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Abstract. The ongoing, anthropogenically-driven changes
to the global ocean are expected to have significant con-
sequences for plankton ecosystems in the future. Because
of the role that plankton play in the ocean’s “biological
pump”, changes in abundance, distribution and productivity
will likely have additional consequences for the wider carbon
cycle. Just as in the terrestrial biosphere, marine ecosystems
exhibit marked diversity in species and functional types of or-
ganisms. Predicting potential change in plankton ecosystems
therefore requires the use of models that are suited to this di-
versity, but whose parameterisation also permits robust and
realistic functional behaviour. In the past decade, advances
in model sophistication have attempted to address diversity,
but have been criticised for doing so inaccurately or ahead
of a requisite understanding of underlying processes. Here
we introduce MEDUSA-1.0 (Model ofEcosystemDynamics,
nutrientUtilisation, Sequestration andAcidification), a new
“intermediate complexity” plankton ecosystem model that
expands on traditional nutrient-phytoplankton-zooplankton-
detritus (NPZD) models, and remains amenable to global-
scale evaluation. MEDUSA-1.0 includes the biogeochemi-
cal cycles of nitrogen, silicon and iron, broadly structured
into “small” and “large” plankton size classes, of which the
“large” phytoplankton class is representative of a key phyto-
plankton group, the diatoms. A full description of MEDUSA-
1.0’s state variables, differential equations, functional forms
and parameter values is included, with particular attention fo-
cused on the submodel describing the export of organic car-
bon from the surface to the deep ocean. MEDUSA-1.0 is used
here in a multi-decadal hindcast simulation, and its biogeo-
chemical performance evaluated at the global scale.
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1 Introduction

Marine biota play a key role in the cycling and sequester-
ing carbon in the ocean via the so-called “biological pump”
(Raven and Falkowski, 1999). Fuelled by nutrients upwelled
from the deep, phytoplankton produce organic matter via
photosynthesis in the sunlit surface ocean. This is then pro-
cessed by components of the marine ecosystem including
grazing zooplankton, and a fraction exported back to depth
via sinking detrital particles and dissolved organic matter.
This biogenic flux of carbon into the deep ocean serves to el-
evate the ocean’s storage of carbon beyond that sequestered
through physics and chemistry alone. While the large-scale
role of biology can be studied from its effects on tracer dis-
tributions (e.g.Gruber et al., 1996), mathematical modelling
provides an important means of investigating the dynamics
of the biological pump and its response to changing climate.

For many years, nutrient-phytoplankton-zooplankton-
detritus (NPZD) models were the mainstay of basin-
and global-scale biogeochemical modelling studies (e.g.
Sarmiento et al., 1993; Six and Maier-Reimer, 1996; Palmer
and Totterdell, 2001). Today, aggregating the wide tax-
onomic and functional diversity of organisms in marine
ecosystems into such an idealised model structure is gen-
erally considered too simplistic an approach. In the case
of phytoplankton, for example, there are numerous different
groups, so called plankton functional types (PFTs) such as
diatoms, nitrogen fixers and coccolithophores, which under-
take specific roles in marine biogeochemical cycles (Hood
et al., 2006). A new generation of complex models that in-
clude multiple PFTs has accordingly been developed (e.g.
Moore et al., 2004; Gregg et al., 2003; Le Qúeŕe et al., 2005),
yet complexity in models has associated difficulties includ-
ing poorly understood ecology, lack of data for validation
and sensitivity to the parameterisations involved (Anderson,
2005; Flynn, 2005). Additionally, on a practical level, the
greater the complexity of an ecosystem model, the greater the
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computation burden involved in its simulation, and therefore
the less attractive the model is for long duration simulations
of, for instance, future climate change (e.g.Cox et al., 2000).

The challenge is to derive model structures and param-
eterisations that are robust in the sense that the modelled
ecosystem reacts realistically with the physico-chemical en-
vironment, yet which are based on sound mechanistic princi-
ples that maintain accuracy in prediction (Anderson, 2010).
Here, we present a new ecosystem model, MEDUSA-1.0
(henceforth MEDUSA), and show results for its performance
when incorporated into a global ocean general circulation
model (GCM). The MEDUSA model is of intermediate com-
plexity, building beyond the standard NPZD formulations,
but without elaborating to the number of state variables
and parameters in contemporary PFT models. The plank-
ton ecosystem is divided into “small” and “large” portions,
into which different planktonic components are organised.
The small portion primarily includes (prokaryotic) nanophy-
toplankton and microzooplankton (protists and larval meta-
zoans), together with small detrital particles that sink rela-
tively slowly and are explicitly represented. The large por-
tion primarily includes (eukaryotic) diatom phytoplankton
and mesozooplankton (adult metazoans), together with large
detrital particles that are assumed to sink sufficiently quickly
that implicit representation is required. The phytoplankton
components of MEDUSA include explicit representations of
internal chlorophyll quotas, in order that light acclimation is
permitted. The resulting plankton ecosystem is founded on
the biogeochemical cycle of nitrogen, although the cycles of
silicon and the micronutrient iron are also included.

The layout of the manuscript is as follows. First,
MEDUSA’s structure, differential equations, functional forms
and parameterisation are fully described. Since MEDUSA has
a particular focus on the biologically-driven sequestration of
carbon in the deep ocean, the particulate flux submodels are
described in detail. Next, MEDUSA is used in a standard con-
trol simulation for the period 1958 to 2005 (inclusive), and its
performance assessed for the global ocean. This simulation
makes use of a medium resolution instance of the Nucleus for
European Modelling of the Ocean (NEMO) physical model
(Madec, 2008) into which MEDUSA is embedded. Finally,
the results of this simulation are discussed within the context
of the need to move beyond NPZD models and to include ad-
ditional factors associated with the biological carbon pump,
such as ecosystem structure and multiple nutrient interaction.

2 MEDUSA

2.1 State variables

The model resolves 11 state variables distributed between
the nitrogen (6), silicon (2) and iron (1) cycles. The re-
maining 2 state variables denote chlorophyll for each of the
2 phytoplankton classes. Nitrogen is the model’s primary

currency. The biogeochemical cycling of major elements in
marine systems often exhibits relatively constant stoichiom-
etry in which the ratios of utilisation of inorganic carbon, ni-
trogen and phosphorus by phytoplankton are matched by cor-
responding ratios of remineralisation in the deep ocean (Red-
field, 1934). This has been particularly convenient for mod-
ellers because the cycling of nutrients by the marine ecosys-
tem can be converted to carbon by simply multiplying by the
so-called “Redfield ratio”. Examples of this approach being
used in GCMs includeSix and Maier-Reimer(1996), Palmer
and Totterdell(2001), Moore et al.(2004) andLe Qúeŕe et al.
(2005). We adopt the same approach here whereby the fluxes
of carbon are calculated empirically from those of nitrogen
without the need for explicit carbon tracers. Additional trac-
ers for dissolved inorganic carbon (DIC) and alkalinity can
be added for simulations that require a complete oceanic car-
bon cycle (e.g. for air-sea CO2 fluxes). Figure1 presents a
diagrammatic representation of MEDUSA’s components and
the relationships between them. The state variables are:

Pn Non-diatom phytoplankton mmol N m−3

Pd Diatom phytoplankton mmol N m−3

ChlPn Chlorophyll in non-diatoms mg chl m−3

ChlPd Chlorophyll in diatoms mg chl m−3

PdSi Diatom phytoplankton (silicon) mmol Si m−3

Zµ Microzooplankton mmol N m−3

Zm Mesozooplankton mmol N m−3

D Slow-sinking detritus mmol N m−3

N Nitrogen nutrient mmol N m−3

S Silicic acid mmol Si m−3

F Iron nutrient mmol Fe m−3

The model includes a number of notable features. First,
MEDUSA includes a stoichiometric representation of the
trophic transfer of carbon and nitrogen during feeding by
zooplankton, based on the C:N ratios in predator and prey,
and derived from the model ofAnderson and Hessen(1995)
(based on the implementation inAnderson and Pondaven,
2003). Second, MEDUSA adds an explicit diatom silicon
state variable (PdSi) to allow diatom cells to have a dynamic
Si:N ratio, based on the model ofMongin et al. (2006).
Third, MEDUSA includes both slow- and fast-sinking detri-
tal pathways to represent the transport of particulate organic
carbon in the ocean interior. The former is represented ex-
plicitly with a defined sinking rate, while the latter implicitly
represents large particles that sink too quickly to be prop-
erly resolved within model time-stepping. The modifications
adopted here for fast-sinking detritus are based on the ballast
model ofArmstrong et al.(2002), with the specific imple-
mentation derived largely fromDunne et al.(2007). Finally,
MEDUSA adds an iron cycle submodel and explicit iron state
variable (F) to permit regional phytoplankton limitation by
this important micronutrient. As remarked upon byGalbraith
et al.(2010), iron submodels are still rudimentary, and there
is significant uncertainty concerning the detail of the ocean’s
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Fig. 1. Schematic diagram of the components and interactions in the MEDUSA model. Boxes with solid borders indicate explicitly modelled
state variables, while boxes with dashed borders indicate implicitly modelled components. Overlapping boxes indicate components for which
multiple currencies are modelled (e.g. different elements, chlorophyll).

iron cycle. Consequently, here we adopt the relatively sim-
ple iron submodel ofParekh et al.(2005) (based on the im-
plementation inDutkiewicz et al., 2005). In this, model iron
is linked in a single fixed ratio to nitrogen throughout the
ecosystem, but it also experiences processes that add (aeo-
lian deposition) and remove (scavenging) it from the water
column.

A key intention in this choice of framework is that
MEDUSA separately represents populations of small phyto-
plankton that are strongly controlled by fast-growing mi-
crozooplankton, and those of large phytoplankton that are
more weakly controlled by slower-growing mesozooplank-
ton. Since diatoms form a key component of larger phy-
toplankton (Mann, 1999), MEDUSA assumes that they are
synonymous with modelled “large phytoplankton”. This as-
sumption simplifies the real world situation in which even di-
atom species span a range of cell sizes (Furnas, 1990). Fur-
ther assumptions concerning MEDUSA’s phytoplankton in-
clude faster growth and better nutrient uptake kinetics of the
small phytoplankton (Furnas, 1990), and similar size-linked
growth patterns in zooplankton (Baird and Suthers, 2007).
AppendixA1 describes a limited investigation of the signif-
icance of this disparity of growth rates between MEDUSA’s
non-diatom and diatom phytoplankton.

One potentially significant omission from MEDUSA is dis-
solved organic matter (DOM). This is often explicitly rep-
resented in contemporary ecosystem models that are imple-
mented in OGCMs (e.g.Moore et al., 2004; Anderson et al.,
2007; Okunishi et al., 2007; Lancelot et al., 2009), although
this is not always the case (e.g.Christian et al., 2008; Liu

and Chai, 2009). DOM cycling may cause stoichiometric
imbalances within marine systems. Accumulation of dis-
solved organic carbon may, for example, contribute to sea-
sonal drawdown of DIC and thereby impact on air-sea trans-
fer of CO2 (Anderson and Pondaven, 2003; Prowe et al.,
2009). Modelling studies have also implicated the potential
importance of dissolved organic nutrients in fuelling primary
production in the oligotrophic gyres of the ocean, particu-
larly in the North Atlantic (Roussenov et al., 2006; Charria
et al., 2008). Nevertheless, in comparing the global-scale
performance of two versions of an ecosystem model (with
and without DOM),Popova and Anderson(2002) found that
the predicted distributions of nutrients and DIC were similar,
as was the export flux which was driven primarily by sinking
particles. Greater changes occurred in primary production
andf -ratio . Similar findings were made bySchmittner et
al. (2005) when examining the sensitivity of a global model
of the marine ecosystem to DOM cycling. The very fact that
the stoichiometry of deep ocean nutrients conforms relatively
closely to Redfield indicates the dominance of particles in
export (Kahler and Koeve, 2001). That is not to say that the
flux of DOM is unimportant as it may contribute, for exam-
ple, 5 to 29 % of AOU below the euphotic zone in the North
Atlantic (Carlson et al., 2010).

Whether or not to represent DOM in models is a typical
issue relating to model complexity. Including DOM adds re-
alism, but at a cost of error associated with its parameterisa-
tion. Assigning equations and parameter values for DOM
cycling is fraught with difficulty given our limited under-
standing of interactions within microbial communities and of
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the physiology of heterotrophic bacteria (Christian and An-
derson, 2002). Few estimates are available for the kinetic
parameters defining the degradation of DOM in marine sys-
tems, particularly the semi-labile fraction, and it is therefore
questionable how reliably it is possible to simulate this pro-
cess in models (Christian and Anderson, 2002). Parameter
estimates for DOM cycling are highly variable in models and
require further validation. As such, given the apparent lim-
ited benefits of adding DOM tracers in terms of improved
prediction, the difficulties of parameterisation and the com-
putational overhead, we chose not to include DOM within
MEDUSA.

2.2 Differential equations

The following equations describe the tendency terms operat-
ing on the biogeochemical state variables in the model. Ab-
breviations used are: “PP” for primary production; “µzoo”
for microzooplankton; “mzoo” for mesozooplankton; “non-
lin” for non-linear; “remin” for remineralisation. Functions
and parameters are defined in Sects.2.3and2.4.

∂Pn

∂t
= +[ PPPn · Pn]︸ ︷︷ ︸

non−diatom PP

−
[

GµPn
]︸ ︷︷ ︸

µzoo graze

− [ GmPn ]︸ ︷︷ ︸
mzoo graze

(1)

− [ M1Pn ]︸ ︷︷ ︸
linear losses

− [ M2Pn ]︸ ︷︷ ︸
non−lin losses

∂Pd

∂t
= +[ PPPd · Pd]︸ ︷︷ ︸

diatom PP

− [ GmPd ]︸ ︷︷ ︸
mzoo graze

− [ M1Pd ]︸ ︷︷ ︸
linear losses

(2)

− [ M2Pd ]︸ ︷︷ ︸
non−lin losses

∂ChlPn

∂t
= θPnChl · ξ−1

· (+[ RPn · PPPn · Pn]︸ ︷︷ ︸
non−diatom PP

(3)

−
[

GµPn
]︸ ︷︷ ︸

µzoo graze

− [ GmPn ]︸ ︷︷ ︸
mzoo graze

− [ M1Pn ]︸ ︷︷ ︸
linear losses

− [ M2Pn ]︸ ︷︷ ︸
non−lin losses

)

∂ChlPd

∂t
= θChl

Pd · ξ−1
· (+[ RPd · PPPd · Pd]︸ ︷︷ ︸

diatom PP

(4)

− [ GmPd ]︸ ︷︷ ︸
mzoo graze

− [ M1Pd ]︸ ︷︷ ︸
linear losses

− [ M2Pd ]︸ ︷︷ ︸
non−lin losses

)

∂PdSi

∂t
= +

[
PPPdSi · PdSi

]︸ ︷︷ ︸
diatom PP

−
[

GmPdSi

]︸ ︷︷ ︸
mzoo graze

−
[

M1PdSi

]︸ ︷︷ ︸
linear losses

(5)

−
[

M2PdSi

]︸ ︷︷ ︸
non−lin losses

−
[

DSPdSi

]︸ ︷︷ ︸
dissolution

∂Zµ

∂t
= +

[
FZµ

]︸ ︷︷ ︸
all grazing

−
[

GmZµ
]︸ ︷︷ ︸

mzoo graze

−
[

M1Zµ
]︸ ︷︷ ︸

linear losses

(6)

−
[

M2Zµ
]︸ ︷︷ ︸

non−lin losses

∂Zm

∂t
= + [ FZm ]︸ ︷︷ ︸

all grazing

− [ M1Zm ]︸ ︷︷ ︸
linear losses

− [ M2Zm ]︸ ︷︷ ︸
non−lin losses

(7)

∂D

∂t
= + [ M2Pn ]︸ ︷︷ ︸

non−diatom losses

+[ (1−D1frac) · M2Pd ]︸ ︷︷ ︸
diatom losses

(8)

+
[

M2Zµ
]︸ ︷︷ ︸

µzoo losses

+[ (1−D2frac) · M2Zm ]︸ ︷︷ ︸
mzoo losses

+
[
(1−βN) · INZµ

]︸ ︷︷ ︸
µzoo egestion

+[ (1−βN) · INZm ]︸ ︷︷ ︸
mzoo egestion

−
[

GµD
]︸ ︷︷ ︸

µzoo graze

− [ GmD ]︸ ︷︷ ︸
mzoo graze

−[ MD ]︸ ︷︷ ︸
remin

−

[
wg ·

∂D

∂z

]
︸ ︷︷ ︸

sinking

∂N

∂t
= −[ PPPn · Pn]︸ ︷︷ ︸

non−diatom PP

−[ PPPd · Pd]︸ ︷︷ ︸
diatom PP

(9)

+
[
φ · (GµPn+GµD)

]︸ ︷︷ ︸
µzoo messy feeding

+
[
φ · (GmPn+GmPd+GmZµ+GmD)

]︸ ︷︷ ︸
mzoo messy feeding

+
[
EZµ

]︸ ︷︷ ︸
µzoo excretion

+ [ EZm ]︸ ︷︷ ︸
mzoo excretion

+ [ M1Pn ]︸ ︷︷ ︸
non−diatom losses

+ [ M1Pd ]︸ ︷︷ ︸
diatom losses

+
[

M1Zµ
]︸ ︷︷ ︸

µzoo losses

+ [ M1Zm ]︸ ︷︷ ︸
mzoo losses

+[ MD ]︸ ︷︷ ︸
remin

+ [ LDN(k) ]︸ ︷︷ ︸
fast N detritus remin

∂S

∂t
= −

[
PPPdSi · PdSi

]︸ ︷︷ ︸
diatom PP

+
[

M1PdSi

]︸ ︷︷ ︸
linear losses

(10)

+
[
(1−D1frac) · M2PdSi

]︸ ︷︷ ︸
non−lin. losses

+
[

DSPdSi

]︸ ︷︷ ︸
dissolution

+
[
(1−D2frac) · GmPdSi

]︸ ︷︷ ︸
mzoo graze

+ [ LDSi(k) ]︸ ︷︷ ︸
fast Si detritus remin

∂F

∂t
= −

[
RFe ·

∂N

∂t

]
︸ ︷︷ ︸

coupled to N

+[ Fatmos]︸ ︷︷ ︸
aeolian

−
[
Fscavenge

]︸ ︷︷ ︸
scavenging

(11)

These differential equations are applied to the biogeo-
chemical state variables within every ocean grid cell in the
physical model, regardless of horizontal or vertical position.
This parallels the implementation of ecosystem models in

Geosci. Model Dev., 4, 381–417, 2011 www.geosci-model-dev.net/4/381/2011/



A. Yool et al.: A description of MEDUSA-1.0 385

some general circulation models (e.g.Yool et al., 2010), but
is different from other studies in which different equations
are applied at different depths, typically to separate the photic
and aphotic zones (e.g.Popova et al., 2006).

2.3 Interaction functional forms

The following series of equations expand on the tendency
terms described in the differential equations. Parameter defi-
nitions and values are described in Sect.2.4.

2.3.1 Non-diatom limitation and growth

The chlorophyll and light-limited growth terms for non-
diatom phytoplankton are derived from those inTaylor et al.
(1997) andFasham et al.(1990), and based on their imple-
mentation inPopova et al.(2006). As perEppley (1972),
maximum phytoplankton growth rate is a simple exponen-
tial function of temperature. Nutrient limitation is factored
in through standard Michaelis-Menten terms.

θChl
Pn =

ChlPn · ξ

Pn
(12)

α̂Pn = αPn · θChl
Pn (13)

θChl
Pn is the scaled chlorophyll to biomass ratio, whileα̂Pn

scales the initial slope of the photosynthesis-irradiance (P -I )
curve,αPn, by this ratio so that phytoplankton with a high
chlorophyll content have an elevated response to irradiance.

VPnT = VPn · 1.066T (14)

This term calculates maximum phytoplankton growth rate
as an exponential function of temperature,T , and base
growth rate at 0◦C.

JPn =
VPnT · α̂Pn · I

(V 2
PnT

+ α̂2
Pn · I2)1/2

(15)

Given the (chlorophyll-related) initial slope of theP -
I curve and (temperature-related) maximum phytoplankton
growth rate, this function calculates realised growth rate
given local irradiance,I (W m−2).

QN, Pn =
N

kN, Pn+N
(16)

QFe, Pn =
F

kFe, Pn+F
(17)

Nutrient limitation of phytoplankton growth is specified
here via standard, hyperbolic Michaelis-Menten terms that
use ambient nutrient concentrations and parameters for the
concentration at which phytoplankton growth is half its the-
oretical maximum.

PPPn = JPn · QN, Pn · QFe, Pn (18)

Light- and nutrient-limitation factors are brought together
in a multiplicative term that determines nutrient uptake and,
via Redfield coupling, primary production. AppendixA2 in-
vestigates an alternative Liebig law of the minimum scheme
for multiple nutrient limitation.

2.3.2 Diatom limitation and growth

Diatom phytoplankton growth terms are derived from the
same sources as those of non-diatom phytoplankton. How-
ever, diatom growth is additionally coupled to the silicon cy-
cle, and the submodel of silicon uptake and diatom growth
from Mongin et al. (2006) has been adopted to represent
these processes. This places contraints on growth and nutri-
ent uptake based upon the Si:N ratio of the modelled diatom
cells.

θChl
Pd =

ChlPd · ξ

Pd
(19)

α̂Pd = αPd · θChl
Pd (20)

VPdT = VPd · 1.066T (21)

JPd =
VPdT · α̂Pd · I

(V 2
PdT

+ α̂2
Pd · I2)1/2

(22)

QN, Pd =
N

kN, Pd+N
(23)

QSi =
S

kSi+S
(24)

QFe, Pd =
F

kFe, Pd+F
(25)

As noted above, the growth of diatom phytoplankton is
additionally limited by the availability of the macronutrient
silicic acid.

RSi:N =
PdSi

Pd
(26)

RN:Si =
Pd

PdSi
(27)

Silicon is largely used by diatom phytoplankton in the
construction of their cell walls, or frustules, which can
vary significantly in their ornamentation (e.g. spines, girdle
bands;Martin-J́eźequel et al., 2000). As a result, diatoms
have a degree of plasticity in their requirement for silicon,
necessitating a separate state variable, and centred around
the resulting stoichiometric ratios,RSi:N andRN:Si.

If RSi:N ≤ R0
Si:N then

PPPd = 0 (28)

(29)

else ifR0
Si:N < RSi:N < (3·R0

Si:N) then

PPPd = (JPd · QN, Pd · QFe, Pd) (30)

·

(
U∞ ·

RSi:N −R0
Si:N

RSi:N

)
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else ifRSi:N ≥ (3·R0
Si:N) then

PPPd = (JPd · QN, Pd · QFe, Pd) (31)

Here, the uptake of nitrogen (and iron) by diatom cells,
PPPd, is governed by the Si:N ratio. If this falls below a
critical value, R0

Si:N, diatom cells cannot complete their
cell division cycle and growth stopsMartin-J́eźequel et al.
(2000). Above this minimum ratio growth is scaled by a
factor of the Si:N ratio, and above 3 times this ratio, growth
is unimpeded by silicon dynamics.

If RSi:N < (3· R0
Si:N)−1 then

PPPdSi = (JPd · QSi) (32)

else if (3· R0
Si:N)−1

≤ RSi:N < (R0
Si:N)−1 then

PPPdSi = (JPd · QSi) (33)

·

(
U∞ ·

RN:Si−R0
N:Si

RN:Si

)

else ifRSi:N ≥ (R0
Si:N)−1 then

PPPdSi = 0 (34)

Here, silicon uptake, PPPdSi, occurs at the maximum rate
permitted by light and silicon availability whenever the Si:N
ratio is below a critical threshold,(3 · R0

Si:N)−1. Above this
ratio, silicon uptake is linearly decreased to another thresh-
old value,(R0

Si:N)−1, above which no silicon is taken up by
diatom cells. Figure2 illustrates these equations by showing
uptake of nitrogen and silicon by diatoms across a range of
biomass Si:N ratios.

2.3.3 Chlorophyll growth scaling factors

Both phytoplankton groups have separate chlorophyll state
variables in addition to those of nitrogen biomass. This al-
lows the modelled phytoplankton to dynamically alter their
chlorophyll content under different light regimes. The fol-
lowing terms for this processes are taken fromTaylor et al.
(1997).

RPn =
θChl

max, Pn

θChl
Pn

·
PPPn

α̂Pn · I
(35)

RPd =
θChl

max, Pd

θChl
Pd

·
PPPd

α̂Pd · I
(36)

2.3.4 Microzooplankton grazing

Microzooplankton graze on smaller non-diatom phytoplank-
ton and on particles of slow-sinking detritus. The inges-
tion function that balances the availability of these prey
items with the preference microzooplankton have for them
is drawn from the classic model ofFasham et al.(1990).
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Fig. 2. Diatom uptake of nitrogen (top) and silicon (bottom) against the Si:N ratio of diatom biomass.

Fig. 2. Diatom uptake of nitrogen (top) and silicon (bottom) against
the Si:N ratio of diatom biomass.

GµX =
gµ · pµX · X2

· Zµ

k2
µ+pµPn · Pn2

+pµD · D2
(37)

whereX is Pn or D. The above term is repeated for each sep-
arate prey item consumed by microzooplankton. The term is
based around a sigmoid function in which the “substrate” is
composed of the sum of the prey items scaled by the pref-
erence that microzooplankton have for them. It is assumed
here that microzooplankton prefer non-diatom phytoplank-
ton over detritus since they represent a higher quality food
item.

INZµ = (1−φ) ·
(
GµPn+GµD

)
(38)

ICZµ = (1−φ) ·
(
θPn · GµPn+θD · GµD

)
(39)

Here, the separate quantities of nitrogen, INZµ, and car-
bon, ICZµ, ingested by microzooplankton are summed. Pa-
rameterφ relates to grazing inefficiency, so-called “messy
feeding”, that returns a fraction of the grazed material back
to dissolved nutrient. For the material actually ingested, the
resulting C:N ratio,θFµ, can be calculated.

θFµ =
ICZµ
INZµ

(40)

Since grazed material may have a different C:N ratio than
that required for microzooplankton growth, the assimilation
and metabolism submodel ofAnderson and Pondaven(2003)
is incorporated here to balance growth, excretion and respi-
ration. The C:N ratio of ingested food calculated above is
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then compared to the ideal ratio preferred by microzooplank-
ton, θ∗

Fµ. This makes use of the assimilation efficiencies of
nitrogen,βN, and carbon,βC, as well as the carbon growth
efficiency,kC, of microzooplankton.

θ∗

Fµ =
βN · θZµ
βC · kC

(41)

Either C or N limits production depending on whetherθFµ
is greater or lower thanθ∗

Fµ, with any excess carbon respired,
and any excess nitrogen excreted. Growth,FZµ, respiration,
RZµ, and excretion,EZµ, are calculated as follows.

If θFµ > θ∗

Fµ then N is limiting and ...

FZµ= βN · INZµ (42)

EZµ= 0 (43)

RZµ= (βC · ICZµ)−(θZµ · FZµ) (44)

else ifθFµ < θ∗

Fµ then C is limiting and ...

FZµ=
βC · kC · ICZµ

θZµ
(45)

EZµ= ICZµ ·

(
βN

θFµ
−

βC · kC

θZµ

)
(46)

RZµ= (βC · ICZµ)−(θZµ · FZµ) (47)

Figure3 shows the relative partitioning of carbon and ni-
trogen grazed by zooplankton depending upon food C:N ra-
tio.

2.3.5 Mesozooplankton grazing

Mesozooplankton grazing follows that of microzooplank-
ton with the exception that mesozooplankton have a broader
range of prey items. For simplicity, parametersφ, βN, βC,
andkC are identical to those used for microzooplankton.

GmX =
gm · pmX · X2

· Zm

k2
m+Fm

(48)

whereX is Pn, Pd, Zµ or D.

Fm = (pmPn · Pn2)+(pmPd · Pd2) (49)

+(pmZµ · Zµ2)+(pmD · D2)

GmPdSi = RSi:N · GmPd (50)

INZm = (1−φ) · (GmPd+GmPn (51)

+GmZµ+GmPd)

ICZm = (1−φ) · ((θPd · GmPd)+(θPn · GmPn) (52)

+(θZµ · GmZµ)+(θD · GmD))
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Fig. 3. Partitioning of nitrogen (top) and carbon (bottom) to egestion, excretion, respiration and growth against the C:N
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are identical.Fig. 3. Partitioning of nitrogen (top) and carbon (bottom) to eges-
tion, excretion, respiration and growth against the C:N ratio of in-
gested food. Since they share parameter values, the responses of
both microzooplankton and mesozooplankton are identical.

θFm=
ICZm

INZm
(53)

θ∗

Fm =
βN · θZm

βC · kC
(54)

if θFm > θ∗

Fm then N is limiting and ...

FZm = βN · INZm (55)

EZm = 0 (56)

RZm = (βC · ICZm)−(θZm · FZm) (57)

else ifθFm < θ∗

Fm then C is limiting and ...

FZm =
βC · kC · ICZm

θZm
(58)

EZm = ICZm ·

(
βN

θFm
−

βC · kC

θZm

)
(59)

RZm = (βC · ICZm)−(θZm · FZm) (60)

Figure3 shows the relative partitioning of carbon and ni-
trogen grazed by zooplankton depending upon food C:N ra-
tio.
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2.3.6 Plankton loss terms

In addition to losses to grazing, all four living components of
the plankton model incur smaller, secondary losses to other
processes.

M1Pn= µ1, Pn · Pn (61)

M1Pd= µ1, Pd · Pd (62)

M1PdSi = RSi:N · M1Pd (63)

M1Zµ= µ1, Zµ · Zµ (64)

M1Zm = µ1, Zm · Zm (65)

The above functions are density-independent loss terms
for processes such as metabolism that occur without refer-
ence to abundance.

M2Pn= µ2, Pn ·
Pn

kPn+Pn
· Pn (66)

M2Pd= µ2, Pd ·
Pd

kPd+Pd
· Pd (67)

M2PdSi = RSi:N · M2Pd (68)

M2Zµ= µ2, Zµ ·
Zµ

kZµ+Zµ
· Zµ (69)

M2Zm = µ2, Zm ·
Zm

kZm+Zm
· Zm (70)

The above functions are density-dependent loss terms for
processes such as disease (e.g. viruses) and grazing by im-
plicit higher trophic levels that occur at variable rates de-
pending upon plankton abundance. Such terms are also
favoured over linear mortality in ecosystem models because
they provide a source of stabilising feedback (Steele and
Henderson, 1992). In the default case, density-dependent
losses are represented using a hyperbolic function of plank-
ton concentration (Fasham, 1993), although switches in the
model code (Table5) permit linear, quadratic and sigmoid
functions. As the best choice for mortality function is unclear
but can have significant consequences for models (e.g.Steele
and Henderson, 1992; Edwards and Yool, 2000; Fussmann
and Blasius, 2005; Anderson et al., 2010), AppendixA3 in-
vestigates alternative functions for this mortality term.

2.3.7 Miscellaneous losses

Since silicic acid is at undersaturated concentrations through-
out the modern ocean (Yool and Tyrrell, 2003), the silicon
component of diatom phytoplankton is additionally vulnera-
ble to dissolution. This is represented here by a simple linear
loss rate, perMongin et al.(2006).

DSPdSi = Diss · PdSi (71)

Fig. 4. The top panel shows mean annual aeolian iron input to the
ocean (i.e. the quantity of iron that dissolves into seawater from de-
posited dust). The input is shown on a logarithmic scale in units of
µmol m−2 yr−1, and integrated input is 2.564 Gmol Fe yr−1. The
bottom panel shows the fractionation of total iron between “free”
and ligand-bound forms across a logarithmic range of total iron con-
centrations.

Remineralisation of slow-sinking detrital particles to dis-
solved inorganic nitrogen occurs at a rate dependent on am-
bient temperature.

MD = µD · 1.066T
· D (72)

2.3.8 Iron supply and removal

Following the submodel ofDutkiewicz et al.(2005), iron is
added to the ocean by aeolian deposition of iron-carrying
dust at the surface, and removed throughout by scavenging.

Fatmos= spatially variable rate (73)

Figure4 shows a map of annual average iron deposition.
Aeolian iron solubility was adjusted in MEDUSA such that
the total dissolved iron addition to the ocean (2.6 Gmol yr−1)
was the same as that ofDutkiewicz et al.(2005).

Fscavenge= kscav · Ffree (74)

Scavenging occurs at a fixed linear rate,kscav, throughout
the full volume of the ocean, but is assumed to only remove
“free” iron, Ffree.

Ffree = F−F ligand (75)
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MEDUSA’s iron state variable, F, represents total iron, and
this is assumed to occur in two fractions: “free”,Ffree; and
that bound to organic ligands,Fligand Gledhill and van den
Berg(1994). In the ocean, it is estimated that more than 97 %
of total iron is complexed with ligands (Boye et al., 2003).

Fligand= Ltotal−Lfree (76)

Lfree= 0.5 ·
(F1+

√
F2)

kFeL
(77)

F1 = kFeL · (Ltotal−F)−1 (78)

F2 = max(F 2
1 +(4 · kFeL · Ltotal),0) (79)

The complexation reactions between iron species and lig-
ands occur rapidly, and it is assumed here that they reach
equilibrium in a shorter period than model time-stepRose
and Waite(2003). In the equations above,Ltotal is the total
ligand concentration of seawater, and is assumed to be glob-
ally constant;kFeL is the ligand binding strength. Given these
equations and parameters, Fig.4 shows a diagram of the re-
sulting partition between “free” and bound iron over a range
of total iron concentration.

2.3.9 Fast detritus

Differential Eqs. (9) and (10) (and, implicitly, 11) include
terms for the remineralisation of fast-sinking detrital mate-
rial, LDN(k) and LDSi(k). These, together with the corre-
sponding terms for the production of fast-sinking detritus (ni-
trogen, silicon, iron, organic carbon and calcium carbonate)
are fully described in Section3.2.

2.4 Parameter values

The Tables1 to 4 list model parameters, a brief description
of each, and their respective values and units. For ease of
use, the ordering of parameters reflects their appearance in
the namelist.trc.sms file in which they are specified
(see AppendixB and accompanying model code).

In addition to the parameters above, MEDUSA includes a
number of control parameters that allow the model to switch
between different functional forms for a small number of
processes. These appear innamelist.trc.sms and are
listed in Table5.

The parameters associated with the fast-sinking detritus
submodel are described in a later section.

3 Detritus

Sinking detrital material occurs in MEDUSA in two forms
that represent particles of different size and which are mod-
elled in distinct ways.

Table 1. Phytoplankton growth parameters.

ξ Chl:N conversion factor
(Redfield ratio of 6.625)

0.01257

g chl (mol N)−1

αPn, αPd chl-specific initial slope of
P-I curve

15.0, 11.25

g C (g chl)−1 (W m−2)−1 d−1

VPn, VPd maximum phytoplankton
growth rate at 0◦C

0.53, 0.50

d−1

θChl
max, Pn

, θChl
max, Pd maximum chl:C ratio 0.05, 0.05

g chl (g C)−1

R0
Si:N minimum diatom Si:N ratio 0.2

mol Si (mol N)−1

R0
N:Si minimum diatom N:Si ratio 0.2

mol N (mol Si)−1

U∞ hypothetical growth ratio at∞
Si:N ratio

1.5

–

kN, Pn, kN, Pd N nutrient uptake
half-saturation constants

0.50, 0.75

mmol N m−3

kSi Si nutrient uptake
half-saturation constant

0.75

mmol Si m−3

kFe, Pn, kFe, Pd Fe nutrient uptake
half-saturation constants

0.33× 10−3,

mmol Fe m−3 0.67× 10−3

– Small particles are assumed to sink slowly relative to
the model timestep, and their elemental concentration is
modelled explicitly as a state variable (detrital nitrogen,
D).

– Large particles are assumed to sink quickly relative to
the model timestep, and their elemental concentration is
implicitly remineralised down the water column (nitro-
gen, carbon, silicon).

Iron cycle changes associated with the remineralisation of
both classes of sinking detrital material are assumed to occur
in a strict Redfieldian relationship with those of nitrogen, so
neither class includes an explicit consideration of iron con-
centrations.

3.1 Small particles

Small particles sink down the water column at a prescribed
rate and are remineralised to utilisable nutrients at a rate de-
pendent on ambient temperature (Eq.72). This takes the
form of Q10-type relationships for the implicitly modelled
remineralisation processes (i.e. heterotrophic bacteria are not
explicitly modelled), and allows faster recycling of detri-
tus in warm tropical waters to support the microbial loop
(Pomeroy, 1974). Small particles are also be consumed by
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Table 2. Zooplankton grazing parameters.

gµ, gm maximum zooplankton
grazing rate

2.0, 0.5

d−1

kµ, km zooplankton grazing
half-saturation con-
stants

0.8, 0.3

mmol N m−3

φ zooplankton grazing
inefficiency

0.20

–

βN zooplankton N
assimilation efficiency

0.69

–

βC zooplankton C
assimilation efficiency

0.69

–

kC zooplankton net C
growth efficiency

0.80

–

pµPn, pµD microzooplankton
grazing preferences

0.75, 0.25

–

pmPn, pmPd, mesozooplankton
grazing preferences

0.15, 0.35,

pmZµ, pmD – 0.35, 0.15

both micro- and mesozooplankton which accelerates the re-
turn of nitrogen and iron to utilisable forms. Equation (80)
below repeats the full differential equation (Eq.8) to indicate
the sinking and remineralisation terms.

∂D

∂t
= ...− [ MD ]︸ ︷︷ ︸

remin

−

[
wg ·

∂D

∂z

]
︸ ︷︷ ︸

sinking

(80)

3.2 Large particles

Large particles of detritus can have sinking velocities that
cannot be resolved given the time and space scales of the
physical models in which ecosystem models are commonly
embedded. To resolve this here, large detritus is handled in
an implicit fashion in which pools of fast sinking detritus,
one for each elemental or biomineral species, are added to
(through production) and depleted (through remineralisation)
level by level down the water column. As well as sidestep-
ping issues related to the Courant-Friedrichs-Lewy (CFL)
condition, this removes the need for additional (and com-
putationally costly) model tracers. The remineralisation of
large detrital particles uses a variant of the ballast model of
Armstrong et al.(2002). This model divides sinking material

Table 3. Plankton and detritus loss parameters.

µ1, Pn, µ1, Pd phytoplankton loss
rates

0.02, 0.02

d−1

µ1, Zµ, µ1, Zm zooplankton loss rates 0.02, 0.02
d−1

µ2, Pn, µ2, Pd phytoplankton
maximum loss rates

0.1, 0.1

d−1

kPn, kPd phytoplankton loss
half-saturation
constants

0.5, 0.5

mmol N m−3

µ2, Zµ, µ2, Zm zooplankton maximum
loss rates

0.5, 0.75

d−1

kZµ, kZm zooplankton loss
half-saturation
constants

0.2, 0.75

mmol N m−3

µD detrital N
remineralisation rate at
0◦C

0.016

d−1

into organic and mineral components and assumes that a
fraction of the organic material is “protected” from degra-
dation by the mineral material. A full description is given in
Sect.3.2.2.

3.2.1 Detritus production

In the case of the nitrogen and silicon cycles, the following
equations describe the level by level addition of material to
the detrital pools of these elements,TN(k) andTSi(k). These
pools are initialised to zero at the ocean surface, and accumu-
late (through production) and lose (through remineralisation)
material down the water column. Note thatδz(k) denotes the
thickness of model layerk.

TN(k+1) = TN(k)+((D1frac · M2Pd) (81)

+ (D2frac · M2Zm)) · δz(k)

TSi(k+1) = TSi(k)+
(
(D1frac · M2PdSi) (82)

+(D2frac · GmPdSi)
)

· δz(k)

Large nitrogenous detritus is derived from fractions of the
losses of diatoms and mesozooplankton, D1frac and D2frac re-
spectively. As these losses produce large particles of detritus
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Table 4. Miscellaneous parameters.

θPn, θPd phytoplankton C:N ratio 6.625
mol C (mol N)−1

θZµ, θZm zooplankton C:N ratio 6.625
mol C (mol N)−1

θD detritus C:N ratio 6.625
mol C (mol N)−1

RFe phytoplankton Fe:N
uptake ratio

30.0× 10−3

mmol Fe (mol N)−1m

Ltotal total ligand
concentration

1.0× 10−3

mmol m−3

kFeL dissociation constant for
(Fe + ligand)

100.0× 103

(mmol m−3)−1

kscav scavenging rate of “free”
Fe

0.001

d−1

Diss diatom frustule
dissolution rate

0.006

d−1

wg detrital sinking rate 3.0
m d−1

that fuel the fast-sinking detritus submodel, these parame-
ters are assumed to take values close to unity. As diatom
cells are both smaller than the mesozooplankton that graze
them, and since diatoms themselves span a range of sizes,
D1frac is assigned a smaller value (0.75) than D2frac (1.00)
so that a minor fraction of diatom losses is channelled to
small detritus. Fast detrital silicon is similarly derived from
loss processes though, since biogenic silica produced by di-
atoms is not utilised by zooplankton, one of the sources in
MEDUSA is the egested remains of diatom cells rather than
mesozooplankton mortality. Parameters D1frac and D2frac are
again utilised to control the distribution of losses to fast de-
tritus. However, since the fate of ingested diatom silicon is
more associated with zooplankton egestion in faecal pellets
than zooplankton losses such as mortality, the arrangement
could arguably be altered such that biogenic silicon is di-
rectly channelled to fast detritus without reference to D2frac
(perhaps via D3frac instead). However, since D2frac already
has value 1.00, for simplicity this embellishment has not cur-
rently been adopted. Note that, since there is no silicon com-
ponent to small detritus, the small fraction of diatom losses
that is not channelled to fast detritus is returned directed to
dissolved silicic acid.

Table 5. MEDUSA switches.

jphy switches phytoplankton maximum growth
between temperature independence (= 0)
and dependence (= 1); the default is
jphy = 1

jmpn switches non-diatom phytoplankton
density-dependent mortality between
linear (= 1), quadratic (= 2), hyperbolic
(= 3) and sigmoid (= 4) forms; the
default isjmpn = 3

jmpd asjmpn but for diatom phytoplankton

jmzmi asjmpn but for microzooplankton

jmzme asjmpn but for mesozooplankton

jmd asjphy but for detrital remineralisation;
the default isjmd = 1

As it is not explicitly simulated in the current version of
MEDUSA, organic carbon is implicitly associated with the
sources of large detritus, and is calculated as follows using
the prescribed C:N ratios of the diatoms and mesozooplank-
ton,θPd andθZm.

TC(k+1) = TC(k)+((θPd · D1frac · M2Pd) (83)

+(θZm · D2frac · M2Zm)) · δz(k)

A quantitatively important component of sinking particles
in the ocean (and one which frames the so-called ballast hy-
pothesis;Armstrong et al., 2002) is the biomineral calcium
carbonate (CaCO3). This is used in the shells of certain types
of both phytoplankton and zooplankton, but the factors con-
trolling its production are not fully understood (cf.Hood et
al., 2006). Consequently, there is wide diversity in the ap-
proaches taken to modelling the production of calcium car-
bonate, with models variously grounding it in primary pro-
duction (e.g.Moore et al., 2002; Gehlen et al., 2007; Yool
et al., 2010), export production (e.g.Zahariev et al., 2008;
Ridgwell et al., 2007) or phytoplankton biomass (e.g.Tyrrell
and Taylor, 1996).

Reviewing this diversity, and testing it in a common model
framework against observational data from the Bay of Bis-
cay,Kelly–Gerreyn et al.(2009) found no strong support for
any one approach over its rivals. Consequently, MEDUSA

largely followsDunne et al.(2007) and models calcium car-
bonate production as a function of fast detritus production
(i.e. only indirectly related to either primary production or
the biomass of phytoplankton). This simplified approach
suits MEDUSA since its current version does not include a
complete representation of the carbon cycle (and completely
omits ocean alkalinity), and calcium carbonate is used in the
model solely in the context of fast detritus.
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TCaCO3(k+1) = TCaCO3(k)+ (84)

((θPd · D1frac · M2Pd)+

(θZm · D2frac · M2Zm)) ·

δz(k) · fc(lat)

where fc(lat) (mol CaCO3 (mol C)−1) is a simple function
that relates the rain ratio of calcium carbonate production
(CCaCO3:Corg) to latitude, lat. Reviewing this relationship,
Dunne et al.(2007) found that, on a molar basis, this is ap-
proximately 0.09 to 0.10 at the equator, and 0.04 at high lati-
tudes, and that it is systematically lower in the North Atlantic
(0.02) than the North Pacific (0.06). Here, we neglect dif-
ferences between basins and use globally uniform equatorial
(fc(0◦)) and polar values (fc(90◦)).

fc(lat) = fc(90◦)+ (85)(
fc(0◦)− fc(90◦) ·

(90− | lat |)

90

)
As an aside, another unmodelled component of sinking

material is lithogenic material such as wind-borne dust that
is picked up from the land and settles into the ocean from
the atmosphere. Similarly to the biominerals calcium car-
bonate and biogenic silica, this is proposed to affect export
production in the ballast hypothesis (Armstrong et al., 2002).
Although the iron component of dust is already included in
MEDUSA to affect phytoplankton growth, at this point the
role of dust in export production is not included.

3.2.2 Ballast model

As noted above, one interpretation concerning the sinking
flux of material in the ocean is the ballast hypothesis ofArm-
strong et al.(2002). This posits that a fraction of the sink-
ing organic material is quantitatively associated with sink-
ing inorganic material (calcium carbonate, biogenic silica,
lithogenic material), and that this provides “protection” for
the organic matter, allowing it to penetrate deeper into the
water column than might be expected from remineralisation
rates.Armstrong et al.(2002) originally treated the hypothe-
sis in rather theoretical terms, but it was subsequently param-
eterised byKlaas and Archer(2002) in a study that synthe-
sised a global dataset of sediment trap measurements. This
latter study has subsequently been used as the basis for other
work, and its implementation within the model ofDunne et
al. (2007) is that adopted here.

Given the pools of organic carbon and ballast minerals in
the large detritus class, the ballast model first calculates the
fraction of organic carbon that is “protected” by the miner-
als. The remainder, known as “excess” (and initially the ma-
jority), is subject to remineralisation, performed here in an
exponential manner similar to that proposed byMartin et al.

(1987). Since the minerals themselves are subject to dissolu-
tion as the particle flux descends through the water column,
the amount of organic carbon that can be “protected” also
falls, although this occurs at a considerably slower rate than
that at which the “excess” is remineralised. As a result, im-
plementing the ballast scheme is done level-by-level down
the modelled water column to account for the gradual differ-
ential attenuation of the components of the sinking flux.

The proportioning of the fast detrital flux of organic carbon
into “protected”, TCprotect= (TCbSi + TCbCaCO3), and “ex-
cess”, TCexcess, portions is calculated as follows.

TCbSi= TSi(k) ·
MSi

Morg
· fSi (86)

TCbCaCO3 = TCaCO3(k) ·
MCaCO3

Morg
· fCaCO3 (87)

TCprotect= (TCbSi+TCbCa) (88)

TCexcess= TC(k)−TCprotect (89)

Where MSi and MCaCO3 convert molar silicon and calcium
carbonate ballast into mass equivalents that can then be used
with mass-based organic carbon protection ratiosfSi and
fCaCO3. The “protected” fraction passes through unscathed
to the next level down the water column, while the “excess”
fraction is attenuated across a particular level, with a corre-
sponding release of inorganic carbon. Not all “excess” car-
bon is remineralised in a given level, and the surviving por-
tion, TCsurvive, is calculated as follows.

TCsurvive = TCexcess· exp(−
δz(k)

dexcess
) (90)

Leaving aside that added through production (see
Eq. (83)), the quantity of fast detritus reaching the next model
layer,TC(k+1), is then as follows.

TC(k+1) = TCprotect+TCsurvive (91)

The flux of remineralised carbon to levelk is then simply:

LDN(k) =
TCexcess−TCsurvive

δz(k)
(92)

The remineralisation fluxes of nitrogen and iron follow
that of carbon, with the same fraction of sinking material
“protected” by ballasting minerals. By contrast, the sinking
fluxes of both biogenic silica,TSi(k), and calcium carbonate,
TCaCO3(k), attenuate with depth independently of organic
carbon. In the case of biogenic silica, since silicic acid oc-
curs at undersaturating concentrations throughout the World
Ocean, this attenuation occurs globally at all depths. Cal-
cium carbonate, by contrast, is not generally soluble in sur-
face waters because of the supersaturating concentrations of
the carbonate ion. However, at depth, specifically below the
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lysocline, concentrations become undersaturating and disso-
lution can occur. In MEDUSA, the depth of the lysocline,
lysocline(lat, lon), is precalculated and used to regulate the
spatial distribution of dissolution.

TSi(k+1) = TSi(k) · exp(−
δz(k)

dSi
) (93)

if z(k) < lysocline(lat, lon)

TCaCO3(k+1) = TCaCO3(k) · exp(−
δz(k)

dCaCO3

) (94)

else

TCaCO3(k+1) = TCaCO3(k) (95)

The dissolution fluxes of biogenic silica and calcium car-
bonate are then simply:

LDSi(k) =
TSi(k)−TSi(k+1)

δz(k)
(96)

LDCaCO3(k) =
TCaCO3(k)−TCaCO3(k+1)

δz(k)
(97)

Figure5 shows idealised results from this model, and in
the left panel compares these to the classic empirical model
derived byMartin et al.(1987):

FC(z) = FC(100) · (
z

100
)−0.858 (98)

In the upper 300 m of the water column, both models show
similar fractional declines in sinking organic carbon, with ap-
proximately 40 % of the 100 m flux surviving to this depth.
Generally, theDunne et al.(2007) model exhibits greater
remineralisation, such that by 1000 m it estimates an organic
carbon sinking flux less than one third of that ofMartin et al.
(1987). The right panel shows the decline of the biominerals
with depth. Because of a longer dissolution length scale, a
greater proportion of calcium carbonate reaches the seafloor
than that of biogenic silicon (relative to the fluxes at 100 m).
Also, while silicic acid is present at undersaturated concen-
trations throughout the water column and so biogenic silicon
dissolves at all depths, calcium carbonate is saturated in shal-
lower waters and only dissolves when it becomes undersatu-
rated at greater depths. The saturation horizon used in Fig.5
is 2700 m, the global average depth calculated from World
Ocean Atlas and GLODAP sources, and the ballasting frac-
tion of calcium carbonate only begins to attenuate below this
depth. Figure6 shows the global distribution of the calcite
saturation horizon (cf.Feeley et al., 2004). This is calcu-
lated as the shallowest depth at which�calcite is less than 1.
The three dimensional field of�calcite is calculated using the
CSYS package (Zeebe and Wolf-Gladrow, 2001) together
with fields of ocean properties from the World Ocean Atlas
(Locarnini et al., 2006; Antonov et al., 2006; temperature and
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Fig. 5. Vertical attenuation of the sinking flux. Theleft panel compares the Dunne et al. (2007; red) parameterisation
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Fig. 5. Vertical attenuation of the sinking flux. The left panel com-
pares theDunne et al.(2007; red) parameterisation for organic car-
bon with that ofMartin et al. (1987; black). The right panel shows
the attenuation of organic carbon (red), biogenic silicon (green)
and calcium carbonate (blue). In all cases, fluxes are normalised
to those at 100 m. Dots indicate NEMO physical model levels at
which fluxes calculated.

salinity) and GLODAP (Key et al., 2004; DIC and alkalin-
ity) climatologies. The geographical pattern occurs because
deep water masses gradually accumulate DIC as they tran-
sit along the ocean’s thermohaline circulation. This material
is provided by the biological pump, and its influence gradu-
ally shifts the balance of DIC speciation in seawater towards
lower carbonate ion (CO2−

3 ) concentrations. “Young”, re-
cently ventilated waters, such as those in the North Atlantic,
have accumulated the least material, and CO2−

3 concentra-
tions are supersaturated for most of the water column. By
contrast, “old” waters that have been isolated from the at-
mosphere for centuries or more, such as those in the North
Pacific, have accumulated the most material, and CO2−

3 con-
centrations are largely undersaturated. This horizontal field
shown in Fig.6 is used in MEDUSA to control the depth at
which dissolution begins in different regions of the World
Ocean.

Based on a survey of vertical fluxes of calcium carbonate,
it has been suggested that biological activity may be able to
cause the dissolution of calcium carbonate above the calcite
saturation horizon (Milliman et al., 1999). Proposed mech-
anisms include dissolution in the acidic guts of zooplank-
ton (Harris, 1994; Pond et al., 1995), and respiration-driven
low pH conditions within sinking particles (Milliman et al.,
1999). Such activity would effectively shoal the horizon
shown in Fig.6 by more rapidly attenuating the “protection”
offered by biomineral ballasting, with the result that the rem-
ineralisation of organic material would occur at shallower
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Fig. 6. The global distribution of the depth of the calcite saturation
horizon. Interpolation (prior to the calculation of�calcite) has been
used to fill gaps in the GLODAP climatology including the Arctic,
Caribbean, Mediterranean seas and the Malay Archipelago.

depths. However, subsequent work has instead suggested
that such additional mechanisms may be unnecessary, and
that conventional dissolution kinetics together with consid-
eration of sinking velocity may explain the fluxes observed
(Greenwood, 2009). Consequently, MEDUSA does not con-
sider dissolution above the calculated saturation horizon at
this stage.

The parameters used in this implementation of theDunne
et al.(2007) model are listed in Table6.

3.2.3 Computation

In Dunne et al.(2007) the input to the ballast model (i.e.
sinking particulate organic matter) is a product of primary
production and particle export algorithms. The former al-
gorithms estimate the synthesis of organic matter by pri-
mary producers (via multiple algorithms:Behrenfeld and
Falkowski, 1997; Carr, 2002; Marra et al., 2003), while the
latter algorithm estimates the conversion of this into sinking
particles (via:Dunne et al., 2005). The elemental contents of
this sinking flux are then redistributed down the water col-
umn according to the ballast model formulation. This pro-
cedure does not calculate the vertical distribution of particle
production, but essentially assumes that it takes place above
a particular depth horizon, below which the particles are rem-
ineralised.

In the case of MEDUSA, its structure dictates that parti-
cle production has a vertical distribution that is dependent
upon the locations of various plankton state variables and
ecological processes. As a result, unlikeDunne et al.(2007)
there is no single depth horizon separating particle produc-
tion and remineralisation, and instead both coincide down
the water column. As described above, and partly because
of the organisation of calculations in the model code, fast

Table 6. Fast detritus submodel parameters.

D1frac fast detritus fraction of
diatom losses

0.75

–

D2frac fast detritus fraction of
mesozooplankton losses

1.00

–

fc(90◦) polar calcium
carbonate:organic C
fraction

0.02

mol CaCO3 (mol C)−1

fc(0◦) equatorial calcium
carbonate:organic C
fraction

0.10

mol CaCO3 (mol C)−1

Morg organic carbon mass:mole
ratio, C

12.011

g (mol C)−1

MCaCO3 calcium carbonate
mass:mole ratio, CaCO3

100.086

g (mol C)−1

MSi biogenic Si mass:mole
ratio, SiO2

60.084

g (mol Si)−1

fCaCO3 calcium carbonate
protection ratio

0.070

g C (g C)−1

fSi biogenic Si protection ratio 0.026
g C (g Si)−1

dexcess excess organic carbon
dissolution length scale

188

m

dCaCO3 calcium carbonate
dissolution length scale

3500

m

dSi biogenic Si dissolution
length scale

2000

m

detritus production and remineralisation take place on a level
by level basis. In the surface level, production is the only
process that takes place, since there is no material to rem-
ineralise. In subsequent, deeper layers, fast detritus entering
a level is both subject to remineralisation within that level,
and can be “added to” by production processes as it leaves
the level. This approach avoids the aphysical vertical redis-
tribution of fast detritus that would occur if all production
was first integrated and then dispersed. In practice, since
the remineralisation of all components of fast detritus occurs
over relatively long e-folding length scales, the majority of
remineralisation takes place below its production.
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Additional explanation of this scheme can be found in
commentary within the accompanying model source code.

3.2.4 Alternative models

Although the ballast model has been selected for use here,
it is only one of a number of competing models that de-
scribe the attenuation of sinking particulate organic material
in the ocean, and there is still considerable observational un-
certainty concerning export production (e.g.Buesseler et al.,
2007). Alternative models include variants of the original
Martin et al. (1987) formulation (e.g.Parekh et al., 2005),
models that consider the size spectra of sinking material (e.g.
Kriest and Evans, 1999), and those that explicitly include
the aggregation of sinking particles (e.g.Burd and Jackson,
2009). Furthermore, the particular parameterisation of the
ballast model employed here is also only one among a num-
ber of subtly different variants. Alternatives include those of
Moore et al.(2004) andOka et al.(2008).

However, at the present time there is still considerable
uncertainty surrounding water column remineralisation (e.g.
Buesseler et al., 2007), and the most appropriate choice of
export production model is unclear. To this end, the bal-
last model has been favoured for MEDUSA largely because
of its relative simplicity, and because of its intrinsic connec-
tion with the silicon cycle.

4 Default simulation

The following section describes a simulation and evaluation
of MEDUSA using the default equations, functional forms
and parameter values described previously.

4.1 Physical model

The underlying physical model used in this simulation is ver-
sion 3.2 of NEMO (Madec, 2008). This is comprised of
an ocean general circulation model, OPA9 (Madec et al.,
1998; Madec, 2008), coupled with a sea-ice model, Louvain-
la-Neuve Ice Model version 2 (LIM2;Timmermann et al.,
2005). This physical framework is configured at approxi-
mately 1◦ × 1◦ horizontal resolution (292× 362 grid points),
with a focusing of resolution around the equator to improve
the representation of equatorial upwelling. Vertical space
is divided into 64 levels, which increase in thickness with
depth, from approximately 6 m at the surface to 250 m at
6000 m. To improve the representation of deep water circula-
tion, partial level thicknesses are used in the specification of
bottom topography. Vertical mixing is parameterised using
the turbulent kinetic energy (TKE) scheme ofGaspar et al.
(1990), with modifications byMadec(2008).

The model is forced at the ocean surface using DFS4.1
fields developed by the European DRAKKAR collaboration
(DRAKKAR Group, 2007). DFS combines elements from
two sources: the CORE forcing dataset (Large and Yeager,

2004), from which precipitation and downward short- and
long-wave radiation are extracted; and the ERA40 reanalysis,
from which 10 m wind and 2 m air temperature and humidity
are extracted. The latter fields are used in conjunction with
the bulk formulae proposed byLarge and Yeager(2004) to
compute air/sea and air/sea-ice energy and freshwater fluxes.
The frequency of DFS4.1 is monthly for precipitation, daily
for radiation and 6-hourly for the turbulent variables. Clima-
tological monthly runoff (Dai and Trenberth, 2002) is applied
along the coastline of the land mask.

The sea-ice submodel used here, LIM2, is based upon
viscous-plastic ice rheology (Hibler, 1979) and three layer
(two layers of sea-ice, one layer of snow) thermodynam-
ics (Semtner, 1976), with a number of updated physical
processes (seeTimmermann et al., 2005; and references
therein). Model sea-ice is coupled to the ocean every 5 ocean
timesteps through the non-linear quadratic drag law of the
shear between sea-ice and ocean surface velocity (Timmer-
mann et al., 2005). Freshwater exchange between the ocean
and sea-ice is calculated from precipitation and ice forma-
tion/melting (Fichefet and Morales Maqueda, 1997), where
sea-ice salinity is assumed to be 4 psu and rain/snow are as-
sumed fresh. The heat flux between the sea-ice and ocean
is proportional to the departure in temperature from salinity-
dependent freezing point and the friction velocity at the ice-
ocean interface. Solar radiation can penetrate sea-ice not
covered by snow, and is dissipated by brine pockets within
the ice where it increases latent heat storage (Fichefet and
Morales Maqueda, 1997).

Temperature and salinity fields are initialised here from
a monthly climatology that combines the World Ocean At-
las climatology with the PHC2.1 database (Steele et al.,
2001; high latitudes) and the Medatlas climatology (Jourdan
et al., 1998; Mediterranean Sea). To prevent unacceptable
drifts in salinity caused by deficiencies in freshwater forc-
ing, sea surface salinity is relaxed towards monthly mean cli-
matology values. The relaxation timescale is 180 days for
the open ocean, and 12 days under sea-ice. Further details
concerning model configuration can be found inBarnier et
al. (2006), Penduff et al.(2007) andPenduff et al.(2010),
but note that these describe higher resolution instances of
NEMO.

4.2 Spinup and simulation

Before MEDUSA was added to NEMO, a short, physics-
only simulation was performed to provide a “moving” ocean
circulation field into which the biogeochemistry could be
added. The physical model was simulated from rest from
the beginning of the forcing dataset (1 January 1958) for a
period of 8 yr (to 31 December 1965). This period is insuffi-
cient for the thermohaline circulation to be fully established,
but it is long enough for strong transient behaviour to decline.
In early tests with MEDUSA, it was found that the model’s be-
haviour was broadly similar between simulations initialised
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Fig. 7. Observational (World Ocean Atlas, 2005; left) and simulated
(right) surface dissolved inorganic nitrogen for northern summer
(June-July-August; top) and northern winter (December-January-
February; bottom). Concentrations in mmol N m−3.

with physical states that had experienced significantly differ-
ent spin-up periods.

After this initial phase, MEDUSA was coupled to the re-
sulting physical state and the simulation was integrated a
further 40 yr (to 31 December 2005). For this latter phase,
MEDUSA was initialised using the World Ocean Atlas cli-
matology for dissolved inorganic nitrogen and silicic acid
concentrations, and using an iron field derived from a long-
duration simulation of a lower resolution GCM (Parekh et
al., 2005; Dutkiewicz et al., 2005). All other model tracers
were initialised to arbitrary small values.

In addition to the biogeochemical dynamics described pre-
viously, the concentrations of dissolved inorganic nitrogen
and silicic acid were relaxed towards World Ocean Atlas cli-
matology values in grid cells within 100 km of land. This
was done to emulate unresolved coastal processes such as
the input of these nutrients by riverine sources. Since there
is, as yet, no corresponding climatology for iron, this nutrient
was not relaxed anywhere in the ocean. AppendixA4 exam-
ines the significance of the relaxation of macronutrients in
MEDUSA.

4.3 Results

In this section, a selection of model results are presented
with the aim of providing a brief overview of MEDUSA’s
performance. In the first instance, model outputs that can
be compared to observational fields are presented. These
are followed by Taylor diagrams that aim to more compre-
hensively evaluate performance (cf. space and time). Next,
model fields of interesting but unmeasured (or unmeasure-
able) properties are shown to illuminate notable aspects of
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Fig. 8. Hovmöller diagrams of observational (World Ocean Atlas, 2005; left) and simulated (right ) monthly surface
dissolved inorganic nitrogen, averaged zonally for the Atlantic (top) and Pacific (bottom) basins. Concentrations in
mmol N m−3.Fig. 8. Hovmöller diagrams of observational (World Ocean Atlas,
2005; left) and simulated (right) monthly surface dissolved inor-
ganic nitrogen, averaged zonally for the Atlantic (top) and Pacific
(bottom) basins. Concentrations in mmol N m−3.

MEDUSA. Finally, some plots of the time-evolution of mod-
elled nutrients are shown to illustrate MEDUSA’s stability
and drift. Note that where geographical plots are shown, the
Mollweide equal area projection has been used in order that
ocean regions are presented without undue emphasis.

Regarding observational fields, these comprise the World
Ocean Atlas 2005 nutrients (Garcia et al., 2006), SeaWiFS
chlorophyll (O’Reilly et al., 1998) and estimated primary
production. The latter is represented here by three empiri-
cal models: the VGPM (Behrenfeld and Falkowski, 1997),
Eppley-VGPM (Carr et al., 2006) and CbPM (Westberry et
al., 2008) productivity models. Three models are included
since each predicts quite different productivity from the same
chlorophyll input. The observational fields of chlorophyll
and productivity used here represent averages over the same
5 yr period from 2000 to 2004 inclusive, and this same pe-
riod is used throughout the following analysis as a standard
interval.

Figures7 and9 compare MEDUSA’s performance in repre-
senting, respectively, surface concentrations of the macronu-
trients DIN and silicic acid. In both cases MEDUSA shows
similar patterns of agreement (and disagreement). The sea-
sonal patterns of high northern latitudes are well resolved,
but nutrients are noticeably lower in equatorial upwelling re-
gions, while significantly higher in the Southern Ocean. This
latter discrepancy is particularly marked in the case of silicic
acid. Figures8 and10 show corresponding, basin-averaged
Hovmöller diagrams of DIN and silicic acid for the Atlantic
and Pacific Oceans.
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Fig. 9. Observational (World Ocean Atlas, 2005; left) and simulated
(right) surface silicic acid for northern summer (June-July-August;
top) and northern winter (December-January-February; bottom).
Concentrations in mmol Si m−3.
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Figures11 and 12 compare MEDUSA’s simulated total
chlorophyll (non-diatom plus diatom) to corresponding Sea-
WiFS fields. Note that a logarithmic colour scale is used
to best represent the large range in ocean colour. Not un-
commonly for ocean models, MEDUSA’s representation of
chlorophyll exhibits significant discrepancies with observa-
tions. MEDUSA shows much less pronounced seasonal-
ity, spatial boundaries that are significantly more sharply
defined and consistently lower “background” chlorophyll

Fig. 11. Observational (SeaWiFS ; left) and simulated (right) sur-
face chlorophyll for northern summer (June-July-August; top) and
northern winter (December-January-February; bottom). Concentra-
tions in mg chl. m−3, and plotted on a logarithmic scale.
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Fig. 12. Hovmöller diagrams of observational (SeaWiFS;left) and simulated (right ) monthly surface chlorophyll,
averaged zonally for the Atlantic (top) and Pacific (bottom) basins. Concentrations in mg chl. m−3.

Fig. 12. Hovmöller diagrams of observational (SeaWiFS; left) and
simulated (right) monthly surface chlorophyll, averaged zonally for
the Atlantic (top) and Pacific (bottom) basins. Concentrations in
mg chl. m−3, and plotted on a logarithmic scale.

concentrations in the ocean gyres. While the latter regions
are not productive areas of the ocean, they represent a signifi-
cant fraction of its total area. Part of the reason for the model-
data mismatches in this area may lie with the assumption
of geographically invariant nutrient kinetics, which prevents
model phytoplankton from adapting to oligotrophic condi-
tions. In the real world, nutrient uptake kinetics are more
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Fig. 13. Observational (VGPM model; left) and simulated (right)
integrated primary production for northern summer (June-July-
August; top) and northern winter (December-January-February;
bottom). The observational field here is estimated using the
VGPM model and SeaWiFS chlorophyll observations. Production
in g C m−2 d−1.
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Fig. 14. Hovmöller diagrams of observational (VGPM;left) and simulated (right ) monthly vertically–integrated pri-
mary production, averaged zonally for the Atlantic (top) and Pacific (bottom) basins. Production in g C m−2 d−1.

Fig. 14. Hovmöller diagrams of observational (VGPM; left) and
simulated (right) monthly vertically-integrated primary production,
averaged zonally for the Atlantic (top) and Pacific (bottom) basins.
Production in g C m−2 d−1.

plastic, thereby permitting higher concentrations and produc-
tivity in the gyres (e.g.Smith et al., 2009).

Figures13 to 14 compare MEDUSA’s simulated total pri-
mary production (non-diatom plus diatom) to the estimates
of the VGPM, Eppley-VGPM and CbPM models. While
MEDUSA does not show strong correlations with any of the

Fig. 15. Observational integrated primary production as per Fig.13
but for the Eppley-VGPM (left) and CbPM (right) models. Produc-
tion in g C m−2 d−1.
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Fig. 16. As Figure 14 but showing Hovmöller diagrams of observational vertically–integrated primary production
estimated using the Eppley–VGPM and CbPM productivity models. Production in g C m−2 d−1.Fig. 16. As Fig. 14 but showing Hovm̈oller diagrams of obser-
vational vertically-integrated primary production estimated using
the Eppley–VGPM and CbPM productivity models. Production in
g C m−2 d−1.

estimates, the estimates do not strongly correlate with one
another either. However, MEDUSA does still show systematic
differences with the estimates. These include: consistently
low subtropical gyre productivity; and elevated productivity
in iron-limited regions including the Southern Ocean, equa-
torial Pacific and (seasonally) North Pacific. In terms of to-
tal oceanic primary production (and averaging over the final
10 yr of the simulation), MEDUSA predicts 45.7 Gt C yr−1, a
value at the bottom of the broad range of the observational
estimates, 58.8, 60.4 and 46.3 Gt C yr−1 respectively.
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inorganic nitrogen. In the upper panel, simulated annual means for different regions are compared to corresponding
observational fields. In the lower panel, simulated global average means for different months are compared to corre-
sponding observational fields.

Fig. 17. Taylor diagrams of spatial (top) and temporal (bottom)
model-observation comparisons for surface dissolved inorganic ni-
trogen. In the upper panel, simulated annual means for different
regions are compared to corresponding observational fields. In the
lower panel, simulated global average means for different months
are compared to corresponding observational fields.

Figures 17 to 22 show the corresponding model-
observational comparisons using Taylor diagrams. These
illustrate both the correlation between (circumference axis)
and relative variability (radial axis) of model and observa-
tions. For each comparison two plots are shown. The first
uses annually average fields, but separates the analysis be-
tween ocean regions; the second uses globally average fields,
but separates the analysis between months. In all cases,
model-observation is greater the closer plotted data are to the
red/black bullseye on the horizontal axis.

Best agreement occurs for MEDUSA’s nutrient fields, par-
ticularly those of dissolved inorganic nitrogen. While there
remains sigificant scatter, MEDUSA generally shows good
correlation with World Ocean Atlas 2005 fields, and compa-
rable magnitudes of variability. This agreement is very weak
in the case of chlorophyll, where the model both correlates
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Fig. 18.Taylor diagrams of spatial (top) and temporal (bottom) model–observation comparisons for surface silicic acid.
In the upper panel, simulated annual means for different regions are compared to corresponding observational fields.
In the lower panel, simulated global average means for different months are compared to corresponding observational
fields.

Fig. 18. Taylor diagrams of spatial (top) and temporal (bottom)
model-observation comparisons for surface silicic acid. In the upper
panel, simulated annual means for different regions are compared
to corresponding observational fields. In the lower panel, simulated
global average means for different months are compared to corre-
sponding observational fields.

poorly and shows much less variability that the observed Sea-
WiFS fields. Although estimated productivity is based on
the same SeaWiFS chlorophyll fields, MEDUSA’s agreement
with the three productivity models is actually greater. The
CbPM model agrees best, although correlations are still rela-
tively weak.

Figures23 to 32 show model properties of relevance to
MEDUSA’s structure, but for which there is little or no obser-
vational information.

Figure 23 illustrates the difference in seasonality in the
populations of diatom and non-diatom phytoplankton. The
former show strongly seasonal behaviour, with high bloom
concentrations in spring-summer and near-absence in winter.
While the latter also show seasonality, it is considerably more
modulated, with small but significant populations during the
winter.

www.geosci-model-dev.net/4/381/2011/ Geosci. Model Dev., 4, 381–417, 2011
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Fig. 19. Taylor diagrams of spatial (top) and temporal (bottom) model–observation comparisons for surface chloro-
phyll. In the upper panel, simulated annual means for different regions are compared to corresponding observational
fields. In the lower panel, simulated global average means for different months are compared to corresponding obser-
vational fields.

Fig. 19. Taylor diagrams of spatial (top) and temporal (bottom)
model-observation comparisons for surface chlorophyll. In the up-
per panel, simulated annual means for different regions are com-
pared to corresponding observational fields. In the lower panel,
simulated global average means for different months are compared
to corresponding observational fields.

Unsurprisingly, this pattern is repeated in Fig.24, which
shows the separate primary production of both groups. Inte-
grating, the diatoms are responsible for 16.3 % of total pri-
mary production in MEDUSA. Estimates of this fraction in
the real world are not common. Several estimates for spe-
cific locations exist and range from 13 to 34 % (Nelson and
Brzezinski, 1997; Blain et al., 1997; Brzezinski et al., 1998),
though these estimates do not cover the full range of ocean
ecosystems. Global estimates are rarer, though a survey by
Mann (1999) suggested 40 to 45 %, greater than that from
the local studies, and much greater than that estimated by
MEDUSA.

Although diatom primary production appears at the low
end of literature estimates, biogenic opal production by
MEDUSA slightly higher than that estimated. Figure26
shows the global distribution of opal production, which
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Fig. 20.Taylor diagrams of spatial (top) and temporal (bottom) model–observation comparisons for integrated primary
production (VGPM estimated). In the upper panel, simulatedannual means for different regions are compared to cor-
responding observational fields. In the lower panel, simulated global average means for different months are compared
to corresponding observational fields.

Fig. 20. Taylor diagrams of spatial (top) and temporal (bottom)
model-observation comparisons for integrated primary production
(VGPM estimated). In the upper panel, simulated annual means
for different regions are compared to corresponding observational
fields. In the lower panel, simulated global average means for dif-
ferent months are compared to corresponding observational fields.

largely follows diatom production, though areas such as the
North Pacific and Southern Ocean show elevated production
because of higher Si:N ratios (see Fig.25). Globally inte-
grated opal production is 222.4 Tmol Si yr−1, 7 % lower than
the 240 Tmol Si yr−1 estimated byTréguer et al.(1995). Fig-
ure 26 also shows the corresponding production of calcium
carbonate. Though this is in part linked to the diatoms (and
mesozooplankton) through its association with the produc-
tion of fast detritus, calcium carbonate production is focused
more strongly in the equatorial region. This reflects the lati-
tudinal scaling offc(lat).

Figure27 shows the split between primary production in
the mixed layer and that deeper in the water column. The
fraction is greatest at high latitudes in both summer and (es-
pecially) winter. Lower latitudes show much lower fractions
especially in the oligotrophic subtropical gyres where nutri-
ents are permanently limiting. Globally, 73.2 % of primary
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Fig. 21.Taylor diagrams of spatial (top) and temporal (bottom) model–observation comparisons for integrated primary
production (Eppley–VGPM estimated). In the upper panel, simulated annual means for different regions are compared
to corresponding observational fields. In the lower panel, simulated global average means for different months are
compared to corresponding observational fields.

Fig. 21. Taylor diagrams of spatial (top) and temporal (bottom)
model-observation comparisons for integrated primary production
(Eppley-VGPM estimated). In the upper panel, simulated annual
means for different regions are compared to corresponding obser-
vational fields. In the lower panel, simulated global average means
for different months are compared to corresponding observational
fields.

production occurs in the mixed layer. Following up on nutri-
ent limitation, Fig.29shows summertime average limitations
for both phytoplankton. Averaging spatially, non-diatoms are
slightly more limited by iron (0.579) than nitrogen (0.636).
Diatoms are most limited by iron (0.412), followed by silicon
(0.511) then nitrogen (0.568). Figure30 shows the overall
scale of summertime nutrient limitation on both phytoplank-
ton groups, together with maps that indicate the geograph-
ical distribution of “most limiting nutrient”. Although less
factors are considered in this analysis, the factors most limit-
ing phytoplankton correspond fairly well to those identified
by the BEC model ofMoore et al.(2004). In the case of
non-diatom phytoplankton, both models identify nitrogen as
the most limiting nutrient in oligotrophic gyre regions, and
iron in the equatorial Pacific and high latitude regions. In
the case of diatom phytoplankton, the picture is somewhat
different. BEC’s diatoms are stressed in a similar pattern
to its non-diatoms, with additional silicon stress around the
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Fig. 22.Taylor diagrams of spatial (top) and temporal (bottom) model–observation comparisons for integrated primary
production (CbPM estimated). In the upper panel, simulatedannual means for different regions are compared to corre-
sponding observational fields. In the lower panel, simulated global average means for different months are compared
to corresponding observational fields.

Fig. 22. Taylor diagrams of spatial (top) and temporal (bottom)
model-observation comparisons for integrated primary production
(CbPM estimated). In the upper panel, simulated annual means
for different regions are compared to corresponding observational
fields. In the lower panel, simulated global average means for dif-
ferent months are compared to corresponding observational fields.

region of iron stress in the equatorial Pacific and in the high
North Atlantic. While MEDUSA shows a simliar pattern, its
diatoms are also silicon-stressed in broad fringes around the
oligotrophic gyre regions. Although these regions are not
especially important for primary production, the extreme sil-
icon stress in MEDUSA, at least relative to BEC, may point
to excessively efficient export of silicon relative to nitrogen.

Largely following the availability of their favoured prey,
Fig. 28shows the seasonal distributions of micro- and meso-
zooplankton. The former closely matches the availability
of the small, non-diatom phytoplankton. However, although
the mesozooplankton have a preference for microzooplank-
ton equal to diatoms, their distribution closely resembles di-
atoms, with generally low concentrations elevated wherever
diatoms are blooming. However, while the diatoms are the
smaller fraction of the phytoplankton community, their graz-
ers make up 55.5 % of total surface zooplankton.

www.geosci-model-dev.net/4/381/2011/ Geosci. Model Dev., 4, 381–417, 2011
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Fig. 23. Simulated surface non-diatom phytoplankton (left) and
diatom phytoplankton (right) concentrations for northern summer
(June-July-August; top) and northern winter (December-January-
February; bottom). Concentrations in mmol N m−3.

Fig. 24. Simulated non-diatom (left) and diatom (right) primary
production for northern summer (June-July-August; top) and north-
ern winter (December-January-February; bottom). Production in
g C m−2 d−1.

Another size-based aspect of MEDUSA lies in slow- and
fast-sinking detritus. Figure31shows the production of both
classes of detritus. Unsurprisingly, given MEDUSA’s food-
web, the distribution of slow-sinking detritus largely resem-
bles that of the the smaller scale portion of the ecosystem,
while fast-sinking detritus follows diatoms and mesozoo-
plankton. In terms of production, 73.3 % of detrital particles
are small but, as Fig.32 shows, by 100 m the total sinking
flux has fallen to 27.7 % of the 29.7 Gt C yr−1 produced, of

Fig. 25. Simulated surface diatom phytoplankton Si:N ratio (left)
and iron concentration (right) for northern summer (June-July-
August; top) and northern winter (December-January-February;
bottom). Ratio in mol Si (mol N)−1; concentration in µmol Fe m−3.

Fig. 26. Simulated diatom biogenic opal (left) and calcium carbon-
ate (right) production for northern summer (June-July-August; top)
and northern winter (December-January-February; bottom). Bio-
genic opal production in mmol Si m−2 d−1; calcium carbonate pro-
duction in mmol C m−2 d−1.

which only 37.4 % is made up of small particles. Figure27
shows the corresponding magnitude of the sinking flux that
reaches the model seafloor.

Figures33 to 35show the time evolution of regionally av-
eraged nutrient profiles across the whole simulated period.
These are plotted to quantify the scale of vertical nutrient re-
distribution that occurs during MEDUSA simulations, and to
assess the extent to which the model has equilibriated by the
end of the simulated period. Since the resupply of surface

Geosci. Model Dev., 4, 381–417, 2011 www.geosci-model-dev.net/4/381/2011/
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Fig. 27. Simulated mixed layer primary production fraction (left)
and seafloor detrital flux (right) for northern summer (June-July-
August; top) and northern winter (December-January-February;
bottom). Production fraction is dimensionless; seafloor detrital flux
in mg C m−2 d−1, and shown on a logarithmic scale.

Fig. 28. Simulated surface microzooplankton (left) and mesozoo-
plankton (right) concentrations for northern summer (June-July-
August; top) and northern winter (December-January-February;
bottom). Concentrations in mmol N m−3.

nutrients is dependent on vertical gradients, changes in these
wrought by the model can be very important.

Of the two macronutrients, nitrogen and silicon, profiles
change only slightly during the simulation. The most striking
changes occur in the Southern Ocean where both show strong
shifts in the vertical gradients of nutrient concentration. As
already seen in the fields shown in Figs.7 and 9, surface
concentrations in this region increase significantly relative to

Fig. 29. Simulated summertime average non-diatom (left) and di-
atom (right) limitation factors for nitrogen (top), iron (middle) and
silicon (bottom) nutrients. Limitation is weighted by biomass and
integrated for the full water column. Limitation is dimensionless.

Fig. 30. Simulated summertime average non-diatom (top) and di-
atom (bottom) integrated nutrient limitation (left) and most-limiting
nutrient (right). Limitation is weighted by biomass and integrated
for the full water column. Limitation is dimensionless.

the World Ocean Atlas. By the end of the simulation these
rises have slowed significantly, but they suggest a systematic
problem with either physical or biogeochemical fluxes in this
ocean region.

www.geosci-model-dev.net/4/381/2011/ Geosci. Model Dev., 4, 381–417, 2011
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Fig. 31. Simulated slow (left) and fast (right) detritus production
for northern summer (June-July-August; top) and northern win-
ter (December-January-February; bottom). Detritus production in
mmol N m−2 d−1.

Fig. 32. Simulated slow (left) and fast (right) detrital sinking fluxes
at 100 m for northern summer (June-July-August; top) and northern
winter (December-January-February; bottom). Detritus production
in mmol N m−2 d−1.

In the case of iron, in which the initial condition is from
model output rather than an observational climatology, any
changes that occur in basin profiles are less clearly erroneous.
A general pattern is for iron concentrations to fall slightly
in the surface 100 m within the first decade of simulation,
and then to stabilise to a repeating annual cycle afterwards.
This quick equilibriation is unsurprising, since surface iron
concentrations are strongly controlled by aeolian deposition
and biological activity. However, below around 1000 m iron

Fig. 33. Simulated vertical profiles of dissolved inorganic nitrogen
concentration averaged for the World Ocean (top left) and 5 major
regions. Concentrations in mmol N m−3. Note that depth is shown
on a logarithmic scale.

concentrations are clearly drifting slowly downwards on a
much longer time-scale. This difference between the iron and
the nitrogen cycles is initially surprising, since the former is
largely slaved to the latter, though it stems in part from the
inclusion of iron scavenging, a biogeochemical pathway that
has no analogue in the nitrogen cycle. Some iron cycle mod-
els stop scavenging below a fixed concentration (e.g.Aumont
et al., 2003), while others tie it to the concentration of biolog-
ical particles (e.g.Moore et al., 2004; Galbraith et al., 2010)
both of which would act to decrease the deep drift found in
MEDUSA. However, other studies also use lower resolution
GCMs and much longer spin-up periods (4000 yr,Aumont et
al., 2003; 3000 yr,Dutkiewicz et al., 2005; 3000 yr,Moore
and Doney, 2007; 1000 yr, Galbraith et al., 2010), and the
drift in M EDUSA may simply stem from the short spin-up
used in this study.

Finally, Fig. 36 complements earlier results by showing
globally averaged time-series of the surface fields that are
compared above to observations. The panels illustrate both
the monthly variability across the simulation, and the inter-
annual trends as it progresses. As already noted, the sur-
face concentrations of both macronutrients show a common
pattern of initial rise, followed by a gradual plateauing as
their distributions come into equilibrium with physical and
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Fig. 34. Simulated vertical profiles of silicic acid concentration av-
eraged for the World Ocean (top left) and 5 major regions. Concen-
trations in mmol Si m−3. Note that depth is shown on a logarithmic
scale.

biogeochemical fluxes. In contrast, both surface chlorophyll
and primary production are relatively constant, and show no
systematic drift. Inter-annual variability occurs, but there is
no strong trend to increased or decreased biological activ-
ity. Assuming that NEMO’s physical behaviour is realistic
(which is supported by NEMO’s good agreement with obser-
vational fields), this suggests that MEDUSA has a systematic
deficiency that permits the accumulation of nutrients in the
surface waters of (largely) the Southern Ocean.

5 Discussion

A significant factor in the adoption of increasingly complex
models is the growing awareness of how ongoing anthro-
pogenic changes to the Earth system will impact plankton
ecosystems in a disparate number of ways. The most well-
known of these changes is the warming of the Earth’s cli-
mate by the accumulation of the climatically-active gas CO2
in the atmosphere. This warming has led to a concommitant
warming of the (surface) ocean (e.g.Lyman et al., 2010),
and it is believed that this will primarily impact plankton
systems through changes to surface nutrient concentrations
driven by increasing water column stratification (e.g.Bopp
et al., 2005). This change in the availability of raw materials

Fig. 35. Simulated vertical profiles of iron concentration averaged
for the World Ocean (top left) and 5 major regions. Concentrations
in µmol Fe m−3. Note that depth is shown on a logarithmic scale.

for phytoplankton growth is a fundamental one for plank-
ton systems, and is amenable to study using even relatively
simplified NPZD models. However, a number of other ongo-
ing changes require more sophisticated treatments of marine
ecology. For example, although increasing ocean stratifica-
tion will lead to decreasing vertical nutrient supply to the
surface ocean, not all nutrient species will be affected sim-
ilarly because of differences in their distributions. Nitrogen
and phosphorus nutrients, for instance, are known to covary
strongly in a Redfield relationship (Tyrrell, 1999). However,
silicic acid is regenerated much deeper in the water column
(Yool and Tyrrell, 2003), and is liable to be affected differ-
ently by increasing stratification. Since this nutrient plays a
crucial role in the ecology of the diatoms, a key phytoplank-
ton group (Mann, 1999) with an important role in export
production (Dugdale and Wilkerson, 1998), wider ecosystem
functioning is liable to change if the diatoms become disad-
vantaged.

Similarly, also in part related to the change in surface nu-
trient conditions, another anticipated impact lies with the oc-
currence and distribution of nitrogen fixation (Capone et al.,
2005). This process is an important source of fixed nitro-
gen for oligotrophic regions of the surface ocean, and off-
sets its consumption through denitification (Tyrrell, 1999). A
declining supply of physically-supplied fixed nitrogen from

www.geosci-model-dev.net/4/381/2011/ Geosci. Model Dev., 4, 381–417, 2011
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Fig. 36. Globally averaged surface dissolved inorganic nitrogen
(top left), surface silicic acid (top right), surface chlorophyll (bot-
tom left) and integrated primary production (bottom right). Solid
black lines are annual averages/integral; individual points are indi-
vidual months. Note that individual monthly primary production
values have been normalised so that they appear on the same scale
as annual integrals.

depth driven by increasing stratification and, potentially, in-
creasing anoxia-mediated denitrification (cf.Deutsch et al.,
2007), may act to shift phytoplankton community structure
in favour of groups capable of utilising dissolved dinitrogen
gas. The invasion of the ocean by anthropogenic CO2 is in-
creasing dissolved inorganic carbon concentrations (Key et
al., 2004), and altering the pH of seawater. This process,
known as ocean acidification (Caldeira and Wickett, 2003;
Orr et al., 2005), is predicted to have a number of different
effects on ocean biota (Raven et al., 2005), but a major one
will be the increasing solubility of the biomineral calcium
carbonate in surface (and deep) waters. Since a large num-
ber of planktonic species utilise this mineral for structural
purposes, changes in seawater chemistry that accelerate its
dissolution are liable have a significant impact.

These latter changes to the ocean system mitigate in favour
of ecosystem models that include more sophistication than
conventional NPZD models, so that their consequences can
be assessed. However, although research has outlined the
ecosystem processes described above, there are still large
gaps that preclude robust and reliable predictions. For in-
stance, in the case of nitrogen fixation, there are a number of
different phylogenetic groups engaged in this process (e.g.
cyanobacteria, diatoms, even some metazoans;Kneip et al.,
2007), with the result that functional behaviour is diverse and
difficult to model within the confines of a single state vari-
able. There are potentially even issues concerning seemingly
established ideas about the correlation of nitrogen fixation

with warm waters (cf.Le Qúeŕe et al., 2005) that may be
incorrect (cf.Monteiro et al., 2010). Similarly, while calcifi-
cation may be expected to be straightforwardly related to the
saturation state of calcium carbonate, experimental and field
work has found a wide range of responses that, again, pre-
clude simple modelling (e.g.Riebesell et al., 2000; Iglesias-
Rodriguez et al., 2008).

Within this context, MEDUSA aims to expand upon clas-
sical NPZD models, while restricting itself to biogeochem-
ical cycles and biological functional groups that are more
completely understood (cf.Anderson, 2005; Flynn, 2005).
Hence, MEDUSA’s incorporation of diatoms and the silicon
cycle (cf. Smetacek, 1985; Dugdale and Wilkerson, 1998),
and a microbial loop of smaller phytoplankton and zooplank-
ton (cf. Pomeroy, 1974; Azam et al., 1983). However, as
noted byHood et al.(2006), even these expansions are not
without uncertainty. The silicon cycle, for instance, ignores
the contributions to opal production of both the silicoflagel-
lates and (more significantly) the radiolarians. Furthermore,
MEDUSA also omits a detailed consideration of internal cell
physiology (cf.Flynn, 2001). Nonetheless, the intention of
MEDUSA is to provide a post-NPZD plankton ecosystem
model, with a parameterisation that is robust, and whose ma-
jor state variables are amenable to analysis and comparison
with observational data throughout the global domain.

In general, MEDUSA’s performance is acceptable, with
global patterns of nutrients and productivity that follow those
observed. Major features such as oligotrophic gyres and the
seasonal progression of plankton blooms and nutrient deple-
tion are reproduced. And at the global scale, MEDUSA’s pro-
ductivity falls well within the range estimated from obser-
vations, both in terms of organic carbon and biogenic opal.
Furthermore, although indirect, the multi-decadal stability
of vertical macronutrient gradients (except in the South-
ern Ocean; see below) suggests that MEDUSA’s export pro-
duction successfully balances nutrient resupply by physical
mechanisms. Drifts in deep iron concentrations suggest an
insufficient spin-up period, but surface gradients equilibri-
ate quickly as with the macronutrients. However, there are
a number of significant discrepancies between MEDUSA and
observations that should be noted.

Firstly, MEDUSA tends to accumulate nutrients, especially
silicic acid, in the surface waters of the Southern Ocean.
Since MEDUSA’s productivity is similar to that estimated
from satellite observations, this tends to suggest that either
the export fraction of MEDUSA is too low in this region (i.e.
the biological pump does not transfer organic material deep
enough), or that NEMO’s upwelling is too strong (i.e. ex-
cessive quantities of nutrient are upwelled, and cannot be
processed by surface biology). Given the good agreement
between NEMO and observed physical fields, the former ex-
planation may guide future improvement.

Secondly, the oligotrophic gyres in MEDUSA have lower
concentrations of chlorophyll and are less productive than
observed. Again, this may be the result of either biological
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or physical deficiencies in the model. For instance, the low
nutrient concentrations in these regions may be insufficient to
permit even slow growth of MEDUSA’s phytoplankton on re-
cycled nutrients. Alternatively, the resolution of NEMO used
here may omit mesoscale processes that supply nutrients to
the surface ocean (e.g.McGillicuddy et al., 2003). As noted
already, the former suggestion is supported by work that per-
mits adaptation of model phytoplankton to oligotrophic con-
ditions (Smith et al., 2009). The latter suggestion may be
investigated in future using higher resolution instances of
NEMO.

As noted, both of these deficiencies may have biogeo-
chemical roots. At present, MEDUSA has not been objec-
tively tuned to more closely match observational fields. Cur-
rent parameterisation is instead derived from literature values
and from subjective “tuning” where parameter values have
been found to cause systematic errors. Previous studies have
found that the localised optimisation of a biogeochemical
model at particular locations can be successful at improving
model performance when the model is then simulated in 3-D
at large scale (Oschlies and Schartau, 2005). Consequently,
objective tuning, coupled to validation in 3-D, may be a fu-
ture avenue to improve the performance of MEDUSA and to
diminish the most significant current errors.

On a separate but related point, some of MEDUSA’s defi-
ciencies may stem from deeper, structural issues such as the
forms of growth and mortality terms. To examine this, albeit
incompletely, AppendixA describes a series of four sensi-
tivity analyses that explore several key aspects of MEDUSA’s
formulation. In general, these do not find strong dependence
of the default simulation’s results on particular features of
MEDUSA, though in the case of coastal nutrient relaxation
this is found to operate in an unintended fashion in some lo-
cations.

A further issue with the simulation of MEDUSA examined
here is the suggestion that the spin-up period used is insuf-
ficient, most clearly apparent in the drift of deep iron con-
centrations, but also in the more gradual adjustment of DIN
and silicic acid distributions. In the specific case of iron,
given an initial condition derived from a different model,
the operation of iron scavenging throughout the model do-
main, and the long ventilation timescale of the deep ocean
(2000 yr; Ostlund and Stuiver, 1980), this is perhaps un-
surprising. The medium resolution used here, as well as
the high resolution used in other applications of MEDUSA

(e.g. Popova et al., 2010), preclude spin-ups of more than
a few decades. However, lower resolution instances of the
NEMO GCM are available, and future investigation of up-
scaled MEDUSA output from longer spin-ups of coarser grids
may provide one solution to this problem. This approach,
or similar, will be of particular relevance in the case of in-
vestigations at centennial-scale duration (e.g. climate change
forecast simulations) where drifts in biogeochemical prop-
erties may be comparable to, or even obscure, actual forced
trends. In such cases either a parallel (and expensive) control,

or a more completely spun-up model is essential. Nonethe-
less, and as noted already, despite deep ocean drifts, the bio-
geochemical cycles of MEDUSA’s surface ocean, where most
biological activity takes place, reach quasi-equilibrium well
within the time-scale of the simulation described here.

In summary, despite the deficiencies noted above, we be-
lieve that MEDUSA represents a valuable tool for global scale
simulations of the plankton ecosystem. One that is interme-
diate between the simplicity of NPZD models, and the expen-
sive complexity of PFT models, but whose complexity pro-
vides a “good fit” with our current ability to validate models
at the global scale. Future work with MEDUSA will include
its application to a range of contemporary topics, including
Arctic climate change (Kwok and Rothrock, 2009) and ocean
acidification (Orr et al., 2005).

6 Conclusions

– MEDUSA, a novel, size-based plankton ecosystem
model of the nitrogen, silicon and iron cycles for the
global ocean is introduced.

– The performance of MEDUSA is evaluated using global-
scale observational fields following a multi-decadal
simulation (1966 to 2005 inclusive).

– MEDUSA reliably produces global patterns of surface
nutrients and productivity, and (generally) preserves
vertical nutrient gradients.

– MEDUSA’s major deficiencies are excessive surface nu-
trients in the Southern Ocean (especially silicic acid),
and low productivity in oligotrophic gyres.

– MEDUSA estimates that surface productivity is domi-
nated by small plankton, but that the deep biological
pump is driven by large plankton.

Appendix A

Sensitivity analysis

As described in Sect.5, a series of sensitivity analyses were
undertaken to explore particular assumptions made in the de-
fault MEDUSA simulation. This section provides a full de-
scription of the changes to MEDUSA for each of the different
analyses, together with a brief summary of the results ob-
tained.

In each case the model state of the default run at the end
of year 2001 was used as an initial condition for a 4 yr re-
peat of the period 2002–2005 inclusive. This period is not
long enough for the altered model to reach full equilibrium,
but it was found to be sufficient for general behaviour to
be established (from experience during the development of
MEDUSA). The first 3 yr of this repeat period (2002–2004)
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Fig. A1. Zonal average primary production (g C m−2 d−1; top)
and change in primary production from the default simulation
(g C m−2 d−1; bottom) for sensitivity simulations using default
(red), equal (green) and reversed (blue; default) phytoplankton
growth rates.

were used to spin-up the model, with analysis focusing on
the final year (2005).

The results of these sensitivity simulations are presented
in Figs.A1 to A7, and via summary statistics in TablesA1
andA2.

A1 Phytoplankton growth rates

In default MEDUSA, non-diatom phytoplankton are as-
sumed to be representative of smaller phytoplankton
and, correspondingly, have higher maximum growth rates
(0.53 d−1 > 0.50 d−1) than diatom phytoplankton (Furnas,
1990). Nonetheless, there are wide ranges in both phyto-
plankton cell size (large and small diatoms/non-diatoms) and
in growth parameters. To examine the significance of the
choice to assign non-diatom phytoplankton higher maximum
growth rates than diatoms, two sensitivity simulations were
performed:

– Both phytoplankton groups have the same maximum
growth rate (i.e.VPn = VPd = 0.53 d−1).

– The growth differential is reversed between the phyto-
plankton groups (i.e.VPn = 0.50 d−1, VPd = 0.53 d−1).

A1.1 Summary

In the case of both simulations, change leads to increased di-
atom production (unsurprising since they are the beneficiary
in both cases) but decreased total primary production, per
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Fig. A2. Zonal average primary production (g C m−2 d−1; top)
and change in primary production from the default simulation
(g C m−2 d−1; bottom) for sensitivity simulations using multiplica-
tive (red; default) and Liebig law of the minimum (blue) nutrient
uptake.

Fig. A1. The changes are most pronounced in the case where
growth rate disparity is reversed in favour of the diatoms.

However, the magnitude of change is small (at most
−1.3 % for total primary production, and +8.5 % for di-
atom production), suggesting that total primary production
MEDUSA is not particularly sensitive to the exact magnitudes
of growth rates. Structural considerations (i.e. that diatoms
are only grazed by mesozooplankton) are probably more sig-
nificant.

A2 Multiple nutrient limitation

Default MEDUSA treats multiple nutrient limitation of phyto-
plankton in a multiplicative manner whereby individual lim-
itation terms are multiplied together to determine overall nu-
trient limitation of growth (O’Neill et al., 1989).

Qmultiplicative =
N

kN +N
·

F

kFe+F
(A1)

A commonly-used alternative approach is to instead limit
phytoplankton growth by the Michaelis-Menten term of the
most limiting nutrient, the so-called Liebig law of the mini-
mum (O’Neill et al., 1989).

Qliebig = min

(
N

kN +N
,

F

kFe+F

)
(A2)

To examine the significance of the choice of multiplicative
nutrient limitation, a sensitivity simulation was performed in
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Fig. A3. Shape of specific mortality rate terms for each functional
form for each plankton type. Parameter values used are described
in the text.

which the relevant terms in the non-diatom and diatom phy-
toplankton equations were altered to a Liebig formulation.

A2.1 Summary

Switching from multiplicative to Liebig nutrient limitation
leads to an increase in primary production (+2.9 %), per
Fig. A2. This is not surprising given that the multiplicative
form necessarily decreases nutrient uptake since each com-
ponent term is<1. In terms of geographical distribution,
productivity increases in equatorial upwelling and temperate
regions, but decreases in the oligotrophic gyres. This is pre-
sumably due to a decline in the lateral transport of nutrients
caused by the elevated consumption in adjacent regions. Pro-
ductivity is changed least southwards of the Antarctic Front.
All three nutrients experience declines, most noticeably ni-
trogen, as do surface concentrations of all plankton types,
with the exception of diatoms.

However, overall change is still relatively slight, with di-
atom productivity experiencing the biggest “kick” from the
adoption of Liebig limitation (+13.6 %; and a shift in phyto-
plankton community structure towards diatoms).

A3 Density-dependent mortality

Non-grazing mortality in all four plankton components of
MEDUSA is divided into density-independent (= linear) and
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Fig. A4. Zonal average primary production (g C m−2 d−1; top)
and change in primary production from the default simulation
(g C m−2 d−1; bottom) for sensitivity simulations using linear (red),
quadratic (green), hyperbolic (blue; default) and sigmoid (magenta)
mortality terms.
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Fig. A5. Zonal average concentrations (mmol N m−3) of non-
diatom phytoplankton (top left), diatoms (top right), microzoo-
plankton (bottom left) and mesozooplankton (bottom right) for sen-
sitivity simulations using linear (red), quadratic (green), hyperbolic
(blue; default) and sigmoid (magenta) mortality terms.

density-dependent (= non-linear) components. Following
Fasham(1993), the latter terms in default MEDUSA are hy-
perbolic functions in which mortality is density-dependent
at low plankton abundance, but saturates at high abundance.
The form of such mortality in plankton ecosystem models
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Fig. A6. Annual mean surface DIN (mmol N m−3; left) and silicic
acid (mmol Si m−3; right) concentrations for the default simulation
(top), together with that for a sensitivity simulation with no coastal
relaxation of nutrient concentrations.

is not well-constrained by observational evidence and has
received considerable attention, particularly since this so-
called “closure term” is the link to unmodelled higher preda-
tors (e.g.Steele and Henderson, 1992; Edwards and Yool,
2000; Fussmann and Blasius, 2005; Anderson et al., 2010).

To examine the significance of the choice of hyperbolic
mortality terms for modelled plankton groups, three addi-
tional simulations were performed in which the mortality
terms for all four groups were altered to linear, quadratic and
sigmoid forms (as shown below; hyperbolic shown for com-
parison).

Linear M2X = µ2, X · X (A3)

Quadratic M2X = µ2, X · X2 (A4)

Hyperbolic M2X = µ2, X ·
X

kX +X
· X (A5)

Sigmoid M2X = µ2, X ·
X2

k2
X +X2

· X (A6)

Of these, use of the linear term merely equates to a change
in the value of theµ1, X parameter in the M1X terms, and has
only been performed here for completeness. The quadratic
term is the most significantly different, since the mortality
rate never saturates and instead continues to increase with
abundance. The sigmoid term is similar to the hyperbolic
term used in default MEDUSA, but exhibits a more gradual
increase in mortality at low abundance that acts to create a
“refuge” for scarce plankton.

In order that the sensitivity simulations were as compa-
rable with one another as possible, the parameter values for
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Fig. A7. Zonal average primary production (g C m−2 d−1; top)
and change in primary production from the default simulation
(g C m−2 d−1; bottom) for sensitivity simulations with (red; de-
fault) and without (blue) coastal nutrient relaxation.

µ2, X used in each form for each plankton group (X) were
chosen such that total mortality matched that calculated us-
ing the hyperbolic form and annual average abundances from
the default MEDUSA simulation. This approach results in the
use of the following parameter values:

Plankton Linear Quadratic Hyperbolic Sigmoid

Pn 0.038 0.115 0.100 0.129
Pd 0.029 0.110 0.100 0.158
Zµ 0.028 0.131 0.100 0.176
Zm 0.061 0.155 0.200 0.288

In the case of sigmoid mortality, values ofkX were un-
changed from those of default hyperbolic mortality. Fig-
ureA3 illustrates the shape of specific loss rates for each of
these functional forms for each plankton type.

A3.1 Summary

The adoption of alternative mortality schemes causes some
of the largest and most diverse changes in MEDUSA be-
haviour in this sensitivity analysis. FiguresA4 andA5 zonal
averages of primary production and surface plankton concen-
trations for the three alternative schemes alongside default
hyperbolic.

The replacement of density-dependent mortality terms
with wholly linear ones causes the most significant changes
but, as noted above, this mortality term was only used here
for completeness, and these results should not be viewed
as plausible. Use of the quadratic and sigmoid terms only
results in relatively minor shifts from that of the default
MEDUSA simulation. In general, both of these alternative
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Table A1. Sensitivity of MEDUSA state variables. The first row shows annual average surface concentrations of each state variable in
mmol m−3 (except Fe, which is in µmol m−3) for the year 2005. Subsequent rows list the percentage changes in these concentrations for
each of the sensitivity simulations for the same year.

Experiment Pn Pd Zµ Zm N Si Fe

Default 0.263 0.114 0.143 0.168 6.083 10.77 0.509

Equal Vp −0.4 % +3.4 % −0.9 % +0.3 % −0.5 % −1.9 % −0.2 %
Reverse Vp −1.3 % +6.7 % −2.9 % −0.7 % +0.2 % −2.9 % +0.1 %

Liebig −7.1 % +4.3 % −8.9 % −1.3 % −4.0 % −1.5 % −2.2 %

Linear −13.9 % +78.2 % +4.6 % −1.5 % −3.2 % −4.5 % −1.4 %
Quadratic +2.8 % −0.2 % −1.1 % +9.2 % +0.6 % −0.0 % +0.3 %
Sigmoid +5.9 % +1.1 % +0.6 % +21.3 % +1.6 % +0.7 % +0.7 %

No relax −3.2 % −5.8 % −4.4 % −5.6 % +2.9 % −0.2 % +1.2 %

Table A2. Sensitivity of MEDUSA biogeochemical fluxes. The first row shows annual integrals of each flux in Gt C yr−1 (except opal
production, which is in Tmol Si yr−1) for the year 2005. Subsequent rows list the percentage changes in these fluxes for each of the
sensitivity simulations for the same year.

Experiment Total PP Pd PP UML PP Opal Slow D Fast D

Default 46.66 7.76 34.91 225.1 22.25 8.18

Equal Vp −0.0 % +4.7 % +0.1 % +3.1 % −0.5 % +1.3 %
Reverse Vp −1.3 % +8.5 % −1.5 % +5.1 % −2.6 % +0.5 %

Liebig +2.9 % +13.6 % −1.7 % +3.4 % +2.1 % +9.1 %

Linear −5.1 % +22.7 % −4.8 % +25.7 % −4.5 % +3.9 %
Quadratic +1.5 % +0.0 % +1.6 % −0.9 % −0.7 % +0.9 %
Sigmoid +3.7 % +0.3 % +3.9 % −2.8 % −1.0 % +0.9 %

No relax −4.2 % −6.7 % −4.0 % −16.3 % −3.7 % −4.7 %

terms slightly increase productivity (particular that of non-
diatoms), particularly in the fringes of oligotrophic regions.
The largest changes occur in mesozooplankton, but even then
are relatively minor. The close correspondence in MEDUSA

between simulations using quadratic and sigmoid forms is
perhaps unsurprising given the broad overlap between both
forms that can be seen in Fig.A3. Until quite large plankton
concentrations, both forms result in similar magnitude spe-
cific mortality rates, and both have lower mortality than the
default hyperbolic term at low plankton concentrations.

In general, while the use of different mortality terms
causes spatio-temporal changes in model behaviour, these
are (with the exception of linear mortality) minor in scale.
However, given the method of parameterisation employed
here (i.e. chosen to produce an equal magnitude of mortal-
ity given the same annual average plankton field), this is per-
haps to be expected. Nonetheless, the findings suggest that
MEDUSA is not particularly sensitive to the default choice of
hyperbolic mortality.

A4 Coastal nutrient relaxation

In the default MEDUSA simulation dissolved inorganic ni-
trogen and silicic acid concentrations are relaxed towards
World Ocean Atlas climatology values in grid cells within
100 km of land to simulate unresolved coastal processes such
as riverine fluxes of these nutrients. To examine the signif-
icance of this for the wider ocean, an additional simulation
was performed in which no relaxation occurred. No other
changes were implemented in this simulation.

A4.1 Summary

Figure A6 shows surface nutrient fields for both the de-
fault, relaxed simulation and the corresponding no relax-
ation simulation. Unsurprisingly, the largest differences oc-
cur in coastal waters, most notably off the western margin of
South America where strong upwelling introduces high nu-
trient concentrations to surface waters. Perhaps more sur-
prisingly is that the main effect of relaxation is tolower
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nutrient concentrations back towards those values in the forc-
ing WOA climatology. While nutrient concentrations are
elevated as intended in other areas, this is somewhat at
odds with the intention to emulate the addition of nutrients
by rivers. In the case of silicic acid, the global effect of
relaxation is to marginally decrease surface concentrations
(−0.2 %), and the most significant deviation in the no relax-
ation simulation is a marked (−16.3 %) drop in biogenic opal
production. FigureA7 shows the corresponding changes in
zonal primary production. Because coastal areas, and thus
relaxation, is not evenly distributed, a simple pattern is not
immediately discernible, although in common with the nutri-
ent fields, the changes are both positive and negative.

Nonetheless, in general the change from the default sim-
ulation is still relatively modest. But the operation of relax-
ation in the opposite sense from that intended does point to it
being of less utility than originally envisaged, though it may
still be important in regions where riverine supply of nutri-
ents is significant such as the Arctic Ocean (cf.Popova et al.,
2010).

Appendix B

Code structure

The following provides a structural outline of the computer
code that accompanies this description of MEDUSA. This
code does not encompass the entire NEMO model, but in-
cludes those modules that either include MEDUSA’s calcula-
tions, or those in which MEDUSA makes an appearance for
operational reasons.

The MEDUSA model is organised in a similar manner
to other passive tracer modules in the NEMO model. The
majority of the code directly associated with MEDUSA is
located within theNEMO/TOPSRC/MEDUSAdirectory,
with one minor exception that is described later. The actual
model code is distributed across 9 separate routines as
follows.

– par medusa.F90
this routine declares the tracer and diagnostic arrays
required for MEDUSA ,

– sms medusa.F90
this routine declares the parameters required for
MEDUSA ,

– trcctl medusa.F90
this routine checks that the correct number of passive
tracers is specified,

– trcini medusa.F90
this routine initialises the passive tracers to default
values unless they are provided by a restart file,

– trclsm medusa.F90
this routine initialises the parameters to the values
specified innamelist.trc.sms ,

– trcsms medusa.F90
this routine is called by the NEMO model during a
simulation and in turn calls the MEDUSA routines that
calculate biogeochemical sources and sinks,

– trcopt medusa.F90
this routine calculates the submarine light field,

– trcbio medusa.F90
this is the main model routine and includes (almost) all
of the ecosystem equations used for the biogeochemical
sources and sinks for tracers,

– trcsed medusa.F90
this routine both initialises the aeolian iron deposition
and�calciteCCD fields and calculates the sinking of the
slow detritus tracer.

Aside from these routines, MEDUSA includes a fur-
ther modification to the passive tracer damping routine,
trcdmp.F90 . In MEDUSA, an existing tracer damping sub-
routine is altered such that dissolved inorganic nitrogen and
silicic acid are damped globally but only within 100 km of
the coast. This damping relaxes nitrogen and silicon nutri-
ents towards World Ocean Atlas values (Garcia et al., 2006),
and aims to emulate the supply of these macronutrients to
coastal regions from riverine sources. Since no correspond-
ing climatology exists for the iron micronutrient, its concen-
trations experience no relaxation anywhere within the model
ocean.

Supplementary material related to this
article is available online at:
http://www.geosci-model-dev.net/4/381/2011/
gmd-4-381-2011-supplement.zip.
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