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Abstract. Accurate modelling of the carbon cycle strongly
depends on the parametrization of its underlying processes.
The Carbon Cycle Data Assimilation System (CCDAS) can
be used as an estimator algorithm to derive posterior parame-
ter values and uncertainties for the Biosphere Energy Trans-
fer and Hydrology scheme (BETHY). However, the simulta-
neous optimization of all process parameters can be challeng-
ing, due to the complexity and non-linearity of the BETHY
model. Therefore, we propose a new concept that uses en-
semble runs and the adjoint optimization approach of CC-
DAS to derive the full probability density function (PDF) for
posterior soil carbon parameters and the net carbon flux at the
global scale. This method allows us to optimize only those
parameters that can be constrained best by atmospheric car-
bon dioxide (CO2) data. The prior uncertainties of the re-
maining parameters are included in a consistent way through
ensemble runs, but are not constrained by data. The final
PDF for the optimized parameters and the net carbon flux
are then derived by superimposing the individual PDFs for
each ensemble member. We find that the optimization with
CCDAS converges much faster, due to the smaller number of
processes involved. Faster convergence also gives us much
increased confidence that we find the global minimum in the
reduced parameter space.

1 Introduction

The terrestrial biosphere plays an important role in the global
carbon cycle and has a great impact on the accumulation of
carbon dioxide (CO2) in the atmosphere. Feedbacks between
the carbon cycle and climate change, generally known as
carbon-climate feedbacks, have the potential to accelerate the
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rise in atmospheric CO2, which causes further global warm-
ing (Matthews et al., 2007). The quantification of the carbon
cycle-climate feedback is therefore important for determin-
ing the magnitude of future climate change. However, there
is much uncertainty about the size of natural sinks of the ter-
restrial carbon cycle, which in turn has a major impact on
the uncertainty of climate predictions (Zaehle et al., 2005;
Denman et al., 2007). The large variations in the prediction
of the future atmospheric CO2 load result from differences
between models (Cramer et al., 1999; Friedlingstein et al.,
2006), but also from uncertainties of the process parame-
ters of the terrestrial ecosystem models (TEMs) (Knorr and
Heimann, 2001).

The increase in the complexity of TEMs over recent years
has also led to an increase in the number of parameters.
Prior parameter values are usually based on “expert knowl-
edge”, which in some cases is little more than an informed
guess. Furthermore, even those parameters that have clear
analogues iin the observed system are often not directly re-
lated to the values derived from laboratory experiments or
site-scale experiments. Parameter optimization methods are
very useful in this context: they provide a way of constrain-
ing the model parameters against observations and in this
way reduce parameter uncertainties.

The Bayesian approach has been shown to provide a pow-
erful and convenient framework for combining prior knowl-
edge about parameters with additional information, in par-
ticular observations (Rayner et al., 2005). The resulting in-
verse problem expressed by Bayes’ theorem can be solved in
different ways, for example through Monte Carlo inversion
(Sambridge and Mosegaard, 2002) or variational data assim-
ilation. Monte Carlo inversion methods such as the Markov
Chain Monte Carlo (MCMC) method are able to find an op-
timal solution by sampling the posterior probability density
function (PDF) of the parameters directly. They are easy to
implement and require no assumptions about the model (i.e.
continuity). However, they may require a very large sample
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size which is not always feasible due to computational lim-
itations (i.e. long computing time of TEMs). Variational
data assimilation, such as the four-dimensional variational
scheme (4-D-Var), allows one to combine observational data
with a model. It uses derivative code (i.e. the adjoint of the
model) for the optimization of the parameters and therefore
requires the model to be differentiable with respect to all pa-
rameters. Although the 4-D-Var approach is very efficient
in most cases, the optimization might not always converge
in time or might only identify a local minimum. These is-
sues arise due to the complexity and non-linearity of state-of-
the-art TEMs and the potentially high-dimensional parame-
ter space.

In this contribution we address the convergence is-
sue of the optimization scheme in the 4-D-Var approach
as used in the Carbon Cycle Data Assimilation System
(CCDAS) (Rayner et al., 2005) and propose a new con-
cept for deriving the posterior PDF for parameters and target
quantities in a global TEM. Although we focus only on one
TEM, the Biosphere Energy Transfer and Hydrology scheme
(BETHY) (Knorr, 2000), the approach is universal and can
be applied to any other model. The main idea is that we
only optimize a subset of parameters, i.e. those controlling
the heterotrophic respiration (in the following called soil car-
bon parameters), because they are best constrained by atmo-
spheric CO2 concentration observations as demonstrated by
Rayner et al.(2005) and Scholze et al.(2007). The prior
uncertainties of the remaining parameters, i.e. those related
to net primary productivity (NPP), are included through en-
semble runs and are therefore not constrained by the obser-
vations. This new concept allows us to treat all parameter
uncertainties in a consistent way.

2 Materials and methods

The 4-D-Var data assimilation scheme has been successfully
applied within CCDAS to constrain process parameters in
a TEM. CCDAS can be used in various modes. For exam-
ple, in calibration mode it serves as an estimator algorithm
for a set of photosynthesis, autotrophic and heterotrophic
respiration process parameters by using automatically gen-
erated adjoint code (first derivative) for parameter optimiza-
tion. In Hessian mode, the Hessian model code (second order
derivative) is used for estimating posterior parameter uncer-
tainties. As its ecosystem model, CCDAS uses the BETHY
model, which simulates carbon assimilation and soil respi-
ration within a full energy and water balance and phenology
scheme. Calculated fluxes are then mapped to atmospheric
concentrations using the atmospheric transport model TM2
(Heimann, 1995).

The CCDAS framework has been previously described in
detail byScholze(2003) andRayner et al.(2005). Therefore,
we provide only a brief summary. The data assimilation in
CCDAS is performed in two steps: In the first step, the full
BETHY model is used to assimilate global monthly fields of

the fraction of Absorbed Photosynthetically Active Radiation
(fAPAR) for optimizing parameters controlling soil moisture
and phenology (Knorr and Schulz, 2001). In the second step,
soil moisture and leaf area index (LAI) fields are provided
as inputs for a reduced version of BETHY, in the follow-
ing referred to as CarbonBETHY. This version is used to as-
similate atmospheric CO2 concentration observations from
a large number of observation stations for optimizing pho-
tosynthesis and soil carbon parameters and to derive their
posterior uncertainties (Rayner et al., 2005; Scholze et al.,
2007).

2.1 Data assimilation

The Bayesian approach (Tarantola, 1987, 2005) provides
a consistent framework for constraining model parametersx

against observationsc. This framework enables us to com-
bine the prior probability distribution of the parametersP(x)

with the probability distribution of the observations given the
parametersP(c|x) in order to determine the inverse (poste-
rior) probability distribution of the parameters given the ob-
servationsP(x|c):

P(x|c) =
1

A
P(c|x)P (x). (1)

The factor 1/A is a normalisation constant and in-
dependent of the parametersx. In many cases a normal
distribution is assumed for the prior parameter values and the
observations. This Gaussian assumption has the advantage
that only the mean and covariance have to be provided in
order to describe the prior probability distribution of each
variable. Applying a normal distribution to Eq. (1) leads to
the following expression:

P(x|c) =
1

A
exp
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−
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wherecM = M(x) are the modelled observations. The co-
variance matricesCc andCx0 express the uncertainty of the
observationsc and the model parameter priorsx0, respec-
tively. We are usually interested in the maximum ofP(x|c),
which will give us the most likely set of parameter values.
This can be found in two ways: we can either maximize
Eq. (2) using Monte Carlo inversion, or we can minimize the
negative exponent of Eq. (2) using variational data assimila-
tion.

The cost functionJ (x)

P (x|c) =
1
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exp(−J (x)) (3)
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(4)
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describes the mismatch between the observations and their
modelled equivalents and the mismatch between the param-
eters and their priors.

The data assimilation in CCDAS is based on the 4-D-Var
scheme. In our case, the vector of observations,c, repre-
sents monthly atmospheric CO2 concentrations measured at
41 remote monitoring stations (GLOBALVIEW-CO2, 2004).
CarbonBETHY is used to calculate surface fluxes which are
then mapped via the atmospheric transport model TM2 to
atmospheric concentrationscM . Since BETHY calculates
only the natural land-atmosphere fluxes, we have to add land
use change as an external flux as described inRayner et al.
(2005). Background fluxes for fossil fuel emissions are based
on the flux magnitudes fromBoden et al.(2009) as described
in Scholze et al.(2007). The spatial flux pattern and the
magnitude of ocean CO2 exchange is taken fromTakahashi
et al. (1999) with estimates of inter annual variability taken
from Le Qúeŕe et al.(2007).

The parameter vectorx contains the photosynthesis
and soil carbon parameters in CarbonBETHY with their
prior values represented byx0 (see Tables S1 and S2).
A quasi-Newton method, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) variant of the Davidon-Fletcher-Powell
(DFP) formula (Fletcher and Powell, 1963; Press et al.,
1996), is used for the minimization of the cost function,
which requires the calculation of the gradient ofJ with re-
spect to the control parametersx in each iteration. All deriva-
tive code is generated from the model’s source code using the
tool Transformation of Algorithms in Fortran (TAF) (Giering
and Kaminski, 1998; Kaminski et al., 2003).

2.2 Challenges

The simultaneous optimization of the photosynthesis and soil
carbon parameters in CCDAS as described in the previous
section can be challenging due to slow convergence or fail-
ure of convergence. Even if a convergence requirement is
fulfilled (i.e. test for convergence on1x), the gradient of the
cost function may not be sufficiently close to zero at the final
convergence point in parameter space. As a consequence the
Hessian is not positive definite (i.e. contains negative eigen-
values), which indicates that an exact minimum has not been
found. This has been noted byRayner et al.(2005) where,
in order to derive the posterior parameter uncertainties, the
Hessian had to be modified manually. Another concern is
that due to the large input space dimension and the fact that
the BETHY model is highly non-linear, it is likely that we
only identify a local minimum with CCDAS.

The study byZiehn et al.(2011a) has revealed that the per-
formance of the optimization in CCDAS can be significantly
improved if only the soil carbon parameters are constrained
with atmospheric CO2 concentration data, while all param-
eters controlling NPP were kept fixed. Earlier studies with
CCDAS (Rayner et al., 2005; Scholze et al., 2007) confirmed
that NPP-related parameters (i.e. photosynthesis parameters)

are constrained relatively little by the assimilation of CO2
concentration observations. Most importantly it could be
shown in the study byZiehn et al.(2011a) that an ensem-
ble run of optimizations, starting each of them in a different
point, identified only one minimum in the physical parameter
space, which gives us additional confidence that the global
minimum has been found. Additionally, the gradient in the
cost function minimum was very close to zero and the Hes-
sian was positive definite so that no manual modification of
the Hessian was required. Although the overall performance
of the optimization has improved significantly, there is one
drawback of the technique presented in their work: the un-
certainties in the NPP-related parameters have not been in-
cluded, which means that estimated uncertainties of the soil
carbon parameters and diagnostics were only a lower bound.
Therefore, we propose a new concept, that treats the uncer-
tainties in the photosynthesis parameters via ensemble runs
and optimizes the soil carbon parameters using the adjoint
optimization approach within CCDAS.

2.3 Concept and test case

A flow chart of the concept developed in this contribution is
presented in Fig.1. In a first stage, ensemble runs are per-
formed using CarbonBETHY by varying the NPP-related pa-
rameters randomly according to a normal distribution defined
by their prior mean and standard deviation (see Table S1).
All other parameters (i.e. soil carbon parameters) are kept
fixed. Here, we use a sample size ofN = 200. We also per-
form one additional forward run, referred to as base case,
where all NPP controlling parameters are set to their prior
mean.

CarbonBETHY is driven by observed climate data over
25 yr for the period 1979 to 2003. Global vegetation is
mapped onto 13 different plant functional types (PFTs) and
each grid cell can contain sub-areas (sub-grid cells) with up
to three different PFTs with their amount specified by each
PFT’s fractional cover. CarbonBETHY is run on a 2◦

× 2◦

grid with 3462 land grid cells (excl. Antarctica).
Each ensemble run (including the base case) provides

a monthly field of NPP, which is used as an input field in
the second stage. Here, we apply CCDAS to optimize only
the soil carbon parameters, using atmospheric CO2 concen-
tration as observations. Most of the soil carbon parameters
are globally valid (i.e. they have the same value in each of the
grid cells), only the carbon balance parameterβ is differen-
tiated by PFT and region (Ziehn et al., 2011a). In addition to
the 13 PFTs (Fig. S1 and Table S3) we also consider 6 differ-
ent regions (Fig. S2 and Table S4), which results in a set of
73 parameters (67βs+ 5 global parameters+ 1 offset). For
each NPP input field we obtain a different set of optimal soil
carbon parameters including their uncertainties. We can then
propagate the posterior uncertainties for those parameters to
any output target quantity of interest. This is done by mak-
ing use of the Jacobian (first order derivative) of the BETHY

www.geosci-model-dev.net/4/1011/2011/ Geosci. Model Dev., 4, 1011–1018, 2011



1014 T. Ziehn et al.: Ensemble-adjoint optimization

parameter set: 1

parameter set: N

Prior photosynthesis NPP

NPP

CCDAS

CCDAS
Target quantity PDF (e.g. NEP)

Post. soil carbon parameter PDF

Target quantity PDF (e.g. NEP)

Post. soil carbon parameter PDF

Superimpose
PDFs

Final PDF

Prior photosynthesis

Atmospheric CO2 data

Prior soil carbon parameter PDF

CarbonBETHY

CarbonBETHY

1st stage Ensemble Runs 2nd stage Data Assimilation 3rd stage Superposition

Fig. 1. Flow chart of the ensemble-adjoint optimization approach.
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Fig. 1. Flow chart of the ensemble-adjoint optimization approach.

model within CCDAS (Scholze et al., 2007). Thus we ob-
tain uncertainty estimates and covariances for output target
quantities, such as the net ecosystem productivity (NEP) cal-
culated as

NEP= NPP−RS= NPP−(RS,s+RS,f), (5)

whereRS,s andRS,f are the respiration fluxes from the slowly
and rapidly decomposing soil carbon pools, respectively.

In a third stage, we superimpose the posterior PDFs for the
soil carbon parameters and the output target quantity in order
to obtain their final PDF, which also accounts for the prior
uncertainties in the NPP-related parameters. The calculation
of the final PDFp(y) for the output target quantityy is given
by the following equations:

p(y) =
p′(y)

N
(6)

p′(y) =

N∑
i=1

1√
2πσ 2

i

exp

(
−

(yi −µi)
2

2σ 2
i

)
, (7)

whereN is the ensemble size andµi andσi are the mean
and standard deviation for each individual outputyi . Indi-
vidual PDFs described byµi and σi have a normal distri-
bution. In practice, we discretize those PDFs using a step
length of 1×10−4 PgC and then calculate the sum over all
discrete points divided by the total numberN of PDFs (en-
semble size). In this way we obtain the final PDF as de-
scribed by Eqs. (6) and (7), which can be non-Gaussian. The
calculation of the final (superimposed) soil carbon parameter
PDF is performed in a similar way.

3 Results and discussion

The optimization within CCDAS (data assimilation in
stage 2, see Fig.1) reached convergence for 198 out of the

200 ensemble members and required about 1700 iterations
on average. However, of the 198 successful optimization
runs we had to exclude further 28 runs, where either the gra-
dient in the cost function minimum was not sufficiently small
enough (i.e. greater than 1×10−3) or the optimal (posterior)
parameter set contained non-physical parameter values. For
physically meaningful results we require here that all param-
eters are positive, and some parameters that respresent frac-
tions have to fall between 0 and 1. However, the optimal set
of parameters derived by CCDAS may contain values out-
side those defined ranges and we therefore have to exclude
the corresponding runs. This leaves us with 170 sets of op-
timal soil carbon parameters, which were obtained by using
170 different NPP input fields (ensemble runs in stage 1, see
Fig. 1). A time series of global mean NPP including error
bars is shown in Fig.2a.

A list of the posterior parameter values for the five global
parameters including their uncertainties is presented in Ta-
ble 1, the values for the parameterβ for each PFT and re-
gion and the offset (global atmospheric CO2 concentration
at the beginning of the optimization period) are presented
in Table S2. Note that we distinguish between model pa-
rameters (physical domain) and parameters as used by the
optimization in CCDAS (normalized domain). For most of
the parameters we assume a log-normal distribution to en-
sure positive values as discussed above, which results in the
asymmetry shown in Table1 and Table S2. However, af-
ter suitable transformation, all parameters follow a Gaussian
distribution in the normalized domain. Results are only dis-
cussed in the physical domain and in the following, we focus
only on the five global parameters. The optimal values for
the temperature sensitivity of respiration for the fast and slow
carbon pools (Q10,f andQ10,s) for the base case are close to
their prior values and within the prior uncertainty range. The
soil moisture dependence parameterκ is reduced from its ini-
tial value, but is also within its prior uncertainty range. The
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Fig. 2. Time series of (a) the global mean net primary productivity (NPP) and (b) the global mean net ecosystem

productivity (NEP). For (a) the median and error bars are calculated from the 170 NPP fields for each year,

which are then used as inputs for CCDAS. For (b) the median and error bars are based on the final NEP PDF for

each year. Error bars represent the lower and upper percentiles equivalent to one standard deviation (i.e. 15.9th

percentile and 84.1th percentile respectively).
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Fig. 2. Time series of(a) the global mean net primary productivity (NPP) and(b) the global mean net ecosystem productivity (NEP). For
(a) the median and error bars are calculated from the 170 NPP fields for each year, which are then used as inputs for CCDAS. For(b) the
median and error bars are based on the final NEP PDF for each year. Error bars represent the lower and upper percentiles equivalent to one
standard deviation (i.e. 15.9th percentile and 84.1th percentile, respectively).
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Fig. 3. PDFs for global NEP for(a) the 1980s and(b) the 1990s. Blue: 170 individual PDFs, red: base case PDF (which used prior
photosynthesis parameters and was not part of the ensemle), green: superimposed PDF from the 170 individual PDFs.
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Fig. 4. Uncertainty correlation matrix of global mean NEP for(a) the 1980s and(b) the 1990s.

Table 1. Prior and posterior parameter values including their uncertainties for five global parameters. Upper and lower percentiles equivalent
to one standard deviation are given (i.e.µ−σ is equivalent to the 15.9th percentile andµ+σ is equivalent to the 84.1th percentile). The
relative reduction in uncertainty (Red.) related to+σ is also shown. Prior and posterior parameter values for theβ parameters are provided
in Table S2. Units:τf , years; all others unitless.

Prior Posterior

Base case Superimposed

Parameter µ −σ /+σ µ −σ /+σ Red. µ −σ /+σ Red.

Q10,f 1.50 0.50/0.75 1.24 0.03/0.04 95 % 1.22 0.12/0.11 86 %
Q10,s 1.50 0.50/0.75 1.65 0.02/0.02 98 % 1.65 0.12/0.09 88 %
τf 1.50 1.00/3.00 4.55 0.28/0.30 90 % 4.46 0.96/1.01 66 %
κ 1.00 0.90/9.00 0.60 0.01/0.01 99 % 0.60 0.05/0.11 99 %
fs 0.20 0.10/0.20 0.80 0.01/0.01 98 % 0.79 0.04/0.03 87 %

optimized parameter values for the fast pool turnover time,
τf , and the fractionfs of the decomposition flux going from
the fast to the long-lived soil carbon pool are much larger
than their priors and both outside the prior uncertainty range.
All five global parameters are well constrained by the CO2
data, shown by the small posterior uncertainty in the base
case. The posterior mean values for all soil carbon param-
eters are very similar in both cases (base case and superim-
posed case), showing that the mean values are not heavily
effected by changes in the NPP-related parameters.

Our target output quantity is global mean NEP, for which
a time series is shown in Fig.2b. In the following we focus
on global mean NEP for the 1980s and 1990s. The PDFs
for those quantities are presented in Fig.3. We obtain the
final PDF by superimposing the 170 individual PDFs (Eq.7)
from each optimization run to account for both, the posterior
soil carbon parameter uncertainties and the prior uncertain-
ties in the NPP-related parameters. The superimposed PDF
is not necessarily Gaussian. However, skewness and kurtosis
of the distribution for the case of the 1990s (Fig.3b) indi-
cate that the assumption of a normal distribution is a good

approximation. The mean values for our target quantities
are nearly identical for the base case and the superimposed
case, showing again that the NPP-related parameters have
little effect on the mean values. The uncertainties for the
target quantities, however, increase by more than 50 % for
the 1980s and by more than 100 % for the 1990s using the
ensemble-adjoint method.

According to Denman et al. (2007) the terrestrial
carbon sink removed−1.7 Pg C yr−1 (range: −3.4 to
+0.2 Pg C yr−1) during the 1980s and−2.6 Pg C yr−1

(range:−4.3 to−0.9 Pg C yr−1) during the 1990s from the
atmosphere. The results from our study match the mean
values well, with a carbon flux of−1.83 Pg C yr−1 (range:
−1.84 to−1.82 Pg C yr−1) for the decade of the 1980s and
−2.55 Pg C yr−1 (range:−2.57 to−2.54 Pg C yr−1) for the
decade of the 1990s. However, the uncertainties of our re-
sults are small in comparison to those fromDenman et al.
(2007). One reason for this is the large number of negative
entries for individual years in the error covariance matrix of
global mean NEP for the 1980s and 1990s.
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The covariance between the flux uncertainties can be ex-
pressed via the uncertainty correlation matrix of diagnostics,
Rd, which is defined as follows:

Rd
i,j

=
Cd

i,j

σiσj

, (8)

whereC
i,j

d is elementi,j of the uncertainty covariance ma-
trix of the diagnostics (global NEP per year), andσi the pos-
terior uncertainty of parameteri derived from the diagonal
elementsCi,i

d of the matrix Cd. Figure 4 shows the cor-
relation matrix for global mean NEP for the 1980s and the
1990s. Due to the large number of negative correlations the
overall uncertainty for global mean NEP over the 10 yr pe-
riod (1980s and 1990s) is rather small. However, the uncer-
tainty for global mean NEP for a single year, for example the
year 1990, is by at least a factor of two larger then global
mean NEP for the 1990s in the base case and increases by
the ensemble-adjoint method by more than a factor of four.

4 Conclusions

The ensemble-adjoint optimization approach presented here
allows us to treat all parameter uncertainties in a TEM in
a consistent way. Some parameters are constrained against
data using the 4-D-Var data assimilation scheme, whereas
the uncertainties of the remaining parameters are included
via ensemble runs. In this way we optimize only those pa-
rameters which are constrained best by the observations used
in the 4-D-Var step, but retain full error propagation from
parameters to diagnostics. This has the advantage that fewer
parameters and processes are involved within the optimiza-
tion process, which, in turn, speeds up the convergence of
the optimization. We are also more confident that we find the
global minimum in the reduced parameter space.

In this study we have illustrated the usefulness of the
ensemble-adjoint optimization approach by including prior
uncertainties of model parameters (here the NPP-related pa-
rameters) that have not been constrained by the atmospheric
CO2 data, to derive a full probability density function on
the model’s target output quantities. For future applications,
the proposed concept also allows the inclusion of posterior
uncertainties for the remaining, yet unconstrained parame-
ters.Ziehn et al.(2011b) have demonstrated how to constrain
the parameters of theFarquhar et al.(1980) photosynthesis
model using an extensive set of plant traits and therefore pro-
vide a way on how to derive the posterior PDF for the NPP-
related parameters. Those results could potentially been used
within the same ensemble-adjoint optimization framework.
We would only need to replace the prior mean and uncertain-
ties for the NPP-related parameters with the derived posterior
mean and uncertainties for the same parameters. In this case

all parameters, NPP-related parameters and soil carbon pa-
rameters, would be constrained by observational data.

Supplementary material related to this
article is available online at:
http://www.geosci-model-dev.net/4/1011/2011/
gmd-4-1011-2011-supplement.pdf.
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