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Abstract. The need to perform long-term simulations with
reasonable accuracy has led to the development of mass-
conservative and efficient numerical methods for solving the
transport equation in forward and inverse models. We de-
signed and implemented a flux-form (Eulerian) tracer trans-
port algorithm in the National Institute for Environmental
Studies Transport Model (NIES TM), which is used for sim-
ulating diurnal and synoptic-scale variations of tropospheric
long-lived constituents, as well as their seasonal and inter-
annual variability. Implementation of the flux-form method
requires the mass conservative wind fields. However, the
model is off-line and is driven by datasets from a global
atmospheric model or data assimilation system, in which
vertically integrated mass changes are not in balance with
the surface pressure tendency and mass conservation is not
achieved. To rectify the mass-imbalance, a flux-correction
method is employed. To avoid a singularity near the poles,
caused by the small grid size arising from the meridional
convergence problem, the proposed model uses a reduced
latitude–longitude grid scheme, in which the grid size is dou-
bled several times approaching the poles. This approach
overcomes the Courant condition in the Polar Regions, main-
tains a reasonably high integration time-step, and ensures ad-
equate model performance during simulations. To assess the
model performance, we performed global transport simula-
tions for SF6, 222Rn, and CO2. The results were compared
with observations available from the World Data Centre for
Greenhouse Gases, GLOBALVIEW, and the Hateruma mon-
itoring station, Japan. Overall, the results show that the
proposed flux-form version of NIES TM can produce tro-
pospheric tracer transport more realistically than previously
possible. The reasons for this improvement are discussed.
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1 Introduction

Global three-dimensional chemistry transport models (here-
after referred to as CTMs), driven by actual meteorology
from numerical weather predictions, and global circulation
models (GCMs) play a crucial role in assessing and pre-
dicting change in the composition of the atmosphere due to
anthropogenic activities and natural processes (Rasch et al.,
1995; Jacob et al., 1997; Denning et al., 1999; Bregman et
al., 2006; Law et al., 2008; Maksyutov et al., 2008; Patra et
al., 2008). Forward modelling is used to estimate tracer con-
centrations in regions that lack observation data and to iden-
tify the features of tracer transport and dispersion (Law et
al., 2008; Patra et al., 2008). Inverse methods are generally
applied when interpreting the data, with atmospheric trans-
port models providing the link between surface gas fluxes
and their subsequent influence on atmospheric concentra-
tions (Rayner and O’Brien, 2001; Patra et al., 2003a, b; Gur-
ney et al., 2004; Baker et al., 2006).

There are several factors that strongly influence model
performance: the numerical transport algorithm, meteoro-
logical data, grid type, and resolution. In tracer transport
calculations, semi-Lagrangian transport algorithms are of-
ten used in combination with finite-volume models. Losses
in the total tracer mass are possible in these algorithms.
While such losses are often negligible for short-term trans-
port simulations, they can seriously distort the global trends
and tracer budgets in long-term simulations. To avoid such
losses, various mass-fixing schemes have been applied (Hack
et al., 1993; Rasch et al., 1995). Although the use of mass
fixers can prevent mass losses, there remains a possibility
of predicting distorted tracer concentrations. In contrast,
when using a flux-form transport algorithm, the total tracer
mass is conserved and thus the issue of mass losses can
be eliminated, provided the flow is conservative. The use
of numerical schemes with limiters leads to distorted tracer
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concentrations and affects the linearity. Thus, to accurately
calculate the tracer concentration in a forward simulation
and to use the model in inverse modelling, we developed a
flux-form version of the National Institute for Environmental
Studies off-line global Transport Model (NIES TM).

To avoid a singularity near the poles caused by small grid
size associated with the meridional convergence problem,
the proposed version uses a reduced latitude–longitude grid
scheme (Kurihara and Holloway, 1967; Prather et al., 1987;
Williamson, 1992; Rasch, 1994) in which the grid size is
doubled approaching the poles. Consequently, it is possible
to run simulations without reducing the time step. Although
Bregman et al. (2006) described the pitfalls of polar model
grid averaging in global model studies of polar tracer trans-
port in the stratosphere, numerical advection schemes that
use a reduced grid generally perform well in model perfor-
mance tests and are efficient solvers in various applications
(Peterson et al., 1998).

An alternative way of solving the singularity problem is
the Lagrangian remapping method (Colella and Woodward,
1984; Lin and Rood, 1996; Lin, 2004), in which mass can
be transported across several grid cells in a single time step.
The Flux-Form Semi-Lagrangian Transport scheme (FFSL),
as proposed by Lin and Rood (1996), is unconditionally sta-
ble for nondeformational flows and has less-restrictive lim-
itations than the normal Courant number for deformational
flows. A drawback of this scheme is the difficulty encoun-
tered in implementing the parallel algorithm using domain
decomposition in the longitude direction on a regular grid,
requiring occasional communications across several neigh-
bouring domains. This problem complicates the design of a
parallel code with 3-D decomposition, which is desirable for
use on computer systems with thousands of cores. The re-
placement of the Courant-Friedrichs-Lewy (CFL) with Lif-
shitz criteria (Prather et al., 2008) is also way of solving the
singularity problem.

Other ways for avoiding the numerical difficulties of the
spherical poles are using the icosahedral (Niwa, 2010) and
cubic grids (Putman and Lin, 2007). The influence of grid
resolution on atmospheric composition simulation is a topic
of continuous interest. Marchand et al. (2003) and Bregman
et al. (2006) reported that grid resolution has a strong in-
fluence on the distribution of the tracer mixing ratio in the
Polar Regions. In contrast, van den Broek et al. (2003) re-
ported a negligible improvement in methane transport model
results with increasing horizontal grid resolution to 1◦

× 1◦

in a study on the effect of spatial resolution in the Polar Re-
gions. A significant sensitivity to horizontal resolution was
reported by Strahan and Polansky (2006), Patra et al. (2008)
and Prather et al. (2008). Searle et al. (1998) noted that the
sensitivity of the model results to the resolution depends on
the diffusivity of the advection scheme.

The quality of wind data provided by numerical weather
predictions is another crucial factor for tracer transport
(Jöckel et al., 2001; Stohl et al., 2004; Bregman et al.,

2006). Wind fields produced by the Data Assimilation Sys-
tem (DAS) are commonly used for driving CTMs. Spurious
variability or “noise” introduced via the assimilation proce-
dure affect the quality of meteorological data through a lack
of suitable observations or by the inaccurate treatment of
model biases (Bregman et al., 2006). This negative effect
is proportional to the dynamic time scale and increases with
operational time. The most sensitive area in this regard is the
lower stratosphere in tropical regions, where large volumes
of air move upward from the troposphere to the stratosphere.
A lack of observations makes this region the most challeng-
ing in terms of data assimilation. Bregman et al. (2006)
found that the modeled vertically integrated mass change
obtained for the tropical atmosphere is not in geostrophic
balance with the surface pressure tendency. Schoeberl et
al. (2003) suggested that GEOS DAS is less suitable for long-
term stratospheric transport studies than wind from a general
circulation model. At the same time, improvements to the
data assimilation system itself (ECMWF ERA-Interim re-
analysis; Dee and Uppala, 2009) and the development of spe-
cial products for use in transport models (MERRA: Modern
Era Retrospective-analysis for Research and Applications;
Bosilovich et al., 2008) have assisted in improving the accu-
racy of atmospheric circulation when using off-line models
(Monge-Sanz et al., 2007).

The remainder of this paper is organized as follows. Sec-
tion 2 provides information on the model and a detailed de-
scription of the meteorology dataset and flux correction pro-
cedure. In Sect. 3, we evaluate flux-form versions of the
NIES TM, including testing of numerical schemes, calcu-
lations with high-resolution grids, assessment of the mete-
orological datasets, and a comparison with observations and
with a Semi-Lagrangian version of NIES TM evaluated via
participation in TransCom intercomparison experiments. Fi-
nally, a summary and conclusions are provided in Sect. 4.

2 Model description

We designed a new version of NIES TM (denoted NIES-08)
with flux-form advection algorithms. As with the previous
model, which used semi-Lagrangian algorithms (Maksyu-
tov et al., 2008), we used a terrain followingσ vertical co-
ordinates and presented the atmospheric constituent trans-
port equation in the Lagrangian-style form (Willamson and
Laprise, 2000):

dqk

dt
=

∂qk

∂t
+V ·∇σ qk

+ σ̇ ·
∂qk

∂σ

=
∂

∂σ
F k

+Sk
∇σ =

∂

Rcos(φ)∂λ
+

∂

R∂φ
(1)

whereqk is thek-th tracer mixing ratio (volume) in dry air;
V is a vector of horizontal wind velocity, which consists of
longitudinal and latitudinal components (u, v) interpolated
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from the global analysis winds;̇σ is the vertical wind veloc-
ity component;F k is the vertical sub-gridscale flux caused
by moist convective transport and turbulent diffusion, as ob-
tained using parameterizations of the penetrative cumulus
convection and PBL climatology;Sk is the mixing ratio ten-
dency due to surface fluxes and chemical transformations;λ

andφ are longitude and latitude (in radians), respectively;
andR is the radius of the Earth.

2.1 Horizontal mass-flux correction

Because the three-dimensional flux-form NIES-08 transport
model accepts input field data in the form of mass fluxes
integrated on cell volume interfaces, it is necessary to in-
terpolate the wind fields on a regular grid and to integrate
the wind fields over the boundaries of grid cells. A prob-
lem of this approach is that the vertically integrated mass
change is not in balance with the surface pressure tendency
and mass conservation is not achieved. This drawback has
been recognized as the mass imbalance problem, and various
methods have been developed to minimize such inconsisten-
cies in the derivation of mass fluxes (Heimann and Keeling,
1989; Rotman et al., 2004). In the most consistent correction
method, designed by Segers et al. (2002), horizontal mass
fluxes are derived directly from the spectral vorticity and di-
vergence, resulting in a more accurate approximation of the
fluxes on cell volume interfaces and providing higher-quality
mass-conserving wind fields that require less mass-balance
correction. However, this method uses spectral fields (vortic-
ity and divergence), which are not available for some meteo-
rological datasets used in off-line models such as NIES TM.
As a result, in the present model, horizontal mass fluxes are
computed following a more commonly employed method de-
veloped by Heimann and Keeling (1989) (see also Bregman
et al., 2003).

Data processing is performed in three steps. For each mo-
ment in time of the original meteorological analyses, the
horizontal mass fluxes are obtained by vertical-meridional
and vertical-zonal integration. The model then assumes that
the mass flux fields are valid during an entire meteorolog-
ical time step, while the surface pressure, which determines
the atmospheric mass distribution, is defined at the beginning
and end of each meteorological time step (Heimann, 1995).

The conservation of mass requires that the vertically inte-
grated air-mass convergence equals the surface pressure ten-
dency. The horizontal mass fluxes,

−→
8 h = (8u, 8v), derived

from the meteorological dataset are balanced with the surface
pressure tendency by adding correction fluxes,

−→
F c, which

are determined as follows:

−→
δ

(
−→
8 h(l)+

−→
F c (l)

)
= −

∂ms(l)

∂t
,l = 1,..,N (2)

where
−→
δ is a horizontal difference operator between op-

posite boundaries of a grid cell,l represents the vertical
grid layer, andms(l) denotes the mass in the cell, defined

as the product of pressurep(l) on the current level and
the grid cell areaA divided by gravitational accelerationg
(ms(l) = p(l)A/g). The pressure changes are the multipli-
cation of sigma by the surface pressure changes which are
calculated from two pressure fields at different time points.
Equation (2) is first solved for the single correction flux

−→
F c:

−→
δ

−→
F c(l) = −

−→
δ

−→
8 h(l)−

∂ms(l)

∂t
;l = 1,..,N (3)

The correction flux is calculated by transforming Eq. (3)
into a Poisson equation, which is solved with a discrete 2-
D Fourier transform. This procedure is performedN times
for each vertical grid layerl independently, yielding the cor-
rected air mass flux, which is subsequently added to the ver-
tical flux.

2.2 Numerical methods

The semi-Lagrangian transport algorithm is an effective way
to solve tracer transport problems (Williamson and Rasch,
1989). In the semi-Lagrangian approach, formulated in a po-
lar coordinate system, the tracer concentration change due to
transport from the initial state to a new value at the next time
step is evaluated in two steps: trajectory calculation and in-
terpolation (Maksyutov et al., 2008). The trajectories are cal-
culated using explicit integration of the air parcel motion in
the Cartesian coordinate system with an origin at the Earth’s
center. A coordinate transformation, from polar to Carte-
sian systems and back again, is used at each time step. This
method avoids problems associated with a singularity near
the poles, in contrast to regular-grid schemes formulated in
flux form, which have a decreasing grid size in the longitudi-
nal direction.

The need to use a higher spatial resolution and to per-
form the calculations associated with long-term tracer trans-
port demands an efficient advection and strict mass conser-
vation scheme with high accuracy (Petersen et al., 1998).
Unfortunately, the semi-Lagrangian algorithm cannot meet
this requirement, because it requires a global mass fixer
(Rash, 1994). To overcome this problem, we designed a
flux-form version of NIES TM with the third-order van Leer
scheme (van Leer, 1977) and second-order moments advec-
tion scheme developed by Prather (1986). According to the
van Leer scheme, the tracer concentration on the edge of the
control volume can be determined using the difference be-
tween the known values (the shape of the concentration), as-
suming a second-order polynomial to represent the inner-cell
concentration. Advective flux through the face is determined
by the shape of the concentration between the edge and the
nearest node on the leeward side.

The main advantages of the well-known second-order mo-
ments advection scheme are accuracy, stability, conservation,
and small numerical diffusion. To obtain the fluxes at cell in-
terfaces from cell center values, this scheme prognostically
simulates the evolution of the first- and second-order moment
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of the mixing ratio. The traditional technique (method of al-
ternating directions) is used and the three-dimensional trans-
port is decomposed into three one-dimensional fluxes that act
successively:X → Y → Z. In other words, each advection
step is divided into four longitudinal steps, two latitudinal
steps, and one step in the vertical direction. Such a detailed
and accurate technique for calculation leads to a multifold
increase in the costs of central processing unit (CPU) time
and memory compared with schemes based on van Leer’s
approach (Petersen et al., 1998).

2.3 Meteorology data used in the model

In this study, we use two meteorological datasets produced
by global spectral numerical models, as outlined below.

2.3.1 GFS meteorology data

The National Centers for Environmental Prediction (NCEP)
meteorology data are the product of the global spectral nu-
merical Global Forecast System (GFS) model based on prim-
itive dynamical equations that include a suite of parameter-
izations for atmospheric physics (Kalnay et al., 1990). The
current GFS version has a spectral triangular truncation of
382 waves (T382) in the horizontal (equivalent to nearly a
35 km Gaussian grid), and a hybrid sigma-pressure finite dif-
ferencing system in the vertical with 64 layers (Moorthi et al.,
2010). For the purpose of the present study, we used the offi-
cial product with a resolution of 1.0◦ × 1.0◦ and 25 pressure
levels. The model has been under constant development and
evaluation. For an overview of the major changes made to
the model from 2001 to 2004, see Yang et al. (2006); for the
most recent detailed information, see Moorthi et al. (2010).

2.3.2 GPV meteorology data

The NIES tracer transport model uses an enhanced version
of the Global Point Value (GPV) meteorological dataset with
a resolution of 0.5◦ × 0.5◦ for 21 pressure levels. GPV
is a special product prepared by the Japan Meteorological
Agency Global Circulation Model (JMA-GSM), which is a
high-resolution global atmospheric circulation model devel-
oped by the Japan Meteorological Agency (JMA) and the
Meteorological Research Institute (MRI) of Japan, for use
in both climate simulations and weather prediction (Mizuta
et al., 2006). The current version of the model uses a re-
duced Gaussian grid TL959L60 with a resolution of approx-
imately 20 km in the horizontal and 60 layers up to 0.1 hPa
in the vertical (Iwamura and Kitagawa, 2008). The model
is able to simulate climate and atmospheric processes with
high accuracy, due to a two-time-level, semi-implicit verti-
cally conservative semi-Lagrangian scheme (Yoshimura and
Matsumura, 2003) and fourth-order horizontal diffusion, im-
proved physics, better representation of topographical ef-
fects, and improved distribution of seasonal precipitation and
zonal-mean wind (Mizuta et al., 2006; Nakagawa, 2009).

The use of a high-resolution grid means that many smaller-
scale phenomena are represented explicitly. GPV preserves
the conservation of a vertically integrated quantity under the
non-dissipative condition, due to the development of a ver-
tically conservative semi-Lagrangian scheme in which verti-
cal advection is treated separately from horizontal advection
(JMA, 2007). An advantage of GPV data is their availabil-
ity in near-real time (delay of several hours), meaning that
the transport model can be used in quasi-online mode. To set
adequate mixing in the near-surface layer of the atmosphere,
the 3-hourly height of the planetary boundary layer (HPBL)
is taken from the ECMWF Interim Reanalysis (Simmons et
al., 2006, 2007), as HPBL data are not included in the origi-
nal GPV data set.

The meteorological fields are interpolated to the model
grid using bi-linear interpolation to the cell center. They are
mapped to the center of cell interfaces. Turbulent diffusiv-
ity is similar to described by Maksyutov et al. (2008): above
the PBL top the approach of Hack et al. (1993) is used, below
the PBL top, the turbulent diffusivity is set to a constant value
of 40 m2 s−1. The 3-hourly planetary boundary layer height
is taken from the GFS data or ECMWF Interim Reanalysis.
The same scheme of turbulent diffusivity was implemented
for semi-Lagrangian and flux-form versions.

2.4 Vertical coordinate and horizontal grid

“Noise” appearing through the horizontal mass flux correc-
tion method (Sect. 2.1) may affect the quality of meteorology
(Bregman et al., 2006). The influence of spurious variability
is greater in the vertical component of the wind vector. The
increased value of vertical movement may cause erroneously
enhanced mixing and mass transport from the bottom of the
atmosphere to the top. The loss of mass at the near-surface
layer results in distortion of tracer seasonal variability via a
decrease in amplitude. The most error-prone situation oc-
curs at the border between the troposphere and stratosphere,
where extra mixing leads to erroneously large exchange be-
tween layers. One of the consequences of this enhanced ex-
change is increased dispersion and an enforced large-scale
stratospheric circulation that leads to a reduction in the resi-
dence time of tracers (Schoeberl et al., 2003).

The use of a high-resolution model grid yields high
surface-elevation gradients and hence rapid changes in sur-
face pressure within a computational cell with a size on the
order of 50 km. Thus, perturbations caused by a sharp rise in
pressure at the surface can extend to high levels (much higher
than in the real atmosphere). The increased horizontal reso-
lution in the meteorology model grid means that the size of
each grid cell is smaller and the vertical velocity is resolved
to a greater degree horizontally; consequently, the amplitude
of vertical velocity increases (Mizuta et al., 2006). Figure 1
shows the monthly averaged vertical wind, from the GPV
and GFS datasets, over Japan for January 2008. The figure
shows regions with high surface heterogeneity (mountains,
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Fig. 1. Monthly averaged vertical component of the wind vector (10−5 Pa s−1) over Japan, as obtained using the(a) GPV and(b) GFS
datasets for January 2008.

coastal regions) where local vertical velocity in the GPV
dataset shows a marked increase, 2–4 times greater than the
increase in the GFS dataset. This increase in velocity slows
the speed of computation (due to the Courant condition) and,
of most concern, enhances vertical mixing along the entire
height range. As a result, the mean age of the air in the strato-
sphere drops to 1 yr or less.

To avoid these undesirable consequences, it is necessary
to implement an appropriate approach such as hybridσ −p

vertical coordinates (Chipperfield, 2006). A hybrid vertical
grid has the properties of sigma coordinates in the lower part
of the atmosphere (up to 300 hPa), where strong vertical mix-
ing occurs, meaning that extra mixing due to the implemen-
tation of a correction method for horizontal mass flux and the
use of high-resolution meteorological data has no unintended
consequences and cannot disrupt the structure. In the upper
part, above 300 hPa, pressure levels are used (Kalnay, 2002).
The interface between these two parts of the vertical coor-
dinate is similar to a border that prevents the penetration of
fluctuations related to surface-pressure oscillations and that
prevents erroneous vertical wind from the troposphere to the
stratosphere. The vertical grid has 25 levels.

To avoid a singularity near the poles, caused by the
small grid size associated with the meridional convergence
problem, this model uses a reduced latitude-longitude grid
scheme (Prather et al., 1987; Williamson, 1992; Rasch,
1994) in which the grid size is doubled if the condition1x >

0.51y (1x, 1y are longitude and latitude step, respectively)
is violated. Dependence of the nesting level on latitude for
resolutions of 1.25 and 2.5 deg are presented in the Fig. 2.
Consequently, it is possible to run simulations with a larger
time step. Following Maksyutov et al. (2008), the first model
grid cell is located near the South Pole, between (0◦ E, 90◦ S)
and (2.5◦ E, 87.5◦ S), and the last is located at the North Pole,
between (357.5◦ E, 87.5◦ N) and (0◦ E, 90◦ N).

Fig. 2. Dependence of the nesting level on latitude for resolutions
of 1.25 and 2.5◦.

3 Evaluation of the NIES global transport model

Here, we evaluate the proposed model with flux-form ad-
vection algorithms. The model results are compared with
the results obtained using a semi-Lagrangian model. The
semi-Lagrangian version of NIES-08 is generally similar to
previous releases (NIES-05, -99), which were evaluated in
forward and inverse mode through participation in The At-
mospheric Tracer Transport Model Intercomparison Project
(TransCom) model intercomparison (Gurney et al., 2003,
2004; Law et al., 2003, 2008; Patra et al., 2003a, 2008).
The performance achieved in these tests indicates that the
model is a powerful tool in studying global atmospheric
transport. However, problems were identified, indicating a
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need to improve the model. The improvements are imple-
mented in the new version of the model, as described in this
paper. Therefore, in testing NIES-08 TM below, we seek to
improve on the results obtained with NIES-05.

3.1 Numerical methods test

Previous studies have tested Prather’s (1986) numerical
schemes and those schemes based on a van Leer numeri-
cal algorithm (Williamson and Rasch, 1989; Petersen et al.,
1998). However, these works were concerned mainly with
test cases or were limited to short simulations with real at-
mosphere data and a coarse resolution. The real performance
of each numerical algorithm varies considerably depending
on implementation, meteorological data, and spatial resolu-
tion. In this study, we assessed the implementation of semi-
Lagrangian and flux-form advection numerical algorithms on
a reduced grid for tracer transport.

To estimate the performance of advection schemes, we
performed repeated tests of solid-body rotation on a sphere.
The model transport equation (Eq. 1) is solved without the
source and the chemical reaction termSk. The initial tracer
fields were specified in the form of cones at the North and
South Poles:

q(λ,ϕ)=3sin2(ϕ),ϕ=
[
−π

/
2; π

/
2
]
,λ= [0;2π ] (4)

The velocities are given by Smolarkiewicz and Rasch (1991)
and Petersen et al. (1998):

u = λ̇cosϕ = U (cosβcosϕ+sinβsinϕcosλ),v = ϕ̇ = −U sinβsinλ.

In the simultation using the proposed model, we set an arbi-
trary angleβ = π

/
2. For the chosen angle beta two tracer

fields are rotating over the globe from pole to pole. Cone-
shaped tracer field goes along meridian 90◦ E from the North
to the South Pole, and goes back along meridian 90◦ W, pass-
ing through the Polar Regions, which are the most potentially
uncertain regions because of reduced grid size. The vertical
velocity component is equal to zero.

In this test, we use three version of NIES TM: one with
a semi-Lagrangian algorithm (SML), one with the van Leer
(VL) numerical scheme, and one with Prater’s second-order
moments (Pr) numerical scheme. Table 1 lists the results of
the solution of the solid-body rotation test and the perfor-
mances of the model versions at three different resolutions.
Test simulations were performed on a vector supercomputer
NEC SX-8R. Evaluations of the memory and CPU use took
into consideration the cost of reading and processing the me-
teorological data, as in the case of real global-transport simu-
lations. The error measures are the same as those in Petersen
et al. (1998) and Smolarkiewicz and Rasch (1991):

emin =
min(qn

λ,ϕ)−min(q0
λ,ϕ)

max(q0
λ,ϕ)

,

emax=
max(qn

λ,ϕ)−max(q0
λ,ϕ)

max(q0
λ,ϕ)

,

err1=

∑
qn
λ,ϕγϕ∑

q0
λ,ϕγϕ

−1,

err2=

∑(
qn
λ,ϕ

)2
γϕ∑(

q0
λ,ϕ

)2
γϕ

−1.

These quantities represent the minimum value minus the true
minimum value normalized by the true maximum value, the
maximum value minus the true maximum value normalized
by the true maximum value, the normalized errors of the
mean, and the field variance, respectively.Emax is influenced
by numerical diffusion and overshoot, andemin is influenced
by numerical diffusion and undershoot.

Among the three models, the version with a semi-
Lagrangian scheme shows the best performance and weak
dispersion of concentrations because of small numerical dif-
fusion. The normalized errors of the mean (err1) and the vari-
ance of the field (err2) show that the form of the initial cones
was substantially changed. Moreover, this scheme gives con-
siderable overshoot.Emax should be less than or equal to
zero, andemin should be greater than or equal to zero, be-
cause advection does not generate a new extreme (Petersen
et al., 1998).

The van Leer’s scheme maintains the shape of the profile.
Decreases inemax andemin with increasing resolution indi-
cate that these quantities are influenced by numerical diffu-
sion but not by overshoot or undershoot. The performance
and memory cost of this scheme are reasonable for long-
term, high-resolution simulations.

The second-order moments approach includes a limiter
preventing negative values of tracer mixing ratio, resulting
in small overshoot and undershoot. However, a major dis-
advantage of it is the need for greater computing time and
memory demand. We used a standard code of Prather scheme
(Prather, 1986), because numerical model optimization in
order to achieve high performance on vector computer sys-
tems requires additional time-consuming efforts. Apparently
the non-optimized second-order moment’s scheme is less
adopted to work with high efficiency on NEC vector ma-
chines. Nevertheless high CPU time and memory demand
of this scheme in comparison with others was marked by Pe-
tersen et al. (1998).

Thus, the van Leer scheme represents a compromise solu-
tion, as it has acceptable accuracy, conserves the mass of the
tracer, and at the same time provides sufficient performance
to carry out calculations with high resolution.
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Table 1. Performance of the schemes implemented in the model NIES TM. Here, NIES-08\SML, NIES-08\VL, and NIES-08\Pr denote
NIES TM with semi-Lagrangian, van Leer’s, and Prater’s numerical schemes, respectively. Err1 is normalized errors of the mean, err2 is
variance of the field,emax is overshoot of the scheme, andemin is undershoot of the scheme.

Resolution NIES-08\SML NIES-08\VL NIES-08\Pr

2.5◦ × 2.5◦

CPU, sec 6.08 10.21 292.90
emin −5.37E-03 6.22E-04 1.38E-04
emax 2.16E-03 −2.86E-03 −3.48E-04
err1 6.09E-02 −6.66E-03 −5.96E-08
err2 5.08E-03 1.17E-03 1.02E-03
Memory, GB 0.72 0.72 0.77

1.25◦ × 1.25◦

CPU, sec 20.86 55.93 1755.77
emin −0.229E-06 1.57E-04 −5.95E-05
emax 0.00E+00 −3.66E-03 1.03E-06
err1 1.93E-02 −3.50E-03 4.78E-03
err2 9.90E-03 8.94E-04 8.48E-03
Memory, GB 0.98 0.98 1.10

0.625◦ × 0.625◦

CPU, sec 82.20 370.975 12 683.15
emin −1.04E-07 3.93E-05 −5.11E-06
emax 7.95E-08 −2.44E-03 −5.21E-03
err1 1.59E-02 −1.75E-03 5.55E-03
err2 1.74E-02 6.15E-04 1.18E-04
Memory, GB 1.94 1.94 2.46

3.2 Model evaluation by comparison of simulated
results with observations

In the following sections, we describe the performance of
NIES TM in real global-tracer simulations. The results
of model simulations were compared with the data pro-
duced by several global tracer-transport model experiments,
including the SF6 transport inter-comparison experiment
TransCom 2 (Denning et al., 1999) for evaluating large-
scale/interhemispheric transport, and a comparison with the
GLOBALVIEW-CO2 dataset (GLOBALVIEW-CO2, 2008).
We followed specific procedures and specifications estab-
lished for each test. Table 2 lists the configurations of the
NIES TM versions considered in the experiment. The model
version with Prather’s second-order moments scheme was
simulated only with a coarse grid resolution. This model
version was not tested with resolutions of 1.25◦ and 0.625◦

because of high computational costs. The calculations were
carried out for 2008 with 4 yr spin-up, because GPV data
are a relatively new product that are available only since late
2007.

3.2.1 Comparison with222Rn observations

222Rn is a tracer with a relatively short half-life in the atmo-
sphere of 3.82 days. It has well-known sources and sinks, and
has been reasonably well observed around the globe. Hence,
the element has been recognized as a useful tracer for evalu-
ating the performance of a transport model over continental

and remote oceanic regions. In the WCRP intercomparison
experiment (Jacob et al., 1997), short-range transport perfor-
mance was evaluated using222Rn. We followed the simu-
lation protocol specified in Jacob et al. (1997) and set the
surface fluxes of222Rn to 1 atom cm−2 s−1 for land between
60◦ S and 60◦ N, and to 0.005 atoms cm−2 s−1 for the arctic
region between 60◦ N and 70◦ N, and for the oceans.

In Fig. 3, summer and winter average concentrations cal-
culated by the NIES TM are compared with observation data
reported by Jacob et al. (1997). In a previous investigation
(Maksyutov et al., 2008) it was pointed out that the semi-
Lagrangian model version underestimated the222Rn concen-
tration near the surface and upper levels both in the summer
and winter seasons. The flux-form version has significantly
improved results for upper and surface layers for the sum-
mer season. However, a comparison with results obtained by
Zhang et al. (2008) (not shown here) suggests that the con-
centration at the top of the troposphere is underestimated, as
the model does not take into account the cloud penetrative
convection that provides tracer transfer up to the tropopause
level.

3.2.2 Comparison with SF6 observations

In an idealized global transport model field, the atmosphere
can be divided into three major regions: the tropics and extra-
tropics in the Northern and Southern Hemispheres (Bow-
man and Erukhimova, 2004). Particles released in these
regions disperse relatively rapidly (several days to several
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Table 2. Configurations of the NIES TMs.

Model

NIES-08\SML\2.5 NIES-08\VL\2.5 NIES-08\VL\0.625 NIES-08\Pr\2.5

Numerical Scheme semi-Lagrangian
flux-form versions

third-order van Leer second-order moments
Resolution, deg 2.5 2.5 0.625 2.5
Number of vertical levels 47
The meteorological dataset JMA/GPV dataset

Fig. 3. Comparisons between observations and model simulations of222Rn averaged concentration over three northern midlatitude continen-
tal sites during summer and winter seasons. Results at three vertical levels (mixing layer, 600 hPa and 300 hPa) are shown. The observation
data was obtained by aircraft measurements made at Cincinnati (40◦ N, 84◦ W), Socorro (34◦ N, 107◦ W), and Kirov (58◦ N, 49◦ E) with the
corresponding standard errors.

weeks), while air exchange between the regions proceeds
at a slower pace (several weeks to months). Furthermore,
the time needed for interhemispheric mixing of the north-
ern and southern extra-tropics is estimated to be nearly 2
years (Geller et al., 1997; Bowman and Erukhimova, 2004).
The majority of the sources of anthropogenic pollutants and
greenhouse gases are located in the Northern Hemisphere.
This distribution of sources, combined with such slow merid-
ional transport, results in a pronounced north-to-south con-
centration gradient.

SF6, which has a lifetime of over 3000 yr, was used as a
tracer for validating model transport on an interhemispheric
scale. Following the TransCom2 protocol (Denning et al.,
1999), we performed a 5-yr simulation with the SF6 emis-
sions taken from the Emission Database for Global Atmo-
spheric Research (EDGAR) (Olivier and Berdowski, 2001).

Figure 4 compares the annual averages of simulated SF6
concentrations, observations from WDCGG (World Data
Centre for Greenhouse Gases) (WDCGG, 2008) station
listed in Table 3, and data monitored via global atmospheric
observations used in the TransCom2 intercomparison. The
TransCom2 intercomparison used meridional profiles of the
simulated and observed 1993 annual mean surface mole frac-
tion of SF6. Observed data include all October/November
1993 Atlantic transect measurements, station locations con-
sidered to be within the marine boundary layer, and Izana,
which is in the mid-troposphere (Denning et al., 1999). Be-
cause tracer patterns correspond to different periods, the an-
nual mean of mixing ratios was normalized to its value at
the South Pole. Observation datasets from WDCGG and
TransCom2 intercomparison give very different concentra-
tions of SF6 in northern mid-latitudes, because different sets
of stations are used.
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Fig. 4. Interhemispheric gradients of modeled and observed SF6
concentrations. Observations are measurements taken from WD-
CGG. The annual mean was normalized to its value at the South
Pole (SPO) station.

The NIES-08/SML model simulations tend to over-predict
the interhemispheric difference indicated by WDCGG obser-
vations. Better agreement is found with observations imple-
mented in the TransCom2 intercomparison (Denning et al.,
1999). Flux versions of the model show better agreement
with up-to-date WDCGG observations that apparently pro-
vide a more reasonable interhemispheric gradient.

3.2.3 Comparison with GLOBALVIEW-CO 2

Evaluation of model performance via CO2 simulations is
very complicated because of the high uncertainty in CO2
sources and sinks. However, the TransCom intercompari-
son studies show the success of such research and provide a
useful set of parameters for evaluating both horizontal (in-
terhemispheric) and vertical tracer transport by comparison
with established models (Law et al., 1996, 2003, 2008; Den-
ning et al., 1999; Gurney et al., 2003, 2004; Patra et al.,
2003a, 2008). In our simulation, we considered up-to-date
versions of prescribed CO2 fluxes:

1. emissions due to fossil fuel burning for 2007 with a spa-
tial resolution of 0.5◦ × 0.5◦ (Marland et al., 2007),

2. three-hourly terrestrial biosphere fluxes for 2007 gen-
erated from the monthly flux of the CASA ecosystem
model (Randerson et al., 1997),

3. sea-air exchange data derived from the climatological
mean ofpCO2 for 2008 (Takahashi et al., 2009).

The simulation is conducted for 1 yr (2008) from a concen-
tration field at 1 January 2008 prepared using 4-yr spin-up
integration with no CO2 in the initial atmosphere. In the
spin-up simulation, we used the meteorology for 2008.

Continuous measurements are now conducted at a large
number of monitoring stations around the globe, providing

Table 3. List of SF6 measurements sites from WDCGG.

Station Name Code Latitude, deg Longitude, deg

Alert ALT 82.5 −62.5
Summit SUM 72.6 −38.5
Barrow BRW 71.3 −156.6
Mace Head MHD 53.3 −9.9
Estevan Point ESP 49.4 −126.6
Trinidat Head THD 41.1 −124.2
Niwot Ridge NWR 40.0 −105.5
Mauna Loa MLO 19.5 −155.6
Ragged Point RPB 13.2 −59.4
Tutuila SMO −14.2 −170.6
Palmer Station PSA −64.9 −64.0
South Pole SPO −90.0 −24.8

an opportunity to evaluate and adjust the model. The Glob-
alView data integration project (GLOBALVIEW-CO2, 2008)
is a community effort, with the main contribution provided
by the Global Monitoring Division (GMD) of the Earth Sys-
tem Research Laboratory of the National Oceanic and Atmo-
spheric Administration (NOAA/ESRL), which conducts sus-
tained observations of the global distribution of atmospheric
constituents. GLOBALVIEW data products are designed to
enhance the spatial and temporal distribution of atmospheric
measurements of CO2, CH4, and other related atmospheric
parameters. These data products are derived from measure-
ments and are specifically intended as tools for use in carbon-
cycle simulation studies. We chose to use data from 35 ma-
rine boundary layer sites of GLOBALVIEW-CO2 (2008),
which are commonly used in CO2 inversion studies to con-
strain continental-scale fluxes. The site locations are shown
in Fig. 5.

To assess the ability of models to reproduce seasonal vari-
ations, we explored the performance of each model in track-
ing the amplitude and phase of variations. The amplitude
of variations is an important factor in terms of model perfor-
mance, as tested by Patra et al. (2008) for synoptic-scale vari-
ations. The normalized standard deviation (NSD) was calcu-
lated by dividing the model standard deviation by the ob-
served standard deviation for each station, in order to assess
the model’s ability to reproduce the amplitude of seasonal
variability. The NSD data are shown in Fig. 6. A high degree
of consistency between model and measured data is observed
in the Antarctic region and in mid- and high-latitude areas
of the Northern Hemisphere. The tropical convergence zone
is the most challenging region in terms of simulating CO2
variability. Similar results were obtained for the correlation
coefficient between modeled and observed data (Fig. 7) used
to assess the phase of seasonal variations.

In Antarctica, the seasonal variability has a sleek profile
and small amplitude (Fig. 8) because of the lack of significant
sources and the dominance of the effect of long-range trans-
port in the balance of the CO2 concentration. The seasonal
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Fig. 5. Locations of GLOBALVIEW-2008 measurement sites. Ob-
served data from those sites were used in comparing with simulated
results.

Fig. 6. Normalized standard deviation calculated for the modeled
and observed patterns of CO2 for 2008.

amplitude is defined as the difference between the maximum
and the minimum CO2 values in a time series spanning 1 yr.
The flux versions of the NIES TM are more effective in simu-
lations of long-term transport, because of the mass conserva-
tion properties; consequently, in this respect, it has an advan-
tage over the semi-Lagrangian version. However, the actual
value of the amplitude of the seasonal cycle is so small that
overestimation by NIES-08/SML does not provide a signifi-
cant contribution to the bias (Figs. 9, 10).

The high density of monitoring stations, homogeneous
terrain, and combination of terrestrial biosphere/fossil fuel
fluxes in the temperate zone of the Northern Hemisphere re-
sult in a high degree of agreement between the model data
and observations in this region (Patra et al., 2008). Nev-
ertheless, all the model versions underestimate the concen-
tration in winter (Fig. 9) and overestimate it during summer
(Fig. 10).

The challenging regions for simulations are the tropics and
mid-latitude areas of the Southern Hemisphere. Stations in
these regions are located in marine or coastal areas, meaning
that different areas with contrasting CO2 fluxes are located

Fig. 7. Correlation coefficients between modeled and observed pat-
terns of CO2 for 2008.

Fig. 8. Amplitude of CO2 seasonal variations for January 2008
(ppmv).

near the stations. Furthermore, the meteorological situation
is unstable because of interaction between continental and
marine air fluxes. As a result, the degree of agreement be-
tween observations and model simulations is dependent on
the season. The smaller bias in January compared with July
may arise from seasonal changes in meteorology and sim-
plicity in fluxes, as mentioned in Patra et al. (2008).

Application of the flux-form scheme led to a marked im-
provement in the simulation of seasonal variations in CO2
compared with the semi-Lagrangian approach, especially in
Antarctic and tropical regions. Consequently, model bias was
reduced and prediction accuracy is close to 4 ppmv (1%).
A comparison of model versions with resolutions of 0.625◦

and 2.5◦ showed a slight improvement in the seasonal cycle
when using the higher-resolution grid (Fig. 9). Among the
other versions, that with a second-order moments scheme
performed slightly better than the rest. The results confirm
that the second-order moment scheme gives good results us-
ing a relatively coarse grid, and that the use of simple numer-
ical schemes (e.g., the three-order van Leer scheme) requires
a grid with higher resolution (Bregman et al., 2006).
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Fig. 9. Monthly averaged CO2 bias (model – observations) for Jan-
uary 2008 (ppmv).

Fig. 10. Monthly averaged CO2 bias (model – observations) for
July 2008 (ppmv).

3.2.4 Comparison of simulations with GFS and GPV
data

We also tested the GPV data in order to identify the influence
of meteorological data with a resolution of 0.5◦

× 0.5◦ on the
distribution of tracers. A cursory comparison of the GFS and
GPV datasets revealed very good agreement in horizontal
wind speed, temperature, and pressure, although the height
of the planetary boundary layer over oceans and deserts in
GFS is approximately 200–500 m higher than that in GPV.
Another difference between these data sets is vertical veloc-
ity, as stated in Sect. 2.4.

The results of tracer-concentration simulations reveal that
the use of GPV data can improve the amplitude of seasonal
variations forecasted by the semi-Lagrangian model in the
tropics of the Southern Hemisphere (Fig. 11). However, this
improvement is accompanied by significant errors, as evi-
dent in the correlation coefficients between modeled and ob-
served data for this area (Fig. 12); this result applies not
only to the semi-Lagrangian scheme but also to the flux-form
scheme. Thus, in the southern tropics, the best results are ob-

Fig. 11. Normalized standard deviation calculated for the modeled
and observed patterns obtained using the GFS and GPV datasets for
2008.

Fig. 12. Correlation coefficient between the modeled and observed
patterns obtained using the GFS and GPV datasets for 2008.

tained by a combination of the flux-form scheme with the
GFS dataset.

3.2.5 Simulations with a high-resolution grid

Using the high-resolution global atmospheric GPV meteo-
rological dataset, with a resolution of 0.5◦

× 0.5◦, it is pos-
sible to represent explicitly many smaller-scale phenomena.
Figure 13 compares the surface CO2 concentration simulated
by NIES-08/VL/0.625 and NIES-08/SML/0.625. Both mod-
els appear to be capable of resolving point sources of CO2,
such as highly polluted urban areas. The flux-form version
tends to merge plumes from multiple sources, as seen in the
area of Shanghai (Fig. 13a), because the dispersion associ-
ated with time step truncation (CFL criteria) has caused a no-
ticeable distortion in the numerical solution (Ritchie, 1997).
Moreover in case of high-resolution simulation, the side ef-
fects of the horizontal flux correction method may have a
significant importance. The erroneous mass flux corrections
may smooth out sharp fluctuations and distort the direction of
movement of tracers and as result lead to additional smearing
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Fig. 13. Simulated surface CO2 concentrations (ppmv) around Japan at 21:00 UTC on 26 March 2008:(a) NIES-05/VL/0.625,(b) NIES-
05/SLM/0.625.

of the concentration. This effect is similar to action of nu-
merical diffusion. The semi-Lagrangian numerical scheme
with less dispersion due to less restricted time step (2–3 time
longer than in flux-form version) shows better performance
in terms of resolving the sources clearly, as it resolves the
plumes from Tokyo, Beijing, Seoul, Shanghai, Hong Kong,
Taipei, and other cities (Fig. 13b). For such short-time tracer
transport near emission sources, the mass-conservation prob-
lem of semi-Lagrangian scheme is less important.

The same conclusions as those above were obtained when
considering simulated and observed synoptic variations at
Hateruma Island, Japan (24.05◦ N, 123.81◦ E), where con-
tinuous measurements have been conducted since October
1993. Hateruma Island is situated in the Pacific Ocean, close
to continental Asia, and is influenced by air masses trans-
ported from the continent in winter and from the Pacific
Ocean in summer (Tohjima et al., 2002). Therefore, the
CO2 balance at Hateruma Island is based on local sources
(especially from China) and is less sensitive to long-range
transport. Our comparison with observed CO2 mixing ratios
(Fig. 14) showed that the semi-Lagrangian scheme performs
better in reproducing daily variability in concentrations (the
correlation coefficient between modeled and observed data
is 0.8). The advantage of this scheme is the weak disper-
sion of concentrations found during testing of the numerical
schemes. The flux version (NIES-08) is less able to describe
sharp fluctuations in concentrations.

4 Conclusions

We presented, evaluated, and compared (with a semi-
Lagrangian scheme) the flux-form versions of NIES TM with
a third-order van Leer’s numerical scheme and second-order
moments Prater’s numerical scheme on a reduced latitude-
longitude grid. The reduced latitude-longitude grid is de-

Fig. 14. Daily seasonal cycle of CO2 over Hateruma Island, Japan
(24.05◦ N, 123.81◦ E) for 2008 (ppmv).

signed to overcome the Courant condition in Polar Regions
and to maintain a reasonably large integration time step. Our
testing revealed no significant adverse effects associated with
implementation of the reduced grid.

An evaluation of the numerical methods, using tests of
solid-body rotation on a sphere, showed that van Leer’s nu-
merical scheme produces acceptable accuracy, provides mass
conservation of the tracers, and yields sufficient performance
to conduct long-term simulations with high resolution. To
assess the proposed model’s ability to forecast tracer con-
centrations, we performed global transport simulations for
222Rn, SF6, and CO2. With implementation of the flux-form
algorithm, improvements were achieved in the simulated in-
terhemispherical gradients of SF6 and CO2. Improvements
were also seen in vertical profiles in the upper layers, due
to implementation ofσ −p vertical coordinates. A compari-
son between simulated seasonal variations in CO2 concentra-
tions and the GLOBALVIEW-CO2 2008 database revealed

Geosci. Model Dev., 4, 207–222, 2011 www.geosci-model-dev.net/4/207/2011/



D. Belikov et al.: A reduced latitude-longitude grid with NIES-TM 219

that NIES-08 performs better than its predecessor (NIES TM
with a semi-Lagrangian scheme) in reproducing the observed
seasonal patterns in the Arctic, Antarctic, and mid-latitude
regions.

Nevertheless, this version of the model still does not em-
ploy a convective parametrization, which results in insuffi-
cient mixing in the free troposphere (Eguchi et al., 2010).

We also tested the 0.5◦-resolution GPV dataset prepared
by the JMA. In general, the GPV dataset provides a smooth
field of vertical wind. Use of the NIES TM with the GPV
dataset makes it possible to take into account synoptic-scale
effects in the modelling of global transport, and to resolve the
point sources of CO2, such as highly polluted urban areas.
However, increased horizontal resolution in meteorological
models leads to a decrease in the size of the model grid cell
and the vertical velocity is resolved horizontally to a greater
degree; consequently, the amplitude of vertical velocity in-
creases. Therefore, there are regions with high surface het-
erogeneity (mountains and coastal regions) where the local
vertical velocity is extremely high, slowing the computations
of the flux version as a result of limitations in the time step.

Our tests show that the model can be run using a high-
resolution grid with sufficient perfomance and without loss
of precision (e.g., due to numerical diffusion). The accu-
racy of these calculations will increase with the availabil-
ity of high-accuracy flux data (e.g., global 1× 1 km fossil
fuel CO2 emission inventory; Oda and Maksyutov, 2011) and
high-resolution meteorological data (MERRA, Bosilovich et
al., 2008). Demand for high-resolution fields of CO2 and
other greenhouse gases will also enlarge due to their use
as a priori information in retrieval algorithms of observa-
tion instruments such as the Atmospheric Infrared Sounder
(AIRS) satellite (e.g., Strow and Hannon, 2008) and the
Japanese Greenhouse gases Observing SATellite (GOSAT)
(e.g., Yokota et al., 2009).
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