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Abstract. Verification is a process crucially important for the
final users of a computational model: code is useless if its re-
sults cannot be relied upon. Typically, verification is seen as
a discrete event, performed once and for all after develop-
ment is complete. However, this does not reflect the reality
that many geoscientific codes undergo continuous develop-
ment of the mathematical model, discretisation and software
implementation. Therefore, we advocate that in such cases
verification must be continuous and happen in parallel with
development: the desirability of their automation follows im-
mediately. This paper discusses a framework for automated
continuous verification of wide applicability to any kind of
numerical simulation. It also documents a range of test cases
to show the possibilities of the framework.

1 Introduction

Since the development of the computer, numerical simula-
tion has become an integral part of many scientific and tech-
nical enterprises. As computational hardware becomes ever
cheaper, numerical simulation becomes more attractive rel-
ative to experimentation. Much attention is paid to the de-
velopment of ever more efficient and powerful algorithms
to solve previously intractable problems (Trefethen, 2008).
However, in order to be useful, the user of a computational
model must have confidence that the results of the numeri-
cal simulation are an accurate proxy for reality. A rigorous
software quality assurance system is usually a requirement
for any deployment to industry, and should be a requirement
for any scientific use of a model. Catastrophic accidents such
as the Sleipner platform accident, in which an offshore plat-
form collapsed due to failures in finite element modelling,
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underscore the importance of such efforts. More recently,
the controversy surrounding the leaking of emails from the
Climate Research Unit at the University of East Anglia un-
derlines the importance of rigorous and auditable testing of
scientific software. Failure to properly establish the prove-
nance of simulation results risks undermining public confi-
dence in science.

This paper has two purposes. First, it documents and advo-
cates best practice in the automatic verification of scientific
computer models. Second, it documents the particular sys-
tem in place for Fluidity-ICOM enabling users of published
Fluidity-ICOM results to understand the verification process
behind that particular model.

1.1 Verification and validation

Verification and validation provide the framework for estab-
lishing the usefulness of a computational model for a partic-
ular physical situation. Verification assesses the difference
between the results produced by the code and the mathemat-
ical model. Validation determines if a mathematical model
represents the physical situation of interest, i.e. the ability
of the model to accurately reproduce experimental data. If
the computational model describes the mathematical model
well, and the mathematical model relates well to the physi-
cal world, then the computational model also relates well to
the physical world (Babǔska and Oden, 2004). Philosoph-
ically, it is impossible to ever assert with absolute certainty
that a code will accurately simulate a given physical situation
of interest after verifying a finite set of tests (Popper, 1959;
Howden, 1976); however, it is clear that a code which is cor-
roborated by having passed the most stringent tests available
is surely more useful than a code which has not been scruti-
nised at all (Babǔska and Oden, 2004).

Verification divides into two parts. Code verification is
the process of ensuring, to the best degree possible, that
there are no coding errors affecting the implementation of the
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discretisation. Code verification assesses the difference be-
tween the code and the discretised model. The other compo-
nent of model verification is solution verification, assessing
the difference between the discretised model and the math-
ematical model. Code verification deals with software en-
gineering, while solution verification deals with a posteriori
error estimation.

An important but subtle distinction between verification
and validation is that validity is a property of the algorithm
which the model code implements rather than a property
of the code itself. To the extent to which validation tests
have established the validity of an algorithm, the repetition
of those tests does not further establish validity. If a model
which has been validated fails to perform as expected due to
a change in the code, this is averification error.

Often, undergoing verification is seen as a discrete event,
happening after the computational model is completed. Yet
many computational models that are used for practical appli-
cations are also under active software development; it does
not make sense to assert that the code has been verified, when
the code has changed since the verification was performed.
In principle, whenever the code is changed, verification must
be applied to the new revision, for any previous results are
irrelevant. We therefore advocate the view that verification
must be treated as a continuous process, happening along-
side both software development and usage. This is the only
way to ensure that the entire modelling effort stays correct as
it is developed.

This poses a difficulty. These processes are generally seen
to be time-consuming, uninteresting work. Therefore, they
should be automated in order to minimise the amount of
manual intervention required in the scrutiny of the newly-
changed code. InKnupp et al.(2007), it is implicitly argued
that code verification takes too much effort to perform on
the very latest version, and is thus relegated to release candi-
dates; however, by automating the process, we have achieved
great success in applying code verification to a codebase that
changes daily. This philosophy is widespread in the soft-
ware engineering community (Adrion et al., 1982), but is not
yet the generally accepted practice among the scientific mod-
elling community. We discuss a framework for automated
continuous verification with particular suitability to numer-
ical models. The framework is of wide applicability to any
numerical model, although emphasis is placed on modelling
in a geoscientific context.

1.2 Other automated verification of geoscientific models

We do not claim that this is the first invention of continu-
ous code verification. Several large, successful geoscientific
models undergo similar efforts. The MIT general circulation
model (Marshall et al., 1997) has an automated system that
runs a verification suite on a variety of different machines.
The summary page is available athttp://mitgcm.org/public/
testing.html. The Unified Model developed by the UK Met

Office (Davies et al., 2005) also has an automated nightly
verification system, as documented inEasterbrook and Johns
(2009). Other research groups have developed suites of tests
suitable for use in automated verification; these researchers
may well have automated the process, although the authors
were unable to find any information about any such automa-
tion on their websites. The Modular Ocean Model developed
at Princeton (Griffies et al., 2004) documents an extensive
collection of verification test cases in their manual (Griffies,
2009). The Regional Ocean Modeling System developed at
Rutgers University (Song and Haidvogel, 1994) lists a col-
lection of test cases athttps://www.myroms.org/wiki/index.
php/TestCases. Other large, successful projects do not ap-
pear to regard verification as an ongoing process. The con-
tract setting up the consortium to develop the NEMO ocean
model (Madec et al., 1998) states that the (quote) “testing and
release of new versions” happens “typically once or twice
a year” (NEMO Consortium, 2008). The SLIM Ice-Ocean
model developed at the Université catholique de Louvain
(White et al., 2008) states that (quote) “we ran as few simplis-
tic, highly-idealised test cases as possible. Instead, whenever
possible, we tested the model against realistic flows, albeit
often simple ones” (Deleersnijder et al., 2010). As realistic
simulations are typically too expensive to run continuously,
this suggests that no automated continuous verification sys-
tem is in place.

This brief survey highlights two important points. The
first is that even among large and successful modelling ef-
forts, the practice of automated, continuous verification is
far from universal. Note that the projects examined all have
large development teams and may have professional IT sup-
port. This is very atypical of geoscientific modelling in gen-
eral: the more usual case is of in-house development in a
small research group with code passed informally from one
generation of PhD students and post-docs to the next.

The second point is that even the large, well-resourced
projects do not typically publish their code verification prac-
tices in the formal, peer-reviewed literature. As noted above,
the authors feel that it is important in maintaining public con-
fidence in simulation results that the provenance, including
verification processes, of those results is well established. It
is therefore to be hoped that the developers of other models
will follow this lead and publish their verification processes.

1.3 Fluidity-ICOM

Although the framework presented here is applicable to any
numerical model, it is useful to present particular exam-
ples. For this we will use the example of Fluidity-ICOM,
the primary software package to which this particular frame-
work has been applied. Fluidity is a finite element, adap-
tive mesh fluid dynamics simulation package. It is capa-
ble of solving the full Navier-Stokes equations in compress-
ible or incompressible form, or the Boussinesq equations. It
is equipped with numerous parameterisations for sub-grid-
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scale processes and has embedded models for phenomena as
varied as ocean biology, traffic pollution, radiation transport
and porous media. Fluidity supports a number of different
finite element discretisations and is applied to flow problems
in a number of scientific and engineering domains including,
in particular, ocean flows. In this last context it is known as
the Imperial College Ocean Model (Fluidity-ICOM) and this
is the name we will use here. For particular information on
Fluidity-ICOM as an ocean model, the reader is referred to
Piggott et al.(2008).

While verification is essential for all scientific computer
software, the complexity and wide applicability of the
Fluidity-ICOM makes this a particularly challenging and
critical requirement. The model is developed by several
dozen scientists at a number of different institutions and there
are approximately 15 commits (changes to the model) on an
average work day. In the absence of constant verification,
development would be impossible.

2 Verification tests

There are two general strategies to inspect the source code of
a computational model. Static analysis involves (usually au-
tomated) inspection of the source code itself for issues such
as uninitialised variables, mismatched interfaces and off-by-
one array indexing errors. Dynamic analysis involves run-
ning the software and comparing the output (some functional
of the solution variables) to an expected output. The source
of the expected output determines the rigour and purpose of
the test. Various sources are possible:

– The simplest and least rigorous is to compare the output
to previous output; this tests code stability, not code cor-
rectness, but can still be useful (Oberkampf and Atru-
cano, 2002).

– The expected output could be output previously pro-
duced by the code that has been examined by an expert
in the field. While flawed, asserting the plausibility of
the results is better than nothing at all. The test in this
case can again be that the output has not changed from
previous runs, except where expected.

– The expected output could come from a high-resolution
simulation from another verified computational model
of the same discretisation. However, analytical solu-
tions are to be preferred as they remove the possibility
of common algorithmic error among the implementa-
tions.

– The expected output could come from an analytical so-
lution. The test in this case could be the quantification
of error in the simulation or numerically computing the
rate of convergence to the true solution as some discreti-
sation parameter (h, 1t , ...) tends to 0. Comparing the

obtained rate of convergence against the theoretically
predicted rate of convergence is generally considered
the most powerful test available for ensuring that the
discretised model is implemented correctly, as it is very
sensitive to coding errors (Roache, 2002; Knupp et al.,
2007).

– The analytical solution could come from the method
of manufactured solutions (Salari and Knupp, 2000;
Roache, 2002). This method involves adding in extra
source terms to the governing equations being solved in
order to engineer an equation whose solution is known.
It is a general and powerful technique for generating an-
alytical solutions for use in error quantification or con-
vergence analyses.

– Once the code verification tests have completed, solu-
tion verification for a library of simulations may take
place. The functional could be some a posteriori esti-
mate of the discretisation error, and the expected output
that it is below a given tolerance. Formally, this solution
verification step is only necessary when the discretisa-
tion has changed.

– The final source of verification is to re-run previous val-
idation tests. For this purpose, the expected output is de-
rived from a physical experiment. Again, the test could
assert that the rate of convergence to the physical re-
sult is the same as theoretically predicted. Comparing
output to experimental data asserts the applicability of
both the computational and mathematical models to the
physical world. It is to be emphasised that model verifi-
cation should happen before model validation, for other-
wise the error introduced in the mathematical modelling
cannot be distinguished from discretisation or coding
errors (Babǔska and Oden, 2004). However once a val-
idation test has been passed, the repetition of that test
can be used to verify the model after subsequent code
changes.

In general, atest caseis a set of input files, a set of com-
mands to be run on those input files, some functionals of
the output of these commands to be computed, and some
comparisons against independent data of those functionals.
While the purpose and level of rigour of the test changes with
the source of the comparison data, this is irrelevant for the ex-
ecution of the test itself. Indeed, the generality of this view
is a great benefit to the design of the framework: code stabil-
ity tests, code verification and solution verification can all be
performed by the same system. Note that this conception of
a test case encompasses both static and dynamic analysis: in
static analysis, the command to be run is the analysis tool; in
dynamic analysis, the command to be run is the model itself.
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2.1 Verification as a continuous process

In reality, most computational models are both in produc-
tion use by end-users and undergoing continual development.
Even if the verification procedure has been passed for a pre-
vious revision, it does not necessarily mean that the next re-
vision of the computational model will also pass. New de-
velopment can and does introduce new coding errors. There-
fore, verification must be seen as a continuous process: it
must happen alongside the software development and de-
ployment. Integrating this process alongside software devel-
opment greatly eases the burden of deploying stable, working
releases to end users.

Regarding verification as a continuous process has many
benefits for the parallel process of software development. As
new features are added, feedback is immediately available
about the impact of these changes to the accuracy of the com-
putational model; since coding errors are detected soon after
they are introduced, they are easier to fix as the programmer
is still familiar with the newly introduced code. Furthermore,
as software development teams become large, it can be dif-
ficult to predict the impact of a change to one subroutine to
other users of the model; if those other uses of the software
are exercised as part of the continuous verification process
then unintended side-effects can be detected early and fixed.
Since the code is run continuously to check for correctness,
other metrics can be obtained at the same time: for example,
profiling information can be collected to detect any efficiency
changes in the implementation.

2.2 Verification should be automated

Verifying every change to a code base as part of a continuous
code verification procedure is laborious and repetitive. It is a
therefore natural candidate for automation.

Automating the process of code verification means that
checking for correctness can be performed simultaneously
on multiple platforms with multiple compilers, platforms to
which an individual developer may not have access. It also
means that more tests can be run than would be practical for
a single human to run; these tests can therefore check more
code paths through the software, and can be more pedantic
and time-consuming than a human would tolerate. In prac-
tice, without automation, the amount of continuous code ver-
ification is limited to the problems of immediate interest to
the currently active development projects.

2.3 The limitations of testing

It has been noted elsewhereOreskes et al.(1994) that com-
plex geoscientific models such as GCMs may be formally un-
verifiable simply because they do not constitute closed math-
ematical systems. Aspects of these models, particularly pa-
rameterisations, may be difficult to formulate analytic solu-
tions for and may not, in fact, converge under mesh refine-

ment. Nonetheless, individual components of models con-
sidered in isolation, for example the dynamic core or an indi-
vidual parameterisation, must have well-defined and testable
mathematical behaviour if there is to be any confidence in
the model output at all. If there is to be any confidence in
the output of a formally unverifiable model, it is surely a
necessary condition that each verifiable component passes
verification. The methodology explained here is therefore
useful in at least this context. The automated verification
of code stability (i.e. that the model result does not unex-
pectedly change) must also be regarded as a key tool in the
verification of the most complex models.

3 A framework for automated continuous verification

This section discusses the technical details of the automated
continuous verification procedures. The workflow described
here is illustrated in Fig.1 and the individual steps are de-
scribed in more detail below.

3.1 Commit to source

A canonical copy of the source code is kept in a source
code control system. A source code control system is a
suite of software for managing the software development
process. Developers check out a copy of the source code,
make changes locally, and commit them back to the source
repository. The source code control system merges changes
in the case where another developer commits a change be-
tween a checkout and a commit. Source code control sys-
tems such as Subversion (Collins-Sussman et al., 2004) are
an essential component of modern software development.

When a developer commits to the source code repository,
that means that the code has changed, and thus any previous
verification is irrelevant to the new version. The source code
control system emits a signal to the test framework, notifying
that the source has changed and that the code verification
process should begin.

3.2 Automated build

The automated verification procedure is managed by build-
bot1. Buildbot is a software package for the automation of
software test cycles. It is designed on the client-server archi-
tecture: each machine that builds and tests the newly changed
software runs a buildslave client, while the overall process is
managed by a buildmaster server. It is the buildmaster that is
notified by the source code control system.

When the buildmaster is notified of a software change, it
instructs the buildslaves to execute the steps defined in the
buildbot configuration. The buildslave updates the copies of
the source code it holds, and compiles the source with the
compilers specified in the configuration. Any errors in the

1http://buildbot.net
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Automated build Simulation executesCommit to source Assertions tested Profiling data collected

Developers notified

Functionals computed

Repeat for each test

Fig. 1. The workflow for the continuous testing procedure. The test procedure is repeated for each test and the manner of any failure of that
test is reported to the developers.

build process halt the code verification process immediately
and are reported via email to the developers, who can exam-
ine the output of the build process to inspect the error mes-
sages. Currently, the Fluidity-ICOM project (Piggott et al.,
2008) compiles 32- and 64-bit versions of each revision, in
single and double precision and in various build configura-
tions, with GCC and the Intel Compilers.

Assuming the software builds successfully, the test cycle
begins. There are two types of tests considered here, unit
tests and test cases.

3.3 Unit tests

A unit test operates at the level of an individual unit of source
code, for example a subroutine in a procedural language or
a class method in an object-oriented language. A unit test
passes input to a unit of code and makes assertions about
its output. Unit testing is a very powerful and useful tech-
nique for programming, as it allows the programmer to write
down in an executable manner what is expected of a unit.
Examples of unit tests include asserting that the derivative
of a constant is zero, asserting that the eigendecomposition
of a specified input matrix is correct, or asserting that the
residual of a linear solve is less than the specified tolerance.
Regular unit testing of individual pieces of code allows them
to be relied upon in other, more complex algorithms. This
also allows computationally expensive debugging tools such
as valgrind2 and ElectricFence3 to be applied to individual
components rather than to the whole code at once.

With the increasing trend towards common components in
software, the possibility of code changes in third party li-
braries introducing subtle bugs also increases. Unit testing is
an excellent way to guard against this possibility, as it defines
precisely what the software expects of the libraries it depends
upon.

2http://valgrind.org
3http://perens.com/works/software/

3.4 Test cases

Test cases operate at the level of the entire computational
model. The buildbot invokes the test harness, a piece of soft-
ware which manages the execution of the test case. A test
case typically runs the newly built revision on a given sim-
ulation and makes assertions comparing the output to some
external data source. The purpose and level of rigour of the
test, and thus its usefulness, is determined by the reliability of
the source of the external data. One advantage of this frame-
work is that different forms of verification may be performed
automatically by the same means: code stability tests make
assertions against output data obtained from previous runs of
the model, code verification tests make assertions against an-
alytical solutions (possibly obtained by the method of man-
ufactured solutions), while solution verification makes asser-
tions about discretisation errors using data from analytic so-
lutions, other models or physical data. Seen abstractly, a test
case consists of four things: some input files, a set of com-
mands to be executed, functionals to be computed from the
output of those commands, and assertions to be made about
the result of those functionals. In order for the test case to
be automatable, the test must be completely described in a
machine-parsable way: in this framework, a test case is de-
scribed by an XML document, with functionals of the output
and the assertions described in Python code fragments em-
bedded in the XML file. An example XML file is given in
Fig. 2.

Each test problem is assigned a name, which
is used for printing out status messages. The
<problem definition > tag gives information
about the expected length of the problem, which is used by
the test harness for scheduling decisions, and the number
of processors on which the problem is designed to run.
The <command line > tag contains the commands to be
executed; typically this will be the commands to run the
software. Other possible commands might be to run a static
analysis tool on the source tree or to run a post-processing
tool on software output.
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<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE testproblem SYSTEM "testcase.dtd">

<testproblem >
<name>Example test </name>
<problem_definition length= "medium" nprocs= "1" >

<command_line >run_model example </command_line>
</problem_definition>
<variables >

<variable name="max_val" language= "python" >
import model_tools output =
model_tools.parse_output("example.out") max_val =
output[’max_val’]

</variable>
</variables>
<pass_tests >

<test name="Maximum value equals one" language= "python" >
assert max_val == 1

</test>
</pass_tests>
<warn_tests >
</warn_tests>

</testproblem>

Fig. 2. Example test case, as described in Sect.3.4. The test is described by an XML file. The command to be executed is recorded in the
command line tag. Functionals of the output to be computed are recorded invariable tags. Assertions to be made about the values of
the functionals are recorded intest tags.

Once the commands to be executed have completed, func-
tionals of the output are computed. A functional is computed
by a fragment of Python code in a<variable > tag. Mak-
ing use of a widely available general-purpose scripting lan-
guage such as Python gives great power and flexibility to the
test author. Reference results can be retrieved from a rela-
tional database on a networked server, or the computed func-
tional value stored in a database for future reference. Pow-
erful scientific libraries such as SciPy (Jones et al., 2001),
VTK (Schroeder et al., 2006) and SAGE (Stein et al., 2007)
are made available to the programmer. These can be used for
the computation of diagnostics, linear regressions, statistical
analyses, image and signal processing, etc.

Once the functionals are computed, the test assertions are
made. These also take the form of Python fragments, and
typically are composed of one or moreassert statements.
The test is deemed to fail if the code raises a Python ex-
ception indicating that an error has occurred (in Python, a
failed assert statement raises anAssertionError ex-
ception). If no exception is raised, the test is deemed to have
passed. If an individual test is defined in a<pass test >

tag, its failure causes the entire test to fail; if the test is de-
fined in a<warn test > tag, a warning is issued. Warning
tests are typically used in code stability tests to notify that
the results have changed, without necessarily implying that
the change is due to an error.

The test harness can integrate with a cluster management
system and push the execution of test cases out to a batch
queue. In the Fluidity-ICOM test suite, longer test cases are
executed in parallel on a dedicated test cluster, while shorter
test cases are automatically executed on dedicated worksta-
tions.

3.5 Automated profiling

The binaries compiled in Sect.3.2 are built with the com-
piler flags necessary to turn on the collection ofgprof pro-
filing data (Graham et al., 1982). The compiler augments the
code with routines to profile the execution of the code. If the
test case passes, the profiling data is processed and stored for
future reference. This enables developers to inspect the ef-
ficiency of each subroutine or class method of the code as a
function of time, and correlate any changes in efficiency with
code modifications.

The automated collection of other code quality metrics
such as cache misses or the presence of memory leaks could
also be performed as part of this framework.

4 Fluid dynamics test cases

In this section a selection of the test cases for use in the ver-
ification of a computational and geophysical fluid dynamics
code are described. To begin, a number of tests which are

Geosci. Model Dev., 4, 435–449, 2011 www.geosci-model-dev.net/4/435/2011/



P. E. Farrell et al.: Automated continuous verification for numerical simulation 441

suitable for use with a standard fluid dynamics model are
described; this is followed by a number of tests suitable for
models which incorporate buoyancy and Coriolis effects, for
example geophysical fluid dynamics codes and ocean mod-
els. Note that for the problems presented here the model
has been set up so as to optimise the efficiency of the test,
i.e. to give rigorous checks on the code in minimal compu-
tational time, and not necessarily to optimise the accuracy of
the overall calculation or of the particular metric being used.

The test cases presented here are selected to illustrate a
range of problem formulations and test statistics. It is not
intended to be a comprehensive list of the tests required of
a particular class of model: the actual test suite employed
by Fluidity-ICOM, for example, contains well in excess of
three hundred tests. The first two tests shown here employ
the method of manufactured solutions to create new analytic
solutions as test comparators. The lid-driven cavity and lock
exchange tests exemplify the use of the results of other mod-
els run at high resolution as a benchmark while Stommel’s
western boundary current is an example of a well-known an-
alytic result used as a test case.

The model being tested here uses finite element discreti-
sation methods on tetrahedral or hexahedral elements in
three dimensions and triangular or quadrilateral elements in
two dimensions. The underlying equations considered in
the tests presented here include the advection-diffusion of
scalar fields, the Navier-Stokes equations, and the Boussi-
nesq equations with buoyancy and Coriolis terms included.
The model has the ability to adapt the mesh dynamically in
response to evolving solution fields. For background to the
model seePain et al.(2005); Piggott et al.(2008). For an
overview of CFD validation and verification, seeOberkampf
et al.(1998); Stern et al.(2001).

4.1 Computational fluid dynamics examples

4.1.1 The method of manufactured solutions:
tracer advection

To test the implementation of the advection-diffusion and
Navier-Stokes equations spatial convergence tests are per-
formed using the method of manufactured solutions (MMS,
Roache, 2002). MMS provides an easy way of generating an-
alytical solutions against which to verify model code. A suf-
ficiently smooth desired analytical solution is designed and
a suitable source term added to the right hand side to en-
sure the validity of the equation. The source is calculated by
substituting the desired analytical solution in the underlying
differential equation.

The numerical equation is then solved on a sequence of
successively finer meshes. The solution on each of these is
then compared to the known exact solution and the order of
convergence compared to the expected order for that method.
When convergence of the solution is not seen, it is an excel-
lent indicator of an error in the model code or the numerical

formulation. MMS has been shown to be highly effective at
finding such problems (Salari and Knupp, 2000) and contin-
uous monitoring of the results through an automated system
allows errors that affect the order of convergence to be im-
mediately noticed.

To test tracer advection-diffusion the desired analytical so-
lution is taken as:

T (x,y,t) = sin(25xy)−2y/x1/2, (1)

while a prescribed velocity field,u = (u,v), is given by

u = sin
(
5(x2

+y2)
)

, v = cos
(
3(x2

−y2)
)

. (2)

The source term,S, is calculated symbolically using
SAGE (Stein et al., 2007) by substitutingT andu into the
advection-diffusion equation:

S =
∂T

∂t
+u ·∇T −κ∇

2T ,

=

(
25ycos(25xy)+y/x3/2

)
sin
(
5(y2

+x2)
)

+

(
25xcos(25xy)−2/x1/2

)
cos

(
3(x2

−y2)
)

+κ
(
625(x2

+y2)sin(25xy)+3y/(2x5/2)
)

.

The computational domain is 0.1≤ x ≤ 0.6; −0.3≤ y ≤

0.1 and is tessellated with a uniform unstructured Delaunay
mesh of triangles with characteristic mesh spacing ofh in
thex andy directions. The analytical solution (Eq.1) is used
to define Dirichlet boundary conditions along the inflowing
lower and left boundaries while its derivative is used to define
Neumann boundary conditions on the remaining sides. Both
the boundary conditions and source term are defined through
Python functions defined in the Fluidity-ICOM preprocessor
(Ham et al., 2009), where the diffusivity,κ, is taken as 0.7.

As we are performing a spatial convergence test, the de-
sired solution is temporally invariant. However, the equation
contains a time derivative and requires an initial condition.
This is set to zero everywhere leading to a numerical solu-
tion that varies through time. The simulation is terminated
once this reaches a steady state (to a tolerance of 10−10 in
the infinity norm).

Once a steady state has been obtained on all meshes the
convergence analysis may be performed. Given the error,E,
on two meshes, with characteristic mesh spacingh1 andh2
for example:

Eh1 ≈ Ch
cp

1 , (3)

Eh2 ≈ C

(
h1

r

)cp

, (4)

whereC is a constant discretisation specific factor indepen-
dent of the mesh,cp is the order of convergence of the
method andr is the refinement ratio (r = 2 in this case), then
the ratio of errors is given by:

Eh1

Eh2

≈

(
Ch

cp

1

Ch
cp

1

)
rcp = rcp , (5)
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Fig. 3. From left to right: source term (Eq.3) for the method of manufactured solutions advection-diffusion test case, the numerical solution
calculated using a piecewise-linear Galerkin discretisation, the absolute difference between the analytical and numerical solutions, the meshes
used to compute the previous images with average mesh spacings,h, of 0.08 (top) and 0.01 (bottom).

and the order of convergence can be calculated as:

cp ≈ logr

(
Eh1

Eh2

)
. (6)

This can then be compared to the expected order of conver-
gence for a particular method.

Several model configurations and discretisations are used
in the full testing suite. Here, the results of a first-order up-
winding control volume (CV) discretisation and a second-
order piecewise-linear Galerkin (P1) discretisation are pre-
sented. In both cases the Crank-Nicolson method is used to
discretise in time. Table1 demonstrates that the expected or-
der of spatial convergence, or better, is achieved for both dis-
cretisations. Figure3 shows the source term, the numerical
solution using the P1 discretisation, the absolute difference
between this and the analytical solution at steady state and
meshes with average nodal spacings,h, of 0.08 and 0.01.

4.1.2 The method of manufactured solutions:
Navier-Stokes equations

The method of manufactured solutions can also be used to
test more complicated sets of equations involving multiple
coupled prognostic fields, such as the Navier-Stokes equa-
tions. Initially an incompressible, smooth and divergence
free desired velocity field,u = (u,v) is considered:

u = sin(x)cos(y), v = −cos(x)sin(y), (7)

along with a desired pressure,p:

p = cos(x)cos(y). (8)

These are substituted into the momentum equations, with
tensor-form viscosity, using SAGE (Stein et al., 2007) to de-
rive the required momentum source:

S = ρ
∂u

∂t
+ρu ·∇u−µ∇

2u+∇p

=


ρ(cos(x)sin(x)sin2(y)+cos(x)sin(x)cos2(y))

+2µsin(x)cos(y)−sin(x)cos(y)

ρ(cos(y)sin(y)sin2(x)+cos(y)sin(y)cos2(x))

−2µcos(x)sin(y)−cos(x)sin(y)


The incompressible Navier-Stokes equations are then

solved in the computational domain 0≤ x ≤ π ; 0 ≤ y ≤ π

tessellated using an unstructured Delaunay mesh of triangles.
Velocity is discretised using a piecewise-quadratic Galerkin
discretisation while pressure uses piecewise-linear elements
(the Taylor-Hood element pair). Strong Dirichlet boundary
conditions for velocity are provided on all sides of the do-
main using the desired solution while pressure has natural
homogeneous Neumann boundary conditions enforced. Both
the strong boundary conditions and source term are defined
through Python functions defined in the Fluidity-ICOM pre-
processor (Ham et al., 2009), while the density,ρ, and vis-
cosity,µ, are taken as 1.0 and 0.7 respectively.

Table2 presents the convergence results for velocity and
pressure on a series of unstructured meshes with successively
smaller average mesh spacings. For both velocity and pres-
sure the expected order of convergence, or better, is observed.

Further variables may be introduced by considering the
fully compressible Navier-Stokes equations with a divergent
desired velocity field:
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Table 1. Spatial order of convergence results for the method of manufactured solutions advection-diffusion test case described in Sect.4.1.1.
The difference between the analytical and numerical solutions using a first-order control volume (CV) discretisation and a second-order
piecewise-linear Galerkin (P1) discretisation are calculated in theL2 norm. The ratio between these on two spatial mesh resolutions,h1
andh2, are used to estimate the order of spatial convergence of the model for this problem. The expected order of convergence, or better, is
observed for both spatial discretisations.

h1 → h2 0.08→ 0.04 0.04→ 0.02 0.02→ 0.01 0.01→ 0.005

cp (CV) 2.42 2.00 1.43 0.97
cp (P1) 2.03 1.91 2.08 2.12

Table 2. Spatial order of convergence results for the method of
manufactured solutions incompressible Navier-Stokes test case de-
scribed in Sect.4.1.2. The difference between the analytical and nu-
merical solutions using a piecewise-quadratic velocity,(u,v), and a
piecewise-linear pressure,p, Galerkin discretisation are calculated
in theL2 norm. The ratio between these on two spatial mesh reso-
lutions,h1 andh2, are used to estimate the order of spatial conver-
gence of the model for this problem. The expected order of conver-
gence is observed for all variables.

h1 → h2 0.32→ 0.16 0.16→ 0.08 0.08→ 0.04

cp (u) 3.18 3.03 2.96
cp (v) 3.04 2.01 3.04
cp (p) 2.27 2.01 1.98

u = sin(x2
+y2)+1/2, v =

(
cos(x2

+y2)+1/2
)
/10, (9)

and a spatially varying density field,ρ:

ρ =

(
sin(x2

+y2)+3/2
)
/2. (10)

Assuming, a desired internal energy,e:

e = (cos(x +y)+3/2)/2 (11)

it is then possible to define the desired pressure field using a
stiffened gas equation of state:

p = c2
B (ρ −ρ0)+(γ −1)ρe. (12)

In this case, coupled momentum, continuity and internal
energy equations are solved, each of which require a source
term,Su, Sρ andSe respectively, to be calculated:

Su = ρ
∂u

∂t
+ρu ·∇u−∇ ·τ +∇p, (13)

Sρ =
∂ρ

∂t
+∇ ·(uρ), (14)

Se =
∂ (ρe)

∂t
+u ·∇e+p∇ ·u, (15)

where the deviatoric stress tensor,τ , is linearly related by
the viscosity,µ, to the strain-rate tensor,ε. The derivation

Table 3. Spatial order of convergence results for the method of
manufactured solutions compressible Navier-Stokes test case de-
scribed in Sect.4.1.2. The difference between the analytical and
numerical solutions using a piecewise-quadratic velocity,(u,v), a
piecewise-linear pressure,p, a piecewise-quadratic density,ρ, and
a piecewise-linear internal energy,e, Galerkin discretisation are cal-
culated in theL2 norm. The ratio between these on two spatial
mesh resolutions,h1 andh2, are used to estimate the order of spa-
tial convergence of the model for this problem. The expected order
of convergence is observed for all variables.

h1 → h2 0.1→ 0.05 0.05→ 0.025

cp (u) 2.45 2.25
cp (v) 2.07 2.07
cp (p) 2.24 2.15
cp (ρ) 2.43 2.15
cp (e) 2.14 2.08

of these sources is omitted here for clarity but as with previ-
ous MMS test cases they are easily found using a symbolic
mathematics toolkit (e.g. SAGE,Stein et al., 2007).

The problem is considered in the computational domain
−0.1 ≤ x ≤ 0.7; 0.2 ≤ y ≤ 0.8, which is tessellated using
an unstructured mesh of triangles with successively smaller
average mesh lengths. As before, a Galerkin discretisa-
tion is used for velocity (piecewise-quadratic elements) and
pressure (piecewise-linear elements), while a streamline up-
wind Petrov-Galerkin (SUPG) discretisation is used for the
internal energy (piecewise-linear) and density (piecewise-
quadratic). The desired velocity is imposed via strong
Dirichlet boundary conditions on all sides of the domain
while the other variables are prescribed on the lower and left
inflowing boundaries. All the sources and boundary condi-
tions are input using Python functions in the Fluidity-ICOM
preprocessor, taking the square of the speed of sound,c2

B ,
the reference density,ρ0, the specific heat ratio,γ , and the
viscosity,µ, as 0.4, 0.1, 1.4 and 0.7 respectively.

Table3 presents the order of spatial convergence for all the
prognostic variables in the compressible Navier-Stokes test
case, all of which demonstrate the expected order of conver-
gence.
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Fig. 4. Left and centre: Numerical approximations tou andp at three resolutions:1x = 1/16 (dotted line), 1/32 (dashed line) and 1/256
(solid line). The values fromBotella and Peyret(1998) are plotted as circles. Right: The root-mean-square errors between the numerical
solution and the data fromBotella and Peyret(1998) for u (solid line) andp (dashed line), and the absolute value of the difference between
the numerical and benchmark kinetic energy (dotted line) taken fromBruneau and Saad(2006). A line indicating second order convergence
is also shown.

The method of manufactured solutions is an extremely ver-
satile code verification tool. As well as increasing the com-
plication of the problems considered, as done above, equa-
tions may also be simplified. By considering the terms in
equation sets individually within an automated testing plat-
form any new coding error introduced may be pinpointed al-
most instantaneously, even within a large code base. This has
motivated the development of over forty MMS test cases in
the Fluidity-ICOM verification suite, all of which assert that
the expected order of convergence is maintained after each
revision of the code.

4.1.3 The lid-driven cavity

The lid-driven cavity is a problem that is often used as part
of the verification procedure for CFD codes. The geometry
and boundary conditions are simple to prescribe and in two
dimensions there are a number of highly accurate numerical
benchmark solutions available for a wide range of Reynolds
numbers (Botella and Peyret, 1998; Bruneau and Saad, 2006;
Erturk et al., 2005). Here the two-dimensional problem at a
Reynolds number of 1000 is given as an example.

The unsteady momentum equations with nonlinear advec-
tion and viscosity terms are solved in a unit square in thex

andy directions along with the continuity equation, which
enforces incompressibility. No-slip velocity boundary con-
ditions are imposed on boundariesx = 0,1 andy = 0, and
the prescribed velocityu = 1, v = 0 are set on the boundary
y = 1 (the “lid”). The problem is initialised with a zero veloc-
ity field and the solution allowed to converge to steady state
via time-stepping. A subset of the benchmark data available
from the literature is then used to test for numerical conver-
gence. Here this involves the calculation of the kinetic energy∫

�

(u2
+v2) d�, (16)

which is compared against the value 0.044503 taken from
Bruneau and Saad(2006). In addition, thex-component of

velocity and pressure are evaluated at 17 points along the
line x = 0.5 and compared against the data fromBotella and
Peyret(1998).

Plots of the solutions and benchmark data are given in
Fig. 4. Also shown is a plot of the error convergence with
mesh spacing. A regular triangular mesh is used with pro-
gressive uniform refinement in thex,y plane. Second order
spatial convergence can clearly be seen for the three quanti-
ties compared.

The automated assertions in this case are that second order
convergence is attained and that the magnitude of errors in
the three quantities does not increase with code updates.

4.1.4 Flow past a sphere: drag calculation

In this test, uniform flow past an isolated sphere is simulated
and the drag on the sphere is calculated and compared to a
curve optimised to fit a large amount of experimental data.

The sphere is of unit diameter centred at the origin. The
entire domain is the cuboid defined by−10≤ x ≤ 20,−10≤

y ≤ 10, −10≤ z ≤ 10. The unsteady momentum equations
with nonlinear advection and viscous terms along with the
incompressibility constraint are solved. Free slip velocity
boundary conditions are applied at the four lateral bound-
aries,u = 1 is applied at the inflow boundaryx = −10, and a
free stress boundary condition applied to the outflow atx =

20. A series of Reynolds numbers in the rangeRe ∈ [1,1000]
are considered. The problem is run for a long enough pe-
riod that the low Reynolds number simulations reach steady
state, and the higher Reynolds number runs long enough that
a wake develops behind the sphere and boundary layers on
the sphere are formed. This is deemed sufficient for the pur-
poses of this test which is not an in-depth investigation of
the physics of this problem, nor an investigation of the op-
timal set of numerical options to use. Here an unstructured
tetrahedral mesh is used along with an adaptive remeshing
algorithm (Pain et al., 2001). Figure5 shows a snapshot of
the mesh and velocity vectors taken from a Reynolds number
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Fig. 5. Left: unstructured adapted mesh from flow past a sphere simulation atRe = 103, with half the domain cut away to display refinement
close to the sphere and in its wake. Centre: a blow up of the mesh and velocity vectors on a plane through the centre of the domain.
Right: comparisons between the computed drag coefficient (circles) and the correlation (solid line) given by expression (18) in the range
Re ∈ [1,1000].

Fig. 6. Top: the temperature field for the lock exchange problem at time 14.2 s. It is apparent that diagnosing the head location from
density contours is straightforward. Bottom: the adapted mesh at this time level with enhanced resolution being used to minimise numerical
dissipation and maintain a sharp interface between the two density classes in this problem.

1000 simulation. The mesh can be seen to be resolving the
wake and the boundary layers on the sphere with enhanced
anisotropic resolution. At higher Reynolds numbers the dy-
namics become more complex and if a full numerical study
was being conducted here more care would be taken is the
choice of adaptive remeshing parameters and the use of av-
eraged values from simulations allowed to run for longer pe-
riods. The drag coefficient is calculated from

CD =
Fx

1
2ρu2

0A
, Fx =

∫
S

(nxp−niτix) dS, (17)

whereρ is the density, taken here to be unity;u0 is the inflow
velocity, here unity; andA is the cross-sectional area of the
sphere, hereπ2/4. Fx is the force exerted on the sphere in the
free stream direction;S signifies the surface of the sphere;n

is the unit outward pointing normal to the sphere (nx is thex-
component andni the ith component, here summation over
repeated indices is assumed);p is the pressure andτ is the
stress tensor; seePanton(1996).

Figure5 also shows a comparison between the computed
drag coefficient with a correlation (to a large amount of lab-
oratory data) taken fromBrown and Lawler(2003):

CD =
24

Re

(
1+0.15Re0.681

)
+

0.407

1+
8710
Re

. (18)

The assertions tested are that the difference between the
computed drag coefficient and values from the correla-
tion ( 18) at a number of Reynolds numbers are within ac-
ceptable bounds. Checks on the number of nodes produced
by the adaptive algorithm for given error measure choice and
other options are also conducted. While all of these simula-
tions can be run comfortably in serial, the Reynolds number
100 and 1000 cases are performed on 8 cores both to accel-
erate the tests and as a test of the parallel implementation.

4.2 Geophysical fluid dynamics examples

In this section some of the test cases used for the model
in its “oceanographic mode” (i.e. with the incorporation of
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Fig. 7. Left: the adapted mesh in the Stommel western boundary current test. The mesh can be seen to be refined anisotropically in the
vicinity of the western boundary. Centre and right: the absolute values of the difference between the numerical and analytical solutions in
the case of the adapted (centre) and uniform (right) meshes. The uniform mesh has approximately four times the number of nodes compared
to the adapted mesh. Large errors can be seen with the uniform mesh which has insufficient resolution to resolve the rapidly changing
streamfunction close to the western boundary.

buoyancy and Coriolis effects) are also presented. Further
useful test problems can be found inHaidvogel and Beck-
mann(1999); Williamson et al.(1992); Ford et al.(2004);
Giraldo and Restelli(2008).

4.2.1 Lock exchange

In this problem an advection-diffusion equation for density
and the Boussinesq equations for velocity and pressure are
used to solve for the evolution of a system where fluid of two
densities are initialised next to one another in a rectangular
tank in the(x,z) plane. The dense water slumps under grav-
ity and moves under the lighter fluid. A Kelvin-Helmholtz
instability causes the generation of overturning billows at the
interface between the two densities which contributes to the
eventual mixing of the water column (Simpson, 1999). Here
a no-slip velocity boundary condition is used at the bottom of
the domain with free-slip at the top. The domain is defined
by 0≤ x ≤ 0.8, 0≤ z ≤ 0.1. A constant time step of 0.025 is
used and the mesh is adapted every 10 time steps. A full de-
scription of the physical parameters used to set-up this prob-
lem are given inFringer et al.(2006); Härtel et al.(2000), and
a comprehensive study of this scenario in Fluidity-ICOM is
given inHiester et al.(2011). Here a case with Grashof num-
ber of 1.25×106 has been used.

The speed of the gravity current head in the horizontal are
derived at the upper and lower boundaries by first extract-
ing the maximum and minimumx values of an isosurface
of the density field, and then computing the linear growth of

each with time after an initial relaxation time, Fig.6. These
values are then compared with the values quoted inHärtel
et al.(2000); Fringer et al.(2006), namely−0.012835 for the
no-slip boundary and 0.015093 for the free-slip boundary.
Härtel et al.(2000) use direct numerical simulation (DNS)
to study this problems and hence these metrics of the flow
dynamics for this problem are considered as truth.

The automated assertions tested are that the head speeds,
computed from a time series of model output via Python
script, agree with the DNS values to within an allowed toler-
ance. Checks on the number of nodes used in the calculation
are also performed.

4.2.2 Stommel’s western boundary current

This test involves the steady state wind driven barotropic cir-
culation in a rectangular domain, and compares against an
analytical solution.

Stommel(1948) was the first to describe why one observes
the intensification of boundary currents on the western side
of ocean basins, for example the Gulf Stream in the North At-
lantic. The streamfunction equation in the domain 0≤ x ≤ 1,

0≤ y ≤ 1,

∇
29 +α

∂9

∂x
= γ sin(πy), α =

β

R
, γ =

Fπ

R
, (19)

with homogeneous Dirichlet boundary conditions is consid-
ered, seeHecht et al.(2000). Hereβ = 50 is the North-South
derivative of the assumed linear Coriolis parameter,F = 0.1
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is the strength of the wind forcing which takes the form
τ = −F cos(πy), andR = 1 is the strength of the assumed
linear frictional force. The analytical solution to (Eq.19) is
given by

9(x,y) = γ

(
1

π

)2

sin(πy)
(
peAx

+qeBx
−1

)
, (20)

p =
1−eB

eA −eB
, q = 1−p (21)

A = −
α

2
+

√
α2

4
+π2, (22)

B = −
α

2
−

√
α2

4
+π2. (23)

Figure7 shows a comparison of results obtained with uni-
form and anisotropic adaptive refinement. The form of the
streamfunction yields a velocity field with strong shear in the
direction normal to the western boundary. The error measure
and adaptive remeshing algorithms used here yield a mesh
which has long, thin elements aligned with the boundary.
The error plots show the high error focused in the western
boundary region in the case of the uniform resolution mesh
(Fig. 7).

The automatic assertions here involve ensuring errors from
uniform and adaptive mesh calculations are within accept-
able bounds of the analytical solution. In particular, theL2
norm of the error obtained with the adapted mesh is checked
to be an order of magnitude lower than that with the fixed
mesh, with the adapted mesh using approximately one quar-
ter the number of nodes. For further details of this problem
solved using Fluidity-ICOM with isotropic and anisotropic
mesh adaptivity seePiggott et al.(2009).

5 Conclusions

Automated continuous testing is widely regarded as industry
best practice in the software engineering community, but this
message has not yet fully penetrated the numerical modelling
community. Rigorous verification is necessary for users to
have confidence in the model results, and is generally a re-
quirement for deployment to industry. If the model is under
active development, these processes must run continuously
as the model is changed; it should therefore be automated.
This paper has presented an overview of the software infras-
tructure uses to automate the Fluidity-ICOM test suite, as
well as several of the test cases used.

The deployment of the test suite has yielded dramatic im-
provements in code quality and programmer efficiency. Al-
most no developer time is wasted investigating the failure of
simulations that used to work. Since feedback about a change
to the code is given almost immediately, any errors intro-
duced by new code development can be rapidly fixed. As

the test suite acts to lock in correct behaviour of the compu-
tational model, the computational model becomes provably
more efficient and more accurate over time.

As geoscientific simulations become ever more complex,
the software complexity of the computational models in-
creases with it; therefore, the standard of software engineer-
ing used to write and manage those scientific models must
rise also. The widespread deployment of automated frame-
works such as that described here is a necessary step if soci-
ety at large is to trust the results of geoscientific models.
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