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Abstract. The interfaces by which users specify the scenar-
ios to be simulated by scientific computer models are fre-
quently primitive, under-documented and ad-hoc text files
which make using the model in question difficult and error-
prone and significantly increase the development cost of the
model. In this paper, we present a model-independent sys-
tem, Spud, which formalises the specification of model input
formats in terms of formal grammars. This is combined with
an automated graphical user interface which guides users to
create valid model inputs based on the grammar provided,
and a generic options reading module, libspud, which min-
imises the development cost of adding model options.

Together, this provides a user friendly, well documented,
self validating user interface which is applicable to a wide
range of scientific models and which minimises the devel-
oper input required to maintain and extend the model inter-
face.

1 Introduction

Computer models have become an indispensable tool in
many fields of science and engineering. As models have be-
come increasingly sophisticated and complex, the number of
input parameters which control a typical piece of simulation
software has become very large indeed. For example, Flu-
idity1 is a multi-physics flow simulation package which sup-
ports multiple fluids and multiple phases in flow regimes as
diverse as oceanography, porous media and flow inside nu-
clear reactors: the model therefore has several hundred con-
trol parameters.
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1http://amcg.ese.ic.ac.uk/Fluidity

Frequently, especially in the case of software developed
in the course of research, the input parameters are read from
one or more plain text files and the input system is coded on
an ad-hoc basis for that model. The addition of new options
as the model is developed typically requires that more code
be added to read in the additional options, making model
development cumbersome and tempting developers to en-
gage in poor practices such as option overloading and the
hard-coding of parameters which can make the model diffi-
cult to understand, maintain and use. From the model user’s
perspective, editing options files with a text editor is error-
prone even when the documentation is excellent, which is
frequently far from the case. Where graphical or “wizard”
interfaces are available, the requirement to keep them cur-
rent in turn increases the model development workload and
therefore retards development of the scientific capabilities of
the model.

In this paper, we describe a problem description system
which provides model developers with a mechanism for
ameliorating or avoiding altogether the problems described
above. The options which control a model are described in
a machine readable specification known as aschema. From
the schema, it is possible to automatically generate a graph-
ical user interface (GUI) which model users can use to set
the control parameters. The schema can also be used to au-
tomatically check the input file for errors and this informa-
tion can even be used by the GUI to help the user produce
valid options files. A generic library is then used to read the
options file generated by the GUI into the model code and
those options can then be accessed as needed from within
the model without the need for model-specific option pars-
ing. The schema is therefore the only part of the system
which differs from model to model. From the model devel-
oper’s perspective, this system offers a ready made front end
which naturally grows with the development of the model
and which minimises the amount of code which must be
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written to add new model options. From the model user’s
perspective, the system provides a self-documenting graph-
ical interface with real-time syntax checking which actively
assists the user in generating a valid options file.

The system presented here, Spud, was developed to pro-
duce an options file format and user interface for the Imperial
College Ocean Model (ICOM); however it has been designed
to be useful for the widest possible range of scientific models
and, in particular, for geoscientific simulation software.

2 Problem description languages

The key concept on which the entire system we present here
is based is that of the problem description language. By
this we simply mean a formal language in which simulation
problems are described. The consequences of this approach
are perhaps best explained by contrasting a formal language
from existing options file formats, and by contrasting prob-
lem description from existing data file formats.

2.1 Formal languages

The most common existing practice in the field of scientific
modelling software is that model parameters are specified in
a text file, often with some informal grammar of keyword
followed by value or values. In the worst case, there is no
documentation and the validity of an input file is discernible
only by what the model will or will not accept. Even where a
file format is well documented, a user will frequently have to
consult a large body of documentation in order to determine
the correct expression in the terms of the options file of the
simulation which is to be conducted.

Formal languages are a well understood concept in com-
puter science and mathematics (see, for exampleHarrison,
1978). A formal language is defined by a vocabulary of sym-
bols and a formal grammar which mechanically states which
combinations of the vocabulary constitute well formed state-
ments in the language. If the formal grammar is itself speci-
fied in a manner amenable to parsing by a computer program,
it is possible for programs to automatically determine the va-
lidity of a statement and to ascertain the locations at which
symbols can be added to a valid statement and still yield
a valid statement. Among other things, the formal gram-
mar determines which statements are required or optional,
whether and how many times statements may be repeated
and whether statements are required to be present in a par-
ticular order. As an illustration of the concept of a formal
language, we may anticipate Sect.4 and introduce a trivial
formal grammar, orschemawritten in the Relax NG syntax:

start = (
elementa {

elementb {

string
},
elementc {

xsd:integer+
}?,
elementd {

xsd:float
}∗

}

)

Relax NG is a schema language for XML documents so
this grammar defines an XML language. The schema above
can be translated into English as saying:

“there will be an XML elementa containing:

– an elementb containing any string; followed by

– an optional (“?”) elementc containing one or more
(“+”) integers; followed by

– zero or more (“*”) elementsd each containing a single
floating point number.”

XML elements are delimited by tags consisting of the ele-
ment name in angle brackets at the start of the element (<a>)
and the same with the element name preceded by a slash at
the end of the element (</a> ). For example, the following
statement is valid in the language defined by this grammar:

<a><b>test</b><c>1 2 3</c><d>10.0</d>
<d>-5.0</d></a>

as is the much shorter:

<a><b>test</b></a>

since neither thec nor thed elements are required. However:

<a><b>test</b><d>3.0</d><c>red</c></a>

is invalid both becausec elements can only contain integers
and because ad is not permitted to precede ac element. It
should be noted that this brief example does not reveal the
full flexibility of formal languages and that, in particular, it
is possible to permit much more flexibility in the ordering
and content of elements than is presented here.

By formulating the combinations of options which consti-
tute valid model input as a formal grammar, it is possible to
mechanically determine the validity of model inputs. Con-
versely, it is also possible to write generic tools which, given
a formal grammar, will guide a user to produce an options
file which constitutes valid model input. The input file doc-
umentation can be interspersed with the specification of the
formal grammar. This reduces the burden of documenting
the options file format for the programmer and enables the
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user to be prompted with the correct documentation by the
generic interface already mentioned.

An additional benefit of a machine parseable grammar is
that the model itself can parse the grammar. This means that
the library which reads the options file can be a generic tool
which does not need to be modified as new options are added,
or even for use with a completely different model in a differ-
ent field of science.

2.2 Problem description versus data description

The problem of storing and handling the large volumes of
data used and produced by scientific software is not a new
one. In particular, large amounts of effort have been ex-
pended in defining standard file formats in which scientific
data may be efficiently stored. As a leading example, many
ocean and atmosphere models utilise the NetCDF data format
(Rew et al., 2006), often in combination with the NetCDF
Climate and Forecast (CF) Metadata Conventions (Eaton
et al., 2008). The key distinction between these file formats
and a problem description language is that the former is fo-
cussed on describing data, usually in a model independent
manner, while the latter controls how a model deals with and
produces data.

As a concrete example, consider the simulation of the flow
in the North Atlantic with an ocean model. The initial con-
ditions for velocity, temperature and salinity as well as cli-
matographic data such as wind fields and temperature and
salinity fluxes may be specified in a model independent man-
ner in standard data file formats. However, in order to fully
specify the action of the model on that data, it will also be
necessary to prescribe model and problem specific parame-
ters additional to the data. Examples of such data may in-
clude the time step and implicitness parameters, choices of
parameterisations of viscosity and drag, convergence criteria
for solvers, and instructions as to which of the data is to be
applied as initial and/or boundary conditions.

It is therefore apparent that a problem description language
is not an attempt to re-invent the standards for data file for-
mats but rather is necessary to supply model and simulation
specific parameters for use with model and simulation inde-
pendent data.

2.3 A generic problem description system

In many respects the “holy grail” of problem description
would be a generic language for some field of simulation,
ocean circulation, say, which would formally describe a sim-
ulation to be performed including specifying the fields to
be loaded from some standardised data file. This options
file would then be readable by any model in the field which
would then run the simulation and output standardised files
ready for user intercomparison.

Advantageous though such a system would be from a user
perspective, there are a number of reasons why this is not an

achievable goal. To start with, even within one field, models
have very different capabilities – ocean models may solve
different flow equations, support different parameterisations
and so on. A language which could drive all models would
therefore either have to restrict itself to some minimal subset
of functionality – in which case it would be of limited use to
the user – or it would remain the case that an options file valid
for one model would not be valid for another model – which
defeats the purpose of a single language. From the develop-
ers’ perspective, existing models may have strong assump-
tions about the structure and content of the input options
and refactoring those to conform with an externally speci-
fied problem description language would be expensive and
might be undesirable from the perspective of the scientific
capabilities of the model.

Rather than attempting to define a generic problem de-
scription language, the system presented here, Spud, defines
a framework in which model-specific problem description
languages can be formulated and then provides generic tools
which work with those languages. The design is based on
separating those features of the problem description which
can be considered universal to all scientific models from
those which are specific to the model in question. The re-
sult is that for a model developer, there is an off-the-shelf
problem description interface available. All that the devel-
oper need do is specify the grammar which defines which
options the model takes and the user interface and parsing
capability will be instantly available.

3 Components of the Spud system

There are three key components to the Spud system. The
first is the mechanism for writing the formal grammar of a
problem description language. This is based on XML and
schemas written in RELAX NG and is documented in Sect.4.
The second component of Spud is Diamond. Diamond is a
graphical user interface for writing options files in Spud lan-
guages. The schema written by the developer is used by Dia-
mond to generate a model-specific interface which guides the
model user to write a valid options file for that model. Dia-
mond is documented in Sect.5. The final component of the
system is libspud. Libspud is a software library which will
read any valid options file written in any Spud language into
an in-memory representation. This enables direct access to
any information in the options file from any point in the code
with no requirement to pass option values through interfaces
within the code or to add new parsing code as new options
are added to the model. Section6 documents this part of the
code.

Figure1 shows how these components fit together with a
particular model. From the top left, the model-specific gram-
mar, orschemadefines the set of allowable options files us-
ing low level data components provided by the Spud base
language. This schema is then used by Diamond to guide the
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Spud Base Language

schema Diamond

xml options file
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climatology

observational

data
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data files

reference
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Model program

provided by Spud model-specific problem-specific

Fig. 1. Data flow in a scientific model using Spud. Blue compo-
nents are supplied by Spud and are model independent, red compo-
nents form a part of the model but are independent of the scenario
being simulated and yellow components depend on the particular
scenario.

user in generating an options file for the particular scenario to
be simulated. The options file may, depending on the schema
contents and the scenario in question, refer to external data
sources to define some of the simulation inputs. Finally, the
model is linked against libspud, which reads the options file.
The references to external data in the options file may be used
by the model to read the appropriate other data sources.

The full manual and source code of Spud 1.0 is included in
the supplementary material (http://www.geosci-model-dev.
net/2/33/2009/gmd-2-33-2009-supplement.zip).

4 Language specification in Spud

Unsurprisingly, the problem of specifying machine readable
formal languages and formal grammars is a well studied one.
In particular, the World Wide Web Consortium’s Extensible
Markup Language (XML) provides a generic syntax for ma-
chine parseable languages (Bray et al., 2006). XML files are
organised as trees of nested elements. This is a particularly
natural data model for a scientific model as it enables the re-
lationships between options to be represented in the structure
of the options file. For example, options to do with the time
step can be grouped on one branch of the tree while options
controlling, say, the discretisation of velocity can be grouped
in another branch. The tree structure also provides a natu-
ral mechanism for sub-options: where a feature is selected
and requires configuration, the options of that feature can be
included as child elements of the main feature element.

In the XML system, the termschemais used to describe
a formal grammar and there are a number of schema lan-
guages, where the term “schema language” refers to a formal
language in which formal grammars for XML languages may
be written. Some of the more prominent schema languages
are analysed inMurata et al.(2005) while a less formal intro-

duction is given invan der Vlist(2001). Spud utilises the RE-
LAX NG schema language (Clark and Murata, 2001) which
is a powerful schema language closely tied to the theory of
formal tree languages (Clark, 2001). One of the important
properties of a RELAX NG schema is that one schema can
be imported into another schema. Spud utilises this capabil-
ity to provide a set of rich data objects defining basic data
types as building blocks for the schema developer. These
core schema objects (known in RELAX NG aspatterns) are
described as the Spud base language. By specifying the low
level representation of core data types, the generic tools in-
cluded in Spud can handle low level data in a more elegant
manner. The ability to include one schema in another also
provides a mechanism by which coupled models could seam-
lessly utilise the Spud system.

4.1 Schema syntax: compact and XML forms

RELAX NG supports two completely different syntaxes for
schemas. The compact syntax is optimised for human read-
ability: the XML syntax is far more verbose but, being writ-
ten in XML, is more readily supported by software parsers.
The two syntaxes are absolutely equivalent in the grammars
they express and it is possible to mechanically translate a
schema between the two using the software package Trang2.
Compact syntax is therefore the preferred syntax for edit-
ing Spud schemas and the Spud base language is shipped
in this format. The complete schema is then translated to
XML for use by Diamond. Figure2 illustrates a fragment
of a schema in compact syntax. This illustrates the represen-
tation of related options as nearby elements in a tree: there
is one tree node which groups the time stepping options and
specific time step options are children of this node.

4.2 Comments and documentation

A key advantage of the Spud system is that it enables doc-
umentation to be integrated with the schema. There are, in
fact, three layers of documentation which are applicable, all
of which are supported by the system. First, as with any pro-
gramming language, RELAX NG permits comments which
are used to document the markup of the schema for the ben-
efit of schema developers. Much more importantly, Fig.2
illustrates the use of RELAX NG annotations, marked by
double comment markers. These annotations document the
schema for the model users. The integration of user docu-
mentation with the schema has two benefits. First, it enables
user tools such as Diamond to present that documentation
to users as they formulate the options file. Second, they en-
courage the developer to write documentation at the same
time as adding options to the schema. Since model manuals
are notorious for lagging long behind model development,
if they are written at all, this is a significant improvement.
Relatively short comments associated with individual input

2http://www.thaiopensource.com/relaxng/trang.html
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## Options dealing with time discretisation
elementtimestepping{

## Current simulation time. At the start of the simulation this is
## the start time.
elementcurrenttime {

real
},
## Simulation time at which the simulation should end.
elementfinish time {

real
},
## The time step size. If adaptive time stepping is used then this
## is the initial time step size.
elementtimestep{

real
}

}

Fig. 2. A fragment of compact RELAX NG schema defining some
timestep parameters. This fragment defines the timestepping ele-
ment and its child elements, currenttime, finishtime and timestep.
Real is a named pattern from the Spud base language for a scalar
floating point value. The double comment marker## marks user
documentation which Diamond will present to the model user.

parameters are clearly not adequate as a sole source of doc-
umentation; however their presence significantly adds to the
information readily available to the user and therefore con-
tributes materially to the usability of the model in question.
Finally, the Spud base language, which is discussed below,
incorporatescommentpatterns which provide a mechanism
for model users to comment their options files.

4.3 The Spud base language

There are certain core features which are common to a very
large range of scientific software. By specifying certain
schema features which will be common across all Spud lan-
guages, the possibility is created for Spud tools to deal with
these basic model options in a common and powerful man-
ner. Conversely the schema developer is relieved of the need
to formulate low level schema representations of these basic
features.

4.3.1 Problem dimension

It is a very common feature of scientific models, and geosci-
entific models in particular, that they simulate some physical
region. The region may be three-dimensional but it is also
common to model two or one dimensional regions. In some
cases, higher dimensional domains may be modelled. While
it is not uncommon that one software package may support
modelling in domains of different dimension, it is generally
the case that a given simulation will be conducted in a do-
main with a particular number of dimensions. That dimen-
sionality will determine the number of components of vec-

tor options and the shape of rank 2 tensors. Vector and ten-
sor valued solution fields are also likely to have a number of
components determined by the overall problem dimension.

To facilitate tools which account for the dimensionality of
the problem, Spud reserves the elementdimensionwithin a
geometryelement at the top level of the options tree to spec-
ify the problem dimension. The dimension specified here is
used by the rich data types to ensure that numeric options
conform to the problem dimension.

4.3.2 Rich data types

A large proportion of the options which are required to con-
trol simulation software are numeric quantities. Many of
these are scalar real (floating point) values but integer quan-
tities are also common, as are lists or vectors of values and
indeed rank two arrays or tensors. It is also frequently nec-
essary to supply short strings, such as file names for data
sources, or much longer strings such as scripts for model-
embedded scripting languages.

Spud supports numeric options by defining patterns for
real and integer values of rank 0 (scalars), 1 (vectors) or 2
(tensors). Options with rank greater than 0 may either have
unspecified extent, as is required when an arbitrary long list
of values is to be supplied, or they may be given an extent
related to the dimension of the problem, as might be required
of a value such as a diffusivity. Tensor types may optionally
be specified as restricted to symmetric tensor values.

A basicstring type which supports all strings is provided,
as arefilenameandpythontypes for file names and python
functions respectively. The latter two facilitate additional
validation of input by user tools. All rich data types have an
embeddedcommentpattern to accommodate user comments.

4.3.3 Name attributes

Where a schema associates an attribute callednamewith an
element, this has special significance in Spud. User tools are
encouraged to display this attribute particularly prominently
to enable users to distinguish between multiple identically
named elements - for example multiple field elements in a
flow model. Libspud allows model developers to access these
multiple elements by specifying their name attribute. A name
attribute must be specified in the schema for elements which
are permitted or required to be repeated and may be specified
for other elements. The value of the name attribute may be
fixed in the schema or may be left as user-specifiable.

4.4 Cross-tree dependencies

As previously noted, XML languages are trees and the spec-
ifications of a schema language reflect this. This means that
a schema defines which elements are permitted or required
under which other elements. This can be used to specify
quite sophisticated dependency relationships between model
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Fig. 3. A screen shot of the Diamond interface. The options tree, including greyed out unselected options and options with unset values
(blue), is displayed on the left. The current option is the initial condition for the velocity field. On the right, the value of the current option is
displayed in the space labelled “Data”. In this case the option is an embedded Python script, specifying the initial velocity field from data in
a vtu file. In the top right, the schema annotation for this option is visible while at the bottom right a space is available for user comments.
Element names, provided by name attributes, are clearly displayed by elements such as fields.

options in a manner which is clear to the user. For exam-
ple, a schema might permit the addition of any number of
solution fields to a model and would then require that dis-
cretisation and solver options be added as a children of those
fields. However, it is inevitable that there will be dependen-
cies between options which are not related by a parent-child
node relationship in the options tree. These dependencies are
termed “cross-tree dependencies” and are not expressed, and
therefore not enforced, by the schema. The absence of sup-
port for cross-tree dependencies is a key limitation of Spud.
If it is desired that these dependencies are enforced, this can
be achieved by the model interrogating the options tree pro-
vided by Spud and applying its own rules. The libspud in-
terface which is introduced in Sect.6 enables the model to
interrogate the options tree but Spud does not itself provide
a mechanism for specifying the dependencies themselves. A
future version of Spud may incorporate a specific cross-tree
dependency system based on a language such as Schema-
tron3.

3http://www.schematron.com/

5 Diamond

A very strong advantage of formally specifying the input lan-
guage of a scientific model is that it facilitates the creation of
universal tools. A tool can read a formal specification and
work with the input language for a particular model without
the need for case-by-case modifications.

A concrete example of this is Diamond which is a dy-
namic, language driven graphical user interface for creating
validated input documents. Diamond parses an input RE-
LAX NG schema, uses this to automatically generate a user
interface, and allows the user to enter model configuration
data. A screen shot of Diamond is shown in Fig.3. Di-
amond is written in Python and uses the GTK+ toolkit4 to
build cross-platform graphical interfaces.

Whereas RELAX NG validators use the schema to decide
the validity of a given document, Diamond instead uses the
schema to determine what possible valid documents may ex-
ist. Therefore, the schema parser must be different to those

4http://gtk.org
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found in RELAX NG validators. In fact, as it does not need
to perform the derivation of regular expressions to compute
the validity of a document (Brzozowski, 1964), it can be sim-
plified significantly. Diamond uses the lxml XML library5 to
build an in-memory representation of the schema. Each el-
ement within this in-memory representation can be queried
for valid child elements, and this information used by Dia-
mond to create an interface with which to configure the ele-
ments; optional elements are greyed out with a button to ac-
tivate them, elements that can be present multiple times have
buttons to enable the addition of new instances or delete ex-
isting ones, and choices between different sub-trees are pre-
sented using a drop-down selection box. Similarly, informa-
tion about element attributes and data are specified within
the schema and stored in the in-memory representation gen-
erated by the parser. Diamond uses this to generate appropri-
ate interfaces with which to edit the data. For example, with
symmetric tensor data the user is presented with only those
elements necessary to uniquely specify the tensor (the main
diagonal and upper triangle).

Dynamically querying the schema in this way has two sig-
nificant advantages. First, only valid input as specified by
the schema may be created within the interface; the user may
only generate elements in the correct numbers with the cor-
rect data types. This validity is enforced by the interface,
relieving the user from mundane tasks such as the looking up
of data types (e.g. integer or real), the length of vectors, or
whether a tensor may be asymmetric. Diamond performs this
validation dynamically, with elements whose data have not
been set flagged to indicate to the user that they require at-
tention. For example, in Fig.3, thefinal timestepelement has
been activated but its value not set. As a result it is coloured
blue to mark its invalidity, as are its parent elementstimestep-
ping andfluidity options. This validation can also detect if
the schema has been changed, with newly added elements
flagged as invalid until the user sets their attributes.

The second major advantage is that the interface does not
need to be modified as the model input changes. Since the
interface is generated automatically from the schema, any
changes to the schema are themselves sufficient to change
the interface. This allows for great flexibility in the model in-
put, as only two tasks need be performed to add new model
options: the addition of a new element to the schema, and
the addition of code to the model to read in the new option.
Due to the machine readability of the schema, any tools used
in between these operations do not not require modification.
This allows model developers to focus on the scientific func-
tionality of their model and relieves them from the burden of
maintaining an intuitive graphical interface for model users:
the interface maintains itself.

5http://codespeak.net/lxml/

6 Libspud

Libspud is the software library which enables scientific mod-
els to access the options specified in an XML file written ac-
cording to a Spud language. As with other components of the
Spud system, libspud is model-independent. This means that
libspud will work with any Spud language so that no changes
need be made to the options reading mechanism as changes
are made to the schema. Naturally it will still be necessary to
modify the model code itself to make use of the new infor-
mation contained in new options, but libspud reduces these
modifications to a minimum. As noted in Sect.4, XML
files are trees of elements and libspud provides its generic
interface into these trees by reading options files into an in-
memory tree whose nodes correspond to the elements and
attributes in the XML file. Options stored in this tree may
then be accessed by specifying a string path similar to a ref-
erence to a file in a filesystem. This enables any option to
be interrogated at any point in the model so long as its po-
sition in the tree is known. Interfaces to the options tree are
provided in Fortran, C and C++.

At this stage it is important to re-emphasise the distinc-
tion between options and data which was raised in Sect.2.2.
The role of the libspud in-memory tree is to provide access to
parameters specified in the options file such as the timestep,
choice of numerical scheme and the location of files con-
taining bulk input data. The storage of bulk data (such as
solution fields and matrices) itself is not handled by Spud
but is left to the existing mechanisms in the model. Indeed,
it will generally be necessary to locally store options from
the libspud tree in the local routines in which they are used.
The advantage in this respect of the Spud system is that it
removes the need to modify the options reading code and to
pass the option in question through the call tree to the point at
which it is used. Figure4 illustrates the difference in the code
changes which are needed to introduce a new model option.
From this it can be seen that the addition of a new option
is accomplished by adding its specification to the schema file
and then accessing the option directly from the routine which
implements the new feature. No additional values need to be
propagated through the code either by function calls (as il-
lustrated) or alternatively by some form of global, module or
common variable arrangement.

6.1 Spud base language support in libspud

The named patterns supplied in the Spud base language pro-
duce rich data types for real and integer values of ranks 0, 1
and 2 as well as for strings. In the XML file these rich data
types are represented by multiple elements but these are col-
lapsed to a single node in the options tree. The type, rank
and shape of these nodes can be queried and when the option
value associated with the node is extracted it will be of the
corresponding type, rank and shape. This facilitates options
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main
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options reading . . .

main timestep loop

matrix assembly

diffusivity . . .

linear solvers . . .

main

initialisation

libspud

schema

. . .

main timestep loop

matrix assembly

diffusivity . . .

linear solvers . . .

Fig. 4. Outline structure of a typical computational fluid dynamics package. The red backgrounds indicate the routines which must be altered
in order to add a new diffusivity scheme. The left diagram indicates the conventional approach in which options are read by a custom routine
and are passed as procedure arguments through the program to the point at which they are used. The right diagram shows the corresponding
situation in a code using Spud: the new option is introduced in the schema and used in the diffusivity assembly routine. No other part of the
program is touched.

which provide the values of, for example, diffusivity tensors
or the value of a gravity vector.

6.2 Libspud in model code

From the developer’s perspective, options are accessed as
needed by referring to their location in the options tree. For
example, suppose that the schema fragment shown in Fig.2
occurs at the top level of the options tree. Then the model
developer can retrieve the value of the model timestep with
the Fortran call:

call getoption(’/timestepping/timestep’,dt)

wheredt is a double precision real variable. In the schema
used to drive the diamond interface in Fig.3 there is an
optional parameter which enables adaptive timestepping.
Clearly the relevant routine in the model will need to test for
the presence of this parameter. The following function call
returns true if the parameter is present and false otherwise:

haveoption(’/timestepping/adaptivetimestep’)

A more comprehensive example of the use of libspud in
model code is presented inballistics.F90in theexamplesdi-
rectory in the accompanying source code while a full descrip-
tion of the entire libspud interface in Fortran, C and C++ is to
be found in the manual (doc/spudmanual.pdfin the source
directory).

7 The Fluidity Markup Language

Spud was developed to provide a new interface for the Impe-
rial College Ocean Model (ICOM) (Pain et al., 2005; Piggott
et al., 2008). ICOM is implemented as a part of a multi-
physics finite element flow package called Fluidity and Spud
has therefore been applied to Fluidity as a whole. The re-
sulting problem description language is called the Fluidity

Markup Language (FLML) and some details of its imple-
mentation are presented here as an example of the application
of Spud. Figure3 shows part of the FLML tree for a simple
flow problem, the driven cavity problem (seeErturk et al.,
2005). From this fragment, various aspects of the Fluidity
problem description in FLML are apparent.

7.1 Field-centred options

The basic data object in any partial differential equation is
the field: that is, a value associated with each point in the do-
main. For instance, the incompressible Navier-Stokes equa-
tions are solved for a vector valued velocity field and a scalar
valued pressure field. There may also be scalar fields for
quantities such as temperature and density and tensor valued
fields for viscosity and diffusivities.

Fluidity supports a user specified number of scalar, vec-
tor and rank 2 tensor fields and many options are associated
with individual fields. Individual fields are represented by
scalar field, vector field or tensorfield elements and are dif-
ferentiated by theirnameattribute. For example, an advected
tracer will have temporal and spatial discretisation options
and might even have additional fields associated with it to
specify spatially and/or temporally variable quantities such
as diffusivity or a source term. The expression of a partial
differential equation problem in terms of the state fields is a
prime example of the sense in which it is natural to represent
problem options as a tree. Figure3 shows pressure, density
and velocity fields, with the velocity field expanded showing
the next layers of options which apply to it. It can be seen
that in this problem the velocity field is prognostic, as is usu-
ally the case. However to test other aspects of the model, the
velocity can be switched to a prescribed field value for which
no equation is solved.

Since, in this case, we are solving the incompressible
Navier-Stokes equations for velocity, the field is specified
as prognostic and this in turn switches on a subtree which
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contains all of the options which pertain to solving for this
field. For instance, themeshelement determines which finite
element space is to be used in representing this field while
solveris a subtree containing all the options pertaining to the
linear solver which will be used to solve the discretised sys-
tem.

7.2 Support for multiple materials and phases

Fluidity supports simulations of multiphase flow, for exam-
ple for simulating the flow of oil and water through porous
rock (Saunders et al., 2006) and a capability for simulat-
ing multimaterial scenarios such as fluid-solid coupling and
meteorite impacts is in development. This is supported in
FLML by grouping fields into an arbitrary number ofmate-
rial phaseelements. A material phase groups together fields
which share the same velocity, density and pressure. Material
phases have their own equation of state. Figure3 shows the
deactivatedequationof stateelement which is not required
in this simulation as the driven cavity scenario has a pre-
scribed constant density. This example illustrates the man-
ner in which Diamond presents users with the options which
are available, rather than relying on the user finding this in-
formation in whatever manual for the simulation software is
available.

8 Applicability to other models

It has been emphasised throughout this paper that Spud is
model-independent with only the schema varying between
models. The size and complexity of the schema is directly
related to the number of options supported and the complex-
ity of their interdependency. In addition, the provision of the
spud base language means that there is essentially no ground-
work to be done in supporting basic option types. This makes
Spud applicable to a wide range of models from the smallest
projects undertaken by a single PhD student up to very large
multiphysics packages with dozens of developers at multi-
ple sites, as is illustrated by the example of Fluidity given
above. Spud can also be retrofitted to a model at modest
development cost. For instance, Spud has been applied to
the FullWave seismic tomography model which has approx-
imately 100 user parameters. This project was substantially
completed with less than one person-week of effort.

9 Distribution and licencing

Spud and Diamond are available from the Applied Modelling
and Computation Group at Imperial College London6. All
components of the package are free software with Diamond
being licensed under the GNU General Public License ver-
sion 3.0 and the other components under the GNU Lesser

6http://amcg.ese.ic.ac.uk/spud

General Public License version 2.1. This combination of li-
censes ensures that Spud can legally be used with models
which employ a wide range of licensing schemes, both free
and proprietary. Full details of the licenses, including the
(compatible) copyright notices of some third party routines
included in the package, are included in theCOPYINGand
diamond/COPYINGfiles in the source distribution.

10 Conclusions

Scientific computer models of ever increasing complexity are
a cornerstone of modern science. The problem of specifying
all of the options which control these models is one which
presents a serious development cost for model developers
and a significant barrier to users ability to set up simula-
tions without making errors. Here we have presented a sig-
nificant departure from the existing practice in geoscientific
models. By specifying a formal grammar for an XML prob-
lem description language, we have developed generic tools
for both writing option files and for accessing those options
from within the model code. These tools guide the model
user to set up a valid problem description, while from the
developers’ perspective, the cost of adding new options as
the model is improved and expanded is minimised. The in-
tegration of documentation with the formal grammar further
encourages developers to properly document the model and
presents the users with documentation integrated in the GUI.

We have demonstrated the feasibility of this approach
and illustrated its application to the Imperial College Ocean
Model as a part of the general fluid mechanics package Flu-
idity. Spud is also being applied to the FullWave seismic to-
mography package and we are confident that the advantages
of this approach will lead to its adoption in further models in
the geosciences and beyond.
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