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Abstract. In this paper, we demonstrate a procedure for cali-evidence or measurements of proxies. Instead, we explore
brating a complex computer simulation model having uncer-here the sensitivity of the model to parameter changes in or-
tain inputs and internal parameters, with application to theder to learn about our physical assumptions and numerical
NCAR Thermosphere-lonosphere-Electrodynamics Generaprocedures. As a result of calibration through the compari-
Circulation Model (TIE-GCM). We compare simulated mag- son with observations, histograms of empirical posterior dis-
netic perturbations with observations at two ground locationgtributions of the parameters enable us to make a probabilisti-
for various combinations of calibration parameters. Thesecally informed choice of parameter values. To our knowl-
calibration parameters are: the amplitude of the semidiurnakdge, there are no calibration studies of simulators of the
tidal perturbation in the height of a constant-pressure surfac&arth’s ionosphere. Previous studies have used data to im-
at the TIE-GCM lower boundary, the local time at which this prove ionospheric model outputs, through data assimilation
maximises and the minimum night-time electron density. A at regular time step$Sgherliess et 12006, but not to deter-
fully Bayesian approach, that describes correlations in timemine ionospheric model parameters. The reasons for which
and in the calibration input space is implemented. A Markovwe want to calibrate such a simulator are: to replace tun-
Chain Monte Carlo (MCMC) approach leads to potential op-ing and fudge factors, to obtain more reliable simulations
timal values for the amplitude and phase (within the limita- as we use more observations (ground- or space-based) un-
tions of the selected data and calibration parameters) but nater various conditions at different locations, seasons, local
for the minimum night-time electron density. The proceduretimes, and to account for uncertainty when the model is used
can be extended to include additional data types and calibrafor system predictions. This uncertainty is a consequence of
tion parameters. the model-parameters being underdetermined by the avail-
able observations, taking account of model limitations. Cali-
bration also helps with code verification, in the sense that the
posterior distributions ought to be physically intuitive, and
if they are not then perhaps something has gone wrong en

The calibration of complex computer models, or simulators,route. Given the potential gain in precision obtained through
of physical systems is a difficult endeavor, $@&mnedy and  calibration of some key parameters, it is a very important
O’Hagan(2001) and discussion therein. It consists of search- Step towards improving simulators. Furthermore, identifying
ing for the best combination of parameters in the simulatorthe sensitivity to the parameters may help the modelers focus
inputs which will produce outputs that match best the obsertheir research efforts on some selected physical phenomena.
vations. There are modelling issues and heavy computationdn Sect.2 we present the simulator TIE-GCM, then in Sext.
challenges. In many scientific areas, the common approach e describe the observations and TIE-GCM outputs in our
to use parameter values that have been set through empiric&fudy. Sectior is devoted to the Bayesian methodology and

Sect.5 to the analysis of our results. Finally in Se6t.we
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discuss potential improvements to our approach.
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2 The computer model TIE-GCM At night, the ionospheric electron density below 200 km
is small and difficult to measure, but nonetheless has an im-
The TIE-GCM simulatoriRichmond et al.1992 is designed  portant influence on the night-time electric field. Our third
to calculate the coupled dynamics, chemistry, energeticssimulator input is the minimum night-time electron number
and electrodynamics of the global thermosphere-ionosphergensity in cnt3, EDN € [1000, 10 000]. All other input pa-
system between about 97 km and 500km altitude. It hasameters in the TIE-GCM simulator are held constant for our
many input parameters to be specified at the lower and upexperiments. The simulations are done for equinox, at low
per boundaries, as well as a number of uncertain internal pasolar and geomagnetic activity. For each evaluation, the TIE-

rameters. There are also many output quantities from thesCM simulator is initially spun-up to get a diurnally repro-
TIE-GCM simulator (densities, winds, airglow emissions, ducible state.

geomagnetic perturbations, etc.) that can be compared with
observations. For this study we explore the response of the _
magnetic-eastwardX) magnetic perturbation at the ground, 3 Observations and computer runs

MAGGRD-D in [nT] (nano Tesla), at two locations to varia- ,
tions in just three inputs: two that help describe atmosphericOver one hundred magnetometers around the globe provide

tides at the TIE-GCM lower boundary, and one that con-9eomagnetic variation data. The TIE-GCM can simulate the

strains the minimum night-time electron density. MAGGRD- Magnetic perturbations for any site. Here we analyse the
D varies from hour to hour during the day, but also with sea-Sit€s marginally, disregarding shared information that might
son, solar cycle and location of the observation. It is caused®® @vailable from sites that are proximate, by using data

by electric currents flowing in the ionosphere, primarily on from only one site at a time. Therefore the simulator out-
the day side of the Earth where solar extreme-ultraviolet raPUt for each evaluation comprises points on a periodic func-

diation partially ionizes the upper atmosphere, rendering ition of time for some pre-specme_d site. We concentrate here
electrically conducting. Winds move the conducting medium ©n theé MAGGRD-D at two locations: Apia (AP, 13.88,
through the Earth’s magnetic field, generating electric fieldsl71-77 E) and Odessa (ODE, 46.78, 30.88 E.)

and currents by an electrodynamo effect in the so-called dy- Note that PHZ is a periodic input, so thd(AMP, 0,
namo region, at heights of approximately 90—200 km. ObserEPN) = f(AMP, 12, EDN) for all AMP and EDN. We con-
vations of MAGGRD-D also indicate a considerable amountSider here an alternative parameterisation of AMP and PHZ,
of day-to-day variability not captured by the TIE-GCM when #1=AMPcosr PHZ/6) and ;=AMPsin(z PHZ/6), which
driven by inputs that remain the same from one day to the2ccommodates the periodicity. The EDN input is not repa-

next. The observations were therefore averaged over sever§imeterized and is denotég. We would expect that there
days of quiet geomagnetic conditions. is a strong correlation between the tidal input at the lower

Atmospheric tides are global waves with periods that are®oundary (amplitude and phase) and the magnetic perturba-

harmonics of 24h. They comprise a major portion of the fion during the day at low and mid latitudes. _

winds in the dynamo region. They are generated at lower at- N ©ur initial comparisons of model predictions with ob-
mospheric levels, and they are modulated by variable backServations it was found that the TIE-GCM underpredicted
ground winds as they propagate to the upper atmospherdl® amplitudes of MAGGRD-D, owing to E-region electron
They are difficult to define since observations are limited anddensities that were too low. This resulted in low conductiv-
the tides vary not only with geographic location, local time ities, therefore low current, and low magnetic perturbations,

and season, but also in a somewhat irregular manner fromgince these are the results of the current flowing overhead.

one day to the next. Modelling the tidal propagation throughF2nd €t &l(2008 considered the need to increase the iono-

the atmosphere, and accurately determining their distribuSPheric electron density in order to getthe TIE-GCM to agree

tion at the TIE-GCM lower boundary, remains a challenge.With electron-density observations, and in order to get mag-
For this study, we include fixed diurnal (24 h period) and netic perturbations compatible with observations. In their
semidiurnal (12 h period) migrating (Sun-synchronous) tidal @€, they noted that the TIE-GCM electron density at the
components at the TIE-GCM lower boundary, taken from peak of the ionospheric E-layer, around 110 km altitude, was
the physical model oHagan and Forbe@002 2003, plus about 37% too small, meaning it needed to be increased by
an additional variable tidal forcing (migrating (2,2) mode) a fa(?tor of 1.58. To QU|Ck|y fix this before calibration, we
which is known to be important for the electrodynamigs{ ~ Multiply the TIE-GCM outputs by an empirical factor of 1.4.
sen et al. 2000. The amplitude of the perturbation in the (TNiS adjustment was made before the final resultsaig
height of a constant-pressure surface at the TIE-GCM lowet - (2008 were available.) This adjustment is sufficient

boundary, AMPe [0, 36 000] cm, and the local time at which for demonstrating the capabilities of our method. Versions
this maximises, PHZ [0, 12] h, are two of the three inputs of the TIE-GCM currently under development are expected
we explore. to eliminate the need for such adjustments in the future.
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In order to increase the influence of small-amplitude ever, since the study is done for each location separately, it
MAGGRD-D values relative to large-amplitude values in the does not matter as we focus on covariances. The part of our
calibration, we transformed the observations and simulatodesign of experiment® corresponding to the calibration
outputs as followsy—sgn(y) log(1 + |y|). The transforma-  parameters is a maximin Latin Hypercube Desigfillfams
tion also enables us to satisfy the assumption that the variet al, 2000. With this design we try to cover as much space
ability is constant in time so that the methodology in the nextas possible in the three-dimensional space of the calibration
section can be applied. The transformed measurements glarameters with onlyy=30runs. Two-dimensional projec-
the two locations APl and ODE have different features, seetions of this design are shown in Fig. This is not a perfect
Fig. 2. design, but seems satisfactory for our study. For the time

component of the computer desigr! we choose 12 points

(every other hour) to maximize the amount of information
4 Bayesian methodology for calibration obtained through these time points under the constraint of

the computing time necessary to perform the Bayesian cali-
For the calibration of TIE-GCM, we follow here a Bayesian bration, see Fig2. The time points irDf andDM are differ-
approach Kennedy and O’Hagan200]). It consists of  ent, but the methodology accomodates such variation. Note
putting distributional assumptions (prior distributions or sim- that time is an input parameter, but a so-called controllable
ply priors) on the calibration (also called tuning) parametersone, which is included in the design but on which we do not
01, 62 and 03 before comparing with observations and let- do inference.
ting the information contained in the data update this a priori  The following equations describe the bias between the
assumption to get as a result a posterior distribution of thecomputer simulator and the physical observations at the
calibration parameters. The advantage of such a Bayesiatime design points, denotexir), and observation errar(t)
analysis over standard estimation of parameters (e.g. by mingkennedy and O’Hagqr2001):
imizing the differences between observations and simulator , N
outputs) lies mainly in the ability to retrieve a full description > ) =167 +8(0) @
of the uncertainties about the parameters and consequently’ (1) = y* (1) + (1) (2)
about the simulator outputs. Moreover, the possibility for the jere g+ is used to represent the true (unknown) values of the
modelers to express their — uncertain — scientific beliefs inczjipration parameters. These equations suggest that even if
terms of priors on the parameters enables a natural integrane computer simulator was run at the true values of the cal-
tion of scientific knowledge and evidence given by measurepration parameters, it would still be a biased representation
ments. Since magnetic variations in the two locations APl reglity. Note that we do not include a regression parameter
and ODE are different, independent calibrations that wouldp, 5 generalizes further the analysis by multiplying the com-
give consistent results for each of these locations may bgyter outputs by a constarénnedy and O’Hagar2001).
deemed reliable. We took into account this scale issue as explained in Sect.

The complete set of inputs=(z, ) consists of parameters Hence we effectively removed an additional statistical pa-
divided into two categories: the known parameters (control-rameter from the Bayesian analysis and saved computer time
lable parameter time in [0, 24]) and the unknown calibra-  since this might have led to more identification problems and
tion parameters = (61, 62, 03). We denote by (x) the out-  |onger convergence.
put of the computer model which depends on the complete Because the simulator outpyt-) is unknown except at
set of parameters=(z, ). The computer code outpylx)  the design pointsD™, we assume that the unknown func-
is an approximation of the reality®(r). The notation used  tjon follows a Gaussian stochastic process (GASP) distribu-
emphasizes that physical observations are only made at vation, That is, we model the bbserved simulator responses
ues of the observable parameterJo learn about the values ;(x) xeR? (herep=4 sinceDM is over a range of, 61, 6,
of the calibration parameters, TIE-GCM is run atinput®  and e values), as coming from a multivariate normal dis-
a design (i.e. choice of values)". Field data (i.e. observa- tripution with a constant mean functignand an 12x12x
tiO}QS)yF(t) are collected at a number of inputs a design  yariance-covariance functian, with density:

D",

The designD (i.e. only the time points of observa- f(n(x)) |E|‘1/2exp{—}(x — =i —M)}- ©)
tions) is given by the 24 hourly observation times: around 2
00:14, .., 23:14 magnetic local time (MLT) for APl and Thus, we approximate the computer simulator by specifying
around 00:43, ., 23:43 MLT for ODE. (MLT is defined as a distribution of functions that interpolate the responée
the magnetic longitude difference between the point in quesin between the design pointsin DM. The random function
tion and the anti-solar point on the Earth, multiplied by is certain at the design points, and uncertain at untried points.
24 h/360. Magnetic longitude is referenced to the geome- After inspection of the transformed outputs, it appears that
try of the geomagnetic field instead of to geographic coordi-the normal assumption is reasonable. To speEifgccord-
nates.) Local time is different for the two locations. How- ing to the calibration parameters we use a product Gaussian
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Fig. 1. Two-dimensional projections of the design of experiments for the initial calibration parameters of TIE-GCM. The 30 combinations
are based on a maximin Latin Hypercube Design approach. Units: cm for AMP, hours for PHZ, ahdorBDN.
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The unknown bias functiod(z) is also modeled as a
GASP random function with mean 0 and periodic correla-
tion matrix with precisions and correlation parametgs.
Finally, the random error component is modeled as indepen-
dente(r) ~ N(0,1/)r¢). For estimation of the calibration
and hyperparameters, we make use of the Markov Chain
Monte Carlo (MCMC) approach@ilks et al, 1996. The
chains are dependent random samples that ought to be dis-
tributed in the long run as the so-called posterior distribu-
tions of the parameters of interest, which is a combination of

Fig. 2. Measurements (circles) and computer outputs (crosses) foprior uncertainty about the values of these parameters and the

API (left panel) and ODE (right panel). Transformation of original jnformation about the parameters provided by the data. Of
data in [nT] (nano Tesla), see text for details.

variance-covariance. For the time dimension, we allowed fo

particular interest, we retrieve the posterior distributions of
the various calibration parameters, which allows us to make

inferences and quantify our uncertainty about the true values

a periodic correlation structure by representing it in terms of©f these unknown quantities.

an angle, so that the values at the end of the day are corre- For ease of implementation of the MCMC algorithm, we
lated with the values at the beginning of the day. After we initially standardize the entire set of responses (simulator and
rescale the time onto the intervid, 1], we choose a valid
(i.e. positive-definite) isotropic correlation function on the
circle [0, 1] (Gneiting 1999. Thus, the(i, j)-th element of

Tis
X, j = cov(n(x;), n(x;))

3
= ﬁexp(— > i1 BelOik—0il?)

x exXp(—Ba(sin(L(t;, 1;)/2))?)

The notatiorg;; denotes the-th design point inD¥ for 6,
and (1, t;) is the angle between andz; (i.e. minimum

distance between andz; on the circle[0, 1] rescaled to
[0, 27]). The hyperparameteys, A, (the precision of the
GASP model),8; (which we call “correlation hyperparam-
eters”) are to be estimated from the model output and the — To represent vague prior information about the true cal-
observations as described below.

Geosci. Model Dev., 2, 13744, 2009

observed) by the mean and standard deviation of the simula-
tor responses, s@ can be assumed to be 0 without loss of
generality and the variability in the simulator/¢l,) is ap-
proximately 1. The design space on the calibration parame-
ters is also scaled to 6, 1]3, and the time dimension of the
design space is scaled to a cirfle 1] as we assume period-
icity.

All the unknowns in the model (i.e. the calibration param-
eters and the hyperparameters) require specified prior dis-
tributions which represent uncertainty about the values of
these parameters before any data is collected. The follow-
ing choices are made for the priors:

ibration parameter values, we specify a uniform prior

www.geosci-model-dev.net/2/137/2009/
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distribution over an interval twice as wide as the inter-
val on which they were sampled for simulator runs.

— To model the correlation hyperparametersin we
reparameterize using, =exp(—pBx/4). Becauses; >0,
this yields O<pr<1. Thus, forpy, a Beta(1,.5) dis-
tribution is used, which conservatively places most of
its prior mass on values gf; near 1 (indicating an in-
significant effect). Similarly, even more conservative
Beta(1, .4) priors were used for reparameterized corre-
lation hyperparameters in the GASP model for the bias
function.

— Gamma prior distributions were used for each of the
precision (i.e. inverse of the variance) hyperparame-
ters Ay, A; andA.. Specifically, we use priors, ~
GAM(10, 10) (with expectation 1 due to standardization
of the responses),s ~GAM(10, .3) (with expectation
around 20% of standard deviation of the standardized |
responses), antl. ~ GAM(10, .03) (with expectation .
around 5% of standard deviation of the standardized re-
sponses).

i "m »:rl | ML‘S |

1

Because our choice of priors make the full conditional dis-
tributions of the unknowns difficult to sample from in the _ I
MCMC chain, we implement a Metropolis-Hastings algo- Fig. 3. Calibration _for parametef. MCfMC sample paths for 10
. - . chains. Left panels: API. Right panels: ODE.
rithm to explore the multidimensional space of parameters.
This eventually yields draws from the posterior distribution
by repeatedly accepting and rejecting a choice of move in ) )
the parameter space. We used multiple chains to confirm th@erturbations of MAGGRD-D are dominated by the much

convergence towards a stationary posterior distribution (aftef2rger currents in the day-side ionosphere, and are very in-
an initial burn-in period), saving wall-clock time by running sensitive to EDN. Future studies that add ionospheric drift

the chains in parallel. data to the observation set should be able to constrain EDN
much better than the present stuéegen et al.2000. The
inclusion of EDN here serves the purpose of testing how well
5 Results the method works when insensitive parameters are included.
The histograms of the empirical posterior densities are dis-
Figure 3 shows the sample paths for 10chains, with played in Fig4 for the calibration parameteés, 6, 63. The
2000 iterations, corresponding respectively to the calibra+esulting histograms for the parameters AMP and PHZ are
tion parameter®1, 62, 63. From the visual inspection of displayed in Figh. Note that?; is the parameter EDN and
these chains, it seems that for the paramefigrand 6, does not need to be transformed. The peaks of the histograms
convergence occurs after roughly 400 iterations. These firsfor AMP and PHZ for the two sites are reasonably consis-
400 values will be dropped for the rest of the analysis as theytent since they overlap, but show distinctive features. This
are considered to be in the so-called burn-in period. Un-discrepancy may be explained by the fact that these calibra-
fortunately, the convergence of the chains can not be estaliion parameters may compensate for other factors or param-
lished for the calibration parametes, even by running the eters. We derive best values of approximatekl®*cm and
chains longer. Some parameters paths are cut off at certai®0:00 MLT respectively for AMP and PHZ at API. For ODE,
values because Metropolis-Hastings algorithm rejects jumpshe best values are respectively B0* cm and 02:00 MLT.
beyond these values. It seems that these values correspoi@r these respective values, TIE-GCM outputs are closer to
to the limits of the intervals we used in the design and therethe observations at the two locations of interest than for other
is little information there. Not surprisingly, our method is combinations of AMP and PHZ in the range of values we
not able to tune this parameter. The minimum night-time considered (though a bias is still present). Note that Eig.
electron density represented by EDN does affect ionospherishows that the observations are outside the evaluations. This
electrodynamics at night, including the ionospheric drift ve- might be because there is a large systematic discrepancy, but
locities, but is too small to increase the electrical conductiv-it might also be because the best choice for the parameters is
ity to anywhere near the daytime values. The geomagnetién a region of the parameter space that our ensemble did not

www.geosci-model-dev.net/2/137/2009/ Geosci. Model Dev., 2, 1842009
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Fig. 6. Posterior mean model biaskd_eft panel: API. Right panel:
ODE. Posterior distributions are based on MCMC sample paths for
10 chains, with first 400 values dropped as they are considered to be
in the burn-in period.
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T(MLT, hours) (MLT, hours)

2000 4000 6000 8000 10000
6, (em™) o,

Fig. 4. Calibration for paramete#. Histograms of posterior dis- Fig. 7. Observed (circles) and predicted MAGDDR-D (lines) with

tributions based on MCMC sample paths for 10 chains, with firstassociated 95% confidence bandd (96 times the standard errors

400 values dropped as they are considered to be in the burn-in peassuming a Normal distribution). Left panel: API. Right panel:

riod. Left panels: API. Right panels: ODE. ODE. Posterior distributions are based on MCMC sample paths for
10 chains, with first 400 values dropped as they are considered to be
in the burn-in period.

. explore. Indeed, the number of point in the design for which
AMP is in between 210* and 3<10%*cm and PHZ is near

0 is indeed empty, see center upper panel in Eigzinally,

o there is no indication that EDN has a significant impact on
the outputs through our analysis.

A phmy e Mean posterior biases are shown in Fég. These biases
estimates are indeed compensating for some of the differ-

ences between calibrated model outputs and observations.
The values are not small since they represent a variation of
the order of one unit compared to variations of the order of
3 units in the transformed observations. The high-frequency
variability displayed is due to the various time locations at
“ J which sources of information (observations and model out-
; ol Lo puts) are collected, and could be smoothed. We believe that

e Fre ours the inclusion of more calibration parameters may help reduce
these biases. The Bayesian calibration, through the propaga-
Fig. 5. Calibration for parameter AMP and PHZ at location API. tion of uncertainties, also provides distributions of the pos-
Histograms of posterior distribution based on MCMC sample pathsteriors for the predictions of the real valug8 at any time,
for 10 chains, with first 400 values dropped as they are considere¢onditional on the observed data. This statistical surrogate
to be in the burn-in period. Left panels: API. Right panels: ODE. for the computer model is called an emulator. Figlimm-
pares our emulator with observations at APl and ODE. Our

Geosci. Model Dev., 2, 13744, 2009 www.geosci-model-dev.net/2/137/2009/
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6 Conclusions

Edited by: J. Annan
Linkletter et al.(200§ andWelch et al (1992 addressed the

choice of calibration parameters. They identify the inputs

that most impact the system so that these factors can be in-

vestigated further, dropping the others. We could use such &eferences

methodology in the calibration of TIE-GCM, when consid- Bayarri, M. J., Berger, J. O., Cafeo, J., Garcia-Donato, G., Liu
grlng mpre 'Fhan three callpratlon parameters. Furthermore, F., Palomo, J., Parthasarathy, R. J., Paulo, R., Sacks, J., and
n the S|tuat|o_n Where the input space is large (for |ns_tance Walsh, D.: Computer model validation with functional output,
Wlth many calibration paramet_grs), a so-called sequential de- Ann. Stat., 35, 1874—-1906, 2007.

sign Williams et al, 200Q Kleijnen and van Beers2004 Fang, T., Richmond, A., Liu, J., Maute, A., Lin, C., Chen, C., and
may help reduce the computational effort and focus on areas Harper, B.: Model simulation of the equatorial electrojet in the
of interest in the input space. Our method readily accomo- Peruvian and Philippine sectors, J. Atmos. Sol.-Terr. Phy., 70,
dates larger calibration inputs, but the computing time will 2203-2211, 2008.

increase. Fesen, C. G., Crowley, G., Roble, R. G., Richmond, A. D., and Fe-

Since the outputs of TIE-GCM are effectively continuous jer, B. G.: Simulation of the pre-reversal enhancement in the low
(though discretized) quantities distributed in space and time, Té’é‘f‘;g&;ﬂcm ion drifts, Geophys. Res. Lett., 27(13), 1851~
to carry out the calibration, we could have followed recentG”kS, W. R., Richardson, S., and Spiegelhalter, D. J. (Eds.):
functional approachesBgyarri et al, 2007 Higdon et al,

Rt ’ Markov chain Monte Carlo in practice, Interdisciplinary Statis-
2008 by decomposing in wavelets bases or according to the {ics chapman & Hall, London, 1996.

first few principal components. We could have used periodicgneiting, T.: Correlation functions for atmospheric data analysis,
Fourier bases as we did for the direct emulati®ogier Q. J. Roy. Meteor. Soc., 125, 2449-2464, 1999.

2008, since they worked well there. However, since we Hagan, M. and Forbes, J.: Migrating and nonmigrating diurnal
chose a fully Bayesian method for which we did not want tides in the middle and upper atmosphere excited by tropo-
to impose too many constraints, and the dimension of the spheric latent heat release, J. Geophys. Res., 107(D24), 4754,

problem was reasonable for computational purposes, we did d0i:10.1029/2001JD001236, 2002. o .
not resort to functional approaches here. Hagan, M. and Forbes, J.: Migrating and nonmigrating semidiurnal

. . . tides in the middle and upper atmosphere excited by troposh-
To_|mprove further, the calibration of TIE-GCM, we COl_Jld eric latent heat release, JF.)pGeophys.pRes., 108(A2),y106§, doi:
consider more locations and more output types. We aim to 10 1029/2002JA009466, 2003.
obtain single estimates of parameters like AMP, PHZ, EDN, Higdon, D., Gattiker, J., Williams, B., and Rightley, M.: Computer
based on the combined data sets. However, including mul- model calibration using high-dimensional output, J. Am. Stat.
tiple sites requires us to parameterise the discrepancy func- Assoc., 103, 570-583, 2008.
tion by location, to account for spatially systematic model Kennedy, M. C. and O’Hagan, A.: Bayesian calibration of computer
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