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Abstract. Streamflow depends on the soil moisture of a river
catchment and can be measured with relatively high accu-
racy. The soil moisture in the root zone influences the la-
tent heat flux and, hence, the quantity and spatial distribution
of atmospheric water vapour and precipitation. As numeri-
cal weather forecast and climate models require a proper soil
moisture initialization for their land surface models, we en-
hanced an Ensemble Kalman Filter to assimilate streamflow
time series into the multi-layer land surface model TERRA-
ML of the regional weather forecast model COSMO. The
impact of streamflow assimilation was studied by an observ-
ing system simulation experiment in the Enz River catchment
(located at the downwind side of the northern Black Forest in
Germany). The results demonstrate a clear improvement of
the soil moisture field in the catchment. We illustrate the
potential of streamflow data assimilation for weather fore-
casting and discuss its spatial and temporal requirements for
a corresponding, automated river gauging network.

1 Introduction

Quantitative precipitation forecasting (QPF) is one of the
most complex challenges in numerical weather prediction
(NWP) (e.g. Rotach et al., 2009; Wulfmeyer et al., 2008).
QPF failures can be due to errors in numerics, limited spa-
tial resolution of the model, erroneous model physics, incor-
rect initial conditions and limited predictability. The skill of
QPF, particularly on the mesoscale, is still strongly limited
by uncertainties in initial conditions. Particularly, dynam-
ics in complex terrain and the inhomogeneous distribution of
water vapour are considered the most important unknowns
in the initial fields. The water vapour field of the continental
lower troposphere and, therefore, cloud formation and pre-
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cipitation is influenced by the interaction of the atmosphere
with the land surface through the energy and water fluxes.
Corresponding studies show the soil moisture influence on
quantity and spatial distribution of precipitation (e.g. Schär
et al., 1999; Hohenegger et al., 2008; Trier et al., 2004). Par-
ticularly, in summertime, continental QPF depends on the
initialization of root zone soil moisture and other land sur-
face states (Reichle et al., 2002; Hohenegger et al., 2009).
Soil moisture not only depends on the weather but also on
the local land surface characteristics (soil texture, vegeta-
tion, orography). But for this highly heterogeneous quan-
tity, only scarce representative measurements are available at
point locations (e.g. Bardossy and Lehmann, 1998; Grayson
and Western, 1998). Multiple efforts to apply remote sens-
ing to regions of scarce or shallow vegetation to obtain the
skin layer soil moisture are currently under way (e.g. Crow
and Wood, 2003; Dunne and Entekhabi, 2006; Drusch and
Viterbo, 2007; Gao et al., 2007). So far, these techniques
do not provide data for soil moisture estimates under dense
vegetation and within the total soil profile. Hence, the knowl-
edge of the soil moisture distribution is a key issue in NWP.

As the lower boundary of weather forecast and climate
models, land surface models (LSM) calculate the coupled
water and energy balance at each grid cell of the atmospheric
model. On these scales (≥1 km2), soil texture, topography
and vegetation and, therefore, water and energy fluxes, soil
moisture, runoff and soil temperature are highly heteroge-
neous (e.g. Kabat et al., 1997). This heterogeneity can nei-
ther be measured nor modelled explicitly at an acceptable
cost. For each grid cell, the precipitation is balanced by the
sum of evapotranspiration, runoff and soil moisture change.
Evapotranspiration and soil moisture cannot be measured at
this scale, over the large areas an atmospheric model is ap-
plied to (e.g. Beven, 2001; Pitman et al., 2004). Also sea-
sonal to intra-seasonal climate simulations rely on a proper
root zone soil moisture initialization (e.g. Conil et al., 2009;
Seneviratne et al., 2006).
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Remotely sensed land surface data and air-temperature are
currently assimilated to overcome errors in soil moisture and
temperature simulation in NWP models (e.g. Hess, 2001;
Seuffert et al., 2004; Crow and Wood, 2003; Gao et al.,
2007).

Still unresolved problems are the soil moisture analysis in
densely vegetated areas and in the root zone. Recently, var-
ious approaches of data assimilation were set up and ana-
lyzed to retrieve the root zone soil moisture at the regional
scale in hydrological models. They mainly use Kalman Fil-
ter techniques and their modifications, which are outlined in
detail, e.g. by Evensen (2006). Further, Evensen (2003) gives
a detailed description and literature review of the Ensemble
Kalman Filter (EnKF, Evensen, 1994). Walker et al. (2002)
apply a modified Kalman Filter technique with a distributed
hydrological model to retrieve the three-dimensional soil
moisture from surface soil moisture measurements. This is
a valuable approach in hydrology but due to the intense com-
putational cost of a distributed hydrological model, not a
tool currently suitable for NWP. Moradkhani et al. (2005)
and Dunne and Enthekhabi (2006), for example, use the En-
semble Kalman Smoother for root zone soil moisture analy-
sis assimilating L-band radiobrightness temperatures in an
area of the Southern Great Plains (USA) whose vegeta-
tion is mainly wheat and grasses (Drusch et al., 2001). At
the German Weather Service (DWD), Hess (2001) imple-
mented a method based on the EKF (Extended Kalman Fil-
ter) technique into the operational non-hydrostatic mesoscale
weather forecast model COSMO (Doms et al., 2005) that ad-
justs the soil state to meet the observed atmospheric state.
However, in his approach, the soil moisture and soil tem-
perature do not necessarily match the reality, i.e., its usage
is not consistent with the hydrologic interaction of the land
surface and lower atmosphere. This is proven by Drusch
and Viterbo (2007), who assimilated screen-level variables
in ECMWF’s Integrated Forecast System. If, due to the as-
similation of screen level variables, the model’s soil moisture
and soil temperature are changed so that they may not reflect
reality, this impacts other parameterizations and sub-models
that rely on those variables, e.g. latent and sensible heat flux
and runoff.

A data source that has only received attention in the past
couple of years is streamflow from operational river gaug-
ing networks. Streamflow is a quantity that can be measured
at relatively high accuracy (about>90%, LfU, 2002). If
the runoff is transported to and within the river network, it
can be compared to measured streamflow at gauging stations.
Pauwels and De Lannoy (2006) published the application of
a retrospective EnKF to assimilate streamflow data for soil
moisture retrieval. Their synthetic tests show promising re-
sults for a 1000 km2 catchment in Belgium and indicate im-
provements especially in case of precipitation underestima-
tion. They apply it to the high resolution hydrological model
TOPLATS. Komma et al. (2008) successfully applied the
EnKF for soil moisture update in real-time flood forecasting

in a 622 km2 catchment in Austria. However, they use a soil
moisture model focusing on the hydrological model applica-
tion, while in this study a land surface model for atmospheric
models is applied. Clark et al. (2008) demonstrate that the
standard implementation of EnKF is inappropriate and show
the improved performance when streamflow is transformed
into log space before applying EnKF with the distributed hy-
drological model TopNet. This is due to the large ranges in
streamflow between peak flow and low flow, which can be
2 orders of magnitude or more.

Streamflow analyses allow for an evaluation of the model
performance (e.g. Lohmann et al., 2004; Warrach-Sagi et al.,
2008). In this study, we go a step further and study the
potential of streamflow data assimilation for soil moisture
analysis in a catchment, namely for initialisation of numer-
ical weather prediction and climate models. We followed
the most recent development in EnKF and applied it to the
streamflow data assimilation for soil moisture initialization
in a land surface model of the numerical weather predication
model COSMO.

In southern Germany, a network of automated river and
precipitation gauges has been installed in the past couple of
years by the federal services for flood monitoring. The fed-
eral state Baden-Ẅurttemberg has implemented a flood fore-
cast centre, which is able to provide half-hourly updates of
streamflow measurements at approximately 140 gauges at the
rivers Rhein, Neckar, Donau, Main and their main contribu-
tories. Similar warning systems are available in the federal
state Bayern and Rheinland-Pfalz. Such automated networks
provide a valuable source for operational streamflow data as-
similation.

The square root algorithm for the EnKF (Evensen, 2004)
is set up to assimilate streamflow data in TERRA-ML to
analyse the soil-water content of the soil profile down to
2.43 m soil depth simulated by TERRA-ML. By means of
an observing system simulation experiment (OSSE) in the
Enz River catchment (Germany), we studied the potential
of streamflow data assimilation and its spatial and tempo-
ral requirements for an automated river gauging network.
The Enz catchment is on the downwind side of the Black
Forest, i.e. QPF by the weather forecast model is often un-
derestimating, making it a valuable test bed for streamflow
data assimilation (Pauwels and De Lannoy, 2006). The
study is carried out exemplarily with the land surface model
TERRA-ML coupled to a river routing model (Warrach-Sagi
et al., 2008). The multi-layer soil and vegetation model
TERRA-ML serves as the lower boundary of the operational
non-hydrostatic mesoscale weather forecast model COSMO
(Doms et al., 2005). (COSMO is the acronym for the Consor-
tium for Small-scale Modelling (http://www.cosmo-model.
org/). However, the data assimilation system can be set up for
any land surface model that includes a river routing model to
simulate streamflow.
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2 Description of TERRA-ML and the river routing
scheme

This study applies the stand alone version of TERRA-ML
in the framework set up by Ament and Simmer (2006).
The model configuration and parameters of TERRA-ML are
taken from the German Weather Service’s COSMO. In the
framework, TERRA-ML is set up as if it is called by the
COSMO, with the exception that the meteorology is read
from a file instead of forecasted at the time step by the
COSMO. This framework has the advantage that it allows
the simulation of a gridded area (e.g. watershed) per time
step mimicking a simulation with a weather forecast model.
An important modification of TERRA-ML in this study is
the parameterization of the hydraulic conductivity and diffu-
sivity following Campbell (1974) instead of Rijtema (1969)
due to the results of Graßelt et al. (2008) and Warrach-Sagi
et al. (2008).

TERRA-ML and the river routing model are set up as
described in detail by Warrach-Sagi et al. (2008), there-
fore, here only a summary is given. In COSMO, the model
TERRA-ML has got 6 hydrological layers (layer depths from
the surface: 0.01 m, 0.03 m, 0.09 m, 0.27 m, 0.81 m, and
2.43 m) and 8 thermal layers (layer depths from the surface:
0.01 m, 0.03 m, 0.09 m, 0.27 m, 0.81 m, 2.43 m, 7.29 m, and
21.87 m). The lower boundary condition is given by free
drainage at 2.43 m depth and a constant climatological tem-
perature below 7.29 m depth.

For model simulations, watersheds are divided into grid
cells as in atmospheric models. For each grid cell, the one-
dimensional vertical land surface model TERRA-ML is ap-
plied. The locally generated runoff of the LSM needs to be
transported into and along the river system to compare it to
streamflow measurements at gauging stations and to calcu-
late the streamflow at various locations of the river. Based
on the routing scheme described in detail by Lohmann et
al. (1996, 2004) present a lumped optimized linear routing
model, which Warrach-Sagi et al. (2008) coupled to TERRA-
ML. The routing scheme describes the time runoff takes
to reach the outlet of a grid cell and the water transport
in the river network. It is assumed that water flows uni-
directionally from grid cell to grid cell with eight possible
directions through each side and corner of the grid cell.

3 The streamflow data assimilation system

The Ensemble Kalman Filter (EnKF) has been reviewed by
many authors recently (e.g. Evensen, 2003, 2006; Pauwels
and DeLannoy, 2006; Clark et al., 2008) and, therefore, here
only a short description of its implementation for the stream-
flow data assimilation is given.

Both model results and observation, deviate from the true
state. The goal of data assimilation is to find the best estimate
of the state (e.g. soil moisture) from model simulations and

measurements (e.g. streamflow). One method is to estimate
the mean state and the “maximum likelihood” including its
covariance as uncertainty measure as it is provided e.g. by
the EnKF.

Various algorithms solve the EnKF equations (see
e.g. Evensen, 2006). For this study, we chose the
square root algorithm for EnKF (http://enkf.nersc.edu) from
Evensen (2004) due to the following aspects: it is stable,
needs relatively little computing time, requires relatively lit-
tle memory and it is straight-forward to implement. The fol-
lowing base line equations describe the EnKF as it is imple-
mented:
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Bold letters represent matrices,x andy are the vectors for
the model state and observation.b is the background (i.e. ini-
tial state),a is the analysis,e is the ensemble member,n is
the time step,T is the transpose andK is the Kalman gain
matrix. A, B andR are error covariance matrices of the anal-
ysis, background and observation,I is the identity matrix,
H is the observation operator (in this case, the river routing
model), which transforms the variable from model space to
observation space,H is the tangent linear observation oper-
ator matrix ofH andM is the model operator (in this case
TERRA-ML). ThoughA is not needed within the filtering
process,A is a valuable output for the application of the up-
dated soil moisture fields as initial condition, for example,
in weather prediction models running in a data assimilation
mode. Furthermore,A is critical information for the inter-
pretation of the results. The last term of Eq. (4) demonstrates
the relation of the EnKF to the Extended Kalman Filter.

Depending on the location within the catchment, the water
needs more or less time to travel as streamflow through the
river network. Water far away from the gauge arrives later
than the runoff from grid cells close by. The travel time de-
pends on the river itself and the form and orography of the
catchment. This means that the streamflow measured at a
gauge depends on the soil moisture distribution in the catch-
ment for a time window from timet=0 to t=m∗dt. m is
the time step,dt is the time interval of one time step. This
period of streamflow data needs to be assimilated. By this
the EnKF becomes a “retrospective“ EnKF, whose concept
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is described by Pauwels and DeLannoy (2006). The time
window depends on the catchment and is determined prior to
the streamflow data assimilation. Then streamflow time se-
ries are assimilated depending on the catchments’ time win-
dow to obtain the soil moisture (see, e.g., Sect. 4.2). Follow-
ing Clark et al. (2008), the streamflow is transformed into
log space before computing the error covariances since they
demonstrated that this improves the filter performance.

Only the catchment’s grid cellsγ are part of the data as-
similation system, i.e. each grid cell of the catchment gets an
indexh between 1 andγ . For example,γ grid cells belong
to the catchment upstream of a gauge, i.e. the model state
vector includesh∗k∗m soil moisture values.m the number
of timesteps of lengthdt within the assimilation window,k is
the index of the soil layers of each grid cell, the model has
got k=β soil layers. The state vectors of the analysis and
backgroundx includes all soil moisture valuesη(h,k,n) and
the simulated streamflowq(h,n) in each grid cell of the river
network. n is the time step index of the streamflow assim-
ilation window. The observation state vectory includes the
observed streamflow timeseriesQ from gauging stationl at
grid cell (i(l),j (l)). i andj are the indices of the grid cell
in eastward and northward direction, to each catchment grid
cell numberh is defined by its model areas grid cell indexi

andj , i.e.Q(γ )=Q(i(l),j (l)). The assimilation window is
from timet=0 to t=m∗dt, dt is the length of the timesteps of
the observed streamflow data,m the number of timestepsdt
within the window. The equations for the state vectors are:

x=
(
η1,1,1,η1,2,1,...,η1,β,1,η2,1,1,...,ηγ,β,m,q1,1,q2,1,...,qγ,m

)
(6)

y =
(
Ql,1,...,Ql,m

)
(7)

To illustrate the streamflow data assimilation system, Fig. 1a
shows a flow chart for the analysis of the soil moisture at the
initial timestept=0 as it is set up for this study.

4 The Observing System Experiment (OSSE)

4.1 Study area: the Enz

The Black Forest is a mountain range that reaches from
47.5◦ S to 49◦ N at a width of approximately 50 km in Baden-
Württemberg (Germany). Reaching from North to South, the
Black Forest modifies significantly most frontal systems ar-
riving from the Atlantic. In spite of its relatively low height
(largest mountain Feldberg 1493 m a.m.s.l.), orographic lift-
ing of unstable and moist air masses in this region results
in the largest amount of precipitation in Germany except the
northern front range of the Alps. In summer, the Black For-
est is characterised by strong convection, thunderstorms, and
the development of extreme precipitation events. The east-
ern Black Forest hosts about half of the contributories of
the Neckar, a major contributory of the Rhine. The west-
ern Black Forest drains directly to the Rhine. Most rivers
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Fig. 1. Flow charts of(a) the streamflow data assimilation system
for the soil moisture analysis of the initial timet=0. The applied
model is TERRAML with the river routing scheme as described by
Warrach-Sagi et al. (2008),(b) the OSSE, and(c) the preparation of
the perturbed soil moisture and streamflow observation data.

in Baden-Ẅurttemberg contain automated gauging stations
from the flood forecast centre and streamflow data are avail-
able every 30 min.
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Fig. 2. The orography (based on the 90 m-orographic data from
the SRTM) and the river network for the Enz catchment upstream
of Pforzheim on the rotated spherical coordinate system of the
COSMO on a grid resolution of 0.01◦ (≈1 km).

The 260 km2 Enz catchment upstream of Pforzheim (up-
stream of the Nagold confluence) is on the downwind side
of the Black Forest, i.e. precipitation is often underestimated
by weather forecast models. Therefore, the Enz catchment
(Fig. 2) was chosen for the streamflow data assimilation
study. No water reservoirs interrupt the river system. Ele-
vation of the catchment ranges between 350 and 930 m a.s.l.
The catchment is characterised by forested (mixed decidu-
ous and evergreen coniferous trees) upland areas and agri-
culturally used lowlands. Sandy and loamy soils dominate
the upper Enz area (Fig. 3). Between 1997 and 2002 annual
precipitation in the catchment ranged from 1088 to 1451 mm.

4.2 Set-up of the OSSE

Warrach-Sagi et al. (2008) applied the coupled TERRA-ML-
routing model to the Enz catchment upstream of Pforzheim
and compared it to simulations of the flood forecast centre
Baden-Ẅurttemberg and to observations. They showed that
the model results and observations agree reasonably well.
However, as is always the case, model results and observa-
tions both include errors and both differ from the true state.
To assess the potential and requirements for streamflow data
assimilation, an OSSE is set up, as illustrated in Fig. 1b. The
results of the TERRA-ML-routing model for 1997 in the Enz
river catchment (Warrach-Sagi et al., 2008) are assumed to
be the “true” state, named “CONTROL” hereafter. The data
assimilation experiment starts on 5 May 1997 with an en-
semble of initial soil moisture fields in the catchment and

peat

loam

sandy loam

sand

-1.088 -0.888 °E (COSMO coordinates)

°N (COSMO coordinates)
-8.583

-8.893

Fig. 3. Soil texture based on 1:200 000 soil map (BÜK 200)
of the LGRB (Landesamt für Geologie, Rohstoffe und Bergbau)
(Warrach-Sagi et al., 2008). In TERRA-ML the saturated soil mois-
ture is 0.364 m/m for sand, 0.445 m/m for sandy loam, 0.463 m/m
for loam and 0.863 m/m for peat.

an ensemble of streamflow at various locations in the river
network. In this OSSE, the ensemble is limited to the pertur-
bation of initial soil moisture fields rather than including ad-
ditional ensembles of perturbed meteorological forcing. The
reasons are twofold, firstly this allows for a better interpre-
tation of the results and secondly the meteorological forcing
is from measured station data, i.e. all forcing variables are
consistent. Perturbing, for example, the temperature would
mean to perturb the incoming radiation as well in a consistent
manner and lead to quite a complex OSSE. The CONTROL
streamflow serves as an “observation” which is assimilated
for the soil moisture analysis. The analysis is then compared
to the “true” state, i.e. the CONTROL soil moisture.

A flow duration check is carried out to obtain the as-
similation time window for the whole basin at Pforzheim
(upstream of Nagold confluence) and the sub basinsGroße
Enz(90 km2), Kleine Enz(71 km2), Eyach (43 km2) and up-
stream of Ḧofen (222 km2), downstream of the confluence of
the Eyach into the Enz (Fig. 2). For the flow duration check at
the initial time step, 0.002 kg/m2 runoff are assumed for each
grid cell. No more runoff is assumed afterwards. The routing
model calculates the streamflow for each catchment (Fig. 4).
Depending on the size and structure of the catchment, the
time window until all water has left the catchment varies be-
tween 25 and 62 h. Experiments showed that in most cases
an assimilation window of 90% of the time window lead to
the best results in soil moisture distribution and catchments’
mean soil moisture. This is due to the following fact: The
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6 K. Warrach-Sagi and V. Wulfmeyer: Streamflow data assimilation for soil moisture analysis

 

  

 

 

 

 

  

0

5

10

15

20

0 10 20 30 40 50 60 70

s
tr

e
a
m

fl
o

w
  
[m

3
/h

o
u

r]

time [hours]

Eyach (43 km²)

Kleine Enz (71 km²)

Große Enz (90 km²)

Höfen (222 km²)

Pforzheim (260 km²)
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ment. No more runoff is assumed afterwards. The river routing
model calculates the streamflow for each sub-catchment.

closer the grid cell is to the gauging station, the shorter the
part of the streamflow time series is responsible for its soil
moisture. But since streamflow is an integrated quantity over
the whole catchment, this is not separated in the EnKF. Less
optimal results can be caused in those grid cells through the
assimilation of this grid cell’s “too long” assimilation win-
dows. A denser gauging network would help to reduce these
effects. This will be discussed in Sect. 4.4 in more detail.

4.3 Ensemble preparation

Figure 1c illustrates the ensemble preparation. For the OSSE,
a period is chosen which does not include extreme events
(such as flooding or drought or strong precipitation). A pe-
riod in spring was chosen, when not only soil texture but
also vegetation and weather control the soil moisture. Fur-
thermore, in spring and summer soil moisture impacts the
development of convection in the atmosphere. This study
starts on 5 May 1997 (day 125). The initial soil mois-
ture of the CONTROL simulation is perturbed applying the
2-D-pseudorandom sampling method and algorithm (http:
//enkf.nersc.no) of Evensen (2004) to obtain 100 ensemble
members of initial soil moisture fields, which include no
step-functions within the 2-D-area. (See Evensen, 2004, for
more details on this approach.) The soil moisture of each
grid cell is chosen to vary between +10% and−40% of the
CONTROL soil moisture. This is to account for the typical
underestimation of precipitation in NWP simulations in this
area and to account for the fact that the precipitation might
have been simulated in the wrong location within the catch-
ment. The 2-D-pseudorandom fields vary up tod=±1 and
examples are shown for 2 ensemble members in Fig. 5. Ac-
cording to the random number of each grid cell (i,j,k) of
each ensemble membere, the soil moistureη in the grid cell
is perturbed to

ηi,j,k,e = ηi,j,k,c ·d ·0.1 ∀ d > 0, (8a)
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Fig. 5. The initial soil moisture of the CONTROL simulation is per-
turbed applying the 2-D-pseudorandom sampling method and algo-
rithm (http://enkf.nersc.no) of Evensen (2004) to obtain 100 ensem-
ble members of initial soil moisture fields. The 2-D-pseudorandom
fields vary up tod=±1 and examples are shown for 2 ensemble
members.

ηi,j,k,e = ηi,j,k,c ·d ·0.4 ∀ d ≤ 0, (8b)

i, j andk are the indices of the grid cell in eastward, north-
ward and downward direction,c is the control state. Like
in nature, soil moisture in the ensemble for each grid cell is
always limited between saturation and air dryness point.

The background ensemble of the streamflow at Pforzheim
simulated with TERRA-ML and the routing scheme from the
initial ensemble of soil moisture fields shows that the ensem-
ble does not converge during the first 200 h (Fig. 6a) even
though the same atmospheric forcing is applied to each en-
semble member. Most variability in streamflow between the
ensemble members can be seen 30 and 70 h after the simula-
tion started. The mean of the background ensemble stream-
flow is lower than the CONTROL streamflow (Fig. 6c).

The CONTROL streamflow is perturbed by adding Gaus-
sian noise. The 1-D-pseudorandom sampling method and
algorithm (http://enkf.nersc.no) of Evensen (2004) to obtain
100 ensemble members is applied and streamflow perturbed
by up to±15%, assuming that the error might be occasion-
ally larger than the<10% assumed by LfU (2002).

4.4 Soil moisture analysis

TERRA-ML’s soil column is 2.43 m deep (see Sect. 2). The
soil-water content (SWC) of each grid cell depends on its soil
depth and its soil moistureη

SWCi,j = ρw ·

l∑
k=1

(
ηi,j,k ·(z(k)−z(k−1))

)
, (9 )

with the density of waterρw, z(k) is the depth of the lower
boundary of soil layerk, l is the lowest soil layer. Streamflow
data is assumed to be available at an half hourly time step like
the observations made by the automated gauges in Baden-
Württemberg.

Geosci. Model Dev., 3, 1–12, 2010 www.geosci-model-dev.net/3/1/2010/
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Fig. 6. The streamflow at Pforzheim starting on 5 May 1997
with the CONTROL streamflow value:(a) simulated for all (back-
ground) ensemble members of initial soil moisture with TERRA-
ML and river routing scheme,(b) ensemble of analysis members re-
sulting from EnKF, and(c) streamflow from the CONTROL (blue)
simulation, simulated with the initial mean soil moisture of the
background ensemble (red) and simulated with the initial mean soil
moisture analysis (black).

The analysis timeseries of the streamflow (Fig. 6b) show
a narrower spread than the background (Fig. 6a). In both
cases (background and analysis), most variability in stream-
flow between the ensemble members can be seen 30 and
70 h after the simulation started. Figure 7 shows the ensem-
ble of the catchments’ mean SWC upstream of Pforzheim.
The timeseries of the SWC of the ensemble do not con-
verge during the streamflow assimilation window (Fig. 7a)
and the median SWC is not equal to the CONTROL SWC.
Figure 7b shows the ensemble spread of the catchments’
mean SWC at the initial timet=0 for the background and
the analysis for the catchment upstream of Pforzheim assim-
ilating streamflow data from Pforzheim. The analysis en-
semble has a lower spread and is closer to the CONTROL
SWC. The ensemble mean SWC att=0 is 525 kg/m2 for the
background, 528 kg/m2 for the analysis and 557 kg/m2 for
the CONTROL.

Figure 8 shows the spatial distribution of the SWC at time
t=0. Note that single cells show larger SWC mainly due to
different soil texture (peat and loam, see Fig. 3). While the
ensemble mean of the background SWC is everywhere 5–
6.5% lower than the CONTROL SWC, the ensemble mean
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Fig. 7. TERRA-ML’s soil column is 2.43 m deep. The soil-water
content (SWC) of each grid cell depends on its soil depth (i.e. here
2.43 m) and its soil moisture (Eq. 9). SWC in the Enz catchment
upstream of Pforzheim (260 km2): (a) timeseries of SWC of the
CONTROL (black *) and of the ensemble members (yellow), their
median SWC (blue *), their minimum SWC (red *) and their max-
imum SWC (green *) during the assimilation window;(b) distri-
bution of initial mean SWC (t=0) between the ensemble members.
CONTROL mean SWC is 557 kg/m2. The analysis att=0 was ob-
tained assimilating streamflow from the CONTROL model simula-
tion from Pforzheim fromt=0 to t=56 h with a 0.5 hourly timestep.

analysis SWC shows an improvement (Fig. 9). The analysis
differs in more than half of the catchment by 4–4.5% from
the CONTROL SWC. Only in a few upstream and down-
stream grid cells it is worse (7.5% upstream and 6.5% down-
stream) than the background SWC.

Figures 10 and 11 show the distribution of the differ-
ences in SWC for the soil layers of TERRA-ML. Note that
TERRA-ML assumes the root depth at 0.8 m soil depth,
i.e. layer 6 contains no roots and, therefore, does not con-
tribute to the evapotranspiration in TERRA-ML. Most grid
cells show an improvement of soil moisture through stream-
flow data assimilation in all soil layers, but it is lowest in the
top 0.09 m and in the upstream grid cells. Strongest improve-
ment is reached in a wide region in the middle of the catch-
ment, this is most pronounced in the 4th layer (0.09–0.27 m
depth).

www.geosci-model-dev.net/3/1/2010/ Geosci. Model Dev., 3, 1–12, 2010
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Fig. 8. TERRA-ML’s soil column is 2.43 m deep. The soil water content (SWC) of each grid cell depends on its soil depth and its soil
moisture (Eq. 9). The SWC is displayed for the initial timet=0 (5 May 1997) for the background, CONTROL and analysis. The analysis
at t=0 was obtained assimilating streamflow from the CONTROL model simulation from Pforzheim fromt=0 to t=56 h with a 0.5 hourly
timestep.
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Fig. 9. The difference in soil-water content (SWC) of each grid
cell relative to the CONTROL SWC of each grid cell for the initial
time t=0 (5 May 1997) for the background and analysis. The anal-
ysis at t=0 was obtained assimilating streamflow from the CON-
TROL model simulation from Pforzheim fromt=0 to t=56 h with a
0.5 hourly timestep.

The promising results from the 260 km2 catchment led
to a study about the potential impact of a denser network
of gauges for the soil moisture analysis. Gauges were as-
sumed to be at the outlet of theGroße Enz(90 km2), the
outlet of theKleine Enz(71 km2) and the outlet of the Ey-
ach (43 km2). Little impact was reached for the Eyach,
but for all other catchments the SWC was improved. Fig-
ures 12, 13, and 14 show the results for theGroße Enzcatch-
ment. Here, the impact of the streamflow data assimilation
is much more pronounced, as can be seen from Figs. 11 and
13. The ensemble mean SWC att=0 is 535 kg/m2 for the
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Fig. 10. As Fig. 9, but(a) for the top 3 soil layers of TERRA-
ML, i.e. 0–0.09 m depth of the soil, and(b) for the 4th soil layer of
TERRA-ML, i.e. 0.09–0.27 m depth of the soil.
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Fig. 11. As Fig. 9, but(a) for the 5th soil layer of TERRA-ML,
i.e. 0.27–0.81 m depth of the soil, and(b) for the 6th soil layer of
TERRA-ML, i.e. 0.81–2.43 m depth of the soil.

background, 542 kg/m2 for the analysis and 568 kg/m2 for
the CONTROL. Figures 13 and 14 show that nowhere does
the analysis lead to worse SWCs than the background.

Figure 15 shows the impact of assimilating streamflow
from the CONTROL model simulation from theGroße Enz
outlet, Kleine Enzoutlet and Eyach with a 0.5 hourly time
step. Most areas show a positive impact of the data assim-
ilation. Applying the mean of the soil moisture analysis of
each layer and grid cell after the assimilation ofGroße Enz,
Kleine Enz, Eyach and Pforzheim results in a slight (5%) im-
provement of the streamflow at Pforzheim (Fig. 6c) due to
the improvement of the soil moisture.

All in all, the simulations show a gradient in the impact of
the data assimilation. Close to the gauge location of the as-
similated streamflow and at the furthest upstream grid cells,
the data assimilation shows worse results than in the middle
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Fig. 12. TERRA-ML’s soil column is 2.43 m deep. The soil-water
content (SWC) of each grid cell depends on its soil depth and its
soil moisture (Eq. 9). Distribution of initial mean SWC (t=0) in
the Große Enzcatchment (90 km2) between the ensemble mem-
bers. CONTROL mean SWC is 568 kg/m2. The analysis att=0
was obtained assimilating streamflow from the CONTROL model
simulation from Pforzheim fromt=0 to t=56 h with a 0.5 hourly
timestep.

areas. This is due to flow duration in the river network and
the assimilation window. The grid cells close to the gauge
would need shorter assimilation windows. However, the
OSSE shows that the streamflow data assimilation has the
potential to improve the soil moisture throughout the catch-
ment and that a more dense gauging network would help to
improve this even further.

5 Conclusions

Numerical weather forecasting and climate modelling re-
quire an accurate soil moisture initialization for their land
surface models. So far, the areal distribution of root zone soil
moisture cannot be measured. Streamflow depends on the
soil moisture of a river catchment and is measured at gaug-
ing stations of the rivers at relatively high accuracy.

A retrospective EnKF was set up to assimilate streamflow
into the multi-layer land surface model TERRA-ML of the
regional weather forecast model COSMO. An OSSE was
performed in the Enz River catchment located at the down-
wind side of the northern Black Forest (Germany). The
results confirm the potential of streamflow data assimila-
tion for improving soil moisture analyses. Further, we dis-
cussed the spatial and temporal requirements for an auto-
mated river gauging network. Half-hourly streamflow data
is available from the automated gauges of the flood forecast
centre of Baden-Ẅurttemberg (Germany) for approximately
140 gauges. Half-hourly resolution of streamflow data is

www.geosci-model-dev.net/3/1/2010/ Geosci. Model Dev., 3, 1–12, 2010
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at t=0 was obtained assimilating streamflow from the CONTROL model simulation from theGroße Enzoutlet from t=0 to t=34 h with a
0.5 hourly timestep. Note that the scaling is different from Fig. 8.
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Fig. 14. The difference in soil-water content (SWC) of each grid
cell relative to the CONTROL SWC of each grid cell for the ini-
tial time t=0 (5 May 1997) for the background and analysis. The
analysis was obtained assimilating streamflow from the CONTROL
model simulation fromGroße Enzoutlet fromt=0 to t=34 h with a
0.5 hourly timestep.

sufficient for its assimilation for soil moisture analysis. In the
upper Enz, an automated gauge is operational at Höfen. The
OSSE shows that streamflow from this location can already
improve SWC in the Enz catchment upstream of Höfen, but
that a denser network would improve the SWC even more.
Namely, at the outlets of smaller sub-catchments, like the
Große Enz, this would be valuable, since the sub-catchments
show a differently structured river network (Fig. 2) and flow
duration (Fig. 4). Since the necessary assimilation window
depends on the catchment size (e.g. 56 h for Pforzheim and
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Fig. 15. The difference in soil-water content (SWC) of each grid
cell relative to the CONTROL SWC of each grid cell for the ini-
tial time t=0 (5 May 1997) for the background and analysis. The
analysis was obtained assimilating streamflow from the CONTROL
model simulation from theGroße Enzoutlet,Kleine Enzoutlet and
Eyach outlet with a 0.5 hourly timestep.

27 h for the Kleine Enz), a denser gauging network would
shorten the assimilation time making it even more valuable
for initialisation in numerical weather forecast models.

Warrach-Sagi et al. (2008) showed, for the study area,
that the streamflow simulated with TERRA-ML underesti-
mates the observation. This is due to model errors, land
surface heterogeneity, spatial variability of meteorological
conditions and errors in meteorological forcing data set, and
soil and vegetation parameter uncertainty. Model errors may
be, to a large extent, estimated applying TERRA-ML at
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meteorological stations where also soil moisture, soil temper-
ature and eddy correlation measurements are available. This,
for example, is done during EVAGRIPS and published by
Ament and Simmer (2006) and Johnsen et al. (2005). But the
heteorogeneity of the land surface and weather poses a large
source of uncertainty. The usually underestimated stream-
flow will also increase the soil moisture when measured data
is applied. Since the OSSE shows that the concept works, it
is also expected that assimilating observed streamflow will
cause a more realistic soil moisture pattern, namely during
underestimated streamflow this will lead to larger soil mois-
ture in the catchment. The catchment was chosen with care
though, it is not dominated by deep groundwater flows, oth-
erwise streamflow data assimilation should not be expected
to be a suitable tool for soil moisture analysis in a land sur-
face model like TERRA-ML.

Altogether the retrospective EnKF is a powerful method
to assimilate streamflow data into a land surface model for
root zone soil moisture analysis. The implementation of
the square root algorithm for EnKF from Evensen (2004) is
straight forward and can be used with any land surface model
if a river routing model is attached.

An improved soil moisture is the first step in improving
the simulation of the water fluxes. An immediate positive
impact on the simulation of fluxes and atmospheric variables
cannot be expected, but the optimization of initial fields is
the first important step. With the improved soil moisture it
will be possible to improve the parameterizations that are
responsible for energy balance equations by means of re-
analyses. Of course, the golden goal would be the assimi-
lation of streamflow and other soil and atmospheric variables
into a coupled atmosphere-land surface model system, e.g.,
COSMO-TERRA-ML or WRF-NOAH. This study is con-
sidered as a first step towards this direction and demonstrates
that it is principally a possible path to follow.
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