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Abstract. To develop fine particulate matter (PM2.5) air
quality forecasts for the US, a National Air Quality Forecast
Capability (NAQFC) system, which linked NOAA’s North
American Mesoscale (NAM) meteorological model with
EPA’s Community Multiscale Air Quality (CMAQ) model,
was deployed in the developmental mode over the conti-
nental United States during 2007. This study investigates
the operational use of a bias-adjustment technique called the
Kalman Filter Predictor approach for improving the accuracy
of the PM2.5 forecasts at monitoring locations. The Kalman
Filter Predictor bias-adjustment technique is a recursive algo-
rithm designed to optimally estimate bias-adjustment terms
using the information extracted from previous measurements
and forecasts.

The bias-adjustment technique is found to improve PM2.5
forecasts (i.e. reduced errors and increased correlation coeffi-
cients) for the entire year at almost all locations. The NAQFC
tends to overestimate PM2.5 during the cool season and un-
derestimate during the warm season in the eastern part of
the continental US domain, but the opposite is true for the
Pacific Coast. In the Rocky Mountain region, the NAQFC
system overestimates PM2.5 for the whole year. The bias-
adjusted forecasts can quickly (after 2–3 days’ lag) adjust
to reflect the transition from one regime to the other. The
modest computational requirements and systematic improve-
ments in forecast outputs across all seasons suggest that this
technique can be easily adapted to perform bias adjustment
for real-time PM2.5 air quality forecasts.

Correspondence to:D. Kang
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1 Introduction

Ozone (O3) and fine particulate matter (PM2.5; particles with
aerodynamic diameters less than 2.5 µm) in the atmosphere
have been a major concern because of their adverse effects
on human and ecosystem health. Adverse health effects in
humans have been shown to be associated with exposure to
elevated ambient PM2.5 levels (e.g., NRC, 1998). O3 and
PM2.5 are the two pollutants used in the US to compute the
Air Quality Index (AQI), a standardized indicator of air qual-
ity conditions at a given location (http://www.airnow.gov);
the current AQI standard in the United States is primarily
based on daily maximum 8-h O3 and daily mean (24-h aver-
age) PM2.5 concentrations. Thus, to develop accurate AQI-
based health advisories, it is desirable that air quality forecast
systems at least be capable of forecasting these two species
well. Real-time O3 forecasts using air quality models have
been publicly available in the US for several years over dif-
ferent domains (McHenry et al., 2004; McKeen et al., 2005;
Otte et al., 2005; Eder, et al., 2006), while real-time PM2.5
forecasts are mainly in the developmental stage and not avail-
able to the general public. The NAQFC (Otte et al., 2005),
developed by the National Oceanic and Atmospheric Ad-
ministration (NOAA) and the US Environmental Protection
Agency (EPA) couples NOAA’s operational North American
Mesoscale (NAM) weather prediction model (Black, 1994;
Rogers et al., 1996;http://www.dtcenter.org/wrf-nmm/users)
with EPA’s Community Multiscale Air Quality (CMAQ)
model (Byun and Schere, 2006). It has the capability to pro-
vide real-time forecasts for both O3 and PM2.5. The develop-
mental mode model predictions are available for the year of
2007 over the continental US domain, providing a consistent
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and unique data set for performing comprehensive evalua-
tions of bias-corrected pollutant fields.

While it is recognized that PM2.5 pollution results from
both primary emissions and secondary formation through
complex photochemical and heterogeneous chemical path-
ways, significant scientific and technical challenges sur-
round the characterization of ambient PM2.5 distributions
both through modeling and measurements (e.g., McMurry,
2000; Donahue et al., 2009). The emissions and physical,
chemical, and removal processes controlling day-to-day lev-
els of ambient PM2.5 and precursor concentrations also ex-
hibit seasonal variability, resulting in significant spatial and
seasonal variability in ambient PM2.5 mass and its chemical
composition. Current uncertainties in these individual com-
ponents pose enormous challenges for developing accurate
short-term PM2.5 forecasts (Mathur et al., 2008; Yu et al.,
2008). Nevertheless, a need exists for local air quality agen-
cies to provide accurate forecast of PM2.5 concentrations to
alert the sensitive population on the onset and duration of
unhealthy air associated with elevated PM2.5 levels. To ad-
dress this need, the utility of PM2.5 forecast guidance ob-
tained from comprehensive atmospheric models can, in the
short-term, be improved through post-processing of forecast
output with bias-adjustment methods; this is the primary mo-
tivation for the analysis presented in this study. It should
be noted that post-processing bias-adjustment techniques are
routinely used in conjunction with numerical weather pre-
diction models, despite decades of research to improve the
formulations in the meteorological models, to develop more
accurate forecast products (Glahn and Lowry, 1972;http:
//www.weather.gov/mdl/synop/products.php). Given the rel-
atively early state of PM2.5 forecast models and large uncer-
tainties in process representations, the exploration of bias-
adjustment techniques to improve the usefulness of PM2.5
forecasts is warranted.

Different bias-adjustment (also referred to as bias-
correction) techniques have been used for improving surface
O3 predictions in recent years (McKeen et al., 2005; Delle
Monache et al., 2006; Wilczak et al., 2006; Delle Monache
et al., 2008; and Kang et al., 2008). Among these techniques,
the Kalman Filter (KF) predictor (hereafter referred to as KF
bias-adjustment or simply KF) forecast method yielded the
most forecast skill improvement. Kang et al. (2008) pre-
sented the application of KF technique to O3 forecasts over
the continental US domain for a three-month period from
July to September 2005. While the technique was found
to improve the forecast skill for O3, it was not clear if they
would be readily applicable for PM forecasts and whether
they would yield similar improvements in PM forecast skill.
This is primarily due to the fact that unlike O3, elevated
PM2.5 concentrations are encountered throughout the year
and that significant seasonal biases exist in current mod-
els both in the representation of total PM2.5 mass as well
as its composition (cf. Mathur et al., 2008; McKeen et al.,
2007; Appel et al., 2008). Additionally, the chemical con-

stituent contributing to the bias could also vary both spatially
and seasonally. Thus, for improved PM forecasts, the bias-
adjustment techniques should be capable of correcting biases
and errors that not only change with time, but that also may
have widely varying sources of origin.

In this study, the KF bias-adjustment technique is applied
to PM2.5 forecasts for the year of 2007 over the continental
US domain. To our knowledge, this is the first comprehen-
sive assessment of the bias-adjustment technique for PM2.5
forecasts. Within the continental US domain, there are about
500 AIRNow sites that report hourly PM2.5 concentrations
which are measured using the Tapered Element Oscillating
Microbalance (TEOM) method. The year-long forecast pe-
riod over the continental US has provided a unique data set
covering a wide range of atmospheric conditions and a broad
PM2.5 concentration range to test the performance of the
bias-adjustment technique for PM2.5 forecasts.

The objectives of this study include: (1) apply the KF post-
processing technique to improve skills for real-time PM2.5
forecasts, (2) investigate the spatial and temporal character-
istics of this technique when applied to PM2.5 forecasts, and
(3) analyze the impact of bias adjustment on forecast errors
of different types (e.g., systematic versus unsystematic). Sec-
tion 2 describes the modeling system, the implementation of
the KF bias-adjustment technique, observational data, and
evaluation metrics. In Sect. 3 the performance evaluation
results and discussions are presented. And the results and
conclusions are summarized in Sect. 4.

2 Experiments and methods

2.1 The NAQFC system

The NAQFC system consists of 3 primary compo-
nents: (1) the National Weather Service’s North Ameri-
can Mesoscale (NAM) model based on the Weather Re-
search Forecast nonhydrostatic mesoscale model (WRF-
NMM) (http://www.dtcenter.org/wrf-nmm/users) which pro-
vides the meteorological and atmospheric dynamic condi-
tions for the Air Quality Forecast (AQF); (2) the US EPA’s
Community Multiscale Air Quality (CMAQ) (Byun and
Schere, 2006) model, which simulates the transport, chemi-
cal evolution, and deposition of atmospheric substances; and
(3) an interface component (PREMAQ) that processes both
the meteorological and emission inputs to conform with the
CMAQ grid structure, coordinate system, and input format.
The WRF-NMM (version 2.0) covers 1/3 of Northern Hemi-
sphere with central latitude-longitude at N52, W106 (south-
ern central Canada) using 12 km horizontal grid spacing and
rotated latitude-longitude projection with Arakawa E-grid-
staggering. There are 60 vertical layers with lowest inter-
face at 38 m and the model top is set at 2 hPa. The CMAQ
(version 4.6) domain for PM2.5 forecasts covers the conti-
nental US (Fig. 1) using a 12-km horizontal grid spacing
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Fig. 1. Analysis sub-regions and monitoring sites (AIRnow
network); the horizontal domain is discretized with a 442x265 
12km grid cells. NE: Northeast, SE: southeast, UM: Upper 
Midwest, LM: Lower Midwest, RM: Rocky Mountains, PC: 
Pacific Coast

Fig. 1. Analysis sub-regions and monitoring sites (AIRnow net-
work), the horizontal domain is discretized with a 442×265 12 km
grid cells. NE: Northeast, SE: southeast, UM: Upper Midwest, LM:
Lower Midwest, RM: Rocky Mountains, PC: Pacific Coast.

on the Lambert Conformal map projection and 22 vertical
layers of variable thickness set on a sigma coordinate rang-
ing from the surface to 100 hPa. Since the PM2.5 forecasts
were in the developmental stage, changes or modifications to
the AQF components were allowable to accommodate new
developments reflecting evolving science. For instance, on
17 September 2007, the treatment for the PBL mixing height
scheme in CMAQ was changed from the Turbulence Ki-
netic Energy (TKE)-based method to the Asymmetric Con-
vective Model-2 (ACM2)-based method, which on average
decreased the PBL depth, helping reduce forecast errors for
both O3 and PM2.5 in the Pacific Coast region. However, this
study does not deal with the impacts of the various changes or
modifications to the forecast model; rather, it focused on how
the bias-adjustment technique can improve the forecast re-
sults over the raw model forecasts. Since the bias-adjustment
technique employed in this study is statistical type, it does
not involve any modifications in the physical and chemical
processes treated in the forecast model.

The emissions inventories used by the AQF system were
updated from the US EPA’s 2001 national emission inventory
to represent the 2007 forecast year (Eder et al., 2009). The
biogenic emissions were processed using Biogenic Emis-
sion Inventory System (BEIS) version 3.13 (Schwede et al.,
2005). Emissions from sea salt, wild fires, and wind-blown
dust were not considered for the AQF system, which may
contribute to the underestimation of PM2.5 forecasts under
some circumstances. The Carbon Bond chemical mechanism
(version 4.2) is used to represent the photochemical reactions
and AERO3 aerosol module is used to represent aerosol for-
mation and distribution. The chemical fields for CMAQ are
initialized using the previous forecast cycle. The primary
NAM-CMAQ model forecast for the next 48-h surface-layer
PM2.5 is based on the current day’s 06:00 UTC cycle, and
this is the only cycle available for the developmental PM2.5
forecasts.

2.2 Observations

Hourly, near real-time, PM2.5 measurements (µg/m3) ob-
tained from EPA’s AIRNow program are used in this study
(http://www.epa.gov/airnow). All measurements are made
using TEOM instruments and concentrations are averaged
over hourly intervals from the beginning of one hour to the
next. It should be recognized that TEOM measurements are
somewhat uncertain and are believed to be lower limits to
a “true” value because of volatilization of semivolatile ma-
terial (ammonium nitrate and organic carbon) in the drying
stages of the measurement (Eatough et al., 2003; Grover et
al., 2005). Nevertheless, the TEOM measurements are the
only real-time hourly PM2.5 observation data available for
use in the purpose of this study. About 500 PM2.5 monitor-
ing stations are available within the continental US domain
(Fig. 1) for the year of 2007. For verification purposes and
forecast products, the daily (24-h) mean PM2.5 concentra-
tions are often used.

2.3 Implementation of the KF bias-adjustment method

The KF predictor bias-adjustment algorithm (Kalman, 1960)
was described in detail by Delle Monache et al. (2006) and
a concise description of its implementation was provided by
Kang et al. (2008). The specification of the error ratio, a key
parameter in the KF approach which determines the relative
weighting of observed and forecast values, was previously
investigated extensively for O3 forecasts. Even though the
optimal error ratios were found to vary across space, the im-
pact of using different optimal values over the model domain
on the resultant bias-adjusted O3 predictions was insignif-
icant when compared to using a representative fixed value
across all locations (Kang et al., 2008). To test whether the
same conclusion is valid for the PM2.5 forecasts, error ratios
ranging from 0.01 to 0.10 were selected to perform PM2.5
forecasts for all the sites across the domain over the entire
year, and RMSE values were calculated at each site to gauge
the impact of spatially different error ratio values on the fore-
cast performance. As shown in Fig. 2, the impact of different
error ratio values ranging from 0.04 to 0.10 on the forecast
performance is small, and only when the error ratio of 0.01
was used, the RMSE values were relatively larger than using
other values. Hence, in this study, we used the same single
fixed error ratio value of 0.06 at all the locations for devel-
oping bias-adjusted PM2.5 forecasts. In these plots (and also
applies to all the boxplots in this paper), the metric is calcu-
lated at each site for the specific period and then is presented
across all the sites within a region or the entire domain as a
box plot, with the lower and upper borders of the box rep-
resenting the first and third quartiles while the middle line
represents the median value.

There are two steps to implement the KF bias-adjustment
technique. First, the KF is initialized with the initial esti-
mates of KF parameters as outlined in Kang et al. (2008) and
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Fig. 2. Impact of error ratios on the performance (RMSE) of Kalman Filter 
adjusted forecasts for the daily mean PM2.5 concentrations (µg/m3)
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Fig. 2. Impact of error ratios on the performance (RMSE) of
Kalman Filter adjusted forecasts for the daily mean PM2.5 concen-
trations (µg/m3).

hourly observations and raw model predictions for the prior
2 days. Then the updated parameters and the third day’s raw
model forecasts are used to create bias-adjusted forecasts for
the 3rd day. All updated KF parameters for each hour and
at each site are saved into a file for use in the subsequent
KF run. The KF runs then continue by reading the previ-
ous day’s KF parameters and observations and raw model
predictions from the prior 2 days to generate the next day’s
bias-adjusted forecasts by combining with the next day’s raw
model forecasts. Thus, in developing the daily KF forecasts,
if data for two consecutive days are missing at a site, the KF
will automatically drop this site from future bias-adjustment
forecasts; however, if a new site with two consecutive days’
data appears in the observation data set, the KF will initial-
ize the site with initial values of KF parameters and generate
bias-adjusted forecasts further onward. This implementation
is adaptable in real-time to the variable nature of monitoring
stations which report hourly observations to the AIRNOW
network and can be easily combined with AQF system to
produce real-time bias-adjusted forecasts.

2.4 Verification statistics and spatial-temporal
considerations

To assess the performance of the KF bias-adjusted forecasts,
a variety of statistical metrics are used, including Root Mean
Square Error (RMSE) and its systematic and unsystematic
components, Normalized Mean Error (NME), Mean Bias
(MB), Normalized Mean Bias (NMB), correlation coefficient
(r), and Index Of Agreement (IOA). For a forecast product, it
is also important to evaluate its performance over categorical
forecasts (Kang et al., 2005). Two categorical metrics, False
Alarm Ratio (FAR) and Hit Rate (H), are used in this study.

Fig. 3. Time series of observed, raw model forecast, and KF bias-
adjusted forecast daily mean PM2.5 (µg/m3) over all stations. OBS: 
observations, KF: Kalman filter bias-adjustment, MOD: raw model
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Fig. 3. Time series of observed, raw model forecast, and KF bias-
adjusted forecast daily mean PM2.5 (µg/m3). OBS: observations,
KF: Kalman filter bias-adjustment, MOD: raw model.

Since the NAQFC domain covers the continental United
States and given large region-to-region differences in the
physical and chemical processes, the continental US domain
is divided into six subregions following US state boundaries
to facilitate the performance evaluations (Fig. 1). The four
easternmost subregions, northeast (NE), southeast (SE), up-
per Midwest (UM), and lower Midwest (LM), are based on
O3 and other chemical species climatology that identified ar-
eas of homogeneous variability using principal component
analysis (Eder et al., 1993; Gego et al., 2005). The domain-
wide statistics are calculated using all the observations avail-
able within the domain.

Figure 3 presents comparisons of time series of the
domain-wide daily average observed, raw model forecasts,
and KF bias-adjustment forecasts of PM2.5 concentrations
during 2007. As shown in Fig. 3, the raw model tends to
overpredict during the cool season (before mid-April and af-
ter August) and underpredict during the warm season (mid-
April to end of August) when compared with observations.
To facilitate the temporal performance evaluations, the time
series are divided into cool season (from January to 20 April
and from September to December) and warm season (from
21 April to 31 August).

3 Results

3.1 General performance

It is evident in Fig. 3 that the raw model has overestimated
PM2.5 concentrations on average during the cool season, es-
pecially during the period from September to December.
During the warm season, the raw model significantly un-
derestimated, and the KF predictions were well above the
raw model predictions and much closer to the observations.
From late July to early September, the raw model underwent
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Fig. 4. Time series of observed, raw model forecast, and KF bias-
adjusted forecast daily mean PM2.5 (µg/m3) at Southeast and 
Pacific Coast subregions.
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Fig. 4. Time series of observed, raw model forecast, and KF bias-
adjusted forecast daily mean PM2.5 (µg/m3) at Southeast and Pa-
cific Coast.

a transitional period from underestimation to overestimation.
From early September until the end of the year, the overesti-
mation of the raw model became larger. This is partially at-
tributed to the change of the PBL mixing scheme for CMAQ
on 17 September, as mentioned before. Nevertheless, the KF
bias-adjustment technique could quickly respond to the tran-
sitions from one regime to another and tracked the observa-
tions well in the time series. Since Fig. 3 presents the aggre-
gate results for the entire domain, some important informa-
tion may be hidden due to smoothing during the averaging
process. Figure 4 displays same time series as Fig. 3 for
two representative sub-regions: Southeast and Pacific Coast.
The time series for the Southeast resembles that of the do-
main, with raw model overestimating during cool season and
underestimating during the warm season. However, the un-
derestimation during the warm season is more pronounced
for the Southeast than for the entire domain. The time se-
ries of the Pacific Coast reveals a completely different story,
in which the raw model generally over-predicted during the
cool season and under-predicted during the warm season.
The over-prediction was much stronger at the beginning of
the year (January and early February) than that over the rest
of cool season. The over-prediction for the later cool sea-
son (from September to December) was reduced, and during
most times the raw model could reproduce the observations
quite well. The performance change of the raw model during
cool season is attributable to the adoption of the new PBL
mixing height parameterization when the TKE-based PBL
height was replaced by the ACM2-based PBL height. The
ACM2-based PBL height generally leads to higher PM2.5
concentrations than the TKE-based PBL height since the

(a)                 R2 = 0.43 (b)                 R2 = 0.90

Fig. 5. Scatterplots between forecasts and observations for 
selected percentiles for the daily mean PM2.5 concentrations 
(µg/m3) for all stations and all days: (a) raw model forecasts, (b) 
Kalman fliter-adjusted forecasts.
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Fig. 5. Scatterplots between forecasts and observations for selected
percentiles for the daily mean PM2.5 concentrations (µg/m3): (a)
raw model forecasts,(b) Kalman filter-adjusted forecasts.

ACM2-based PBL height is generally lower than the TKE-
based PBL height. The under-prediction is thus reduced for
the west region of the domain during the cool season, but the
over-prediction is further aggravated for the eastern part of
the domain during the same period. Nonetheless, the time se-
ries of the KF bias-adjusted predictions tracked the observed
time series better than the raw model predictions.

To further investigate the performance of the KF bias-
adjusted forecasts and compare with the raw model forecasts,
Fig. 5 displays the scatter plots of forecast and observed val-
ues across various percentiles for the daily mean PM2.5 for
all the stations within the continental US domain. Follow-
ing Mathur et al. (2008), at each site the time series of both
measured and model (or KF bias-adjusted model) daily mean
PM2.5 over the entire year was examined and percentiles of
the distribution over the study period were computed for both
modeled and observed values. Scatter plots of specific per-
centiles of the concentration distributions (e.g., median) of
the model and observed time series are then examined to as-
sess the ability of the model to capture the spatial variability
in frequency distributions of PM2.5 concentrations across the
sites (Mathur et al., 2008). As shown in Fig. 5, compared
with the raw model forecasts (left), the KF bias-adjusted
forecasts displayed a much better match with the observed
distributions as reflected by the reduced scatter about the 1:1
line, especially for the higher percentiles. The overall corre-
lation between model forecasts and observations was greatly
improved with the value ofR2 increasing from 0.43 for the
raw model forecasts to 0.90 for the KF bias-adjusted fore-
casts. Similar improvements in O3 forecasts after the appli-
cation of the KF bias adjustment were previously reported in
Kang et al. (2008).

The ability of the KF bias-adjustment technique to im-
prove the predicted PM2.5 concentration distributions is fur-
ther illustrated in Fig. 6 which displays the histograms of
observed daily mean PM2.5 concentrations along with the fit-
ted probability density functions (PDFs) of daily mean PM2.5
concentrations for the observations, raw model forecasts, and
KF bias-adjusted forecasts. Figure 6a displays the overall
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Fig. 6. The histogram of observed and the fitted Gaussian probability density function of 
observed, raw model forecast, and KF forecast daily mean PM2.5 concentrations (µg/m3): (a) 
Domain over entire year, (b) LM during warm season, (c) PC during cool season.Fig. 6. The histogram of observed and the fitted Gaussian probabil-

ity density function of observed, raw model forecast, and KF fore-
cast daily mean PM2.5 concentrations (µg/m3): (a) Domain over
entire year,(b) LM during warm season, and(c) PC during cool
season.

distribution for the entire domain during 2007, while Fig. 6b
presents the distribution for Lower Midwest during the warm
season and Fig. 6c for Pacific Coast during the cool season
to typify the sub-regional and seasonal signals. As seen in
Fig. 6, the KF technique brings the PDFs of forecast values
much closer to those of the observations. The improvements
are more pronounced in the sub-regional and seasonal distri-
bution comparisons illustrated in Fig. 6b and c. The distri-
butions of the raw model forecasts for both cases were out
of phase compared to those of the observations, especially
for Lower Midwest during the warm season. The KF bias-
adjusted forecasts were able to reproduce the observations
very well in both cases.

3.2 Regional performance

Tables 1 and 2 present the domain and sub-regional sum-
mary of discrete statistics for the raw model and the KF
bias-adjusted daily mean PM2.5 forecasts during the cool and
warm seasons, respectively. Examination of Table 1 reveals
that during the cool season, the RMSE values range from
7.2 to 11.4 (µg/m3) for the raw model forecasts, and from
5.2 to 7.6 (µg/m3) for the KF bias-adjusted forecasts; this
translates to about a 20% reduction in RMSE as a result of
the application of the bias adjustment. Similar reductions
are also noted for the NME. The MB and NMB indicate that
during the cool season, the raw model systematically over-
predicted daily mean PM2.5 across all the sub-regions except
the Pacific Coast where it under-predicted. The KF bias-
adjusted forecast reduced NMB values across all the sub-
regions. Correlation coefficients also increased significantly
across all the regions as a result of the bias adjustment, with
the largest increase in the LM and RM regions. The summary
statistics during the warm season (Table 2) indicate compara-

ble improvement in the error statistics (RMSE and NME) for
the KF bias-adjusted forecasts relative to the raw model. In
contrast to the cool season, systematic under-predictions are
noted in the warm season raw model PM2.5 forecasts (Mathur
et al., 2008). The application of the KF bias adjustment helps
reduce both the cool season high bias and the warm season
low bias, and also results in consistently improved correla-
tions with measurements across all seasons.

Figure 7 presents comparisons of the distribution of
monthly RMSE values of daily mean PM2.5 for the raw
model and KF forecasts for the different sub-regions. As
seen in Fig. 7, the RMSE values are consistently lower for
the KF forecasts relative to those of the raw model across
all sub-regions and months. In addition, the error distribu-
tion range (the size of the boxes) for the KF forecasts is also
much smaller than the raw model forecasts. During October–
December, the raw model forecasts exhibited large RMSE
values for both the UM and LM sub-regions (partly attributed
to a change in the PBL height parameterization discussed ear-
lier). The KF bias adjustment was able to reduce these large
RMSEs significantly. In making comparisons across differ-
ent regions, it should be noted that the relatively larger spread
in RMSE for the RM and PC regions, especially for the raw
model forecasts likely resulting from a combination of ef-
fects related to complex topography, land-sea breeze transi-
tions in the PC region, greater spatial heterogeneity in emis-
sions, and their impact on chemistry leading to PM2.5 forma-
tion and distribution.

Figure 8 presents the spatial distribution of mean biases at
each site within the modeling domain for both the cool and
warm seasons. As illustrated in Fig. 8a, during the warm sea-
son, the raw model predominantly under-predicted at most
sites (orange and purple squares) in the eastern part of the do-
main, over-predicted in the northwest regions and exhibited
both over- and under-predictions at sites in California. Dur-
ing the cool season, the raw model generally over-predicted
(Fig. 8c) in the east, but under-predictions dominated at sites
in western portions of the domain. The application of the KF
bias adjustment was able to effectively reduce these biases
at more than 90% of the sites (Fig. 8b and d) to less than
2 µg/m3. Even at the sites where absolute values of mean
biases were greater than 2 µg/m3 for the raw model, the mag-
nitude of the bias was significantly reduced with bias correc-
tion.

The forecast skill improvement over space by the KF fore-
casts over the raw model forecasts is further demonstrated by
the IOA as shown in Fig. 9. The IOA increased on average
from 8% (at NE and UM) to 30% at PC during the warm sea-
son (Fig. 9a) and from 15% (at NE and SE) to 28% at RM
during the cool season (Fig. 9b). The domain-wise average
IOA values increased by 13% and 19% for the warm season
and the cool season, respectively.
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Table 1. Regional summary of discrete statistics for raw model and KF bias-adjusted daily mean PM2.5 forecasts during 2007 cool season
(n is the number of records).

TYPE N Obs.mean Mod.mean RMSE NME MB NMB r

(µg/m3) (µg/m3) (µg/m3) (%) (µg/m3) (%)

Dom-mod 97243 10.54 13.08 9.6 59.3 2.5 24.2 0.52
Dom-kf 97243 10.54 11.71 6.3 39.8 1.2 11.2 0.70
NE-mod 13624 11.21 15.67 11.4 63.9 4.5 39.8 0.57
NE-kf 13624 11.21 13.03 7.0 41.7 1.8 16.3 0.68
SE-mod 15133 11.37 13.48 7.2 44.9 2.1 18.6 0.54
SE-kf 15133 11.37 12.29 5.2 33.4 0.9 8.1 0.66
UM-mod 16874 11.96 16.12 9.9 56.0 4.2 34.8 0.56
UM-kf 16874 11.96 13.30 6.3 37.2 1.3 11.2 0.69
LM-mod 10936 10.17 13.09 9.4 65.2 2.9 28.8 0.39
LM-kf 10936 10.17 11.44 5.6 40.2 1.3 12.5 0.59
RM-mod 10030 8.74 11.46 9.4 70.5 2.7 31.1 0.41
RM-kf 10030 8.74 9.79 5.9 43.8 1.1 12.1 0.68
PC-mod 17857 12.28 11.38 10.1 52.7 −0.9 −7.4 0.58
PC-kf 17857 12.28 12.80 7.6 38.9 0.5 4.2 0.75

Table 2. Regional summary of discrete statistics for raw model and KF bias-adjusted daily mean PM2.5 forecasts during 2007 warm season.

TYPE N Obs. mean Mod. mean RMSE NME MB NMB r

(µg/m3) (µg/m3) (µg/m3) (%) (µg/m3) (%)

Dom-mod 57319 12.51 11.83 8.4 46.0 −0.7 −5.4 0.52
Dom-kf 57319 12.51 12.99 6.3 34.1 0.5 3.8 0.72
NE-mod 8097 14.97 13.16 8.7 41.1 −1.8 −12.1 0.61
NE-kf 8097 14.97 15.20 7.1 35.0 0.2 1.5 0.74
SE-mod 8868 17.30 13.19 9.6 36.9 −4.1 −23.8 0.49
SEkf 8868 17.30 17.26 7.8 29.3 −0.0 −0.2 0.61
UM-mod 10120 15.17 13.40 7.3 35.3 −1.8 −11.7 0.62
UM-kf 10120 15.17 15.20 6.2 30.0 0.0 0.2 0.72
LM-mod 6280 12.78 11.68 9.1 52.8 −1.1 −8.6 0.30
LM-kf 6280 12.78 13.53 6.3 37.1 0.8 5.9 0.51
RM-mod 5869 8.60 10.06 8.2 63.1 1.5 17.0 0.25
RM-kf 5869 8.60 9.46 5.8 40.8 0.9 10.0 0.48
PC-mod 10062 9.34 11.60 8.4 59.9 2.3 24.2 0.52
PC-kf 10062 9.34 10.40 5.4 35.3 1.1 11.4 0.76

3.3 Systematic/unsystematic errors and performance
over concentration bins

The RMSE can be further decomposed into its systematic
and unsystematic components (Willmott, 1981) based on the
least-square linear regression relationship between forecast
values and observations (Kang et al., 2008). The boxplots in
Fig. 10 show the distribution of the RMSE, and its system-
atic (RMSEs) and unsystematic (RMSEu) components of the
predicted daily mean PM2.5 for the raw model and KF fore-
casts across all the stations within the continental US domain.
Shown in the boxplots are the first quartile (lower border of
the box), the third quartile (upper border of the box), and

the median (the central line) values of the distributions. The
whiskers represent the 1.5 IQR (inter-quartile range). The
decomposition of the RMSE displays different error char-
acteristics for PM2.5 relative to those noted previously for
O3 forecasts (Kang et al., 2008). First, for the raw model
forecasts, while systematic errors were larger than the unsys-
tematic components for O3, the converse is noted for PM2.5
forecasts. The larger contribution of unsystematic errors to
the PM2.5 RMSE not only reflect the bigger uncertainty in
the emissions inventory used and in our understanding of the
relevant atmospheric processes, but also the local-level vari-
ability in the predominantly urban AIRNOW measurement
network. The application of the KF bias adjustment helps
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Fig. 7. Monthly box plots (only 25th and 75th percentiles and median values are shown) of 
RMSE values of the daily mean PM2.5 (µg/m3) for the raw model and KF bias-adjusted 
forecasts for all sub-regions

Month of the Year

RM UM NE

SELMPC

Fig. 7. Monthly box plots (only 25th and 75th percentiles and median values are shown) of RMSE values of the daily mean PM2.5 concen-
trations (µg/m3) for the raw model forecasts and KF bias-adjusted forecasts for all the sub-regions.

Fig. 8. Mean Bias (MB, µg/m3) for daily mean PM2.5 forecasts at each location within the 
continental U.S. domain: (a) raw model during warm season, (b) KF bias-adjustment during 
warm season, (c) raw model during cool season, (d) KF bias-adjustment during cool season

(a) (c)

(d)(b)

Fig. 8. Mean Bias (MB, µg/m3) at each location within the continental US Domain:(a) raw model during warm season,(b) KF bias-
adjustment during warm season,(c) raw model during cool season, and(d) KF bias-adjustment during cool season.

reduce both the unsystematic and systematic errors in PM2.5
forecasts.

To further examine the performance of the KF bias-
adjustment technique over different concentration ranges,
Fig. 11 displays the forecast RMSE and MB values as a
function of observed concentrations for both the warm and
cool seasons. During the warm season (Fig. 11a), when ob-
served PM2.5 concentrations were less than 10 µg/m3, the KF
bias-adjustment technique was unable to reduce RMSE val-

ues compared to the raw model forecasts, though the dis-
tributions were narrower. This may in part be attributed to
the fact that during the warm season, the weather conditions
tend to be more variable (more convective weather condi-
tions) than those during the cool season and lower concen-
trations are often associated with precipitation processes, and
the raw model generally has difficulty to accurately simulate
these weather conditions, resulting in larger unsystematic er-
rors in the prediction of PM2.5 concentrations. When the
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Fig. 9. Box plots of index of agreement (IOA) of daily mean PM2.5 (µg/m3) for the raw model 
(MOD) forecasts and KF bias-adjusted forecasts over the domain (DM) and for all 
subregions during (a) warm season and (b) cool season

Fig. 9. Box plots of index of agreement (IOA) of daily mean PM2.5
(µg/m3) for the raw model (MOD) forecasts and KF bias-adjusted
forecasts over the domain (DM) and across all sub-regions during
(a) warm season and(b) cool season.
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Fig. 10. Box plots of RMSE and decomposed RMSE (systematic, RMSEs; 
unsystematic, RMSEu) values of the daily mean PM2.5 concentrations (µg/m3) for the 
raw model forecasts and KF bias-adjusted forecasts.

Fig. 10. Box plots of RMSE and decomposed RMSE (systematic,
RMSEs; unsystematic, RMSEu) values of the daily mean PM2.5
concentrations (µg/m3) for the raw model forecasts and KF bias-
adjusted forecasts.

observed PM2.5 concentrations were larger than 10 µg/m3,
the RMSE values associated with KF forecasts were much
smaller in both the mean values and the distributions com-
pared to the raw model forecasts. In contrast, during the cool
season (Fig. 11b), the KF forecasts performed better than the
raw model forecasts across all the concentration bins. Ex-
amination of the MB distributions over the observed con-
centration bins (Fig. 11c and d) reveals that the raw model
over-predicted at lower concentrations and under-predicted
at higher concentrations, which is similar to the raw model
performance for O3 forecasts (Kang et al., 2008). The under-
prediction at higher concentration bins for PM2.5 forecasts
during the warm season was more severe than that during the
cool season. In general, the KF forecasts were able to adjust
the MB towards zero over all the concentration bins for both
seasons.

3.4 Categorical performance

It is equally important to evaluate the performance of an
air quality forecast system using the categorical metrics, be-
cause for the general public, it is more important to know if
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Fig. 11. RMSE (a and b) and MB (c and d) values over observed daily mean PM2.5 concentration (µg/m3) bins for the 
raw model and the KF bias-adjusted forecasts. The sample sizes for each bin from small to large are 28203, 17526, 
19855, 6855, 2716 (Warm Season) and 34072, 36402, 30697, 6771, 2502 (Cool Season). Fig. 11. (a andb) RMSE and (c andd) mean bias (MB) values over

observed daily mean PM2.5 concentration (µg/m3) bins for the raw
model forecasts and the KF bias-adjusted forecasts. The sample
sizes for each bin from small to large are 28203, 17526, 19855,
6855, 2716 (Warm Season) and 34072, 36402, 30697, 6771, 2502
(Cool Season).

the NAQFC system could simulate the occurrences of an ex-
ceedance or non-exceedance. Categorical evaluations for O3
forecasts have been extensively performed in the past (Kang
et al., 2005; Eder et al., 2006, 2009), but similar assessments
for PM2.5 forecasts have been limited. Figure 12 displays
the false alarm ratio (FAR; also known as probability of false
alarm) and hit rate (H; also known as probability of detec-
tion) (see Kang et al., 2005; Barnes et al., 2009) for the raw
model and KF bias-adjusted daily mean PM2.5 forecasts for
each of the sub-regions during both the warm and cool sea-
sons. An exceedance threshold value of 35 µg/m3 for the 24-
h mean PM2.5, based on the US National Ambient Air Qual-
ity Standard (NAAQS) for PM2.5 is used. As seen in Fig. 12,
the FAR values associated with the raw model forecasts were
similar (∼85%) for both seasons over the entire domain, but
the H values varied from less than 10% during the warm sea-
son to greater than 30% during the cool season. For the KF
forecasts, the FAR values were reduced by more than 20%
during both seasons, and the H values have more than dou-
bled during the warm season and were increased by about
20% during the cool season for the entire domain. Compared
to the raw model forecasts, the KF forecasts reduced the FAR
values across all the sub-regions, with differing magnitudes
and increased the H values for all the sub-regions except for
the LM and RM in the warm season and he UM in the cool
season. In general, the H values were higher during the cool
season than those during the warm season for both the raw
model forecasts and the KF forecast, while the FAR values
didn’t differ significantly.
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Fig. 12. False alarm ratio (FAR) and hit rate (H) for the daily mean PM2.5 forecasts by 
the raw model and the KF bias-adjustment over the domain (DM) and all the sub-
regions during (a) warm season and (b) cool season: FAR-MD, FAR associated with raw 
model forecasts; FAR-KF, FAR associated with KF forecasts; H-MD, H associated with 
raw model forecasts; and H-KF, H associated with KF forecasts. 

Fig. 12. False alarm ratio (FAR) and hit rate (H) for the daily mean
PM2.5 forecasts by the raw model and the KF bias-adjustment over
the domain (DM) and all the sub-regions during(a) warm season
and (b) cool season: FAR-MD, FAR associated with raw model
forecasts; FAR-KF, FAR associated with KF forecasts; H-MD, H
associated with raw model forecasts; and H-KF, H associated with
KF forecasts.

4 Summary

The Kalman filter bias-adjustment technique has been ap-
plied to post-process raw PM2.5 air quality forecasts over
the continental US domain during the year of 2007 at hourly
PM2.5 monitoring sites. Though the application and analysis
were conducted on archived PM2.5 model forecast output,
the methodology is easily adopted for real-time applications.
To facilitate performance evaluation, the continental US por-
tion of the domain was divided into six sub-regions and the
year was split into a cool season and a warm season to exam-
ine spatial and seasonal characteristics of the performance of
the method. The evaluation of raw model performance sug-
gests that the daily mean PM2.5 concentrations were gener-
ally over-predicted over the eastern part of the domain during
the cool season and under-predicted during the warm sea-
son; in contrast, the opposite is true for the western part of
the domain, i.e., the daily mean PM2.5 concentrations were
typically under-predicted along the Pacific Coast during the
cool season and over-predicted during the warm season; the
Rocky Mountain region is an exception where the daily mean
PM2.5 concentrations were over-predicted through the year.

The KF bias-adjustment technique significantly improved
the PM2.5 forecasts for locations with hourly PM2.5 monitors
as revealed by reductions in errors and biases, and higher

correlation coefficients throughout the year and across the
entire model domain. The analysis also shows that the KF
bias adjustment can quickly respond to transitions from one
regime to another during the transition of seasons or model
changes.

Analysis of RMSE and MB as a function of observed
concentrations suggests that the KF method significantly re-
duces the raw model error and bias across all concentration
ranges except at lower concentration bins during the warm
season. However, the significant reductions in error and
bias at the moderate-high concentration ranges helps improve
the ability to predict exceedances, a feature desirable for air
quality forecasting. The effectiveness and benefits of bias-
adjustment of PM2.5 model forecasts is also reflected in the
categorical evaluations; the KF bias-adjustment technique
improved the categorical evaluation metrics significantly by
reducing the false alarm ratio and increasing the hit rate for
almost all the regions during both the cool and warm seasons.

It should be pointed out that the performance of bias-
adjusted forecasts is dependent on the performance of the
raw model to which the bias-adjustment technique is applied.
Because of the complexity in PM2.5 composition, formation,
and distribution, it is even more critical for the raw model
to provide a stable and well-behaved basis to make bias-
adjusted forecasts more reliable. This bias-adjusted forecast
study was based on the total mass of PM2.5. If the com-
ponents of PM2.5 could be bias-adjusted separately, the re-
sults may be further improved than those derived from the
bias-adjustment of the total PM2.5 mass performed in this
study. However, the lack of real-time measurements of spe-
ciated PM2.5 hampers the use of KF adjustments on indi-
vidual species. Improvements in the representation of fine
particulate matter emissions as well as physical and chem-
ical processes regulating sources and sinks in atmospheric
models are expected as a result of on-going research over
the next several years. Nevertheless, our analysis indicates
that despite the current uncertainties in the representation of
atmospheric processes dictating the distribution of ambient
PM2.5, the KF bias-adjustment techniques can be used to im-
prove the reliability of short term PM2.5 forecasts from such
models and, consequently, help in issuance of air-quality-
degradation-related health advisories.

In this study, the KF bias-adjustment technique is only ap-
plied at discrete points, i.e., at location of the monitors. Fur-
ther research is needed to extend this technique for the de-
velopment of bias-corrected spatial maps (i.e., also at loca-
tion where no monitor information is available) for surface-
level PM2.5 distributions. Since surface-level PM2.5 con-
centrations are influenced by local forcing associated with
several meteorological drivers and spatially-heterogeneous
emissions, information on the spatial representativeness of
the individual measurements and, consequently, the adjusted
bias is critical to the extension of this method presented here
to develop bias-adjusted spatial maps of PM2.5 forecast.
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