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Abstract. Dissolved surface active species, or surfactants,
have a tendency to partition to solution surface and thereby
decrease solution surface tension. Activating cloud droplets
have large surface-to-volume ratios, and the amount of
surfactant molecules in them is limited. Therefore, unlike
with macroscopic solutions, partitioning to the surface
can effectively deplete the droplet interior of surfactant
molecules.

Surfactant partitioning equilibrium for activating cloud
droplets has so far been solved numerically from a group
of non-linear equations containing the Gibbs adsorption
equation coupled with a surface tension model and an
optional activity coefficient model. This can be a problem
when surfactant effects are examined by using large-
scale cloud models. Namely, computing time increases
significantly due to the partitioning calculations done in the
lowest levels of nested iterations.

Our purpose is to reduce the group of non-linear equations
to simple polynomial equations with well known analytical
solutions. In order to do that, we describe surface tension
lowering using the Szyskowski equation, and ignore all
droplet solution non-idealities. It is assumed that there is
only one surfactant exhibiting bulk-surface partitioning, but
the number of non-surfactant solutes is unlimited. It is shown
that the simplifications cause only minor errors to predicted
bulk solution concentrations and cloud droplet activation. In
addition, computing time is decreased at least by an order of
magnitude when using the analytical solutions.

Correspondence to:T. Raatikainen
(tomi.raatikainen@fmi.fi)

1 Introduction

The aerosol effect on cloud albedo and thereby on the
radiation balance of the Earth constitutes the largest single
scientific uncertainty in the assessment of the current
radiative forcing (IPCC: Solomon et al., 2007). Among
the reasons for the large uncertainty are various chemical
effects (Charlson et al., 2001; Topping et al., 2007; Wex
et al., 2008) such as surface tension reduction of activating
cloud droplets. By preferentially partitioning to the droplet
solution surface, surface active species can cause a clear
decrease of the surface tension of aqueous solutions (Li et al.,
1998; Sorjamaa et al., 2004). Decreased surface tension
is often taken into account in aerosol and cloud modelling,
but the effect of droplet size-dependent surface partitioning
on solution concentrations is often ignored (e.g.Shulman
et al., 1996; Facchini et al., 1999; Mircea et al., 2002;
Broekhuizen et al., 2004). The reason for this is probably
that the partitioning has no effect on bulk concentrations
in large systems, such as laboratory samples from which
the surface tensions are measured. However, the influence
of partitioning on droplet bulk concentrations does become
relevant for micron-sized or smaller droplets having large
surface area to volume ratios (Laaksonen, 1993; Sorjamaa
et al., 2004; Prisle et al., 2010).

The effect of surfactant partitioning on cloud droplet
activation has been studied both experimentally using CCN
counters and theoretically relying on the Köhler theory (Li
et al., 1998; Sorjamaa et al., 2004; Prisle et al., 2008,
2010). Briefly, three common modelling approaches have
been used: (1) accounting for surface tension decrease and
for the effect of partitioning on bulk solution concentrations,
(2) accounting for surface tension decrease but not for
surfactant partitioning, and (3) ignoring both surface tension
and partitioning effects. Models accounting for surface
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tension decrease but not for surfactant partitioning are
predicting clearly too high cloud forming activity. On
the other hand, predictions which either account for or
ignore both the surface tension and partitioning effects are
generally quite similar and also in reasonable agreement
with experimental measurements of critical supersaturations.
However, even if the predicted critical supersaturations are
similar, predicted critical droplet sizes and droplet bulk
solution concentrations in general are clearly different.
These affect solution thermodynamics (e.g. solubility),
vapour-liquid equilibrium, and droplet growth dynamics
(Kokkola et al., 2006).

A special problem in the surface partitioning calculations
is that droplet concentrations are determined by numerically
solving a set of non-linear equations including the Gibbs
adsorption equation coupled with a surface tension model
and an optional activity coefficient model, which is often
too time-consuming in large-scale model calculations. Our
purpose is to reduce these partitioning equations to simple
polynomial equations with well know analytical solutions,
which are more practical for large-scale applications.
Some approximations and limitations are needed for the
polynomial equations. For example, droplet solution non-
idealities are ignored and it is assumed that there is only one
surfactant exhibiting bulk-surface partitioning. The validity
of the simplified solutions is confirmed by comparing
predictions with those of iteratively solving the partitioning
equilibrium.

2 Theory

Surfactant partitioning effects are greatest with small and
dilute droplets. With very large droplets, accounting for
surfactant mass balance has a minor effect on the bulk
concentration as the concentration change due to partitioning
to surface is roughly proportional to the inverse of radius.
With most surfactants, the strongest surface tension decrease
as a function of concentration (which influences the
partitioning) takes place at very low concentrations. Both
conditions, i.e. small droplet size and low concentrations, are
usually fulfilled at the cloud droplet activation.

Here the term bulk refers to droplet’s homogeneous liquid
interior, which is the phase defining droplet properties such
as equilibrium vapour pressures. Droplet surface is assumed
to be in thermodynamic equilibrium with the bulk solution.

2.1 Cloud droplet activation

The equilibrium saturation ratio of water (S) over droplet
surface can be calculated from the well known Köhler
equation (Köhler, 1936):

S = γwxwexp

(
4vwσ

RT Daq

)
(1)

The Raoult term gives water activity as a product of activity
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Fig. 1. Water supersaturation as a function of droplet size for a 40 nm dry particle. Kelvin and Raoult
terms are shown with the dashed line in the right hand side scale.
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Fig. 1. Water supersaturation as a function of droplet size for
a 40 nm dry particle. Kelvin and Raoult terms are shown with the
dashed line in the right hand side scale.

coefficient γw and mole fractionxw. Increased vapour
pressure due to droplet curvature is taken into account by the
exponential Kelvin term. In addition to partial molar volume
of watervw (m3 mol−1) (which we approximate by the molar
volume of pure water), ideal gas constantR (J (mol K)−1)
and temperatureT (K), the Kelvin term depends on droplet
solution surface tensionσ (N m−1) and droplet diameterDaq
(m).

Total numbers of moles of solutes can be calculated from
the known dry particle composition (dry sizeDdry and
e.g. dry particle volume fractions of solutes). Assuming
volume additivity (Vdry+Vw = Vaq), the total (superscript T)
number of moles of water can be calculated from

nT
w =

π

6

(
D3

aq−D3
dry

)
/vw. (2)

When suitable water activity coefficient and surface tension
parameterizations are available, total numbers of moles of
droplet water and solutes can be used in calculating the
equilibrium saturation ratioS. An example of a K̈ohler curve
showing equilibrium supersaturation SS = (S−1)· 100% as a
function of droplet size, is shown in Fig.1.

When an initially dry particle is exposed to water
vapour and relative humidity (RH) is increased above the
deliquescence point, a droplet is formed. When RH is
further increased, the droplet grows by condensation of water
vapour until equilibrium given by Eq. (1) is reached, thus
the droplet equilibrium growth follows the K̈ohler curve.
However, when water supersaturation exceeds the maximum
value of the K̈ohler curve, condensation of water can not
lead to equilibrium any more, thus the droplet grows to
cloud droplet sizes. Equilibrium theory is no longer valid
for this non-equilibrium growth, which depends on the
availability of water vapour. As the non-equilibrium growth
is initiated at the maximum of the K̈ohler curve, the droplet
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size and supersaturation corresponding to the maximum are
called critical droplet diameter and supersaturation needed
for cloud droplet formation.

As described above, the total numbers of moles of droplet
water and solutes can be calculated from the given dry
particle composition and droplet size. These can be used in
calculating water activity and solution surface tension needed
in the Köhler equation (Eq.1). However, some chemical
and physical effects such as limited solubility and partial
dissociation can have an effect on droplet bulk liquid phase
concentrations. Of course, if e.g. some fraction of a solute
is undissolved, bulk concentrations used in calculating water
activity and surface tension should be determined from the
dissolved fraction. Analogously, surfactant bulk-surface
partitioning changes bulk solution concentrations. Here we
are ignoring these other effects and focus on the surfactant
partitioning.

2.2 Bulk-surface partitioning of surfactants

The effect that the partitioning to a surface layer has
on bulk solution concentrations depends greatly on the
system size. For example, saturation surface excess (0∞)
values, giving the maximum number of surfactant molecules
per unit surface area, are on the order of 1 µmol m−2

(e.g. Tuckermann, 2007). For 1 µm and 1 mm droplets with
1 mM surfactant bulk concentration, the saturation surface to
bulk mole ratios are then roughly 6 and 0.006, respectively.
The partitioning is thus not important for 1 mm droplets as it
has a negligible effect on the bulk concentration. However,
in the case of 1 µm and smaller droplets, the majority of
the surfactant molecules can partition to surface, causing the
bulk concentration to decrease strongly.

Surface and bulk solution concentrations can be solved
from the Gibbs adsorption isotherm (Gibbs, 1928):∑

nS
i d ln

(
γ B
i cB

i

)
+

A

R T
dσB

= 0 (3)

where nS
i (mol) is surface (excess) concentration,γ B

i is
activity coefficient andcB

i is concentration of liquid phase
component i, A (m2) is droplet surface area, andσB

(N m−1) is droplet surface tension. Mole fractions are
commonly used, but any concentration scale is possible
especially when activity coefficients are included. With a
reasonable approximation, the simplified equations can be
derived without fixing the concentration scale even if the
activity coefficients are ignored. Superscripts B and S refer
to bulk and surface solutions, respectively, and subscripti

includes all liquid phase species such as molecular solutes,
ions and water. We assume a closed system, thusnT

i = nB
i +

nS
i . In addition, the ions of an electrolyte can not partition

independently as the phases can not have a net charge.
In order to simplify the calculation of the surface

concentrations, we are limited to single surfactant solutions.
This is a common limitation also for the numerical methods.

Even if there is only one surfactant in the droplet, water
and non-surfactant solutes may have non-zero surface
concentrations as long as these depend on that of the
surfactant. Commonly, only the surfactant is expected
to partition, i.e.nS

i = 0 for other than surfactant species.
Alternatively, it can be assumed that the partitioning of
the surfactant (subscript s) is compensated by depletion
of water from the surface, i.e. volume of the surface
V S

= nS
wvw + nS

svs = 0, which is in agreement with the
definition of flat surface in the adsorption equation. In
the case of multicomponent solutions, water and non-
surfactant solutes (subscriptj ) can be assumed to behave as
a pseudobinary solution so that the equalitiesnT

w/nB
w = nT

j /nB
j

andV S
=

∑
nS

i vi = 0, wherei includes all droplet species,
connect all concentrations to that of the surfactant (Sorjamaa
et al., 2004; Prisle et al., 2010).

With any of the three above mentioned assumptions for
nS

i , the adsorption equation contains only one unknown and
it can be solved numerically. Unfortunately, the numerical
solution may be too slow for large-scale models, where bulk
concentrations are needed in the lowest levels of nested
iterations. Our purpose is to derive, making reasonable
approximations, an analytical solution for Eq. (3), and to
show that the results do not differ significantly from the
numerical solution of Eq. (3).

2.2.1 Analytical solution for surfactant partitioning

Some approximations and limitations are needed to simplify
the adsorption equation (Eq.3) so that the analytical solution
can be found. It is clear that activity coefficients must
be ignored and the derivation will be based on a chosen
surface tension model. Furthermore, there can be only
one independent variable, which limits the number of
species exhibiting bulk-surface partitioning to one. The
approximations are detailed below.

When solving Eq. (3) analytically, it is not only the
number of surfactants but especially the number of species
having non-zero surface concentrations that needs to be
reduced. Therefore, the first approximation is that only the
surfactant exhibits bulk-surface partitioning, i.e.nS

i = 0 for
all other species. Because surface depletion of water and
non-surfactant solutes is not allowed, the surface volume
defined asV S

=
∑

nS
i vi is not generally zero. When this

is the case, it can be shown that surface tension depends
on droplet size and bulk solution volume differs from the
given droplet volume (Laaksonen et al., 1999). However, it
will be shown below that the non-zero surface volume has a
negligible effect on predictions of cloud droplet activation.

The second approximation we make is that activity
coefficients are set to unity or alternatively considered as
constants, which means that the activity coefficients vanish
from the adsorption equation. This approximation is needed,
because there are no simple and generally valid activity
coefficient equations for surfactant solutions. According to

www.geosci-model-dev.net/4/107/2011/ Geosci. Model Dev., 4, 107–116, 2011



110 T. Raatikainen and A. Laaksonen: A simplified treatment of surfactants

the definition of the infinite dilution reference state, both
solute and water activity coefficients approach unity and
can be treated as constants at the infinite dilution. Because
activating droplets are very dilute, unit or constant activity
coefficients is a fair approximation. It will be shown that
activity coefficients have only a small effect on surfactant
partitioning.

Our third approximation is that bulk solution concentra-
tions are linearly dependent on the corresponding numbers
of moles: cB

i = nB
i /c0

i , wherec0
i is a constant based on total

numbers of moles of the droplet species. For example, it
is total mass of droplet water (kg), volume of the liquid
phase (L) and total number of moles of liquid phase species
for molality, molarity and mole fraction scales, respectively.
The approximation is usually very good for dilute solutions,
because the value ofc0

i depends mainly on the total number
of moles of water. In fact,c0 is actually constant for the
molality and molarity scales. In addition to simplifying the
concentration derivative terms in the adsorption equation,
this approximation makes the result largely independent of
the concentration scale used in the surface tension model.

There are a number of functional forms available in
the literature that describes the surface tension lowering of
aqueous surfactant solutions. We apply the well known
Szyskowski equation (Szyskowski, 1908):

σB
= σw −R T 0∞ ln

(
1+

cB

β

)
(4)

whereσw is surface tension of pure water, and saturation
surface excess0∞ (mol m−2) and β (same unit with
the surfactant bulk concentrationcB ) are experimentally
determined parameters. Note that we have dropped the
subscript from the surfactant concentration, because it is the
only species in this equation. Common concentration scales
include molarity (mol L−1 or just M), molality (mol kg−1)
as well as dimensionless mole and mass fractions. With the
above mentioned approximation,cB

= nB/c0, surface tension
gradient can be calculated as:

dσB

d lnnB =
dσB

d lncB = −
R T 0∞cB

β +cB = −
R T 0∞nB

βc0+nB
(5)

The last form of the equation is the most useful one, because
our goal is to solve the bulk number of moles of surfactant
(nB).

With the three approximations described above, the sum
term of the adsorption equation (Eq.3) can be simplified
greatly. When assuming constant or unit activity coefficients,
we have d ln

(
γ B
i cB

i

)
= d ln

(
cB
i

)
. This can be further

simplified with the the third approximation:d ln
(
cB
i

)
=

d ln
(
nB

i

)
. At this point the sum term of the adsorption

equation is:∑
nS

i d ln
(
γ B
i cB

i

)
=

∑
nS

i d ln
(
nB

i

)
(6)

Because there is only one surfactant with a non-zero
surface concentration, the subscripti includes either ions
resulting from the dissociation of the surfactant or just the
molecular surfactant. In the case of dissociating surfactant,
ion concentrations at the surface are obtained just by
multiplying concentration of the undissociated species by
the dissociation factorsνi , which give the numbers of ions
(cations and anions) from the dissociation. When assuming
unit dissociation factors for non-dissociating surfactants,
surface concentrations can be expressed in general form as
nS

i = νin
S ornS

i = νi

(
nT

−nB
)

in the case of a closed system.
The sum term is now:∑

nS
i d ln

(
γ B
i cB

i

)
=

(
nT

−nB
)∑

νid ln
(
nB

i

)
(7)

Here and from now on, any concentration including the
numbers of moles of species expressed without a subscript
refer to the undissociated surfactant salt or molecule;
the subscripted ones are for dissolved surfactant species
including either molecules or ions. It should be noted that
non-surfactant solutes can have a contribution to thenB

i

above. This is the case when the non-surfactant solutes and
the surfactant have a common ion. When the derivatives
in the adsorption equation are taken with respect to ln(nB),
the surface tension term is given in Eq. (5). With the
approximations above, we have:

(
nT

−nB
) ∑

νid ln
(
nB

i

)
d lnnB =

A0∞nB

βc0+nB
(8)

As mentioned above, subscripti refers to either undisso-
ciated surfactant or surfactant cations and anions resulting
from dissociation. The numbers of moles without a subscript
refer to the undissociated surfactant salt or molecule. In the
case of molecular surfactants and in the absence of common
ions, the solution is simple. Therefore, cases with and
without common ions are considered separately below.

Surfactant without common ions.In the absence of
common ions, the activity gradient term

∑
νid ln

(
nB

i

)
is

just νd ln
(
nB

)
, whereν = ν+ + ν− is the total number of

cations (ν+) and anions (ν−) resulting from the surfactant
dissociation. If the surfactant is not dissociating,ν is just
one. Then Eq. (8) simplifies to

ν
(
nT

−nB
)

=
A0∞nB

βc0+nB
(9)

This leads to a quadratic equation with number of moles of
surfactant in bulk solution (nB) as the unknown:

nTβc0
+

(
nT

−βc0
−A0∞/ν

)
nB

−

(
nB

)2
= 0 (10)

The quadratic equation has one positive and one negative
root at least whenβ is positive. Because bulk solution
concentrations are always non-negative, the positive root is
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chosen:

nB
=

nT
−βc0

−A0∞/ν+

√(
nT−βc0−A0∞/ν

)2
+4nTβc0

2
.

(11)

From the modelling point of view, this single-line solution
for the partitioning equilibrium is very efficient and also
reliable as negative or complex values are not possible for
realistic input parameters. In addition, there are no obvious
risks for having divide by zero errors.

Surfactant with common ions.Common ions, e.g. Na+ in
aqueous sodium dodecyl sulfate (SDS)-NaCl solution, have
an effect on the activity gradient term. For simplicity, we
assume that the surfactant is composed ofν+ cations and
ν− anions, and the numbers of moles of common ions from
the other solutes aren+ and n− for cations and anions,
respectively. Of course, there can not be both common
cations and anions, which would be equal to the dissociated
surfactant, so eithern+ or n− is zero. Then the activity term
is∑

νid ln
(
nB

i

)
= ν+d ln

(
ν+nB

+n+

)
+ν−d ln

(
ν−nB

+n−

)
(12)

The gradient is∑
νid ln

(
nB

i

)
d lnnB =

νnB
+k2

nB +k1
(13)

where common ion terms are denoted byk1 andk2:

k1 = n−/ν− +n+/ν+ (14)

k2 = ν+/ν−n−
+ν−/ν+n+ (15)

For example, in the case of aqueous SDS-NaCl (ν+ = ν− =

1, ν=2, n−=0, n+
= nNaCl) k1 = k2 = nNaCl. Note that

superscripts T or B are not used for the non-surfactant
solutes, because their bulk and total concentrations are equal
in the absence of partitioning.

By combining Eqs. (8) and (13) we have(
nT

−nB
) νnB

+k2

nB +k1
=

A0∞nB

βc0+nB
(16)

This can be can be simplified to a cubic polynomial equation:

nTk2βc0
+

(
nTk2+

(
νnT

−k2

)
βc0

−k1A0∞

)
nB

+

(
νnT

−k2−νβc0
−A0∞

)(
nB

)2
−ν

(
nB

)3
= 0 (17)

There are several well known analytical solutions for cubic
polynomial equations (see e.g.Barbeau, 2003). However,
unlike in the case of quadratic equation, there is no single
closed-form expression that would give the correct root in
all possible cases. Even if the analytical solutions exists
(not shown here due to the length of the equations), it is

sometimes easier to use numerical methods for finding the
correct root. It will be shown later that cubic root finding
algorithms can be computationally effective and robust.
Regardless of the method for solving the cubic equation, we
will refer to the solutions of the quadratic (Eq.11) and cubic
(Eq.17) equations as analytical solutions for the partitioning
equilibrium.

3 Model comparison

Here we compare predictions based on the iterative and
analytical solutions of the adsorption equation. Clearly,
approximations (only the surfactant exhibits bulk-surface
partitioning, ideal droplet solutions, and concentrations can
be expressed ascB

i = nB
i /c0

i , wherec0
i is a constant) needed

for the simplified polynomial equations should not have
major effects on the results. In addition, the equations should
be valid for slightly different Szyskowski surface tension
parameterizations, e.g. with different concentration scales.
These approximations are not needed and it is possible
to use any kind of available surface tension and activity
coefficient parameterizations when the adsorption equation
(Eq.3) is solved numerically. The iterative model, described
in AppendixA, was designed so that selected approximations
can be applied.

We use models based on theanalytical and iterative
solutions of the adsorption equation to predict the critical
supersaturation, which is the most important parameter
coming out of the K̈ohler theory, and the only directly
detectable parameter in CCN experiments. In practise,
the analytical and iterative methods are used for solving
the bulk solution concentrations as a part of a main
function containing the search algorithm for finding the
critical droplet size and supersaturation. A series of test
calculations with different mixtures (different number of
solutes, with and without common ions) and Szyskowski
surface tension parameters showed that when the common
ions are ignored or absent, model predictions are practically
indistinguishable. Also, the test calculations showed that
the differences between model predictions are only weakly
dependent on the Szyskowski parameters or the mixture.
Therefore, the calculations shown here can be considered
as an example of typical differences between the analytical
and iterative models. For the calculations, particles are
composed of sodium dodecyl sulfate (SDS) and sodium
chloride (NaCl), which means that there is a common ion.
Because Eq. (11) is not valid for this case, it would be unfair
to include it in the comparison. However, it will be included
in the comparison of the computing times.

The SDS-NaCl mixture was chosen due to the availability
of experimental surface tension data and well known
chemical and physical properties (Sorjamaa et al., 2004;
Prisle et al., 2010). The surface tension of aqueous
SDS-NaCl solution can be described with the Szyskowski
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equation (Eq.4) by using the following parameters from
Prisle et al.(2010): R T 0∞

= 13.90×10−3 N m−1 andβ =

(9.273× 10−6 M2)/(cNaCl + 9.733× 10−3 M). In addition,
the effect of salt on water-NaCl solution surface tension
was taken into account by assuming linear dependence
on salt concentration (cNaCl) with the slope of 1.61×

10−3 N m−1 M−1 (Prisle et al., 2010; Vanhanen et al.,
2008). Note that parameterβ depends explicitly on salt
concentration, but this is not a problem as it is independent
of surfactant concentration. In addition to explicitly
accounting for the salt effect on surface tension, a simple
parameterization based on the SDS only is used (R T 0∞

=

13.90×10−3 N m−1 andβ = 9.527×10−4 M).

3.1 Approximations needed for the polynomial
equations

In addition to some obvious considerations (e.g.nT
= nB

+

nS), some clear approximations had to be made:

– Only the surfactant partitions.This is a fair approxima-
tion. Water and salt should have slightly increased bulk
concentrations, but their relative concentration would
not be changed.

– Constant/unit activity coefficients.This approximation
had to be done, because activity coefficients are
complex functions of solution bulk concentrations.

– Bulk solution concentration of componenti (cB
i in

any concentration scale) is directly proportional to
the number of moles of the component (nB

i ), i.e.
d ln(cB

i ) = d ln
(
nB

i

)
. This depends on the concentration

scale, but generally it is a good approximation for dilute
droplets.

In the iterative model (AppendixA) it is possible to allow
partitioning for all species. Bulk solution concentrations are
then connected to that of the surfactant by fixing surface
volume to zero

(∑
nS

i vi = 0
)

and by the pseudobinary
approximation (nT

w/nB
w = nT

j /nB
j , when j is not surfactant).

The alternative for this is to allow partitioning for the
surfactant and water so that surface volume is again zero.
The third case is the same as in the analytical solutions
i.e. only the surfactant partitions. Activity coefficients can
be either calculated from the Debye-Hückel model (Debye
and Ḧuckel, 1923; Clegg and Pitzer, 1992) or set to unity.
Approximation d ln

(
cB
i

)
= d ln

(
nB

i

)
is not needed for the

iterative model, because activity gradients (based on mole
fractions) are calculated numerically.

Approximations of the polynomial equations were tested
by comparing predictions of the analytical model with
those of the iterative model with selected combinations
of the approximations (number of species exhibiting bulk-
surface partitioning, with and without activity coefficients,
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Fig. 2. Critical supersaturation for 40 nm SDS-NaCl particles
as a function of dry particle surfactant mass fraction. Model
predictions are made with the analytical model and iterative model
with and without activity coefficients.

and with and without the approximation about linearity of
the concentrations). The calculations showed that when
activity coefficients are set to unity, predictions for SDS-
NaCl particles are practically equal. This indicates that the
approximationsd ln

(
cB
i

)
= d ln

(
nB

i

)
and zero surface excess

for other than the surfactant have negligible effect on model
predictions. When Debye-Ḧuckel activities were used in
the iterative model, slightly higher critical supersaturations
were predicted. However, the main reason for the differences
is the water activity coefficient in the Raoult term of the
Köhler equation (Eq.1). The differences in the surfactant
bulk concentrations are as small as in the case without
activity coefficients. This shows that activity coefficients
are not important for the partitioning equilibrium. Figure2
shows predictions of the analytical model as well as those of
the iterative model with and without Debye-Hückel activity
coefficients. Model predictions without activity coefficients
are practically indistinguishable.

We do not know if the Debye-Ḧuckel model is accurate
for the current surfactant-salt mixture, but the effect of non-
idealities is not the focus of this paper. It is possible that
there are mixtures where unit activity coefficients lead to
significant prediction errors. This is also a quite common
uncertainty in modelling, because activity coefficients are
rarely available for multicomponent mixtures. For simplicity
and because of the fact that activity coefficients are much
more important for the Raoult term than for the partitioning
equilibrium, we use unit activity coefficients in the following
calculations.
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3.2 Effect of surface tension parameterization

The goodness of thed ln
(
cB
i

)
= d ln

(
nB

i

)
approximation

depends somewhat on concentration scale of the surface
tension parameterization and if other solutes are accounted
for or not. Figure3 shows predictions from the analytical and
iterative models with binary and ternary surface tension fits
described in Sect.3. Again, model predictions are practically
equal. Because binary and ternary fits give different surface
tensions for other than the pure surfactant case, different
model predictions can be expected. This is not seen, so the
effect of salt on solution surface tension can be ignored at
least in this case. A likely reason is that due to the extensive
surfactant partitioning and dilute droplets, surface tension of
the critical droplet is always close to that of pure water. In
addition, the surface tension gradient, which is important for
partitioning equilibrium, is only weakly dependent on salt
concentration.

The effect of concentration scale was tested by doing
calculations with different binary surface tension fits based
on molality, molarity and mole fraction scales. It was seen
that predictions from the iterative and analytical models were
practically equal (not shown). We can therefore conclude
that the analytical solutions are valid for various Szyskowski
equation concentration scales.

It is possible that concentration dependent Szyskowski
surface tension parameters do not fulfil the condition needed
for the analytical solution, i.e. being independent of the
surfactant bulk concentration. From several possible cases,
we choose one in which the Szyskowski parameters depend
explicitly on surfactant concentration. The Szyskowski
parameters given inPrisle et al.(2010) depend on solute
dry mass fraction, which of course changes due to surfactant
partitioning. Model calculations based on sodium decanoate-
NaCl surface tension parameterization (Prisle et al., 2010)
are shown in Fig.4. Again, model predictions are quite
similar, but this finding is not generally valid, because
there are numerous expressions for concentration dependent
Szyskowski parameters and the outcome depends on the
specific case. It seems that in this case NaCl just has quite

small effect on surface tension slopesdσB

d lnnB in Eq. (5), which
is important for partitioning.

3.3 Computation times

The simplified partitioning expressions are especially suit-
able for model calculations when short computation times
are required. In the calculations above, where we have
shown that the approximations needed for the simplified
expressions are very reasonable, roughly an order of
magnitude difference in computing times was observed.
However, these models contain several other operations that
may be affecting the computation times. Therefore, the
actual comparison of computation times is done by solving
the adsorption equation alone both iteratively and with the
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Fig. 3. Critical supersaturation for 40 nm SDS-NaCl particles as a function of dry particle surfactant
mass fraction. Model predictions are made with the analytical and iterative models with both binary and
ternary surface tension parameterizations.
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predictions are made with the analytical and iterative models with
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Fig. 4. Critical supersaturation for 40 nm SDS-NaCl particles
as a function of dry particle surfactant mass fraction. Model
predictions are made with the analytical and iterative models with
sodium decanoate-NaCl surface tension parameterization (Prisle
et al., 2010).

analytical expressions. Four modelling approaches were
considered: (a) analytical solution of the quadratic (Eq.10)
and (b) cubic (Eq.17) equations, (c) numerical solution of
the cubic equation (Eq.17), and (d) iterative solution of
the adsorption equation (Eq.3). Matlab® function roots
was the numerical method for finding the roots of the cubic
equation. For the iterative method, adsorption equation was
first greatly simplified by using the same assumptions with
the simplified equations. The solution was found by using
Matlab® function fzero. The analytical solution of the cubic
equation was based on the Cardan’s method (Barbeau, 2003).
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The physical properties of the SDS-NaCl system were
again chosen for the calculations. With the exception of
the quadratic equation, the common ion effect was properly
accounted for. Dry particle diameter (40 nm) and compo-
sition (80% SDS, 20% NaCl) were fixed, but both droplet
diameter (220–2000 nm) and the Szyskowski parameters (β:
10−4

−1 mol L−1, 0∞: 10−7
−10−4 mol m−2) were varied.

The effect of NaCl on solution surface tension was ignored.
Bulk numbers of moles were calculated 8000 times with a
standard laptop PC using the Matlab® 6.1 program. The
computation times are:

– 0.3 s analytical solution of the quadratic equation,

– 0.9 s analytical solution of the cubic equation,

– 1.5 s numerical solution of the cubic equation,

– 19.6 s iterative solution of the adsorption equation.

Obviously, the shortest computing times are seen when bulk
concentrations are calculated from the single-line solution
of the quadratic equation. There is a small difference in
computing times related to the cubic equation. The analytical
solution is about 40% faster here, but the iterative method
can be optimized for finding the correct root. In any case,
it is clear that the computing time is roughly an order
of magnitude longer when surfactant bulk concentrations
are solved directly from the adsorption equation. The
difference is actually even larger, but in practice it is
possible to use specialized algorithms and have better initial
values. Therefore, an order of magnitude difference is a fair
minimum estimate.

These calculations are for one mixture only, but computing
times depend very little on input parameters such as
dry particle and droplet sizes, dry particle composition,
Szyskowski parameters, temperature and number of other
solutes with the exception of the cases with and without
common ions. A few additional iterations maybe needed for
more difficult cases, but these are not important for the total
time. The analytical expressions are even less dependent on
the inputs. For example, the time for finding the root of the
quadratic equation is totally independent of the values of the
polynomial coefficients.

An additional interesting finding from the calculations is
that both of the simplified approximations are very reliable
for a wide range of solution concentrations and Szyskowski
parameter values. All calculated surfactant bulk numbers
of moles were between zero andnT. In addition, with the
exception of the quadratic equation not accounting for the
common ion effect, predictions were practically identical.
This was expected, because the same assumptions were
applied also for the iterative model.

4 Conclusions

By making a few approximations, the Gibbs adsorption
equation coupled with the Szyskowski surface tension model
was reduced to cubic and quadratic polynomial equations
for mixtures with and without common ions, respectively.
These polynomial equations have well known analytical
solutions, which can be used in solving the droplet bulk
solution concentrations that account for surfactant bulk-
surface partitioning. In addition to the common modelling
approximations (e.g. closed system, volume additivity
and only single surfactant), we have assumed that only
the surfactant exhibits bulk-surface partitioning, activity
coefficients can be set to unity, and solution concentrations
in any reasonable scale are proportional to the total
numbers of moles (ci = constant× ni). Comparison of
predictions from the analytical solution and from numerical
solution of the original set of equations including the Gibbs
adsorption equation coupled with the surface tension model
and an optional activity coefficient model showed that
the approximations have minimal effects on the predicted
bulk solution concentrations. Therefore, models based
on the analytical solutions predict critical droplet size,
supersaturation and composition accurately. Furthermore,
the analytical method is robust, meaning that a solution is
always found. It should be stressed that the new equations
rely on the Szyskowski equation, so that if for some aqueous-
surfactant system the surface tension reduction is given by
some other equation, the Szyskowski parameters need to be
determined first by a fitting procedure.

Analytical solutions are most useful for large-scale models
where cloud microphysics is explicitly accounted for. As
bulk concentrations are needed at low-level functions,
computation time of the partitioning equilibrium is crucial
for total computation time. For example, when calculating
critical droplet size (first level iteration) for droplets
containing partially soluble solutes (second level iteration),
partitioning calculations are in the third level. Use of the new
equations reduces the computer time needed for the droplet
concentration calculations roughly by an order of magnitude
and even more in the absence of common ions.

Current analytical solution for the case without common
ions is quite similar to the solution presented inTopping
(2010). Although both solutions are based on simultaneous
independent work, the assumptions are practically equal.
The main difference between the derivations is that the
solution presented byTopping (2010) is based on mole
fraction scale, but the concentration scale is not fixed in
the current solutions.Topping does not consider common
ions, but by ignoring surfactant-surfactant interactions the
equations are given for mixed surfactant solutions. The
result, however, is that the mixed surfactant case is
reduced to separate single surfactant cases. With the
same approximation, our equations are also valid for mixed
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surfactant cases. It is not clear if this approximation is
generally valid, so further studies are definitely needed for
more complex systems.

Even if the analytical solutions are very accurate in
predicting bulk solution concentrations, the approximations
may not be valid for predicting equilibrium saturation ratios.
For example, as seen in the calculations, water activity
coefficient in the Raoult term can be important for the
equilibrium saturation ratio even if it can be ignored from
the adsorption equation. This is another important question
for future studies.

Appendix A

Iterative model for single surfactant solutions

The number of independent variables in the adsorption
equation is decreased to one by making two assumptions
(Sorjamaa et al., 2004; Prisle et al., 2010). First of all, it
is assumed that at the Gibbs dividing surface, the following
equation holds:

V S
=

∑
nS

i vi = 0 (A1)

where V S (m3) is volume of the surface, andnS
i (mol)

andvi (m3 mol−1) are number of moles at the surface and
molar volume for componenti, respectively. As shown
by Laaksonen et al.(1999), Eq. (A1) is consistent with the
assumption that the droplet surface tension (when keeping
the bulk concentration constant) is not size-dependent.
In the case of multicomponent solutions water and non-
surfactant solutes (subscriptj ) are assumed to behave as
a pseudobinary solution so that their bulk (superscript B) and
total (superscript T) concentration ratios remain unchanged:

nT
w/nB

w = nT
j /nB

j (A2)

An alternative for the pseudobinary approximation is to
ignore partitioning of the non-surfactant solutes. Equa-
tion (A1) still holds as water can be depleted from the
surface.

Both surface tension and activity gradients are calculated
numerically, so any types of equations giving surface tension
and activity coefficients can be used. Because our focus is on
surface tension and there are no general activity coefficient
models for surfactant-salt solutions, activity coefficients are
calculated from a Debye-Ḧuckel extension. Our version of
the equation is the ideal part of the Pitzer-Simonsen-Clegg
model as given byClegg and Pitzer(1992):

lnγi =
2AxI

3/2
x

1+ρ
√

Ix

−z2
i Ax

(
2

ρ
ln

(
1+ρ

√
Ix

)
+

√
Ix

1+ρ
√

Ix

)
(A3)

whereAx = 2.917 (for water at 298.15 K),ρ = 13.0 and mole
fraction (x) scale ionic strengthIx = 0.5

∑
xiz

2
i . Chargezi is

zero for water.
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