
MESSy TIMER User Manual
for the MESSy TIMER submodel

YYYY MM DD

Astrid Kerkweg1, Hella Riede2 & Patrick Jöckel2,3

1Institute for Atmospheric Physics, Johannes Gutenberg University Mainz 55099 Mainz, Germany
kerkweg@uni-mainz.de

2 Air Chemistry Department, Max-Planck Institute of Chemistry, PO Box 3060, 55020 Mainz, Germany
3 now at Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82230 Wessling,

Germany

This manual is part of the electronic supplement of our article “Development Cycle 2 of the Mod-
ular Earth Submodel System (MESSy2)” in Geosci. Model Dev. (2010), available at: http://www.
geoscientific-model-development.net

Date: November 27, 2010

2 A. Kerkweg et al.: TIMER User Manual

Contents

1 Introduction 3

2 TIMER basics 3

2.1 Representation of date and time . 3

2.2 Predefined variables . 3

2.2.1 Dates and times . 3

2.2.2 LOGICALs for model control . 4

2.2.3 Other variables . 4

2.3 TIMER subroutines and functions . 5

2.3.1 TIMER routines called from the BML or BMIL . 5

2.3.2 Subroutines for date manipulations . 6

2.4 Additional tools . 6

3 The TIME MANAGER 6

3.1 Basic structure and subroutines . 6

3.2 The heart beat of the TIME MANAGER . 7

4 The EVENT MANAGER 7

4.1 The definition of an event . 7

4.2 How to define an event? . 9

4.3 How to inquire an event? . 10

4.4 The restart event . 10

4.5 Subroutines used internally . 10

5 The TIMER namelist 11

6 The TIMER BMIL ROUTINES 11

References 12

A. Kerkweg et al.: TIMER User Manual 3

1 Introduction

The MESSy (Jöckel et al., 2005) generic submodel TIMER
is partly based on the time management routines of
ECHAM5 (Roeckner et al., 2003, 2004, 2006). The
TIMER provides the timing information for the MESSy
submodels and either replaces or mirrors the timing in-
formation of the basemodel. In the first case, the initial-
isation of the basemodel time information is overwritten
by the TIMER namelist. In the second case, the TIMER
is initialised by the basemodel. The submodel core layer
(SMCL) of the TIMER consists of three Fortran95 mod-
ules:

• messy main timer.f90 provides

– the basic type structure to store date and time
information,

– the basic variables to store date and time infor-
mation,

– tools (functions and subroutines) for date and
time format conversions, time span calcula-
tions, etc.

• messy main timer manager.f90 provides the inter-
nal clock for the model simulation. It manages the
time stepping and the date and time information
during the simulation.

• messy main timer event.f90 provides data types
and routines to schedule processes at specific (regu-
lar) time intervals, e.g., to trigger regular output or
input.

In addition the basemodel interface layer (BMIL) module
messy main timer bi.f90 provides the connection to the
basemodel.

Figure 1 sketches the relationship between the different
Fortran95 modules of TIMER.

2 TIMER basics

2.1 Representation of date and time

There are two ways to represent a specific date and time
within TIMER. Internally all dates are stored in a For-
tran95 structure time_days as follows:

TYPE, PUBLIC :: time_days
!
! relative calendar date
! and time format
!
! time_days [structure]
!

! day [integer]
! (day in calendar,
! -2147483648 ... 2147483647
! approx. +/-5.8 Mio. years)
!
! second [integer]
! (seconds of day, 0,...,86399)
!
!PRIVATE
LOGICAL :: init = .FALSE.
INTEGER :: day = 0
INTEGER :: second = 0

END TYPE time_days

This structure contains the two INTEGER components day
and second and in addition the LOGICAL component init,
which indicates whether the date is already initialised
(.TRUE.) or not (.FALSE.).

The second representation of a date is the more descriptive
form by six INTEGER components for the year, month, day,
hour, minute and second, respectively. For instance, the
date “10.11.2012 09:14:06” is described by YEAR=2012;
MONTH=11; DAY=10; HOUR=9; MINUTE=14; SEC-
OND=6.

2.2 Predefined variables

The TIMER provides predefined variables including some
important date variables, which are updated at the begin-
ning of each simlation time step and which are to be used
by ordinary submodels. Usage of these variables prevents
the multiple re-calculation of the same information within
one time step. Additionally, some important switches (of
TYPE LOGICAL) are defined, which are required for model
run control.

2.2.1 Dates and times

The predefined dates (of TYPE time_days) provided by
the TIMER are:

• start_date: the date and time of the simulation
start,

• stop_date: the date and time at which the simula-
tion finishes,

• resume_date: the date and time at which the sim-
ulation was resumed after a restart,

• current_date: the date and time of the current
model time step,

• previous_date: the date and time of the previous
model time step,

• next_date: the date and time of the next model
time step.

4 A. Kerkweg et al.: TIMER User Manual

timer

timer_manager timer_event

timer_bi

S
M
C
L

S
M
IL

B
M
IL

XXX_si

Figure 1: Relationship between the various Fortran95 modules of TIMER: The boxes with horizonal text represent
the different Fortran95 modules of TIMER, the corresponding filenames are messy main TT.f90, where TT is the
respective box text. The arrows indicate where the different modules are USEd. The dashed box with XXX denotes
an ordinary submodel, which makes use of the TIMER. The different MESSy layers are indicated on the left side
(SMCL: submodel core layer; SMIL: submodel interface layer; BMIL: basemodel interface layer) and by the module
names (si = SMIL, bi = BMIL).

2.2.2 LOGICALs for model control

The predefined switches (of TYPE LOGICAL) provided by
the TIMER are:

• lstart is .TRUE. during the initialisation phase and
the very first time step of a simulation.

• lresume is .TRUE. during the initialisation phase
and the first time step after a model restart.

• lfirst_cycle is .TRUE. if lstart or lresume are
.TRUE..

• lbreak is .TRUE. during the last time step before a
simulation will be interrupted (for later restart).

• lstop is .TRUE. during the last time step before the
end of the model simulation.

• l_rerun is .TRUE. when restart files are to be writ-
ten (see Sect. 4.4).

• l_trigger_restart is .TRUE. when a restart is trig-
gered by the generic submodel QTIMER.

• labort is set in the namelist. In case of .TRUE., the
model simulation will be finished after a break, even
if stop_date is not reached. In other words, this
switch prevents that after a model break the next
job is submitted to the scheduler of the computer.

• lforcedtime indicates that the date and restart set-
ting as defined in the namelist are overwritten by an
external source. In TIMER itself the LOGICAL is
used in main_timer_global_start to prevent the
setting of l_rerun (as this also needs to be deter-
mined consistently by the external source).

2.2.3 Other variables

Some other variables are defined by TIMER as well:

• The INTEGER CAL_TYPE defines the calendar type.
Currently, two calendar types are impemented: The
Julian calendar identified by the INTEGER PARAM-

ETER CAL_JULIAN and a 360 day per year calendar
(INTEGER PARAMETER CAL_360D). Note: the 360
day calendar option is implemented, but was NOT
extensively tested.

• INIT_STEP is the position (step number) of the time
manager (see Sect. 3) at model simulation start.

• delta_time is the interval between two model time
steps in seconds.

• time_step_len is the length of the integration time
step, which depends on the integration scheme; e.g.,
a leap frog scheme uses a time step which is twice the
interval of a model time step, whereas for a Runge-
Kutta scheme the integration time step is equal to
the time interval delta_time.

A. Kerkweg et al.: TIMER User Manual 5

• YEAR,MONTH,DAY,HOUR,MINUTE,SECOND contain the
componentes of current_date as six INTEGER vari-
ables (Sect. 2.2.1).

• YEAR_START, MONTH_START, DAY_START,
HOUR_START, MINUTE_START, SECOND_START contain
the components of start_date as six INTEGER

variables.

• YEAR_NEXT, MONTH_NEXT, DAY_NEXT, HOUR_NEXT,
MINUTE_NEXT, SECOND_NEXT contain the components
of next_date as six INTEGER variables.

• current_time_step is of type INTEGER and equal
to the position of time_manager (see Sect. 3), which
is the up-to-date count of the model time step.

• CMONTHS is a CHARACTER ARRAY of dimension 12,
which contains the three letter strings indicating the
12 months (’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’,
’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’, ’Dec’).

• no_cycles gives the number of how often restart
files are written without interupting the simulation
(see Sect. 4.4).

• DAYOFYEAR gives the number of the day in the cur-
rent year, e.g., 1 Feb = 32.

2.3 TIMER subroutines and functions

TIMER provides a lot of tools to handle dates and times
and to simplify time calculations in other submodels.

2.3.1 TIMER routines called from the BML or
BMIL

A special class of subroutines are those used to initialise
the TIMER by the basemodel (from the basemodel inter-
face layer) or to initialise the basemodel time control by
TIMER. Their names start all with timer_.

• timer_set_date sets a date in TYPE time_days for-
mat. The routine is fourfold overloaded. To define
an arbitrary date the date to be set is parameter
to the subroutine. For the six specific dates listed
in Sect. 2.2.1, alternatively a string can be speci-
fied (i.e., ’start’, ’stop’, ’resume’, ’current’, ’previ-
ous’, ’next’).

Input for date definition are either 6 INTEGERs defin-
ing the date (year, month, day, hour, minute, sec-
ond) or 2 INTEGERs giving the day and the second
according to the TYPE time_days format.

In case of ’start’ not only the start_date
will be set but also the INTEGERs
YEAR_START, MONTH_START, DAY_START,
HOUR_START, MINUTE_START, SECOND_START and
JULIAN_DATE_START.

Examples:
CALL timer_set_date(status, ’resume’ &
, my_year, my_month, my_day &
, my_hour, my_minute, my_second)
or
CALL timer_set_date(status, ’resume’ &
, date_day, date_second)
or
CALL timer_set_date(status, my_date &
, my_year, my_month, my_day &
, my_hour, my_minute, my_second)
or
CALL timer_set_date(status, my_date &
, date_day, date_second),
when my_date is of TYPE time_days and date_day
and date_second are of TYPE time_days.

• timer_get_date returns the six components of
a date, namely year, month, day, hour, minute,
second for an arbitrary date in time_days format.
Alternatively, the six date components of the spe-
cific dates listed in section 2.2.1 can be retrieved by
specifying their name (i.e., ’start’, ’stop’, ’resume’,
’current’, ’previous’, ’next’).
Examples:
CALL timer_get_date(status, ’resume’ &
, my_year, my_month, my_day &
, my_hour, my_minute, my_second)
or
CALL timer_get_date(status, my_date &
, my_year, my_month, my_day &
, my_hour, my_minute, my_second),
when my_date is of TYPE time_days.

• timer_set_calendar sets the calendar type of the
TIMER.

• timer_get_calendar returns information about the
calendar type of TIMER.

• timer_set_delta_time sets the delta_time of the
TIMER MANAGER (see Sect. 3).

• timer_get_delta_time returns the delta_time of
the TIMER MANAGER (see Sect. 3).

• timer_rewind_manager rewinds the time_manager
(see Sect. 3).

• timer_add_date adds a time interval in seconds to
a date specified by its six components and returns
the new date in date components.

• timer_set_lresume sets the LOGICAL lresume.

• timer_get_lresume returns the LOGICAL lresume
from the TIMER.

• timer_set_time_step_len sets the INTEGER

time_step_len.

6 A. Kerkweg et al.: TIMER User Manual

• timer_set_no_cycles sets the INTEGER

no_cycles.

• timer_get_no_cycles returns the INTEGER

no_cycles from TIMER.

• timer_set_labort sets the LOGICAL labort.

• timer_get_labort returns the LOGICAL labort
from TIMER.

• timer_set_rerun_event defines the TIMER
rerun_event (see Sect. 4.4).

• timer_get_rerun_event provides the information
about the TIMER rerun_event (see Sect. 4.4) as
given in the TIMER namelist to the basemodel.

• timer_message provides an error message for a
given error status.

Additionally, the FUNCTION timer_get_time_step re-
turns the position of the time_manager (see Sect. 3), i.e.,
the model time step.

2.3.2 Subroutines for date manipulations

• date_set sets a date in the time_days format by
specifiying the 2 INTEGERs day and second of the
time_days format.

• date_set_components sets a date in the time_days
format by specifying the 6 date components (year,
month, day, hour, minute, second).

• date_get returns the 2 INTEGERs day and second
of a date given as TYPE time_days.

• date_get_components returns the 6 date compo-
nents of a date of TYPE time_days.

• add_date add days and seconds to a date of TYPE

time_days.

• copy_date copies a date of TYPE time_days into
another variable of TYPE time_days.

• if_less compares two dates of TYPE time_days. A
LOGICAL is set to .TRUE., if the first date is earlier
than the second date.

• if_equal compares two dates of TYPE time_days.
A LOGICAL is set to .TRUE., if both dates are equal.

• is_init returns the LOGICAL part of the TYPE

time_days indicating if the date is initialised.

• print_date / write_date write a date of TYPE

time_days to standard output. write_date is the
routine on BMIL level which calles the SMCL rou-
tines print_date or print_date_components.

• print_date_components writes the six date com-
ponents of a date of TYPE time_days to standard
output.

2.4 Additional tools

• MonthLength is a function to calculate the length of
a month in days depending on the calendar type.

• JulianMonthLength is a function to calculate the
length of a Julian month in days.

• YearLength is a function to calculate the length of
a year in days depending on the calendar type.

• JulianYearLength is a function to calculate the
length of a Julian year in days.

• YearDay is a function to calculate the number of a
day in the current year depending on the calendar
type.

• julian_day is a function to calculate the Julian
day number for a Gregorian date (specified as year,
month and day).

• time_span_s is a function to calculate the time dif-
ference in seconds between two Gregorian dates.

• time_span_d is a function to calculate the time dif-
ference in days between two Gregorian dates.

• gregor2julian converts a Gregorian date and time
to the corresponding Julian date and fraction of the
day.

• julian2gregor converts a Julian date and fraction
of the day to the corresponding Gregorian date and
time.

• utc2lt converts the time of day in UTC into local
time for a given longitude.

• eval_time_str cracks common netcdf time string
format (e.g. ’seconds since 2000-01-01 00:00:00’) into
date components.

Note: Only the non-Julian subroutines should be used to
get proper results when applying the 360-days calendar.

3 The TIME MANAGER

The TIME MANAGER is the central unit for the time
information of the model.

3.1 Basic structure and subroutines

The Fortran95 structure time_manager contains all infor-
mation to unambiguously determine the time within a sim-
ulation:

A. Kerkweg et al.: TIMER User Manual 7

TYPE time_manager
PRIVATE ! no external access possible
! short description of the manager
CHARACTER(STRLEN_MEDIUM) :: label = ’’
! initial date at pos=0
TYPE (time_days) :: start_date
! manager state for access control
LOGICAL :: init = .FALSE.
! lock/unlock the manager
LOGICAL :: freeze = .FALSE.
! present step of the manager
INTEGER :: pos = 0
! time interval in seconds
REAL(dp) :: delta_time = 0._dp

END TYPE time_manager

label is the name of the time_manager, and start_date
is a Fortran95 structure (section 2.2.1), which provides
the date (day and time of day) of the simulation start.
The LOGICAL init indicates whether the manager is al-
ready initialised, whereas freeze indicates, whether the
manager is locked, i.e., whether the time manager is pro-
tected from further modifications. As long as the LOGI-

CAL freeze is .FALSE., the contents of the time manager
might be changed. Freezing the time manager prevents
it of unintended changes. Internally the manager counts
steps. The respective counter is pos; pos= 0 indicates the
start of the simulation, i.e., at start_date. The length
(in seconds) of one step is stored in delta_time. For the
base model, this is usually the model time step length. The
manager is initialised with the fivefold overloaded subrou-
tine manager_init. It comprises the possibilities to

a) initialise the time_manager by specifying the label
and the start_date (manager_init_days),

b) re-initialise the time_manager by specifying a
new start_date provoking an adjustment of pos
(manager_reinit_days),

c) re-initialise the time_manager by specifying a new
time increment delta_time provoking an adjust-
ment of start_date (manager_reinit_incr),

d) re-position the time_manager by specifying an offset
to pos (manager_step),

e) lock/unlock the time_manager by specifying the re-
spective LOGICAL (.TRUE. to lock the manager,
.FALSE. to unlock it) (manager_freeze).

With the subroutine timer_rewind_manager the
time_manager will be set to a new date. This can be
achieved in two ways. First, the manager is rewind
without changing the start_date. This is only possible,
when the new date is later than the start_date. In
this case the manager position pos will be adjusted.
The second method is to keep the position and the time
interval, but to change the start_date.

The subroutine manager_print prints the status of the
manager to the standard output.

The state of the time_manager can be inquired using the
subroutine manager_state. Depending on the parame-
ters, different information can be retrieved as listed in ta-
ble 1.

3.2 The heart beat of the TIME MAN-
AGER

The TIME MANAGER is initialised by the BMIL subrou-
tine messy_timer_init_manager which calls among oth-
ers the SMCL manager_init.

CALL manager_init(BM_time,’base model time’,
start_date, timestep, m_text)

BM_time is of TYPE time_manager and thus the
STRUCT containing all TIME MANAGER information.
’base model time’ is the label of BM_time. start_date
is the date at which the manager starts, timestep defines
the STRUCT element delta_time of BM_time and m_text
contains possible error output of the subroutine.

During the simulation the TIME MANAGER needs to be
stepped forward at the very end of each model time step,
thus starting the new one. This is done within the BMIL
subroutine messy_timer_reset_time. Here the position
of the time_manager is incremented by one. Afterwards,
all dependent variables (e.g. dates and LOGICALs) are up-
dated accordingly.

4 The EVENT MANAGER

The EVENT MANAGER schedules events which are dis-
crete in time, such as the regular input and output of data,
etc.

4.1 The definition of an event

An event is defined by the Fortran95 structure
time_event

TYPE, PUBLIC :: time_event
! hold all event relevant information
PRIVATE
! event state for access control
LOGICAL :: init = .FALSE.
! event active true=on false=off
LOGICAL :: active = .FALSE.
! increment between the action
INTEGER :: count = 1
! offset (seconds)
INTEGER :: offset = 0
! adjustment interval in seconds

8 A. Kerkweg et al.: TIMER User Manual

Table 1: Versions of suboutine |manager state|
INPUT INPUT TYPE OUTPUT TYPE OUTPUT
position INTEGER time_days corresponding date

- - time_days the current date
a date time_days INTEGER nearst manager position

- - REAL delta_time
- - INTEGER pos

REAL(dp) :: delta = 2.0_dp
REAL(dp) :: half_delta = 1.0_dp
! descriptive label of the event
CHARACTER(len=STRLEN_MEDIUM) :: &
label = ’’
!
! name of the basic units
CHARACTER(len=STRLEN_SHORT) :: &
unit = TIME_INC_SECONDS
CHARACTER(len=STRLEN_SHORT) :: &
adjust = TRIG_EXACT ! type of triggering
!
! initial data for event
TYPE (time_days) :: initial_date
! without offset
TYPE (time_days) :: cycle_date
! previous trigger date
TYPE (time_days) :: previous_trigger
! current trigger date
TYPE (time_days) :: current_trigger
! next trigger date
TYPE (time_days) :: next_trigger

END TYPE time_event

with the components as follows:

• initial_date (of TYPE time_days) is the date of
the event initialisation.

• init is a LOGICAL indicating whether the event is
initialised.

• active is a LOGICAL indicating whether the event is
active. An event can be defined / initialised but in-
active. An inactive event will not trigger any action
even if a trigger date is reached.

• unit is the unit in which the event is defined (either
’years’, ’months’ ,’days’, ’hours’, ’minutes’, ’seconds’
or ’steps’).

• count is an INTEGER increment between two dates
at which the event is triggered; the increment is
given in the unit specified by unit.

• delta / half_delta are intervals in seconds re-
quired for the internal calculation of the adjustment
within the given interval.

• label is an unambiguous identifier (“name”) of the
event which should be as descriptive as possible.

• offset is an INTEGER offset in seconds between
the event defined count and unit and “real” event.
E.g., the event is defined for each full hour, but it
should always happen at 10 minutes past the full
hour. In this case the offset would be 600 (seconds).
Note: the event defined by count and unit has to
match full model time steps., i.e. count times the
seonds equivalent to the unit must be a multiple of
delta_time. With offset it is possible to sched-
ule an event not exactly matching the time interval.
Note: it is not allowed to define an offset for the
units ’years’ and ’months’.

• adjust is set to one of ’first’, ’last’ , ’exact’ or ’off’.
In case of ’off’ the event is deactivated and will not
be triggered at all. The effect of the other three
strings depends on the chosen unit. ’exact’ sched-
ules the event in the time step where the trigger is
located. ’first’ locates the event in the first time step
after crossing the given date, whereas ’last’ triggers
the event in the last time step before the actual event
date. Examples:

– 2,’hours’,’first’,0 triggers the event ex-
actly at 2:00, 4:00, 6:00 etc..

– The ’exact’ label triggers at the same time as
the label ’first’, if the offset is zero.

– 2,’hours’,’last’,0 triggers one time step
before ’first’ and ’exact’ become true. In this
example, assuming a time step of 10 minutes,
the event would be triggered at 1:50, 3:50,
5:50, etc..

Note: The effect of the adjustment only comes into
action when the unit is ’hours’ or larger (’days’,
’months’,’years’). For ’steps’, ’seconds’ and ’min-
utes’ there is only an effect if the offset is nei-
ther a multiple of delta_time nor zero. Other-
wise the events are triggered as if the adjustment
would have been ’exact’. This leads to the effect,
that 120, ’minutes’,’last’,0 triggers the event
at different times as 2,’hours’,’last’,0.

Only if the offset causes the event to lie in between
two model time steps, the three adjust strings apart
from ’off’ get a meaning for all units smaller than

A. Kerkweg et al.: TIMER User Manual 9

’hours’. ’first’ and ’last’ adjust to the respective unit.
I.e., ’first’ rounds the seconds down to the current
full count of unit, whereas ’last’ adjusts to the last
count of unit. E.g., if the model time step is 2
minutes:

– The event is initialised via
10, ’minutes’,’adjust’,300 i.e., the
offset is 5 minutes (i.e. exact in the middle of
two time steps). Then ’exact’ and ’first’ will
cause the event to be triggered at 6 minutes,
16 minutes and so on, whereas the ’last’
adjustment results in a trigger after 4 minutes,
14 minutes etc.

– The event is initialised via
10, ’minutes’,’adjust’,290. Then ’first’
and ’last’ will cause the event to be triggered
at 6 minutes, 16 minutes and so on, whereas
the ’exact’ adjustment results in a trigger after
4 minutes, 14 minutes etc.

– The event is initialised via
10, ’minutes’,’adjust’,240. Then ’first’,
’exact’ and ’last’ will all cause the event to be
triggered after 4 minutes, 14 minutes etc.

– The event is initialised via
10, ’minutes’,’adjust’, -290. Then
’first’, ’exact’ and ’last’ will all cause the event
to be triggered after 6 minutes, 16 minutes etc.

• previous_trigger is the date in time_days format
at which the event was triggered last time.

• current_trigger is the date in time_days format
at which the event is triggered next (or now).

• next_trigger is the date in time_days format
at which the event will be triggered next after
current_trigger.

• cycle_date is the event date in time_days format
without the offset. E.g. an event is defined for
each full hour and an offset of 600 seconds. Thus
the cycle_date would be the full hour whereas the
current_trigger whould be five minutes past the
full hour.

4.2 How to define an event?

An event is defined by four elements:

• counter is an INTEGER defining the time interval
(in units specified by unit) at which the event is
triggered.

• unit is the unit of the time interval for the trigger
(either ’years’, ’months’ ,’days’, ’hours’, ’minutes’,
’seconds’ or ’steps’)

• adjustment is an adjustment within the time inter-
val (either ’first’, ’last’, ’exact’ or ’off’, see above).

• offset is an INTEGER offset in seconds between the
event and the initial_date of the event.

These four parameters are combined in the Fortran95
structure io_time_event:

! structures
TYPE, PUBLIC :: io_time_event

! external given event properties
! - No. of steps in given unit
INTEGER :: counter = 0
! - counter unit type
CHARACTER(len=STRLEN_SHORT) :: &
unit = TIME_INC_SECONDS

! - adjustment inside the unit
CHARACTER(len=STRLEN_SHORT) :: &
adjustment = TRIG_EXACT

! - offset to initial date in seconds
INTEGER :: offset = 0

END TYPE io_time_event

With this, an event can be specified within a namelist, for
instance

EXAMPLE_EVENT = 3,’hours’,’last’,0

which determines counter, unit, adjustment, offset. In
this example the event will be triggered within every three
hours (counter=3,unit=’hours’). No offset is requested
(0). The adjustment =’last’ causes the event to be trig-
gered in the time step before the 3 hours are reached.
Note: The offset is in seconds and not in the unit given
by unit.

These four variables must be defined (either by a
namelist entry or within the code) and a variable of
TYPE io_time_event must be initialized with these val-
ues. When the io_time_event is initialised by namelist
in a parallel environment, the information must be
broadcasted from the namelist reading process to all
other processes. This is achieved with the subroutine
p_bcast_event (messy main timer bi.f90).

The event itself is initialised by calling the BMIL subrou-
tine timer_event_init. Within this subroutine the event
is tested (in subroutine event_eval) for valid values and is
defined afterwards by the SMCL subroutine event_init.
The subroutine timer_event_init requires as input:

• a variable of TYPE time_event,

• a variable of TYPE io_time_event with the event
settings,

• the name of the event (i.e., the label), and

10 A. Kerkweg et al.: TIMER User Manual

• a CHARACTER label (eval_date) indicating the
evaluation date.

eval_date indicates if the event will be evaluated with
the present date (i.e., the date of the current time step,
EV_TLEV_PRES), with the next_date (the date of the next
time step, EV_TLEV_NEXT) or with the previous_date (the
date of the last time step, EV_TLEV_PREV). The CHAR-

ACTER PARAMETERs EV_TLEV_PRES, EV_TLEV_NEXT and
EV_TLEV_PREV are defined as ’present’, ’next’ and
’previous’, respectively. Note: The eval_date must al-
ways correspond to the date with which the event is tested
later on (call of event_state). If event_state is called
with current_date eval_date must be EV_TLEV_PRES for
next_date it must be EV_TLEV_NEXT and if event_state
is called with previous_date the eval_date should be
EV_TLEV_PREV.

4.3 How to inquire an event?

For each of the state variables defined within the Fortran95
structure time_event a function exists providing the re-
spective information:

• event_is_init

• event_is_active

• event_count

• event_offset

• event_delta

• event_half_delta

• event_label

• event_adjust

• event_unit

In addition, subroutines are defined to provide the re-
specitive dates:

• event_initial_date

• event_cycle_date

• event_previous_date

• event_current_date

• event_next_date

Depending on the input, the overloaded subroutine
event_state provides

• the interval between the previous and the current
trigger as number of steps of unit unit,

• the time interval between the previous and the cur-
rent trigger as number of seconds, or

• the time interval between the current and the next
trigger as number of seconds.

• a LOGICAL which is .TRUE. if the event should be
triggered this time step.

4.4 The restart event

A specific event is the restart (or rerun) event, a pre-
defined time_event labeled “rerun event”.

If this event is triggered, the status of the model is dumped
with full precision to restart files and - depending on the
number of cycles - the simulation is interrupted. The
restart files are then used to continue the model simu-
lation.

Note: the LOGICALs l_rerun and lbreak (see Sect. 2.2.2)
and the variable no_cycles (see Sect. 2.2.3) gain to-
gether a rather complex meaning: l_rerun is the result
of the function event_state. If .TRUE. restart files will
be written. This itself does not imply any consequences
for the continuation of the model simulation. But, each
time restart files are written the counter of cycles will
be increased by 1. When the number of maximal cycles
(no_cycles) given in the namelist is reached, the LOGI-

CAL lbreak will be set .TRUE. and as consequence the
simulation will be interupted.

There are two ways of defining the rerun_event. Either
it can be initialised from the settings of the basemodel or
it is defined within the timer namelist. The second is the
more apropriate way, but to keep the full functionality of
the basemodel it might be desirable to use the timing of
the basemodel. If the restart event is determined by the
basemodel, the subroutine timer_set_rerun_event must
be called. The information required from the basemodel
are: The four components of the io_time_event and the
string indicating, if the evaluation of the event will be
performed with the present or the next date. For setting
the restart event via namelist see Section 5.

4.5 Subroutines used internally

• event_init is called by timer_event_init. Within
this subroutine the variables contained in the For-
tran95 structure time_event are tested for consis-
tency and the event is initialised.

• event_reinit re-initialises an event in the way that
the current and the next trigger date are reset to the
date given as parameter. This works only for dates
later than the current date.

• print_event_name writes the event name to stan-
dard output.

A. Kerkweg et al.: TIMER User Manual 11

• convert_steps2unit converts the counter which is
defined in steps into a counter for the new unit unit.

• get_next_trigger resets the event trigger after an
event was triggered. This subroutine contains the
subroutine get_next_date.

• adjust_date adjusts the interval to the date accord-
ing to the event element adjust.

• event_print prints the triggers and the initialisa-
tion information of an event.

5 The TIMER namelist

The time control of a model simulation is defined in the
CPL namelist of TIMER in timer.nml (see Fig. 2).

• CAL_TYPE is an INTEGER determining the applied
calendar. It can be either the Julian calendar (0), or
a climatological calendar using a 360 day year (1).
NOTE: the 360 day year calendar was implemented
but never tested thoroughly. Be careful in using op-
tion 1.

• MODEL_START is an INTEGER array containing the
6 date components of the start date. Within
MESSy they will be usually set in the run-script
and exportet to the namelist via the shell vari-
ables $START_YEAR, $START_MONTH, $START_DAY,
$START_HOUR.

• MODEL_STOP is an INTEGER array containing the
6 date components of the stop date. Within
MESSy they will be usually set in the run-script
and exportet to the namelist via the shell vari-
ables $STOP_YEAR, $STOP_MONTH, $STOP_DAY and
$STOP_HOUR.

• lresume is .TRUE. in case of a model restart. It is
also set automatically by the run-script.

• IO_RERUN_EV determines the restart event. It is of
the TYPE io_rerun_event.

• LABORT prevents (if .TRUE.) that after a model
break the next job is submitted to the scheduler of
the computer.

• no_cycles defines the number of rerun cycles after
which the model simulation is interrupted (see Sect.
2.2.3.

• delta_time is the model time step used in the sim-
ulation.

6 The TIMER BMIL ROUTINES

Within the timeflow of a model simulation the follow-
ing TIMER BMIL routines must be called to operate the
TIMER:

• main_timer_setup(flag) should be called as
early as possible within the initialisation phase.
For flag=1 the TIMER namelist is read via
main_timer_read_nml_cpl and broadcasted to all
CPUs. Furthermore the LOGICAL lstart and
lfirst_cycle are set. For flag=2 start_date and
stop_date are set according to the namelist (if not
yet initialised) and the io_rerun_event will be de-
fined from the namelist and broadcasted. Addition-
ally the first TIME MANAGER initialisation takes
part here.

Note: the separation of main_timer_setup into
two parts is required to enable the TIMER to be
initialised by the basemodel instead of the timer
namelist.

• main_timer_initialize is called from
messy_initialize. First, within the internal
subroutine init_BM_time the TIMER variables
previous_date, next_date, current_date,
start_date and time_step_len are initialised or
updated, respectively. Additionally, the variable
current_time_step and the date components
for the start_date YEAR_START, MONTH_START,
DAY_START, HOUR_START, MINUTE_START,
SECOND_START are initialised. Only in case of a
start of a model simulation (lstart = .TRUE., i.e., no
restart), the date components of the current_date
(YEAR, MONTH, DAY, HOUR, MINUTE, SECOND) are
set in this subroutine. Finally, the restart event is
defined by the subroutine timer_event_init.

• main_timer_global_start First the rerun_event
is evaluated and the LOGICAL l_rerun is set. Sec-
ondly, the next_date is evaluated according to the
stop_date. When the stop_date will be reached
in the following time step, the LOGICAL lstop is
set .TRUE.. In this case the LOGICALs l_rerun
and L_TRIGGER_RESTART will also be set .TRUE..
Thirdly, lbreak will be set dependent on l_rerun,
no_cycles and L_TRIGGER_RESTART. At the end the
date components YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND and YEAR_NEXT, MONTH_NEXT, DAY_NEXT,
HOUR_NEXT, MINUTE_NEXT, SECOND_NEXT are reset.

• messy_timer_reset_time The position of the
TIME MANAGER is incremented by one and the
dates (previous_date, next_date, current_date)
updated accordingly. Additionally the LOGICALs
lstart, lresume and lfirst_cycle are set to
.FALSE..

12 A. Kerkweg et al.: TIMER User Manual

! -*- f90 -*-

&CPL

CAL_TYPE = 0, !# 0: julian calendar

!# 1: 360 day year

!

!# automatically set by run-script; do not change

MODEL_START = $START_YEAR,$START_MONTH,$START_DAY,$START_HOUR,0,0,

MODEL_STOP = $STOP_YEAR, $STOP_MONTH, $STOP_DAY, $STOP_HOUR,0,0,

lresume = $ESH_LRESUME,

!

!# trigger restart at this time interval

IO_RERUN_EV = 1,’months’,’last’,0,

no_cylces = 2, ! restart cycles without break

LABORT = F, ! abort after first cycle in any case

!

!# set model time step here; if undefined it is automatically set by the

!# basemodel (ECHAM5 only!)

delta_time = 600, ! in seconds

!

/

Figure 2: The CPL namelist of TIMER in timer.nml

References

Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and
Lelieveld, J.: Technical Note: The Modular Earth Sub-
model System (MESSy) - a new approach towards Earth
System Modeling, Atmos. Chem. Phys., 5, 433–444,
http://www.atmos-chem-phys.net/8/1677, 2005.

Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf,
R., Esch, M., Giorgetta, M., Hagemann, S., Kirch-
ner, I., Kornblueh, L., Manzini, E., Rhodin,
A., Schlese, U., Schulzweida, U., and Tomp-
kins, A.: The atmospheric general circulation
model ECHAM5. PART I: Model description, Tech.
rep., Max Planck Institute for Meteorology, MPI-
Report 349, http://www.mpimet.mpg.de/fileadmin/
publikationen/Reports/max_scirep_349.pdf, 2003.

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hage-
mann, S., Kornblueh, L., Manzini, E., Schlese, U.,
and Schulzweida, U.: The atmospheric general circu-
lation model ECHAM5. PART II: Sensitivity of Sim-
ulated Climate to Horizontal and Vertical Resolution,
Tech. rep., Max Planck Institute for Meteorology, MPI-
Report 354, http://www.mpimet.mpg.de/fileadmin/
publikationen/Reports/max_scirep_354.pdf, 2004.

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hage-
mann, S., Kornblueh, L., Manzini, E., Schlese, U., and
Schulzweida, U.: Sensitivity of simulated climate to hor-
izontal and vertical resolution in the ECHAM5 atmo-
sphere model, J. Climate, 19, 3771–3791, 2006.

