, the
two-step method is used for the rest of the time steps, see
Frohn(2004). This procedure is used because the two-step
method needs two initial time steps to be able to perform the
time integrations.

4 Theory

In this work the semi-Lagrangian cubic interpolation (Dur-
ran, 1999), cascade interpolation (Nair et al., 2002), modi-
fied interpolation weights (Kaas, 2008) and the locally mass
conserving monotonic filter (Kaas and Nielsen, 2010) are
tested individually and combined. The focus is on fulfilling
as many of the desirable properties (Rasch and Williamson,
1990; Machenhauer et al., 2008) as possible, and test the
method on a slotted cylinder (Zerroukat et al., 2002) and the
rotating cone (Molenkamp, 1968; Crowley, 1968).

In this section the theory behind the various equations and
methods used is described. First, in Sect.4.1 the form of the
continuity equation used here is described. In Sect.4.2 the
desirable properties for advection schemes are described.

The advection algorithm used in DEHM is described
in Sect. 4.4, including ASD and the Bartnicki Filter in
Sect.4.4.1and the Forester filter in Sect.4.4.2. A description
of the test cases is given in Sect.4.5.

4.1 The continuity equations

In the present work, only horizontal advection and chemistry
is considered. Then the equations for mixing ratio take the
form:

∂ci

∂t
= −

(
u
∂ci

∂x
+v

∂ci

∂y

)
+Qi(c1,c2,...,cq)

(i= 1,2,...,q). (6)

Here,ci is the concentration of the chemical speciesi. u and
v represent the x- and y-component of the wind, respectively.
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Note that we have omitted source, deposition and horizontal
diffusion terms since, in the present study, we are only con-
sidering an idealised case and we only look at solid body
rotation where the true horizontal diffusion – by definition –
is zero.

Equation (6) is split into a submodel for transport (the first
tendency term on the right hand side) and a submodel dealing
with chemical reactions (the last tendency term,Qi , on the
right hand side).

As explained in Sect.3.2 the dynamical prognostic equa-
tions to be solved in the submodel for transport, in case of
the new numerical schemes, are the volume density continu-
ity equations:

dρi

dt
= −ρi

(∂u
∂x

+
∂v

∂y

)
(i= 1,2,...,q). (7)

We also need to solve the continuity equation for the den-
sity of dry air

dρ

dt
= −ρ

(∂u
∂x

+
∂v

∂y

)
. (8)

For the new schemes we can then calculateci = ρi/ρ.
Onceci is estimated from Eqs. (7) and (8) we can apply the
chemical submodel just as in the case of the DEHM model,
i.e. the effect of tendencies due to the last term in Eq. (6). The
test cases presented in Sect.4.5 are non-divergent. In this
special case the atmospheric transport Eqs. (7) and (6) ex-
cluding the chemical part, are identical. For the new schemes
we have therefore not performed the division byρ, i.e. we
have simply assumedρ= 1 and, thus, formally thatρi = ci .

4.2 Desirable properties

When modelling the continuity equation, there are certain
desirable properties the results should fulfill.Rasch and
Williamson (1990) defined seven desirable properties: ac-
curacy, stability, computational efficiency, transportivity and
locality, shape-preservation, conservation, and preservation
of linear correlation between constituents. According to
Machenhauer et al.(2008) three additional properties are de-
sirable. These are consistency of the discretization, compat-
ibility, and preservation of constancy. The ultimate goal of
numerical methods is to fulfill all of these properties simul-
taneously, but so far this has not been possible. Therefore
one should try to satisfy as many of these properties as pos-
sible. Below it will be described what is meant by each of
these desirable properties. The formulation ofMachenhauer
et al.(2008) is used.

In any numerical programming, highaccuracyis the pri-
mary goal, and often includes most of the properties listed
above. However, when modelling flow with steep gradients
or shocks, the order of accuracy found from Taylor series ex-
pansions, seeDurran(1999), might have nothing to do with
the accuracy of the particular problem. Instead the standard

error measuresl1, l2, andl∞ are widely used by the meteoro-
logical community for idealised test cases, see e.g.,Machen-
hauer et al.:

l1 = I (|φ−ψ |)/I (|ψ |) , (9)

l2 =

√
I (φ−ψ)2/

√
I (ψ)2 , (10)

l∞ = max[|φ−ψ |]/max[|ψ |] . (11)

Hereφ is the numerical solution,ψ is the exact solution if
one such exists, otherwise a reference of high-resolution is
used. I (·) denotes the integral over the entire domain. The
first two error measures are measures of the global “distance”
between the numerical and the true solution. Thel∞ error
measure gives the normalised maximum deviation between
φ andψ over the entire domain. In relation to undershoot-
ing and overshooting, normalised minimum and maximum
values of the numerical solutions are also used to indicate
errors.

Stabilityensures that the numerical solution does not blow
up with time. It can be achieved by adding filters to the nu-
merical method; in Lagrangian models, this is usually not
a severe problem. In global Eulerian models, the stability
problem is most severe near the poles. As a measure for sta-
bility in Eulerian models, the CFL condition and the Courant
number are used.

For the one-dimensional case, the Courant-Friedrich-
Lewy (CFL) condition is given by:

u ·1t

1x
<γ (12)

Whereu is the velocity,1t the time step,1x the grid resolu-
tion, andγ is a constant depending on the specific advection
algorithm. The number

C=
u ·1t

1x
(13)

is called the Courant number.
Computational efficiencyrefers to the fact that the program

should be fast when run. When considering parallel comput-
ing it is important to note whether the parameterisation is
local, as SL, or global, like ASD. Too much communication
between the nodes tend to slow down the calculations.

Locality refers to the domain of dependence. The true
solution’s domain of dependence should lie within the do-
main of dependence of the numerical solution. This is also
referred to as the CFL condition, see Fig. 2.1 fromDurran
(1999). Transportivity is of special interest in transport mod-
els. Rasch and Williamson(1990) writes “an algorithm pos-
sesses the transportive property if a perturbation in the field
is advected only down wind”.

In pure advection, no alteration should be made to a scalar
field, that is, no new extrema must be generated during the
numerical approximation, only the physical extrema should
be reproduced. This is referred to asshape preservation.
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Such new unphysical extrema might generate negative mix-
ing ratios or too high values. A positive definite scheme pre-
vents negative values in the solution. Schemes preventing
generation of new extrema are referred to as monotonic.

When modelling the continuity equation, it is very impor-
tant thatmass is conserved. Changes in the global mass bud-
get by non-conserving methods over long time integrations
reduce the accuracy of the model. To avoid such problems
finite-volume methods can be used, see e.g.Machenhauer
et al.(2008). Numerically ASD is a mass conserving method,
using the surface pressure from a meteorological model to
correct the horizontal wind components which ensures mass
conservation.

The consistency of the discretizationproperty concerns
the coupling between the volume density continuity equa-
tion for air as a whole and that for the individual tracer con-
stituents. If different numerical techniques, different time
stepping and/or different spatial resolution is used for the air
as a whole and for the tracer components, one may introduce
mixing ratios (ci = ρi/ρ) which are inconsistent. By this is
meant that if one of the tracers initially and deliberately is
chosen to be identical to the volume density of the whole air
then the mixing ration for this special tracer will not continue
to have mixing ratio equal to 1.

The compatibility property states that in models based
on the volume density continuity equation the mixing ratio,
which is recovered asci = ρi/ρ, should be limited by the
mixing ratios in grid cells which are neighbours to the up-
stream departure point. In Eulerian finite volume models the
Courant number is always less than one and therefore the
limits are defined from the grid cells neighboring the cell to
be forecasted.

In non-divergent flow, it is desirable for the scheme to be
able topreserve a constant tracer field. This is trivial for tra-
ditional semi-Lagrangian methods based on the mixing ratio
version of the continuity equation since the prognostic equa-
tion does not explicitly contain the divergence of the velocity
field. For models based on the volume density version of the
continuity equation this is, however, not always the case.

In chemical atmospheric models it is crucial that tracer
correlations are conserved, since these have great influence
on speed and balances of chemical reactions. In this work
the focus is on accuracy and mass conservation.

4.3 Methods

This section describes the methods considered in the present
work. In Sect.4.3.1the traditional semi-Lagrangian method
is described along with the properties of the method. Sec-
tion 4.3.3 describes cascade interpolation, followed by the
modified interpolation weights in Sect.4.3.4. The locally
mass conserving monotonic filter and calculation of trajecto-
ries are described in Sect.4.3.5and Sect.4.3.6, respectively.

4.3.1 The semi-Lagrangian method

To count steps in the spatial dimensions and time, various let-
ters in subscript and superscript are used. In the x-direction
i, k, andp are used. In the y-directionj , l, andq are used
and to count timen andn+1 are used.

When indexing the weights, e.g.αi,j , the first subscript
refers to the point of whichα is the value, and the second
subscript refers to the point which is being calculated.

In the Lagrangian approach, the equations describe the
flow following the motion of a particle or air parcel. At the
initial time step, a uniform grid is chosen and the particles
are followed while integrating forward in time. This might
be cumbersome, because the particles in practical problems
seldom stay evenly distributed. To avoid this, the semi-
Lagrangian method was introduced. In this method, a com-
pletely new grid is chosen at every time step. This new grid
consists of the particles arriving at the end of the time step.
The departure point of each particle is then found integrating
the equations backward in time one step.

Here, to start with, the scalar advection equation is derived
in one dimension for constant velocity using linear interpola-
tion, and hereafter it is extended to cubic interpolation. Fol-
lowing the notation ofDurran, considering a passive tracer,
the advection equation can be written as (Equation 6.4,Dur-
ran, 1999):

φ(xi,t
n+1)−φ(x̃ni ,t

n)

1t
= 0 , (14)

here, x̃ni refers to the departure point of the particle and
(xi,t

n+1) is the arrival point of the particle. UsingU to de-
note the constant velocity the backward calculation of the
trajectory may be written as:

x̃ni = xi−U1t . (15)

If U is positive andp is defined as the integer part of
U1t/1x, x̃ni will be in the interval betweenxi−p−1 and
xi−p, see Fig. 6.1 ofDurran(1999).

The non-integer part ofU1t/1x is calledα, and defined
as:

α≡
xi−p− x̃ni

1x
. (16)

Writing φ(xi,tn) asφni , the scalar advection equation for
constant velocity, using linear interpolation to approximate
the departure point, is (Eq. 6.5 ofDurran):

φn+1
i = (1−α)φni−p+αφni−p−1 . (17)

This is stable for arbitrarily large time steps, because the
true domain of dependence is included in the numerical do-
main of dependence caused by the backward calculation of
trajectories, which ensures that the CFL condition is not vio-
lated.

In spite of the fact that semi-Lagrangian schemes are sta-
ble for arbitrarily large time steps, large time stepping is not
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always advantageous. In case of air pollution modeling or
when considering, e.g., accidental releases, time steps over
several grid points can introduce errors in emissions and de-
position. The species which would have been emitted into
the atmosphere continuously will instead appear discontinu-
ous with mass of the emitted species only in some grid points.
The same happens when considering deposition.

4.3.2 Cubic interpolation

The linear interpolation of the scalar advection equation is
too diffusive to be useful (Durran, 1999, p. 308), so to
approximate equations with smooth solutions higher-order
semi-Lagrangian interpolation are used, with the same con-
ditions for U , q, andα as above, a cubic interpolation can
be made by using the four closest grid-points, (Eq. 6.12 of
Durran, 1999):

φ(x̃ni ,t
n) = −

α(1−α2)

6
φni−p−2

+
α(1+α)(2−α)

2
φni−p−1

+
(1−α2)(2−α)

2
φni−p

−
α(1−α)(2−α)

6
φni−p+1 . (18)

In two spatial dimensions, this is called bi-cubic interpo-
lation, β is the non-integer part of the displacement in the
y-direction. α and β are now defined as(U1t −p)/1x
and (V1t − q)/1y, respectively, whereU is the veloc-
ity in the x-direction,V is the velocity in the y-direction.
p = int(U1t/1x) and q = int(V1t/1y), where int() de-
notes the integer part.

Using von Neumann stability analysis, this scheme can be
shown to be unconditionally stable, see e.g.Kaas(1987).

4.3.3 Cascade interpolation

In cascade interpolation, the two-dimensional advection is
split into two one-dimensional interpolations. This method
is more efficient than traditional semi-Lagrangian interpola-
tion. In cubic cascade interpolation 2× 4 departure points
are used instead of the 4×4, or 16 departure points, used in
traditional semi-Lagrangian bi-cubic interpolation.

After the Lagrangian true departure points are found, the
interpolation is split into three steps. First, using linear in-
terpolation in the y-direction the displacements in the x-
direction are determined. Second, the new x-displacements
are used to perform the advection in the x-direction; this re-
sult is termedφ intermediate. Last,φ intermediate is used to
calculate the advection in the y-direction. Both in the second
and third step one-dimensional cubic interpolation is used,
this corresponds to the 2×4 departure points. However, the
two sets of departure points are not the same. The first four
points are the values from the previous time step, but the last

four are the values from the intermediate time step, when the
interpolation has been performed only in one direction.Nair
et al.(2002) have proposed a scheme combining conservative
finite-volume methods with semi-Lagrangian cascade inter-
polation. Cascade interpolation can be used to reduce a two-
dimensional problem to two one-dimensional remappings.

Cascade interpolation can be explained by considering a
rigid uniform grid (Eulerian or Cartesian), see Fig. 1 ofNair
et al.(2002). In theλ andµ directions, the distance between
two neighbouring grid points is1λ and1µ, respectively.
This is the arrival grid. For each intersection of an Eulerian
longitude and an Eulerian latitude, each Eulerian grid point
(λi,µj ), there is a corresponding upstream Lagrangian point
(λij ,µij ), the departure point. As shown in the figure, four
neighbouring grid points, whether Eulerian or Lagrangian,
bounding a rectangular region define the respective cells of
the grid system.

The Lagrangian system of grid cells corresponds to the
arrival grid at the previous time step. The intersection of a
Lagrangian latitude and an Eulerian longitude, is defined as
an intermediate grid point.

In the cascade interpolation the intermediate grid is gen-
erated first. This can be calculated using one-dimensional
cubic semi-Lagrangian interpolation. For the calcula-
tion the four nearest points along the Lagrangian latitude,
{λi−1,j ,λi,j ,λi+1,j ,λi+2,j }, are used. The entire computa-
tional domain is spanned exactly by the intermediate cells,
however, for efficiency in the computation, the horizontal
lines within each Eulerian grid cell approximate the La-
grangian latitudes. These approximated Lagrangian latitudes
are defined as̃µ

ĵ
= (µ̃i,j + µ̃i+1,j )/2 and the distance be-

tween two adjacent grid points̃µ
ĵ+1 and µ̃

ĵ
is given by

1µ̃
ĵ
= µ̃

ĵ+1− µ̃
ĵ
. The approximated Lagrangian longitude

is calculated in a similar way. The cells made up by the ap-
proximated Lagrangian latitudes and longitudes are called
the computational cells. Please, note again that the cells
cover the entire domain, but do not overlap.

The remapping is now performed, one dimension at a time.
First mass is transferred in theµ direction from Eulerian to
intermediate cells. This is done by calculating the average
densityh̄j . Looking at one column at a time, the dependence
on i is omitted. The initial mass in the Eulerian grid is given
by Mij = ρ̄nij1µj1λi with ρ̄nij as the cell-averaged density

at then-th time step, and the area of the cell1µj1λi . h̄j is
given by the initial mass divided by the cell width of thej -th
cell, h̄j =Mij/1µj . This average density is used to con-
struct piecewise parabolic profiles of the vertical columns.
The mass calculated above is used to find the average density
per1λi in the intermediate cells. This is used to fit piece-
wise parabolic profiles, so that the mass is represented by the
area under the curve. The average density of the arrival cells
at the next time step (n+1) is determined using the newly
calculated mass. For a more detailed description, seeNair
et al.(2002).
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4.3.4 Modified interpolation weights

When used for solving the volume density version of the
continuity equation traditional upstream interpolated semi-
Lagrangian schemes do not conserve mass, butKaas(2008)
suggested a new method inspired by CISL (Cell Integrated
Semi-Lagrangian) schemes, mentioned above, introducing
modified upstream SL-weights. This scheme is locally
mass conserving and therefore called the LMCSL (Locally
Mass Conserving Semi-Lagrangian) scheme. In addition
to calculating the traditional semi-Lagrangian interpolation
weights, these are also used to calculate modified upstream
SL-weights. The idea is based on the concept of partition
of unity, since the traditional interpolation weights, which
should sum to one in the case of no divergence and homoge-
nous resolution, are weighted to ensure mass conservation.

Using the notation ofKaas(2008), the continuity equation
for volume density can be written as:

ρn+1
k =

K∑
l=1

ŵk,lρ
n
l , (19)

with

ŵk,l =
Al

Ak

wk,l∑K
m=1wm,l

. (20)

Herewk,l corresponds to the semi-Lagrangian weight and
Ak represents the area, in two dimensions, or volume, in
three dimensions, of thek-th Eulerian grid point. The mod-
ified interpolation weights include the divergence. This for-
mulation can be used for any order of interpolation. It can
be shown that the total mass at time stepn+1 equals that at
time stepn for a periodic domain:
K∑
k=1

Akρ
n+1
k =

K∑
k=1

K∑
l=1

Akŵk,lρ
n
l

=

K∑
k=1

K∑
l=1

Alwk,l∑K
m=1wm,l

ρnl

=

K∑
l=1

Al

∑K
k=1wk,l∑K
m=1wm,l

ρnl

=

K∑
l=1

Alρ
n
l , (21)

at the first equality sign Eq. (19) has been used to go one
time step back, at the next, Eq. (20) has been used to substi-
tuteŵk,l , at the third the terms are rearranged and at the last
equality sign it is used that

∑K
k=1wk,l = 1. Hence it is shown

that the scheme has formal mass conservation.

4.3.5 Locally mass conserving monotonic filter

The filter used here is the locally mass conserving and anti-
diffusive monotonic filter for use in semi-Lagrangian mod-
els by Kaas and Nielsen(2010). Plainly speaking, the fil-
ter redistributes mass in all points bringing the forecast as

close as possible to a monotonic anti-diffused but non-mass-
conserving forecast. First the “real” forecast of high accu-
racy, ρ, in this case cubic interpolation, and a low resolu-
tion linear forecast,ρL , are calculated. In addition to the two
forecasts the filter also requires a condition to achieve mono-
tonicity: the new value in any given point must not exceed
the maximum or minimum values,ρmin andρmax, of the grid
points surrounding the departure points. Here for two di-
mensions, four points are considered when evaluatingρmin
andρmax.

The filter works by first applying an anti-diffusive filter on
the non-filtered forecast and constraining these values to be
monotone and mass conserving. The result is termed a target
value forecast.

The mathematical description of the filter is given by
the following Eqs. (22)–(31). ρmin andρmax are given by
Eq. (22) under the assumption of a non-divergent flow. The
minimum and maximum values are found from the surround-
ing grid points of the departure points, denoted byl.

ρn+1
min k = min

l
(ρn) (22)

ρn+1
max k = max

l
(ρn),

k as above represents a general grid point index, i.e.k =

1,...,K , whereK is the total number of grid points. The lin-
ear anti-diffusioned forecast is calculated using the following
equation.

ρA= ρk+αk(ρk−ρLk ) (23)

αk is the strength of the anti-diffusion – or diffusion in the
case whereαk <0. In this studyαk is determined from:

αk = max[0.09,−0.246+6.64σk−12.29σ 2
k ] (24)

In Eq. (24) σ is a parameter determining the local scale of
ρ with small scales corresponding to high values ofσ . The
coefficients in Eq. (25) have been obtained empirically, see
details inKaas and Nielsen(2010).

σk = 0.5((σk)x+(σk)y) (25)

For the x- and y-direction,σ is given by

(σk)x =
abs(D4(ρ)k)

rg+rk
(26)

With D4 being the curvature of the curvature. In one di-
mension this quantity is defined as

D4(ρ)k =D2
k+1+D2

k−1−2D2
k (27)

and the curvatureD2 is given by

D2
k(ρ)= ρk+1+ρk−1−2ρk (28)

In the two dimensional caseD is determined as the average
scale in each of the two directions. The local range ofρ

defines the normalization, calledrk, given by

rk = max[ρl,l= k−4,k+4]

− min[ρl,l= k−4,k+4] (29)
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Ignoring truncation errorsrg is proportional to the value
D4 would take for a wave with wave number 1. The value of
rg is defined globally and used to avoid division by zero.

rg =
max(ρl,l= 1,K)−min(ρl,l= 1,K)

K4
(30)

The target values, used for the filtering, are calculated from

ρT = max(min(ρA,ρmax),ρmin) (31)

Details of the re-organisation of mass can be found in
Kaas and Nielsen(2010). In brief, it consists of a small se-
ries of local mass-redistributions which gradually brings the
mass conserved forecast closer to the target values. It can be
thought of as a type of nudging under the strong constraint
of local mass conservation.

4.3.6 Trajectories

Calculated trajectories need information about the wind in
the current and the past time steps and use this information to
extrapolate the wind velocity to the next time step. First, the
“first guess” departure point is calculated. Using this point,
the half time step forward trajectory is calculated. This is
added to the half time step backward trajectory from the Eu-
lerian arrival point. Going backwards along the resulting tra-
jectory gives a new point, which is called the first iterated
departure point. From this new point, a new half time step
trajectory can be calculated, and so on. This iteration pro-
cess can be repeated any number of times, but due to limita-
tions in computer time and the fast convergence towards the
“true” solution in the test cases considered here, the iteration
is performed only twice in the present work.

The description of the calculation of trajectories follows
that ofKaas(2008), bold italic font indicate vectors. The tra-
jectory from the departure point,rn? , to the midpoint,rn+1/2

?/2 ,
is calculated using Taylor series expansion:

r
n+1/2
?/2 = rn?+C1 (32)

where

C1 =
1t

2
vn?+

M−1∑
m=1

1

(m+1)!

(1t
2

)m+1(dmv

dtm

)n
?

(33)

In this work,M = 2 is used; this includes acceleration.
The term in the last parenthesisd

mv
dtm

is approximated bydv
dt

≈

v∇v. This is done by not considering the Eulerian velocity
change during the time step. For treatment of higher order
derivatives the reader is referred toKaas(2008).

The other piece of the trajectory is calculated in a similar
way, now using extrapolated wind velocities rather than the
velocity from the previous time step,ṽn+1

= 2 · vn− vn−1.
The last contribution to the trajectory is given as

r
n+1/2
?/2 = rn+1

? +C2 (34)

with

C2 =
1t

2
ṽn+1

−

M−1∑
m=1

1

(m+1)!

(
−
1t

2

)m+1 dm

dtm
(ṽn+1) (35)

Combining the above gives

rn? = rn+1
−(C1+C2) (36)

To achieve a higher accuracyC1 is iterated as mentioned
above.

4.4 Advection algorithm in DEHM

The advection scheme used in DEHM to solve the two-
dimensional advection equation is the Accurate Space
Derivatives (ASD) and, in addition, the Forester and Bart-
nicky filters are used to prevent the numerical oscillations
and negative values that can occur when using a high order
scheme. ASD is a pseudo-spectral method. The vertical ad-
vection is solved using a faster, less accurate finite-element
method,Frohn et al.(2002). The temporal integration is per-
formed using a third-order Taylor series method.

4.4.1 Accurate space derivatives

Accurate Space Derivatives use Fourier transforms to solve
the two-dimensional advection. The change of the mixing
ratio in one-dimension can be expressed as:

c(x)=P(x)+F(x), x ∈ [0,...,(N−1) ·1x] (37)

with

P(x) =

(c(x1)−c(xN )

2

)
cos(κ ·x)

+

(c(x1)−c(xN )

2

)
(38)

The termP(x) imposes boundary conditions on the sys-
tem. For periodic boundary conditionsP(x) can be omitted,
also, it is seen that forc(x1)= c(xN )⇒P(x)= 0 for all x.
The second term,F(x), is the Fourier components given as

F(x)=
∑
n

(ancos(2·n ·κ ·x)+bnsin(2·n ·κ ·x)) (39)

wherean andbn are the Fourier coefficients.κ is

κ =
π

N ·1x
(40)

Taylor series expansion is used to perform the integration
in time of the three-dimensional advection. In DEHM the
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Taylor series is expanded to third order:

c(t+1t)'

3∑
n=0

1

n!

∂nc

∂tn
·(1t)n (41)

= c(t)+c′(t)1t+
1

2
c′′(t)(1t)2+

1

6
c′′′(t)(1t)3

The calculation of the derivatives,c′(t), c′′(t) andc′′′(t),
is performed using spacial derivatives:

c′(t) = −u
∂c

∂x
−v

∂c

∂y
(42)

= V̄ · ∇̄c

c′′(t) = V̄ · ∇̄c′

c′′′(t) = V̄ · ∇̄c′′

The analytical solution toc′(t), in one dimension, is given
by:

c′(x) = P ′(x)+F ′(x) (43)

c′(x) = −κ
(c(x1)−c(xN )

2

)
sin(κ ·x)

+

∑
n

(−2·n ·κ ·ansin(2·n ·κ ·x)

+ 2·n ·κ ·bncos(2·n ·κ ·x))

Using an advection scheme with this high order of accu-
racy introduces a significant amount of numerical noise when
considering steep gradients. Also overshoots and unphysical
negative values might occur. To solve these problems, fil-
ters are introduced, in DEHM the Forester filter, seeForester
(1977), and the Bartnicki filter, seeBartnicki (1989), are
used. In a test performed byDabdub and Seinfeld(1994),
ASD and the Forester filter combined showed to be the best
performing of the tested advection schemes. The Bartnicki
filter removes negative values by redistribution of mass.

4.4.2 The Forester filter

The Forester filter works by adding dispersion to smooth
the field where the peak values are present. On an iterative
scheme the filter can be expressed as follows:

ck+1
i = cki +

µ

2
[(ci+1−ci)(δi+δi+1)

− (ci−ci−1)(δi+δi−1)]
k , (44)

wherek is the number of times the filter has been iterated.
The four parametersn, m, k, andµ are specific for every
implementation of the filter and must be determined empiri-
cally, δ is calculated usingn andm and is either 0 or 1 de-
pending of whether the filter is active or not.k is the number
of iterations the filter performs,µ is the diffusion coefficient
which is dimensionless and dependent on,C, the Courant
number. The noise wavelength is determined byn andm.
Local extrema are separated by 2n using the local diffusion.
The filter diffuses overshoots but does not prevent negative
values, but reduces them. The filter is locally mass conserv-
ing.

4.5 Test cases

To test the different methods presented here the two classi-
cal tests, the slotted cylinder, see e.g.Zerroukat et al.(2002),
and rotating cone byMolenkamp(1968) andCrowley(1968)
are used. The rotation tests are applied both with and with-
out chemistry. The tests have been modified to better test
relevant properties of the schemes. For both test cases the
object is rotated only one rotation, which for the chemistry
corresponds to one day in this setup. This is chosen in order
for significant features from the advection not to be hidden
by the chemistry. Also the tests are run with some different
number of time steps per rotation and different number of
grid points; this is described in Sect.5.

When testing advection schemes combined with chemistry
it is not certain that the results will be the same as when ad-
vection and chemistry are tested individually,Brandt et al.
(1996b). For pure advection tests, the solution is well known.
Also, for chemistry, the “real” solution can be found using
the box model method, seeHov et al. (1989). Due to the
non-linearity in the chemistry, the combined solution does
not always perform as well as the individual results. Because
of the above, in addition to showing the combined results in-
cluding both advection and chemistry, figures showing the
initial condition and the individual results for chemistry and
pure advection are included for comparison.

The mathematical description of the tests can be found in
e.g.Zerroukat et al.(2002) andMolenkamp(1968) or Crow-
ley (1968).

5 Algorithms

In this section the different combinations of methods tested
in this study are described along with the different resolutions
used.

5.1 Schemes

In this work ten different methods are tested and compared.
Two are based on the ASD method and the remaining eight
methods are semi-Lagrangian schemes. Below is a list with
description of every method. Section4 describes the basic
methods more thoroughly.

ASD– Accurate Space Derivatives including the Bart-
nicki filter. This method is described in Sect.4.4.1. This
method is globally mass conserving and has no negative
values.

ASD w. filter– Accurate Space Derivatives with filter is
the method described above combined with the Forester
filter (see Sect.4.4.2). This method is globally mass
conserving and has no negative values.

SL – semi-Lagrangian bi-cubic interpolation described
in Sect.4.3.2
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LMCSL – The Locally Mass Conserving semi-
Lagrangian advection scheme is a combination of the
classical semi-Lagrangian bi-cubic interpolation (SL)
and the modified interpolation weights byKaas(2008),
this method is described in Sect.4.3.4. This scheme is
locally mass conserving but not monotonic.

SL w. filter – Classical bi-cubic semi-Lagrangian in-
terpolation with the monotonic and mass conserving
filter by Kaas and Nielsen(2010), see description in
Sect.4.3.5. This scheme is not mass conserving but
monotonic.

LMCSL w. filter– This scheme combines the two meth-
ods above (LMCSL and SL w. filter). The base is the
classical bi-cubic semi-Lagrangian interpolation, to this
the modified interpolation weights which imposes mass
conservation and the locally mass conserving mono-
tonic filter are added. This scheme is both locally mass
conserving and monotonic.

cascade– semi-Lagrangian cubic cascade interpolation,
see Sect.4.3.3. This method is faster than the traditional
SL scheme but requires more memory.

LMC cascade– Locally Mass Conserving cascade in-
terpolation. Here the modified interpolation weights are
added to the cascade interpolation. This scheme is lo-
cally mass conserving but not monotonic.

cascade w. filter– Cascade interpolation with the locally
mass conserving monotonic filter. This scheme is not
mass conserving but monotonic.

LMC cascade w. filter– As the LMCSL with filter but
using cascade interpolation. This scheme is both locally
mass conserving and monotonic.

5.2 Resolution

The five different resolutions, which will be presented in the
results in Sect.6 are as follows. The first figure in the ab-
breviations below refers to the time step, i.e. 101, means
that the time step is ten times larger than that of the reference
time step used in ASD. The second figure refers to the spatial
resolution, where “1” means standard resolution of the refer-
ence and “05” means that the resolution is half the standard
resolution, i.e. twice as many grid cells in each direction.

10 1 – This is the standard setup for the semi-
Lagrangian approach, see Sect.4.5. In this setup the
maximal Courant number isC = 3.27, the time step is
1t = 900 s and the number of grid cells arenx = ny =

100.

1 1 – This is the resolution ASD use as standard. The
maximal Courant number isC= 0.327, the time step is
1t = 90 s and the number of grid cells arenx = ny =

100.

3 1 – This resolution is used to test the semi-Lagrangian
schemes with a Courant number close to but not equal
one, C = 0.981, the time step is1t = 270 s and the
number of grid cells arenx= ny= 100.

1 05 – The fourth resolution used has a maximal
Courant number of 0.654 in each direction, the time step
is 1t = 90 s and has twice as many grid points in each
direction as the three first resolutions,nx= ny= 200.

05 05– In the last setup the maximal Courant number is
the same as in the second resolution,C = 0.327, how-
ever the time step is only half of that from the second
method1t = 45 s and the number of grid points is the
same as that of the fourth method,nx= ny= 200.

The ASD scheme is run only with maximal Courant num-
ber C = 0.327, which corresponds to resolution 11 and
05 05.

All eight semi-Lagrangian methods are run with all five
resolutions and the two test cases described in Sect.4.5. They
are run with both analytical and calculated trajectories as de-
scribed in Sect.4.3.6.

The chemistry contains reactions for 58 species as de-
scribed in Sect.3.4.2. Since it would be beyond the scope of
this work to go into detail with all chemical species, O3 and
NO2 have been chosen for thorough investigation. O3 and
NO2 describe both the evolution of species with an initial
concentration different from the background concentration
(NO2) and a concentration changing from pure background
to a higher and lower concentration (O3).

6 Results

A systematic comparison of all the methods for two selected
species (NO2 and O3) using urban chemistry conditions is
presented in Sect.6.1. Only the rotating cone described in
Sect.4.5 has been used since the slope of the cone reflects
what typically could occur in the real atmosphere. Each fig-
ure showing NO2 contains four plots, from top left to bottom
right, the initial condition, pure advection, only chemistry,
and last, advection and chemistry combined. For O3, the ini-
tial condition is pure background concentration which makes
pure advection and initial condition unimportant, therefore,
for O3 just two plots, chemistry and advection and chemistry
combined, are shown.

In the ranking, see Sect.6.3, of the different methods the
ASD scheme without the Forester filter has been included,
however, in the figures below no plots of ASD without fil-
ter occur and ASD refers to the ASD scheme with both the
Forester filter and the Bartnicki filter.

In Sect.6.2 the slotted cylinder is used to test the meth-
ods on a very steep gradient. It is very difficult for numerical
methods to model this steep slope without generating numer-
ical noise known as the Gibbs phenomenon. In Sect.6.2 the
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Fig. 1. Rotation test for ASD using the rotating cone for NO2 with urban conditions and resolution 11, with 1t = 90 s,1x = 1.0, and
C = 0.327. The results are given for the initial condition (top left) and model runs with pure advection (top right), pure chemistry (bottom
left), and combined chemistry and advection (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min = 0.2406, max = 4.729. Top right: min = 0.2221, max = 4.683.
Bottom left: min = 0.1317, max = 11.22. Bottom right: min = 0.106, max = 10.44.

results for the two best performing semi-Lagrangian schemes
are compared to ASD.

Error measures and ranking are shown and explained in
Sect.6.3. Finally a discussion of the computational effi-
ciency of the various methods is found in Sect.6.4.

6.1 Comparison of results for NO2 and O3 using the
rotating cone

For an ideal scheme, the results from the rotation test after a
full rotation using pure advection should be impossible to tell
apart from the initial condition. Similarly, for pure chemistry
compared to combined chemistry and advection. However,
when including non-linear chemistry this constraint is even
more severe than when considering a passive tracer.

6.1.1 Results for NO2 using the rotating cone

In the following plots the results obtained using no advec-
tion and pure chemistry, are considered the “reference” solu-
tions to the results including advection alone, and advection
together with chemistry, respectively. This section consid-
ers results for the chemical component NO2. NO2 is present
from the beginning of the test and therefore shows both ad-
vection and change in concentration due to chemistry.

The top left plot in the Figs.1–3 shows the initial con-
dition, that is the concentration of NO2 shaped as a cone,

before both advection or chemistry, at timet = 0. This is to
be compared to the top right plot showing the performance of
the considered advection scheme, still without active chem-
istry, this corresponds to passive tracer advection. In the fig-
ures the vertical axes on the top plots are in the interval 0–5
and the bottom plots, in the interval 0–15.

The bottom row includes active chemistry. The bottom left
plot shows the concentration of the field when only chemistry
is active, this is the ideal solution for an advection scheme
with active chemistry. The bottom right figure shows the
performance of the advection scheme including active chem-
istry. The ranking of the schemes can be found in Table3.

When considering only the two left plots, initial condi-
tion and pure chemistry, the effect of active chemistry after
24 h is seen. The concentration increases from a maximum
of 4.729 to 11.22 and the background concentration changes
from 0.2406 to 0.1317. It would be beyond the scope of this
work to go into detail with the chemical reactions causing
this evolution. It is noted that the shape of the rotating cone
is somewhat rounded by the chemical reactions alone.

6.1.2 Results for NO2 using the ASD approach

In Fig. 1 the advection scheme from DEHM, ASD, is tested.
The results considering only pure advection show a very well
preserved cone, the extreme values are slightly lower than
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Fig. 2. Rotation test for LMC cascade using the rotating cone for NO2 with urban conditions and resolution 11, with1t = 90 s,1x= 1.0,
andC = 0.327. The results are given for the initial condition and model runs with pure advection (top right), pure chemistry (bottom left),
and combined chemistry and advection (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min = 0.2406, max = 4.729. Top right: min = 0.1929, max = 4.2.
Bottom left: min = 0.1317, max = 11.22. Bottom right: min = 0.0397, max = 10.31.

Fig. 3. Rotation test for LMCSL with filter using the rotating cone for NO2 with urban conditions and resolution 11, with 1t = 90 s,
1x = 1.0, andC = 0.327. The results are given for the initial condition (top left) and model runs with pure advection (top right), pure
chemistry (bottom left), and combined chemistry and advection (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min = 0.2406, max = 4.729. Top right: min = 0.2406, max = 4.221.
Bottom left: min = 0.1317, max = 11.22. Bottom right: min = 0.0295, max = 10.33.
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those of the initial condition, 0.2221 and 4.683 compared to
0.2406 and 4.729.

When including active chemistry the result is similar to the
above, again the extrema are a little different from those of
the pure chemistry, 0.106 and 10.44 compared to 0.1317 and
11.22. This is an acceptable change.

The ASD preserves the shape of the cone very well, when
only considering advection even the top of the cone stays
“pointy” as in the initial condition. When active chemistry
and advection is combined the top of the cone is slightly
rounded as compared to that of both advection alone and
pure chemistry. The non-linearities of the chemistry cause
this change.

6.1.3 Results for NO2 using the semi-Lagrangian
cascade approach

The result of combining the semi-Lagrangian cascade
scheme with modified interpolation weights, LMC cascade,
is shown in Fig.2. When comparing the top plots it is eas-
ily seen that the scheme smoothes the solution, in particular
the top of the cone is rounded somewhat. The extreme val-
ues also show this, the maximum of the advected cone is 4.2
compared to 4.729 for the initial condition. When the chem-
istry is included, the extreme values are 0.0397 and 10.31
compared to 0.1317 and 11.22 and as before the top of the
cone is smoothed. The modified interpolation weights make
the scheme mass conserving, but do not alter the extrema.

6.1.4 Results for NO2 using the filtered mass conserving
semi-Lagrangian Approach

The last figure with this resolution, Fig.3, combines the three
of the schemes considered, semi-Lagrangian interpolation,
the modified interpolation weights and the locally mass con-
serving monotonic filter to one, namely LMCSL with filter.
This combined scheme is both monotonic and mass conserv-
ing. The minimum value of the result of the pure advection
is the same as the initial concentration, namely 0.2406, the
maximum value is 4.221 against 4.729 from the initial con-
centration. As for the scheme with chemistry the lowest and
highest values are 0.0295 and 10.33, respectively. The cor-
responding values for the reference solution are 0.1317 and
11.22. However, the shape of the cone seems broader than
the reference. The most significant feature is a “bulk” on the
cone one third of the cone height from the top, resulting from
the filter and the non linear chemistry.

6.1.5 Results for NO2 using the semi-Lagrangian
cascade approach with resolution 31

Figure 4 shows the same chemical species as discussed
above, namely NO2, and the same test, the rotating cone,
however, using resolution 31. By comparing the previ-
ous three figures, the bottom right plot, it can be seen that

the top of the cone is slightly rounded, like the other semi-
Lagrangian schemes, however, the maximum value is higher
than even the result produced by the ASD scheme. The
bulk occurring on the plots from the filtered semi-Lagrangian
schemes using resolution 11 is no longer there on this figure.
The minimum value of the bottom right plot is closer to the
value for pure chemistry than for the other semi-Lagrangian
schemes but still worse than the result from the ASD scheme.
When considering pure advection, the minimum values are
the same for all semi-Lagrangian schemes, namely the same
as the initial condition. The maximum value is again closer
to the initial condition than the semi-Lagrangian schemes us-
ing resolution 11, but not as close as the maximum value for
the ASD scheme.

6.1.6 Comparison of results for NO2

The results above show that the ASD scheme is very good at
preserving shape when considering the rotating cone. How-
ever, when chemistry is included, the non-filtered results of
the semi-Lagrangian schemes and those with a long time step
perform almost as well.

When considering pure advection the filtered solution of
the semi-Lagrangian schemes performs very well. The bulk
occurring when the scheme is combined with the filter might
result from the non-linearities in the chemistry or the filter
might be trying “too hard” to keep the gradients steep.

When adding the modified interpolation weights to a
scheme, it becomes mass conserving. When applying the
locally mass conserving monotonic filter to a scheme which
is not mass conserving, the scheme becomes monotonic, but
not mass conserving, because the filter only conserves the
mass of the result from the advection scheme, which is not
mass conserving.

6.1.7 Results for O3 using the rotating cone

The initial O3 concentration is prescribed as a constant
background concentration. It is challenging for advection
schemes to model the changing concentration correctly when
it occurs due to pure chemical reactions.

In Figs.5–7 the vertical axis is in the interval 40–80. Each
figure shows a plot of pure chemistry and a plot of advection
and chemistry. The reason that neither the initial condition
nor pure advection are shown is that the concentration of the
two is constant throughout the grid.

The pure chemistry plot is considered the reference solu-
tion, it has a minimum concentration of 48.55 and a maxi-
mum concentration of 64.58, the shape of the concentration
looks like a cone where the center bulks downward.

6.1.8 Results for O3 using the ASD approach

Figure5 shows the result obtained using ASD. The shape of
the cone is comparatively well preserved, with only a small
undershoot, minimum value = 48.18 compared to 48.55. The
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Fig. 4. Rotation test for filtered LMC cascade using the rotating cone for NO2 with urban conditions and resolution 31, with1t = 270 s,
1x = 1.0, andC = 0.981. The results are given for the initial condition (top left) and model runs with pure advection (top right), pure
chemistry (bottom left), and combined chemistry and advection (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min = 0.2406, max = 4.729. Top right: min = 0.2406, max = 4.263.
Bottom left: min = 0.1328, max = 11.31. Bottom right: min = 0.0838, max = 10.56.

Fig. 5. Rotation test for ASD using the rotating cone for O3 with urban conditions and resolution 11, with 1t = 90 s,1x = 1.0, and
C= 0.327. The results are given for pure chemistry (left) and combined chemistry and advection (right).
The minimum and maximum values for the respective plots are:
Left: minimum = 48.55, maximum = 64.58.
Right: minimum = 48.18, maximum = 71.23.
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Fig. 6. Rotation test for LMC cascade using the rotating cone for O3 with urban conditions and resolution 11, with1t = 90 s,1x = 1.0,
andC= 0.327. The results are given for pure chemistry (left) and combined chemistry and advection (right).
The minimum and maximum values for the respective plots are:
Left: minimum = 48.55, maximum = 64.58.
Right: minimum = 44.41, maximum = 69.15.

Fig. 7. Rotation test for LMCSL with filter using the rotating cone for O3 with urban conditions and resolution 11, with1t = 90 s,1x= 1.0,
andC= 0.327. The results are given for pure chemistry (left) and combined chemistry and advection (right).
The minimum and maximum values for the respective plots are:
Left: minimum = 48.55, maximum = 64.58.
Right: minimum = 43.03, maximum = 70.89.
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Fig. 8. Rotation test for LMC cascade with filter using the rotating cone for O3 with urban conditions and resolution 31, with1t = 270 s,
1x= 1.0, andC= 0.981. The results are given for pure chemistry (left) and combined chemistry and advection (right).
The minimum and maximum values for the respective plots are:
Left: minimum = 48.53, maximum = 74.14.
Right: minimum = 46, maximum = 71.26.

top of the concentration, however, generates a peak on one
side of the cone with a maximum value of 71.23 compared
to 64.58.

6.1.9 Results for O3 using the semi-Lagrangian cascade
approach

When considering Fig.6, the scheme using the locally mass
conserving cascade interpolation, it is seen that the scheme
smoothes the solution. Also, a clear undershoot occurs,
the minimum value of 44.41 compared to 48.55 confirms
this. The overshoot generated is smaller than that for the
ASD scheme, 69.15 compared to the reference solution with
64.58; this is still significant.

6.1.10 Results for O3 using the semi-Lagrangian
approach

When adding the filter to the mass conservative semi-
Lagrangian scheme, the gradient is steepened and the ampli-
tude of the concentration increases. For Fig.7, the extreme
values are 43.03 and 70.89, compared to 48.55 and 64.58.

6.1.11 Results for O3 using the semi-Lagrangian
approach using resolution 31

Figure 8 shows the combination of semi-Lagrangian cas-
cade interpolation with modified interpolation weights and

the locally mass conserving and monotonic filter using res-
olution 3 1. From the extreme values, it can be seen that
some under and over shooting still occurs, however, the
undershooting is significantly smaller than for the semi-
Lagrangian schemes using resolution 11. The overshoot is
comparable to that of the ASD scheme and therefore greater
than those of the semi-Lagragian schemes. The peak in the
concentration seems to be more evenly distributed than what
other schemes present.

6.1.12 Comparison of results for O3

The ASD scheme generates a clear overshoot on one side of
the cone. The semi-Lagrangian schemes also generate over-
shoots, however, significantly smaller. The semi-Lagrangian
schemes generate severe undershoots and smooth the shape
of the cone significantly. When a filter is added the shape is
better preserved but both the undershoots and overshoots are
enlarged.

6.2 Selected results using the slotted cylinder

In this section, selected results using the slotted cylinder
test case are shown. For most of the plots the LMCSL
scheme with the locally mass conserving monotonic filter
has been chosen. The reason for choosing this scheme is
that it gives the best scores for all tests when not considering
ASD; this will be shown in Sect.6.3. Results for the two

www.geosci-model-dev.net/4/511/2011/ Geosci. Model Dev., 4, 511–541, 2011



528 A. B. Hansen et al.: Semi-Lagrangian methods in air pollution models

Fig. 9. Slotted cylinder, NO2, 1t = 90 s,1x = 1.0, C = 0.327 Rotation test with the slotted cylinder for NO2 using urban chemistry and
resolution 11, with1t = 90 s,1x = 1.0, andC = 0.327. The results are given for pure chemistry (top left) and chemistry and advection
using ASD (top right), using semi-Lagrangian interpolation with filter (bottom left), and using LMCSL with filter (bottom right). Note, the
vertical axis on the top left plot is the interval 0–15, whereas the top right is in the interval 0–100, and the two bottom plots are in the interval
0–50.
The minimum and maximum values for the respective plots are:
Top left: min = 0.1317, max = 11.36. Top right: min = 0.0016, max = 89.15.
Bottom left: min = 0.0056, max = 48.21. Bottom right: min = 0.005, max = 48.31.

best performing SL schemes when considering urban chem-
istry and tested on the slotted cylinder with urban chemistry
are chosen, see Table4. Since the classical SL scheme com-
bined with the filter is the best in three of the six tests it was
decided that it should also be included when showing results
in this section.

The plots in this subsection show (from upper left to lower
right) pure chemistry, which is the reference solution, ASD,
SL with filter, and LMCSL with filter.

Figure9 shows the results obtained for NO2. The scales
on the four plots vary, for the initial condition the minimum
value is 0.1317 and the maximum value is 11.36. The ASD
scheme generates very high peaks, and the lowest minimum
value of the shown plots as well, minimum value = 0.0016
and maximum value = 89.15. Also, the semi-Lagrangian
schemes give results different from the not advected solution,
the minimum and maximum values for the classical scheme
with filter are 0.0056 and 48.21, respectively. For the mass
conserving LMCSL scheme with filter, the values are only
slightly different from those of the classical SL scheme with
filter: the minimum is 0.005 and the maximum is 48.31.

When considering O3, see Fig.10, the same results as
above can be seen. The ASD scheme is not performing as
well as the semi-Lagrangian schemes; however, for O3 all
schemes generate large undershoots. The reference solu-
tion has a minimum value of 48.55 and a maximum value
of 60.05. The ASD schemes extreme values are 1.618 and
53.76, but as opposed to the reference solution, the peak
of the concentration is “negative” relative to the background
concentration. The semi-Lagrangian schemes again perform
very similar. The minimum value is 15.41 for the non-mass
conserving scheme and 15.32 for the LMCSL scheme, both
with filter. The maximum value for both schemes is 75.91.
The shape of the cylinder is altered significantly compared to
the reference solution, but also very different from the solu-
tion obtained using ASD. The cylinder peaks both above and
below the background concentration and the slot is somewhat
preserved.
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Fig. 10. Slotted cylinder, O3, 1t = 90 s,1x = 1.0, C = 0.327 Rotation test with the slotted cylinder for O3 using urban chemistry and
resolution 11, with1t = 90 s,1x = 1.0, andC = 0.327. The results are given for pure chemistry (top left) and chemistry and advection
using ASD (top right), using semi-Lagrangian interpolation with filter (bottom left), and using LMCSL with filter (bottom right). Note, the
vertical axis on the top left plot is the interval 40–65, whereas the other are in the interval 0–65.
The minimum and maximum values for the respective plots are:
Top left: min = 48.55, max = 60.05. Top right: min = 1.618, max = 53.76.
Bottom left: min = 15.41, max = 75.91. Bottom right: min = 15.32, max = 75.91.

Fig. 11. Slotted cylinder, pure advection,1t = 90 s,1x = 1.0, C = 0.327 Rotation test with the slotted cylinder for pure advection and
resolution 11, with1t = 90 s,1x= 1.0, andC= 0.327. The results are given for initial concentration (top left) and pure advection for ASD
(top right), semi-Lagrangian interpolation with filter (bottom left), and LMCSL with filter (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min = 0.2406, max = 4.811. Top right: min = 0.0572, max = 5.022.
Bottom left: min = 0.2406, max = 4.811. Bottom right: min = 0.2406, max = 4.811.
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Table 1. Ranking results for the rotating cone with rural chemistry. Showing rank of the ranked error measures, rank of error measurel1, l2,
andl∞ followed by method, maximum Courant number, grid resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax 1x 1t

1.46 2.12 1.04 1.22 ASD 0.327 0.5 45
1.67 1.25 1.96 1.79 ASD w. filter 0.327 0.5 45
3.53 4.44 3.17 2.99 ASD 0.327 1.0 90
3.85 3.25 4.18 4.13 ASD w. filter 0.327 1.0 90
7.65 7.68 7.37 7.92 LMCSL w. filter 0.654 0.5 90
7.77 7.61 7.56 8.13 SL w. filter 0.654 0.5 90
8.73 8.61 8.70 8.88 cascade w. filter 0.654 0.5 90
9.12 8.56 8.97 9.84 LMCcascade w. filter 0.654 0.5 90
13.79 11.93 12.26 17.19 LMCSL w. filter 0.327 0.5 45
14.69 12.10 13.11 18.84 SL w. filter 3.27 1.0 900
15.44 13.42 14.18 18.73 LMCcascade w. filter 0.327 0.5 45
15.72 14.24 13.49 19.43 LMCSL w. filter 3.27 1.0 900
16.00 18.04 16.88 13.08 SL 0.654 0.5 90
16.01 18.04 16.88 13.12 LMCSL 0.654 0.5 90
16.02 18.04 16.93 13.08 cascade 0.654 0.5 90
16.02 18.04 16.93 13.08 LMCcascade 0.654 0.5 90
16.06 12.33 13.84 22.00 cascade w. filter 0.327 0.5 45
16.43 13.48 15.18 20.62 SL w. filter 0.327 0.5 45
18.10 17.24 20.69 16.37 cascade w. filter 3.27 1.0 900
20.74 23.07 21.24 17.91 cascade 0.327 0.5 45
20.74 23.07 21.24 17.91 LMCcascade 0.327 0.5 45
20.74 23.07 21.24 17.91 SL 0.327 0.5 45
20.74 23.07 21.24 17.91 LMCSL 0.327 0.5 45
21.94 19.40 20.09 26.32 LMCcascade w. filter 3.27 1.0 900
25.89 23.26 25.81 28.61 SL w. filter 0.981 1.0 270
26.31 24.11 26.03 28.80 LMCSL w. filter 0.981 1.0 270
26.66 28.80 27.81 23.37 SL 3.27 1.0 900
26.74 24.61 27.02 28.60 cascade w. filter 0.981 1.0 270
26.99 29.03 28.12 23.83 cascade 3.27 1.0 900
28.70 25.69 28.94 31.48 LMCcascade w. filter 0.981 1.0 270
29.36 32.72 29.21 26.16 LMCSL 3.27 1.0 900
29.53 32.74 29.40 26.46 LMCcascade 3.27 1.0 900
34.23 33.11 33.20 36.37 LMCSL w. filter 0.327 1.0 90
34.24 32.31 34.36 36.05 SL w. filter 0.327 1.0 90
34.62 32.81 34.17 36.88 cascade w. filter 0.327 1.0 90
35.01 33.74 33.06 38.23 LMCcascade w. filter 0.327 1.0 90
35.96 37.19 37.13 33.55 SL 0.981 1.0 270
36.09 37.23 37.35 33.69 cascade 0.981 1.0 270
36.25 37.60 37.41 33.74 LMCSL 0.981 1.0 270
36.32 37.60 37.48 33.88 LMCcascade 0.981 1.0 270
41.01 41.31 41.29 40.44 SL 0.327 1.0 90
41.02 41.31 41.29 40.47 cascade 0.327 1.0 90
41.04 41.35 41.29 40.47 LMCcascade 0.327 1.0 90
41.05 41.35 41.29 40.51 LMCSL 0.327 1.0 90

In Fig. 11pure advection is considered. Table6 shows the
ranking for this test. Compared to the reference solution, the
ASD scheme generates spurious waves around the top edges
of the slotted cylinder, resulting in extreme values slightly
different from the reference solution, namely 0.0572 and
5.022, compared to 0.2406 and 4.811. The semi-Lagrangian
schemes are not possible to tell apart. The extreme values are

exactly the same as those of the reference solution. All three
schemes smooth the solution slightly, however, the shape of
the cylinder is very well preserved.
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Table 2. Ranking results for the slotted cylinder with rural chemistry. Showing rank of the ranked error measures, rank of error measurel1,
l2, andl∞ followed by method, maximum Courant number, grid resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax 1x 1t

4.56 2.83 3.16 7.69 ASD w. filter 0.327 0.5 45
6.32 13.82 2.33 2.81 ASD 0.327 0.5 45
9.69 10.31 13.25 5.49 SL w. filter 3.27 1.0 900
10.07 11.47 13.25 5.49 LMCSL w. filter 3.27 1.0 900
10.32 14.99 12.14 3.84 ASD w. filter 0.327 1.0 90
12.40 26.91 7.81 2.48 ASD 0.327 1.0 90
12.67 13.51 14.95 9.55 SL w. filter 0.981 1.0 270
12.87 13.60 15.10 9.90 LMCSL w. filter 0.981 1.0 270
14.07 2.01 4.85 35.35 SL w. filter 0.654 0.5 90
14.07 15.27 16.69 10.27 cascade w. filter 0.981 1.0 270
14.24 3.08 4.43 35.22 LMCSL w. filter 0.654 0.5 90
14.97 17.00 18.17 9.75 LMCcascade w. filter 0.981 1.0 270
15.02 4.41 5.43 35.24 cascade w. filter 0.654 0.5 90
15.06 4.18 5.94 35.06 LMCcascade w. filter 0.654 0.5 90
17.22 17.11 18.65 15.91 cascade w. filter 3.27 1.0 900
19.19 6.82 9.63 41.13 LMCSL w. filter 0.327 0.5 45
19.83 7.90 10.61 40.99 cascade w. filter 0.327 0.5 45
19.93 8.41 10.00 41.37 LMCcascade w. filter 0.327 0.5 45
20.12 21.95 21.14 17.27 LMCcascade w. filter 3.27 1.0 900
20.15 8.81 9.90 41.76 SL w. filter 0.327 0.5 45
25.50 26.29 26.92 23.30 cascade 0.654 0.5 90
25.51 26.29 26.95 23.30 LMCcascade 0.654 0.5 90
25.62 20.94 21.47 34.44 SL w. filter 0.327 1.0 90
25.65 26.36 26.84 23.74 SL 0.654 0.5 90
25.65 26.36 26.84 23.74 LMCSL 0.654 0.5 90
25.75 20.95 21.96 34.33 LMCSL w. filter 0.327 1.0 90
25.99 19.99 22.04 35.94 cascade w. filter 0.327 1.0 90
26.10 20.16 22.32 35.81 LMCcascade w. filter 0.327 1.0 90
26.82 33.21 33.53 13.71 LMCSL 3.27 1.0 900
26.84 33.48 34.74 12.31 LMCcascade 3.27 1.0 900
27.10 34.34 33.28 13.68 SL 3.27 1.0 900
27.11 34.63 34.45 12.26 cascade 3.27 1.0 900
30.09 30.15 30.85 29.28 LMCcascade 0.327 0.5 45
30.11 30.20 30.85 29.28 cascade 0.327 0.5 45
30.21 30.16 30.81 29.65 SL 0.327 0.5 45
30.21 30.16 30.81 29.65 LMCSL 0.327 0.5 45
32.43 38.34 37.77 21.18 cascade 0.981 1.0 270
32.44 38.42 37.81 21.10 LMCcascade 0.981 1.0 270
32.52 38.34 38.03 21.18 SL 0.981 1.0 270
32.53 38.38 38.03 21.18 LMCSL 0.981 1.0 270
35.65 41.85 41.53 23.56 cascade 0.327 1.0 90
35.65 41.85 41.53 23.56 LMCcascade 0.327 1.0 90
35.87 42.37 41.60 23.64 SL 0.327 1.0 90
35.88 42.37 41.60 23.68 LMCSL 0.327 1.0 90

6.3 Error measures

The following sections present the results obtained from
ranking. Ranking is done by calculating error measures for
each tracer and giving the points relative to their results.

In the tables below, the 44 tested methods have
been ranked based on the error calculation described in

Eqs. (9–11). To achieve the ranks given in the tables, the
three error measures were calculated for each of the 58 chem-
ical species and every method. For every error measure and
for every species, the best performing method was given the
value 1, the second best, the value 2 and so on up to the worst
performing method, which was given the value 44. For ev-
ery method and for every error measure the mean value was
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calculated and given in the tables. Furthermore, a mean rank,
based on the different ranks obtained for each of the different
methods was found, rank(all). The best performing method
is the method with the lowest value of rank(all).

6.3.1 Rotating cone with rural chemistry

In Table1 the error measures for the rotating cone with ru-
ral chemistry are ranked. It is seen in the table that the ASD
scheme performs best, also, the finer the resolution the bet-
ter the performance. The non-filtered solutions of both ASD
and SL perform better on an overall consideration. When
considering the individual errors, it is seen that thel1 error
is smaller for the filtered solution than for the non-filtered
ASD.

The semi-Lagrangian schemes perform better with filter
and a fine spacial resolution with big time step. Among
the semi-Lagrangian schemes, the LMCSL scheme with fil-
ter performs best for the two finest resolutions in space and
time. The highest Courant number, 3.27, and resolution 31,
1x = 0.5 and1t = 90. perform equally well. The worst
results for the semi-Lagrangian schemes are obtained using
the highest courant number less than 1, resolution 31, or
the traditional DEHM resolution,1x = 1.0 and1t = 90.
For the finest resolution, the four unfiltered semi-Lagrangian
schemes perform equally well, the same is the case for the
fine resolution with a coarser time step and for the resolution
traditionally used in DEHM.

6.3.2 Slotted cylinder with rural chemistry

The results obtained for the slotted cylinder with rural chem-
istry, Table2, are quite different from the previous. All non-
filtered semi-Lagrangian solutions are in the bottom of the
table, sorted only by resolution, resolution 105 performs
best, followed by the two filtered cascade schemes using res-
olution 1 1. The second best performing resolution is 101,
third is resolution 0505, fourth is 31 and last is resolution
1 1, the resolution used in DEHM.

Considering the ASD scheme, it can be seen that the fil-
tered solution now performs better than the unfiltered solu-
tion. This is due to the very sharp gradients in the slotted
cylinder and the wiggles the scheme creates when perform-
ing the advection.

Of the semi-Lagrangian schemes the filtered classical
semi-Lagrangian solution and the filtered LMCSL scheme,
both with resolution 101, perform best and, on an overall
basis, better than the ASD schemes with resolution 11.

The second group of filtered semi-Lagrangian schemes are
the schemes using resolutions 31 and 105 followed by the
two filtered cascade schemes using the coarsest resolution
and the filtered resolution 0505. The results achieved using
the resolution used in DEHM gives the lowest score, even
worse than the non-filtered resolution 105 for most cases.

Almost exactly as is the case for the distribution of the non-
filtered schemes.

When considering thel1 error it is seen that the best per-
forming scheme is the classical semi-Lagrangian scheme
with filter, resolution 105. The second best considering this
error is the overall best ranked scheme for this test, namely
the ASD with filter resolution 0505, the third best scheme is
the filtered LMCSL scheme using resolution 105.

The best solution with regard to thel2 error is the non-
filtered ASD scheme with fine resolution. As above, the
second best performing scheme is the filtered ASD the with
same resolution. The third best is the filtered LMCSL with
resolution 105.

The overall worst performing of the ASD schemes, the
non-filtered ASD with resolution 11, performs best with re-
gard to thel∞ error. The fine resolution non-filtered ASD
scheme scores the second best rank, and the third best is the
ASD with filter using the traditional resolution.

6.3.3 Rotating cone with urban chemistry

Table3 shows the ranking results from testing the rotating
cone with urban chemistry. For this test, the high reso-
lution filtered ASD scheme performs best followed by the
semi-Lagrangian schemes using resolution 105 and the fil-
tered semi-Lagrangian schemes with resolution 101. After
these, the non-filtered high resolution ASD and the semi-
Lagrangian schemes with resolution 0505 follow, along
with the remaining semi-Lagrangian schemes using resolu-
tion 10 1.

Considering the individual errors, the result is different.
According to thel1 error the best ranked scheme is the fil-
tered LMC cascade scheme using resolution 105, second is
the semi-Lagrangian interpolation with filter and third is the
LMCSL scheme with filter, both using the same resolution
as the first.

Also for the l2 error, the filtered LMC cascade scheme
with resolution 105 gives the best rank, the second best ac-
cording to this rank is the second best according to thel1
error, as well, namely the filtered classical semi-Lagrangian
interpolation with resolution 105. The filtered ASD with
resolution 0505, third according to thel2 error, is the best
scheme according to the overall rank.

The only error for which the overall best scheme actually
scores best is the ranking of thel∞ error. After the filtered
high resolution ASD, LMC cascade scores second and pure
cascade comes third, both of the latter with resolution 105.

As with the previous rankings, the non-filtered semi-
Lagrangian schemes are in the bottom of the table, how-
ever, for this test the two filtered classical semi-Lagrangian
schemes using resolution 11 are the worst performing
schemes.

The two ASD schemes using the traditional resolution,
1 1, are also placed rather low in the table, both according
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Table 3. Raking results for the rotating cone with urban chemistry. Showing rank of the ranked error measures, rank of error measurel1, l2,
andl∞ followed by method, maximum Courant number, grid resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax 1x 1t

7.77 9.16 8.59 5.55 ASD w. filter 0.327 0.5 45
9.04 7.36 8.15 11.61 LMCcascade w. filter 0.654 0.5 90
9.31 7.39 8.49 12.05 SL w. filter 0.654 0.5 90
9.39 7.71 8.77 11.69 LMCSL w. filter 0.654 0.5 90
9.47 8.00 8.63 11.77 cascade w. filter 0.654 0.5 90
11.84 13.27 11.86 10.38 LMCcascade 0.654 0.5 90
11.84 13.27 11.86 10.40 cascade 0.654 0.5 90
11.92 13.23 11.86 10.66 SL 0.654 0.5 90
11.98 9.67 11.07 15.19 SL w. filter 3.27 1.0 900
12.02 13.27 11.90 10.90 LMCSL 0.654 0.5 90
12.68 11.37 10.98 15.69 LMCSL w. filter 3.27 1.0 900
12.84 14.72 12.93 10.86 ASD 0.327 0.5 45
16.09 14.02 16.56 17.69 cascade w. filter 3.27 1.0 900
17.05 18.18 16.95 16.02 cascade 0.327 0.5 45
17.12 18.25 17.03 16.09 LMCcascade 0.327 0.5 45
17.13 18.18 16.99 16.22 LMCSL 0.327 0.5 45
17.15 18.21 16.99 16.26 SL 0.327 0.5 45
17.30 14.87 14.86 22.18 LMCcascade w. filter 3.27 1.0 900
17.48 14.62 16.97 20.86 LMCSL w. filter 0.327 0.5 45
17.70 14.72 17.10 21.29 cascade w. filter 0.327 0.5 45
17.86 14.81 17.18 21.61 LMCcascade w. filter 0.327 0.5 45
18.05 14.89 17.30 21.97 SL w. filter 0.327 0.5 45
20.94 22.62 22.92 17.27 ASD w. filter 0.327 1.0 90
21.41 22.25 22.17 19.81 SL 3.27 1.0 900
21.84 22.49 23.01 20.01 cascade 3.27 1.0 900
22.96 24.47 23.30 21.11 LMCSL 3.27 1.0 900
23.33 24.83 23.85 21.30 LMCcascade 3.27 1.0 900
27.23 31.90 27.86 21.93 ASD 0.327 1.0 90
27.23 27.61 27.20 26.87 SL w. filter 0.981 1.0 270
27.54 27.91 27.63 27.08 LMCSL w. filter 0.981 1.0 270
28.35 29.07 28.85 27.13 cascade w. filter 0.981 1.0 270
28.76 28.34 28.88 29.06 LMCcascade w. filter 0.981 1.0 270
32.63 33.22 33.44 31.22 LMCSL 0.981 1.0 270
32.64 33.19 33.48 31.24 SL 0.981 1.0 270
32.81 33.73 33.48 31.21 cascade 0.981 1.0 270
32.86 33.69 33.60 31.29 LMCcascade 0.981 1.0 270
37.56 36.31 37.54 38.85 cascade w. filter 0.327 1.0 90
37.57 36.44 37.45 38.83 LMCcascade w. filter 0.327 1.0 90
38.32 39.32 38.41 37.22 cascade 0.327 1.0 90
38.32 39.32 38.41 37.24 LMCcascade 0.327 1.0 90
38.48 39.36 38.44 37.64 SL 0.327 1.0 90
38.49 39.36 38.44 37.68 LMCSL 0.327 1.0 90
38.84 37.88 39.33 39.31 SL w. filter 0.327 1.0 90
38.86 37.53 39.28 39.77 LMCSL w. filter 0.327 1.0 90

to the overall rank and the individual ranking of the error
measures.

6.3.4 Slotted cylinder with urban chemistry

Table 4 shows the results of the most severe test with the
most difficult chemistry, namely the slotted cylinder with

urban chemistry. The semi-Lagrangian schemes with the
coarsest resolution give the best performance, with the fil-
tered schemes first followed by the unfiltered, and the fil-
tered resolution 31 follow. The next “group” is the non-
filtered semi-Lagrangian schemes using resolution 105 fol-
lowed by the same schemes with resolution 0505. The fil-
tered semi-Lagrangian schemes using resolution 105 and
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Table 4. Ranking results for the slotted cylinder with urban chemistry. Showing rank of the ranked error measures, rank of error measurel1,
l2, andl∞ followed by method, maximum Courant number, grid resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax 1x 1t

3.64 2.79 3.24 4.90 SL w. filter 3.27 1.0 900
3.97 3.42 3.48 5.01 LMCSL w. filter 3.27 1.0 900
7.23 4.31 5.83 11.54 cascade w. filter 3.27 1.0 900
7.56 5.39 6.49 10.81 LMCcascade w. filter 3.27 1.0 900
14.85 19.91 16.01 8.63 LMCSL 3.27 1.0 900
14.91 20.77 15.55 8.42 SL 3.27 1.0 900
15.26 20.90 17.54 7.34 LMCcascade 3.27 1.0 900
15.41 13.88 15.63 16.72 LMCcascade w. filter 0.981 1.0 270
15.42 21.83 17.22 7.19 cascade 3.27 1.0 900
15.90 14.18 16.24 17.29 cascade w. filter 0.981 1.0 270
16.07 14.40 16.23 17.58 SL w. filter 0.981 1.0 270
16.19 14.68 16.69 17.21 LMCSL w. filter 0.981 1.0 270
17.33 17.78 14.49 19.72 SL 0.654 0.5 90
17.33 17.78 14.49 19.72 LMCSL 0.654 0.5 90
17.59 18.14 15.11 19.52 LMCcascade 0.654 0.5 90
17.60 18.14 15.13 19.52 cascade 0.654 0.5 90
20.52 21.82 18.21 21.52 SL 0.327 0.5 45
20.53 21.82 18.29 21.48 LMCSL 0.327 0.5 45
20.61 21.86 18.69 21.28 LMCcascade 0.327 0.5 45
20.62 21.90 18.66 21.31 cascade 0.327 0.5 45
22.92 13.66 20.79 34.31 LMCSL w. filter 0.654 0.5 90
23.29 14.43 21.55 33.90 SL w. filter 0.654 0.5 90
23.52 14.73 21.55 34.30 LMCcascade w. filter 0.654 0.5 90
24.32 15.51 22.31 35.15 cascade w. filter 0.654 0.5 90
24.69 31.39 27.03 15.64 LMCSL 0.981 1.0 270
24.73 31.41 27.10 15.68 SL 0.981 1.0 270
25.47 32.18 27.89 16.35 cascade 0.981 1.0 270
25.49 32.16 27.91 16.41 LMCcascade 0.981 1.0 270
27.47 25.26 26.40 30.75 ASD w. filter 0.327 0.5 45
28.94 37.16 31.67 17.99 SL 0.327 1.0 90
28.94 37.18 31.67 17.99 LMCSL 0.327 1.0 90
29.00 37.03 31.73 18.25 LMCcascade 0.327 1.0 90
29.03 37.10 31.75 18.25 cascade 0.327 1.0 90
30.02 33.52 31.56 24.98 ASD w. filter 0.327 1.0 90
30.22 26.88 30.32 33.45 LMCcascade w. filter 0.327 1.0 90
30.27 26.89 31.19 32.72 SL w. filter 0.327 1.0 90
30.84 27.71 31.30 33.51 cascade w. filter 0.327 1.0 90
30.94 27.61 31.70 33.50 LMCSL w. filter 0.327 1.0 90
30.95 22.50 30.41 39.94 cascade w. filter 0.327 0.5 45
30.96 22.51 30.63 39.74 SL w. filter 0.327 0.5 45
31.10 22.71 30.64 39.94 LMCcascade w. filter 0.327 0.5 45
31.77 23.29 31.38 40.63 LMCSL w. filter 0.327 0.5 45
37.91 39.81 38.46 35.44 ASD 0.327 0.5 45
38.67 41.70 39.85 34.46 ASD 0.327 1.0 90

non-filtered resolution 31 precede the filtered ASD scheme
with the finest resolution. The schemes using resolution 11
including the filtered ASD are next, followed only by the fil-
tered semi-Lagrangian schemes using resolution 0505 and
the two non-filtered ASD schemes.

When considering the individual error ranks, the three best
methods are exactly the same for the overall rank and for the

rank of thel1 andl2 errors. For the rank of thel∞ error, the
two best schemes are again the same, but the third best ac-
cording to this error measure is a bit further down the list;
but with the same resolution as the others. The two best per-
forming schemes, regardless of which rank is considered, are
the filtered semi-Lagrangian scheme and the filtered LMCSL
scheme, both with resolution 101. The third best scheme
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Table 5. Ranking results for the rotating cone with pure advection. Showing rank of the ranked error measures, rank of error measurel1, l2,
andl∞ followed by method, maximum Courant number, grid resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax 1x 1t

1.46 1.00 2.00 1.38 ASD w. filter 0.327 0.5 45
1.54 2.00 1.00 1.63 ASD 0.327 0.5 45
3.33 4.00 3.00 3.00 ASD 0.327 1.0 90
3.67 3.00 4.00 4.00 ASD w. filter 0.327 1.0 90
5.89 6.04 5.83 5.79 LMCSL w. filter 0.654 0.5 90
5.94 6.38 5.67 5.79 SL w. filter 0.654 0.5 90
6.79 6.88 6.96 6.54 cascade w. filter 0.654 0.5 90
7.38 6.71 7.54 7.88 LMCcascade w. filter 0.654 0.5 90
10.96 9.96 11.29 11.63 SL w. filter 0.327 0.5 45
14.49 12.75 9.63 21.08 SL w. filter 3.27 1.0 900
14.49 11.25 13.50 18.71 cascade w. filter 0.327 0.5 45
14.83 10.92 14.38 19.21 LMCcascade w. filter 0.327 0.5 45
14.88 12.88 16.54 15.21 LMCSL w. filter 0.327 0.5 45
15.39 13.75 10.33 22.08 LMCSL w. filter 3.27 1.0 900
15.93 18.25 17.29 12.25 cascade 0.654 0.5 90
15.93 18.25 17.29 12.25 LMCcascade 0.654 0.5 90
15.93 18.25 17.29 12.25 SL 0.654 0.5 90
15.93 18.25 17.29 12.25 LMCSL 0.654 0.5 90
16.83 15.67 19.17 15.67 cascade w. filter 3.27 1.0 900
19.36 15.67 14.67 27.75 LMCcascade w. filter 3.27 1.0 900
22.25 26.29 22.25 18.21 cascade 0.327 0.5 45
22.25 26.29 22.25 18.21 LMCcascade 0.327 0.5 45
22.25 26.29 22.25 18.21 SL 0.327 0.5 45
22.25 26.29 22.25 18.21 LMCSL 0.327 0.5 45
25.57 21.63 25.33 29.75 SL w. filter 0.981 1.0 270
25.97 22.46 25.71 29.75 LMCSL w. filter 0.981 1.0 270
26.21 22.38 26.50 29.75 cascade w. filter 0.981 1.0 270
27.25 22.54 27.46 31.75 LMCcascade w. filter 0.981 1.0 270
27.64 29.50 29.71 23.71 SL 3.27 1.0 900
27.79 29.50 29.71 24.17 cascade 3.27 1.0 900
29.86 33.83 29.88 25.88 LMCSL 3.27 1.0 900
30.65 33.83 31.71 26.42 LMCcascade 3.27 1.0 900
34.32 32.08 33.50 37.38 LMCSL w. filter 0.327 1.0 90
35.38 34.04 34.54 37.54 SL w. filter 0.327 1.0 90
35.74 33.29 34.08 39.83 LMCcascade w. filter 0.327 1.0 90
35.79 33.92 34.88 38.58 cascade w. filter 0.327 1.0 90
36.83 38.29 38.21 34.00 SL 0.981 1.0 270
37.00 38.46 38.38 34.17 cascade 0.981 1.0 270
37.06 38.63 38.38 34.17 LMCSL 0.981 1.0 270
37.22 38.63 38.38 34.67 LMCcascade 0.981 1.0 270
42.44 42.50 42.50 42.33 cascade 0.327 1.0 90
42.44 42.50 42.50 42.33 LMCcascade 0.327 1.0 90
42.44 42.50 42.50 42.33 SL 0.327 1.0 90
42.44 42.50 42.50 42.33 LMCSL 0.327 1.0 90

according to the overall error rank and thel1 and l2 error
ranks is the filtered cascade interpolation. Pure cascade in-
terpolation scores best with regard to the rank of thel∞ error.

6.3.5 Pure advection of the rotating cone

The ranks of the schemes when tested on pure advection of
the rotating cone are shown in Table5. It is seen that for
this test the ASD scheme is the ultimate scheme. The four
ASD schemes give the best scores for both the overall and
the individual ranks.
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Table 6. Ranking results for the slotted cylinder with pure advection. Showing rank of the ranked error measures, rank of error measurel1,
l2, andl∞ followed by method, maximum Courant number, grid resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax 1x 1t

4.33 10.00 1.00 2.00 ASD 0.327 0.5 45
7.25 8.75 3.00 10.00 ASD w. filter 0.327 0.5 45
9.00 24.00 2.00 1.00 ASD 0.327 1.0 90
9.56 11.00 13.50 4.17 SL w. filter 3.27 1.0 900
10.11 12.00 13.50 4.83 LMCSL w. filter 3.27 1.0 900
10.67 17.00 12.00 3.00 ASD w. filter 0.327 1.0 90
12.25 13.29 15.21 8.25 LMCSL w. filter 0.981 1.0 270
12.75 13.71 15.79 8.75 SL w. filter 0.981 1.0 270
13.00 15.00 17.00 7.00 cascade w. filter 0.981 1.0 270
13.33 16.00 18.00 6.00 LMCcascade w. filter 0.981 1.0 270
14.46 1.38 4.58 37.42 LMCSL w. filter 0.654 0.5 90
14.93 1.63 4.42 38.75 SL w. filter 0.654 0.5 90
15.46 3.33 6.50 36.54 LMCcascade w. filter 0.654 0.5 90
15.83 3.67 6.50 37.33 cascade w. filter 0.654 0.5 90
17.74 19.21 19.00 15.00 cascade w. filter 3.27 1.0 900
19.14 5.92 9.00 42.50 SL w. filter 0.327 0.5 45
19.25 6.42 8.83 42.50 LMCSL w. filter 0.327 0.5 45
19.67 23.00 20.00 16.00 LMCcascade w. filter 3.27 1.0 900
19.67 6.54 9.96 42.50 LMCcascade w. filter 0.327 0.5 45
20.03 7.38 10.21 42.50 cascade w. filter 0.327 0.5 45
24.69 19.17 21.83 33.08 SL w. filter 0.327 1.0 90
25.69 20.67 22.50 33.92 LMCSL w. filter 0.327 1.0 90
26.17 26.50 26.50 25.50 cascade 0.654 0.5 90
26.17 26.50 26.50 25.50 LMCcascade 0.654 0.5 90
26.22 20.38 22.38 35.92 LMCcascade w. filter 0.327 1.0 90
26.47 33.00 33.42 13.00 SL 3.27 1.0 900
26.71 34.00 35.13 11.00 cascade 3.27 1.0 900
26.83 26.50 26.50 27.50 SL 0.654 0.5 90
26.83 26.50 26.50 27.50 LMCSL 0.654 0.5 90
27.54 35.00 33.63 14.00 LMCSL 3.27 1.0 900
27.64 20.58 23.29 39.04 cascade w. filter 0.327 1.0 90
27.94 36.00 35.83 12.00 LMCcascade 3.27 1.0 900
30.25 30.50 30.33 29.92 cascade 0.327 0.5 45
30.25 30.50 30.33 29.92 LMCcascade 0.327 0.5 45
30.75 30.50 30.67 31.08 SL 0.327 0.5 45
30.75 30.50 30.67 31.08 LMCSL 0.327 0.5 45
31.38 38.38 38.25 17.50 LMCcascade 0.981 1.0 270
31.43 38.54 38.25 17.50 cascade 0.981 1.0 270
32.26 38.54 38.75 19.50 SL 0.981 1.0 270
32.26 38.54 38.75 19.50 LMCSL 0.981 1.0 270
35.31 41.75 42.42 21.75 cascade 0.327 1.0 90
35.31 41.75 42.42 21.75 LMCcascade 0.327 1.0 90
36.36 43.25 42.58 23.25 SL 0.327 1.0 90
36.36 43.25 42.58 23.25 LMCSL 0.327 1.0 90

The following schemes are, grouped by resolution, the
filtered semi-Lagrangian schemes with resolution 105, fol-
lowed by the same schemes with resolution 0505, and the
filtered classical semi-Lagrangian scheme with the coars-
est resolution, i.e. 101. Then follow the filtered LMCSL
scheme and the unfiltered solutions of resolution 105, the
filtered coarse resolution cascade schemes, the non-filtered

schemes with resolution 0505, the filtered resolution 31,
and resolution 101. Last are the filtered schemes using reso-
lution 1 1, the non-filtered resolution 31, and the remaining
resolution 11.

The individually ranked errors place the four ASD
schemes as the top schemes as well as the overall rank. For
the rank of thel1 error, the four best performing schemes
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Table 7. Ranking results for the sum of rank(all) from all six ranking tables. Showing the sum of the total rank, rank(all(all)), method,
maximum courant number, grid size, and time step.

rank(all(all)) Method CFLmax 1x 1t

50.18 ASD w. filter 0.327 0.5 45
64.05 SL w. filter 3.27 1.0 900
64.40 ASD 0.327 0.5 45
67.94 LMCSL w. filter 3.27 1.0 900
74.55 LMCSL w. filter 0.654 0.5 90
75.31 SL w. filter 0.654 0.5 90
79.47 ASD w. filter 0.327 1.0 90
79.58 LMCcascade w. filter 0.654 0.5 90
80.16 cascade w. filter 0.654 0.5 90
93.21 cascade w. filter 3.27 1.0 900
94.16 ASD 0.327 1.0 90
105.95 LMCcascade w. filter 3.27 1.0 900
112.52 cascade 0.654 0.5 90
112.56 LMCcascade 0.654 0.5 90
113.13 SL 0.654 0.5 90
113.24 LMCSL 0.654 0.5 90
115.69 SL w. filter 0.327 0.5 45
116.36 LMCSL w. filter 0.327 0.5 45
118.83 LMCcascade w. filter 0.327 0.5 45
119.00 cascade w. filter 0.327 0.5 45
120.18 SL w. filter 0.981 1.0 270
121.13 LMCSL w. filter 0.981 1.0 270
125.31 cascade w. filter 0.981 1.0 270
127.38 LMCcasc w filter 0.981 1.0 270
141.02 cascade 0.327 0.5 45
141.06 LMCcascade 0.327 0.5 45
141.61 LMCSL 0.327 0.5 45
141.62 SL 0.327 0.5 45
144.19 SL 3.27 1.0 900
145.86 cascade 3.27 1.0 900
151.39 LMCSL 3.27 1.0 900
153.55 LMCcascade 3.27 1.0 900
189.04 SL w. filter 0.327 1.0 90
189.79 LMCSL w. filter 0.327 1.0 90
190.86 LMCcascade w. filter 0.327 1.0 90
192.44 cascade w. filter 0.327 1.0 90
194.42 LMCSL 0.981 1.0 270
194.94 SL 0.981 1.0 270
195.23 cascade 0.981 1.0 270
195.71 LMCcasc 0.981 1.0 270
221.76 LMCcasc 0.327 1.0 90
221.77 cascade 0.327 1.0 90
223.10 SL 0.327 1.0 90
223.16 LMCSL 0.327 1.0 90

are, in order of best to worst, ASD with filter using the finest
resolution, the non-filtered solution of the ASD scheme us-
ing the finest resolution, the filtered coarse resolution ASD
and the non-filtered.

Considering the rank of thel2 error, the first two schemes
switch position, the non-filtered fine resolution now is the
best followed by the filtered fine resolution and the same or-
der for the coarse resolution.

The last error measure, thel∞, ranks the schemes in the
same order as the overall rank: first the filtered fine resolu-
tion, then the non-filtered, third the non-filtered coarse reso-
lution and finally the filtered coarse resolution ASD.
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6.3.6 Pure advection of the slotted cylinder

The last test, Table6 shows pure advection of the slotted
cylinder. Again the two fine resolution ASD schemes give
the best overall rank, however, not as unanimously as above.

The ASD schemes using the fine resolution and the non-
filtered coarse resolution are followed by the coarse res-
olution filtered SL and LMCSL schemes and the remain-
ing ASD. Then, the filtered 31 and 105 resolution semi-
Lagrangian schemes follow, these are followed by the fil-
tered coarse resolution cascade and LMC cascade scheme
and the filtered resolution 0505. The next group consists of
the filtered resolution 11, non-filtered resolution 105, and
10 1 semi-Lagrangian schemes. The last schemes are the
non-filtered semi-Lagrangian schemes with resolution 101,
05 05, 3 1, and 11.

When considering the ranking of the individual errors the
result is quite different. For the rank of thel1 error the four
best performing schemes are the LMCSL, the classical semi-
Lagrangian, the LMC cascade and the cascade, all filtered
and with resolution 105.

The second error norm, the rank of thel2 error, gives the
best correlation with the overall rank for the first schemes.
The best performing schemes are the high resolution ASD,
the coarse resolution ASD, the filtered fine resolution ASD,
and the fourth is the filtered classical semi-Lagrangian
scheme using resolution 105.

With regard to the rank of thel∞ error, the best perform-
ing schemes are the coarse resolution ASD, the fine resolu-
tion ASD, the filtered coarse resolution ASD, and fourth is
the filtered classical semi-Lagrangian scheme using resolu-
tion 10 1.

6.3.7 Total rank of all test cases

The last table, Table7, shows the sum of the total rank of all
six test cases. It is seen that the filtered ASD scheme with the
finest resolution gets the best score. The second best scheme
is SL with filter using resolution 101, third is ASD with res-
olution 0505, followed by the LMCSL scheme using resolu-
tion 10 1, and the two filtered semi-Lagrangian schemes with
resolution 105. This is followed by the remaining ASD and
the last two filtered semi-Lagrangian schemes using resolu-
tion 1 05. Generally, the filtered semi-Lagrangian schemes
are seen to perform better than the non-filtered solutions, and
the order of the five resolutions are 105 and 101 filtered,
1 05 non-filtered, 0505 and 31 filtered, 0505 and 101
non-filtered, 11 filtered, and 31 and 11 non-filtered.

6.3.8 Comparison of the ranking table results

In an overall view, the ASD schemes perform very well when
considering the tables above. However, from Table7 it is
seen that the filtered semi-Lagrangian schemes with high

time step relative to grid size perform best of the semi-
Lagrangian schemes. Some of these schemes are even bet-
ter than the ASD schemes run with coarse resolution. One
expects that the coarse resolution semi-Lagrangian schemes
often perform better than the other resolutions because these
schemes introduce interpolation errors when calculating con-
centrations in the departure points. In the coarse resolution
results given here, only half as many or fewer interpolations
are carried out, and thereby less overall error is introduced.

6.4 Timing and optimization

The code of the methods presented in this work has not been
optimized. Therefore, the time a model run uses does not tell
whether the method is faster than DEHM, which has already
been optimized to run on parallel computers.

It should be noted that the modified interpolation weights
in practice only should be calculated once every time step
rather than for every single tracer. The semi-Lagrangian
schemes perform well for larger time steps (i.e.C >1), when
not considering tests including deposition. Also, since the
semi-Lagrangian schemes are local, as opposed to the global
ASD, the benefit from optimisation of the code for parallel
computation with distributed memory is very likely to be sig-
nificant.

7 Discussion, conclusion and future aspects

7.1 Discussion

In Sect.4.2, the ten desirable properties were introduced. Be-
low is a list of the same properties, with boldface indicating
which properties this work fulfills:

– Accuracy

– Stability

– Computational efficiency

– Transportivity and locality

– Shape preservation

– Conservation

– Consistency

– Compatibility

– Preservation of constancy

– Preservation of linear correlations between constituents

The properties fulfilled by the schemes considered in this
work are accuracy, stability, transportivity and locality, shape
preservation, (mass) conservation, and consistency of the
discretization. The differences between a traditional semi-
Lagrangian scheme and the other LMC semi-Lagrangian and
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cascade methods proposed here are conservation and consis-
tency of the discretization. The stability can be seen from
the plots of the slotted cylinder with various time steps. The
method is not dependent on the size of the time steps, but on
the number of time steps. The applied filter imposes shape
preservation when pure advection is considered, however, it
is not computationally efficient. When chemistry and ad-
vection are combined the filter can no longer ensure shape
preservation due to the non-linearities in the chemistry. The
semi-Lagrangian method is optimal when considering advec-
tion using large Courant numbers, because less interpolation
noise would be introduced. Besides, in air pollution mod-
elling, using a large time step relative to wind speed (mean-
ing greater than the CFL condition) may cause problems re-
lated to the emission and deposition processes. In case of
emissions, a large semi-Lagrangian time step would cause
the advection to jump over some grid cells and, therefore, to
miss the contribution from specific emissions to the concen-
tration field unless the emissions are taken into account in
another way. Something similar happens when considering
deposition.

The semi-Lagrangian schemes using the modified inter-
polation weights are considered efficient, seeKaas(2008),
however, when adding the locally mass conserving and
monotonic filter, twice the computational power is needed
to perform the calculations. Therefore, the filter is not con-
sidered to be computationally efficient, seeKaas and Nielsen
(2010). It still remains to be seen whether the LMCSL and
LMC cascade methods combined with the filter are more
computationally efficient than ASD.

With regard to interpolation method in the semi-
Lagrangian scheme, classical bi-cubic interpolation versus
cubic cascade interpolation, it can be seen from the plots and
error measure tables that the difference between the results
is insignificant if any. The advantage of choosing cascade
interpolation over classical semi-Lagrangian is that the in-
terpolation would be slightly faster due to the dependence
on fewer departure points. On the other hand, this method
demands slightly more memory for calculation of the inter-
mediate time step.

It would be interesting to see how the timings of the semi-
Lagrangian schemes are relative to ASD, which is already
optimized for parallel computing. This will be tested in fu-
ture work.

7.2 Conclusion

The aim of the present work has been to test new semi-
Lagrangian models against the method used in the Danish
Eulerian Hemispheric Model (DEHM) currently run at the
National Environmental Research Institute (NERI) in Den-
mark. The semi-Lagrangian (SL) methods combine the clas-
sical cubic interpolation with cascade interpolation, seeNair
et al. (2002), the modified interpolation weights byKaas
(2008) and the locally mass conserving monotonic filter by

Kaas and Nielsen(2010). The methods were tested on condi-
tions representing both rural and urban chemistry. The urban
chemistry introduces steeper gradients than the rural chem-
istry and is therefore a harder test for the advection schemes.
Ranking of calculated error measures compares the general
performance of the schemes.

It was seen that the Accurate Space Derivative (ASD)
method used in DEHM performs very well when considering
the cosine hill. For the semi-Lagrangian methods it was seen
that the filter improves the results, however, when combin-
ing chemistry and advection the resulting shape of the cone,
in case of NO2, was a little altered. For O3, the differences
between ASD and the SL schemes are significant. The over-
shoots generated by ASD for urban chemistry are only ex-
ceeded by the filtered solutions of the SL methods, whereas
only the SL schemes generate undershoots.

Various tests using the slotted cylinder were also per-
formed to test the ability of the schemes to model steep gradi-
ents. It was seen that only for the toughest case, urban chem-
istry, did the SL schemes outperform the ASD. Visualisations
of the rotation tests, show that the error introduced when cal-
culating trajectories in the semi-Lagrangian schemes was in-
significant compared to the analytical trajectories. It was also
tested at which resolution the filtered LMCSL scheme per-
formed best on the slotted cylinder. As expected, the semi-
Lagrangian schemes perform best when using a fine reso-
lution with a large time step. This is due to the errors in-
troduced by the interpolation. The ranking showed that the
filtered solutions of the SL schemes perform better than the
non-filtered solutions and in some cases even better than the
ASD scheme (e.g. resolution 101 and 105 when consider-
ing the slotted cylinder with urban chemistry).

The sum of the rank(all) shows that some of the filtered
semi-Lagrangian schemes using resolution 105 and 101
performed better than ASD with resolution 11. The best
performing scheme is ASD with resolution 0505. How-
ever, comparing results with different spatial resolution is not
straight forward, because a finer spatial resolution in air pol-
lution models will give steeper gradients for the method to
model given the sharper gradients in the emissions. It might
not be advantageous to increase the grid resolution in DEHM
when compared to the expense in computational efficiency.
Increasing the number of grid cells to twice as many in both
x- and y-directions would make the model eight times as
computational expensive to run.

Overall, the ASD is the best performing scheme in most of
the cases. The semi-Lagrangian filtered solutions were good,
especially for sharp gradients and the non-filtered solutions
were good, or the best performing SL schemes, when con-
sidering the rotating cone and O3. The difference between
classical semi-Lagrangian and cascade interpolation and us-
ing the modified interpolation weights or not is insignificant
when considering the ranking tables, however, the proper-
ties of mass conservation and computational efficiency are
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important in air pollution models. Active chemistry enhances
the errors in the advection due to non-linearities.

Adding the locally mass conserving monotonic filter to the
semi-Lagrangian methods improves the results. It would be
interesting to see how other filters would influence the re-
sults. It is, however, important to keep in mind that the semi-
Lagrangian methods with or without the filter are local, one
of the desirable properties for advection schemes. On the
other hand, the filter might not computationally efficient, see
Kaas and Nielsen(2010).

In conclusion, the semi-Lagrangian schemes using resolu-
tion 1 1 and 31 are not able to outperform the ASD using
resolution 11, based on the studies presented in this work,
therefore the hypothesis is rejected. However, using other
resolutions or e.g. higher order interpolation techniques it
might be possible for the semi-Lagrangian schemes to out-
perform the ASD scheme. Also, there are advantages with
the semi-Lagrangian methods, namely, they are local (an ad-
vantage in parallellisation), locally mass conserving, stable
for longer time steps, and finally the semi-Lagrangian meth-
ods are generally better at handling sharp gradients in time
and space than traditional Eulerian methods.

7.3 Future aspects

A current problem for the stable very long time stepping
in semi-Lagrangian methods is treatment of deposition and
emissions. A possible solution would be to consider emis-
sions and depositions along the trajectories. A future aim
would be to investigate how much more calculation time this
would require.

Generally, optimisation of the semi-Lagrangian schemes
for parallel computing with distributed memory should
be relatively straightforward because the semi-Lagrangian
schemes are local as opposed to ASD which is a global
method. This should also make the parallelisation more ef-
ficient. With regard to filters, the future optimisation should
focus on mass conservation, monotonicity and computational
efficiency. Furthermore, it is important that the filters are not
too efficient.

An algorithm for calculation of emissions and deposition
along trajectories has not been developed yet, but the time
spent on the development might easily be earned back from
gain in computational efficiency from possible increase in
size of time step. Since dry deposition is taken as the lower
boundary and emissions are only in the lowest levels of the
atmosphere, the most time consuming part would be wet de-
position which may occur throughout the atmosphere.

It still remains to be seen how the new proposed method
performs when implemented in a real air pollution model.
It is important to have a high accuracy advection scheme,
which at the same time is very efficient computationally.
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