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Abstract. We describe here a new method for calculating
the magnetic drift invariant,L∗, that is used for modeling
radiation belt dynamics and for other space weather appli-
cations. L∗ (pronounced L-star) is directly proportional to
the integral of the magnetic flux contained within the sur-
face defined by a charged particle moving in the Earth’s geo-
magnetic field. Under adiabatic changes to the geomagnetic
field L∗ is a conserved quantity, while under quasi-adiabatic
fluctuations diffusion (with respect to a particle’sL∗) is the
primary term in equations of particle dynamics. In particu-
lar the equations of motion for the very energetic particles
that populate the Earth’s radiation belts are most commonly
expressed by diffusion in three dimensions:L∗, energy (or
momentum), and pitch angle (the dot product of velocity and
the magnetic field vector). Expressing dynamics in these co-
ordinates reduces the dimensionality of the problem by ref-
erencing the particle distribution functions to values at the
magnetic equatorial point of a magnetic “drift shell” (or L-
shell) irrespective of local time (or longitude). While the use
of L∗ aids in simplifying the equations of motion, practical
applications such as space weather forecasting using realistic
geomagnetic fields require sophisticated magnetic field mod-
els that, in turn, require computationally intensive numerical
integration. Typically a singleL∗ calculation can require on
the order of 105 calls to a magnetic field model and each
point in the simulation domain and each calculated pitch an-
gle has a different value ofL∗. We describe here the devel-
opment and validation of a neural network surrogate model
for calculatingL∗ in sophisticated geomagnetic field models
with a high degree of fidelity at computational speeds that
are millions of times faster than direct numerical field line
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mapping and integration. This new surrogate model has ap-
plications to real-time radiation belt forecasting, analysis of
data sets involving tens of satellite-years of observations, and
other problems in space weather.

1 Introduction

“Space Weather” refers to the hazardous conditions in the
dynamic space plasma environment. The space environment
is constantly changing in response to variable energy in-
put from the sun through the interaction of the solar wind
and the Earth’s magnetosphere (the region dominated by
the Earth’s geomagnetic field). Charged particles (primar-
ily electrons and protons) in the magnetosphere make up a
variety of populations and pose a variety of different haz-
ards to satellites and instruments in space. One particu-
larly hazardous population is the population that makes up
the Earth’s radiation belts. Radiation belt particles are de-
fined as those particles that are energetic enough to pene-
trate the surfaces of spacecraft and/or instruments but which
nonetheless are still magnetically “trapped” in the geomag-
netic field. Radiation belt electrons in the outer radiation
belt (or Van Allen belt) are particularly dynamic with fluxes
that can vary by factors of 106 over time scales ranging
from hours to solar cycles. Additionally, although all space-
craft are affected to one degree or another by the radiation
belts, there are relatively few spacecraft that are equipped
to measure and monitor the changes in radiation belt pop-
ulations. There is therefore a significant need for numeri-
cal models that can accurately describe the fluxes and char-
acteristics of radiation belt electrons and ions for applica-
tions ranging from spacecraft design to anomaly resolution to
space weather forecasting. Recent radiation belt models in-
clude Salammb̂o (Beutier and Boscher, 1995) developed by
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the “Office National d’Etudes et Recherches Aérospatiales”
(ONERA) and the Dynamic Radiation Environment Assim-
ilation Model (DREAM) (Reeves et al., 2008) developed by
Los Alamos National Laboratory (LANL).

The large scale motion of charged particles in the Earth’s
magnetosphere are dominated by the structure of the global
geomagnetic and geoelectric fields. At sufficiently high en-
ergies (tens or hundreds of keV) the electric field can be ne-
glected and particle motion can be described by three pe-
riodic motions: gyration around the magnetic field, bounce
along the magnetic field between magnetic mirror points, and
gradient/curvature drift across the magnetic field in an az-
imuthal direction around the Earth. Each periodic motion has
a Hamiltonian invariant and in the Earth’s field they are well
separated by the adiabatic time scales. The gyro-invariant is
the magnetic moment,µ, which is invariant on millisecond
time scales. The bounce invariant, given byK, is related to
the magnetic field integrated along the field between mirror
points and has time scales of seconds. The drift invariant,8,
integrates the magnetic field along a bounce path and again
azimuthally around the earth on a closed shell. If the mag-
netic field changes slowly relative to a drift period (hours)
then the drift path is closed and8 is adiabatically conserved.
A more convenient quantity isL∗ (L-star) which is defined
as

L∗
= −

2πk0

8RE

, (1)

wherek0 is the Earth’s dipole moment andRE is the radius
of the Earth (6370 km) and8 is defined as

8 =

∫
B · dS. (2)

In a dipole magnetic field,L∗ is the distance from the center
of the Earth to the equatorial point of a given field line, in
units of Earth radii. All pitch angles have the sameL∗ for a
given point in space. See also,Roederer(1970); Schulz and
Lanzerotti(1974); Schulz(1991). Geosynchronous orbit, for
example is atL∗

=6.6.
One important challenge for modeling of the radiation

belts (and other populations in space) is that the charged par-
ticles moving in space form complex current systems that in
turn distort the geomagnetic field. The interaction of the so-
lar wind, magnetospheric, and ionospheric current systems
form an interconnected dynamic system that produces strong
distortions of the Earth’s field such that it no longer approxi-
mates a dipole and, indeed, requires sophisticated numerical
field models that are themselves subject of intensive research.

Many models of the Earth’s geomagnetic field have been
developed but both the pace of development and the numeri-
cal sophistication of the models has increased dramatically in
the last several decades. Numerically simple models such as
the static Olsen-Pfitzer model (Olson and Pfitzer, 1977) have
given way to dynamic, statistical models driven by a host

of solar wind and geomagnetic inputs. The models devel-
oped by Tsyganenko and colleagues are representative and
are among the most widely used (Tsyganenko et al., 2003;
Tsyganenko and Sitnov, 2005). At an even higher level of
complexity are globally self-consistent physics based mod-
els but these models are sufficiently computer-intensive that
they are typically only used for analysis in limited and tar-
geted studies (e.g.Zaharia et al., 2006).

The motion of particles in complex, realistic geomag-
netic field configurations can be closely approximated us-
ing “guiding center” theory representing motion as functions
of the three adiabatic invariants,µ, K, andL∗. The first
two invariants are relatively easy to calculate even in so-
phisticated modern field models because they involve only
the local field and a one-dimensional integral along a sin-
gle field line. The third invariantL∗ is much more diffi-
cult, and computationally expensive, to calculate because it is
both two-dimensional and global (McCollough et al., 2008).
Typical integration requires on the order of 105 calls to the
magnetic field model for obtaining the magnetic field vec-
tor. The resulting long computation times often pushes re-
searchers to compromise and use simpler, less accurate mag-
netic field models which may produce large inaccuracies and
even wrong conclusions.

Huang et al.(2008) recently quantified the effect of us-
ing various magnetic field models for radiation belt studies
for calculatingL∗ and other quantities in the radiation belts.
They found that during storm timesL∗ can vary by as much
as 50% (C.-L. Huang, personal communication, 2008) be-
tween the different models. As part of the DREAM project,
Chen et al.(2007) studied the effect of using different mag-
netic field models on the phase space density calculation and
also found that an accurate magnetic field model is critical to
accurate radiation belt modeling.

Further development of radiation belt and space weather
models requires techniques that are computationally feasible
and still use the most accurate magnetic field models avail-
able. Direct numerical integration of the magnetic field can
use certain well-known techniques and/or the brute force of
many processors but other approaches that do not sacrifice
accuracy for speed are also possible.

In this paper, we present a new method of calculating
L∗ using a neural network based surrogate model to repro-
duce the same quantity calculated by direct numerical in-
tegration of the so-called Tsyganenko-03, or TSK03 model
(also known as the T01-storm inside the original source
code) (Tsyganenko, 2002a,b; Tsyganenko et al., 2003). We
note however, that the method applies equally to any mag-
netic field model of arbitrary complexity – statistical, em-
pirical, physics-based (e.g. magneto-hydrodynamic models),
etc. We refer to this numerical application as the Los Alamos
National LaboratoryL∗ model, or LANL∗ for short.

In the following section we describe surrogate models in
general and in Sect. 3 how neural networks can be used as
such surrogate models. Section 4 describes the TSK03 model
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used here to illustrate the technique and Sect. 5 discusses how
the network was trained. We validated and tested the neural
network as explained in Sect. 6. We summarize and conclude
with Sect. 7.

2 Surrogate models

Surrogate models (meta-models, or response surface models)
can replace a complicated non-linear input-output relation-
ship while adding only a minimal error. Other fields, such as
aerospace modeling of structures, aerodynamics, and propul-
sion (Queipo et al., 2005), use them frequently for study-
ing the sensitivity of complex models on input parameters.
Surrogate models are trained with input-output data from the
original model. Once the training is successfully completed,
the surrogate can replace the complex model and compute an
output with the required accuracy in a fraction of the time.
Surrogate models do not contain details of the physical pro-
cesses or geometries but only focus on the input-output re-
lationship. The results from such surrogate models are not
exact but can produce results with arbitrarily small errors
relative to the training set. Different methods can be used
to create surrogate models: The simplest ones are based on
polynomial regression. Others are based on Kriging, Gaus-
sian process modeling, and neural networks (Kleijnen, 2008;
Myers and Montgomery, 2002). We chose to use a feed-
forward neural network to create a surrogate model forL∗

in the TSK03 magnetic field because of its simplicity. The
drift shell model presented here is able to calculateL∗ with
less than 1% error compared to the original model but or-
ders of magnitude times faster. (It is important to note here
that no geomagnetic field model to date claims an accuracy
even approaching 1% relative to the Earth’s actual dynamic
magnetic field. The LANL∗ calculation, like any other surro-
gate model, is no better, but not measurably worse, than the
model used to train it.) Figure1 exemplifies a diagram of an
artificial neural network used for our study.

3 Feedforward neural networks

Artificial neural networks are loosely based on the function
of our nervous system in the sense that they represent a non-
linear mapping from input to output signals (Bishop, 1995;
Reed and Marks, 1999). They are a mathematical program-
ming construct that mimic the behavior of biological neurons
and are used to solve problems in machine learning and arti-
ficial intelligence. They have proved useful for a number of
real-world applications including credit scoring, fraud detec-
tion, speech recognition, and optical character recognition
(OCR) just to name a few. Conceptually, an artificial neu-
ral network consists of a number of non-linear processing
units that are interconnected through weighted communica-
tion lines. The units, called “neurons”, receive input signals
from a number of other nodes and produce a single scalar

Fig. 1. Diagram for a layered feedforward neural network. Solar
wind conditions are used as input for predictingL∗ values. All
nodes have a connection to every node from the previous layer but
are not drawn here for simplicity. Also, not all possible parameters
that can be used as input for the artificial neural network are shown.
Specifically, our drift shell model includes additional values for Kp,
solar wind density, velocity, and magnetic coordinates.

output which then can be used as input to other neurons via
new weighted connections. In reality, a neural network is
computed with several, simple matrix multiplications (Eq. 3).
A very good overview of feedforward neural networks is pre-
sented byReed and Marks(1999).

Neural networks are usually organized in several layers.
Such a network is also called a “multilayer perceptron”. The
first layer provides a node for each input element (see Fig.1).
In our case the input layer consists of 15 nodes, one for each
input parameter for the TSK03 model plus additional nodes
for parameters that help to further specify the system (like ge-
omagnetic coordinates). The hidden layer contains 20 neu-
rons that are connected to each input node and one output
node to produceL∗ for a specified pitch angle.

The number of neurons in the hidden layer is somewhat
arbitrary and usually has to be determined through testing.
Too many neurons in the hidden layer can cause the artificial
neural network to simply memorize patterns. In such a case
the network will not be able to perform reliably with inputs
that differ from those in the training set.Barron(1991, 1993,
1994) completed a study on how the error of a neural net-
work output scales with the number of training samples and
hidden nodes. He found that the error decreases∝1/

√
N

as the number of training samplesN increases. The error
also decreases∝1/M as a function of the number of hidden
nodesM. In general, it has been shown, by e.g.Cybenko
(1989), that a sufficiently large network is able to approx-
imate any function with arbitrary accuracy (Bishop, 1995;
Reed and Marks, 1999).

Similar to the real nervous system, artificial neural net-
works have to be trained by learning from examples. Given
a set of input parameters and desired outputs, algorithms like
the popular “back propagation” algorithm (Rumelhart et al.,
1986) can automatically adjust the weights of the intercon-
nections to produce the desired outputs. If the training is suc-
cessful, then new input can be provided to the neural network
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and a correct output (within a specified error) is obtained.
Once the training of a neural network is completed, the

output can be easily calculated given any set of input values.
If x is the input vector, then the output vectory in a 1-hidden-
layer architecture is

y = f 1
(
W1f 0

(
W0x + b0

)
+ b1

)
, (3)

where the matricesW0,1 denote the weight matrices of the
hidden and output layer andb0,1 the bias vectors. The bias
vector is necessary to obtain a better classification but is, typ-
ically, absorbed into the weight vector assuming that one of
the inputs is constant (bias node).

The functionf is a non-linear squashing function applied
to each component of a vector, for example

f (xi) =
1

1 + e−xi
. (4)

Squashing functions are used to limit very large positive or
negative values. Sigmoid andtanh functions are also com-
mon choices.

The interconnection weights (components of matrixW )
are determined during training using an optimization algo-
rithm which minimizes a chosen error function. Typically,
training starts with a random choice of weights. The output
(hereL∗) is calculated using Eq. (3) and compared to the
“real” L∗ (output from the Tsyganenko model). The error is
calculated using, e.g., the mean-squared error

E =
1

PN

∑
p

∑
i

(
dpi − ypi

)2
, (5)

wherep indexes the patterns in the training set,i indexes
the output nodes, anddpi andypi are, respectively, the target
and actual network output for the i-th output node on thep-
th pattern.P andN are the number of training patterns and
network outputs (Reed and Marks, 1999). Next, a different
set of weights is chosen over and over again until the error
is minimized forall input-output combinations (training pat-
terns).

Because neural networks have such a redundant parallel
structure, they exhibit some degree of fault tolerance. Many
nodes draw information from a number of other nodes to pro-
duce one overall output. This makes the system relatively in-
sensitive to minor damage. The loss of some input degrades
the system but does not necessarily lead to complete failure
because the functions are distributed over several nodes in-
stead of an isolated single location. This property has been
called “graceful degradation” (Reed and Marks, 1999). Ex-
amples for magnetic field models include Kp, Dst, solar
wind velocity vsw and other input functions that are corre-
lated among each other. If one of the input parameters is not
known or of bad quality, the input can be replaced with a
default value and a reasonable output is still likely. This is
in contrast to TSK03 which can only function with all input
parameters available.

When neural networks are used as function approximators,
they are typically used for interpolation and not extrapolation
because the fit is usually good near the training data but poor
elsewhere. This aspect of prediction accuracy is also called
“generalization”. The distribution of training data and net-
work complexity play an important role in the overall per-
formance of the neural network. A poor set of training data
may contain misleading regularities (Bishop, 1995; Reed and
Marks, 1999). The best choice is to randomly select train-
ing data following the same probability distribution that also
governs future data.

Neural networks are not new to space physics and espe-
cially space weather modeling. They have been used before
to predict the relativistic electron flux at geosynchronous or-
bit (Koons and Gorney, 1991), to forecast geomagnetic in-
duced currents (Lundstedt, 1992), or to analyze solar wind
data (Dolenko et al., 2001). To our knowledge, neural net-
works have not previously been used as surrogate models re-
placing complex space physics models such as global mag-
netic field models.

4 The Tsyganenko 2003 Model

The magnetic field model TSK03 (Tsyganenko et al., 2003)
is just one out of a series of models published by Tsyganenko
and colleagues. The Tsyganenko magnetic field models are
empirical models based on decades of magnetic field mea-
surements. The models calculate quasi-static states of the
Earth’s dynamic magnetic field based on solar wind condi-
tions and geomagnetic indices. (The quasi-static state is a
statistical average for a given set of solar wind conditions but
is not a true equilibrium state.) TSK03 is one of the most
accurate models currently available (Chen et al., 2007). It
accounts for external contributions from the magnetotail cur-
rent sheet, ring current, magnetopause current and Birkeland
current (McCollough et al., 2008). It also includes partial
ring current with field-aligned closure currents which allows
it to account for local time asymmetries of the inner magneto-
spheric field. These currents are driven by separate variables
calculated as a time integral for a combination of geoeffec-
tive parameters of solar wind density, speed, and the magni-
tude of the southward component of the interplanetary mag-
netic field (IMF). As with the actual geomagnetic field, the
TSK03 model is compressed on the sunward side by the so-
lar wind and extended on the antisunward side in a comet-
like magnetic tail. The model also defines the boundary (a
“magnetopause”) between the Earth’s geomagnetic field and
the external solar wind fields. The properties are critical for
particle motion and therefore for the calculation ofL∗.

We used the ONERA-DESP library V4.1 (Boscher et al.,
2007) implementation of the magnetic field model TSK03
(option 10). The model uses time, Dst, solar wind pressure,
and the y and z components of the IMF magnetic field. It
also includes two parametersG2 and G3 representing the
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Fig. 2. (left) Coordinate training ring for creating the training data set (left: top view; right: side view). Training coordinates are picked
randomly indicated by green star symbols. The quasi-parabolic black line (left) depicts the magnetopause which demarks the outer boundary
between the geomagnetic field and the external solar wind.

time-integrated driving effect of the solar wind on the mag-
netosphere (McCollough et al., 2008). Since our implemen-
tation, the ONER-DESP library has changed names and is
now called IRBEM-LIB.

5 Training the network

In order to create the training data, we have constructed an
optimized algorithm that can compute a large number of
L∗ in a reasonably short period of time. The parallelized
code can compute half a millionL∗ training values typically
within 45 h on a high-performance cluster at Los Alamos Na-
tional Lab as compared to 900 h on a single CPU desktop
machine with the standard implementation of the ONERA-
DESP library.

The generalization performance of the neural network is
how efficiently it can predict in untrained domains. The
performance strongly depends on the selection of the train-
ing data. Best results are obtained by randomly distributing
the input-output training patterns. This prevents the system
from simply memorizing patterns in the input-output rela-
tions. In order to test the neural network methodology we
chose to train it for locations inside a coordinate ring with the
following bounds: r∈[6.6RE, 6.7RE], φ∈[−180◦, +180◦

],
θ∈[−6◦, 6◦

] in spherical geographic coordinates. We ran-
domly picked 10 locations inside this coordinate ring (Fig.2)
to calculateL∗ for every hour in the year 2002 using full nu-
merical integration of the TSK03 model with known solar
wind and geomagnetic inputs. This resulted in 87 600 input-
output patterns that we used to train the neural network. The
input data for Kp, Dst, solar wind density, pressure, velocity,
y andz components of the IMF magnetic field were taken
from the omni2 data set provided by NASA via OMNIWeb
(http://omniweb.gsfc.nasa.gov/).

Typically, the locations inside the coordinate training ring
are on closed drift shells.L∗ is only defined when the inte-
gral is closed. However, during storm conditions the magne-

Fig. 3. Conceptual diagram of finding the last closed drift shell
by using a bisection search algorithm along the radial direction at
midnight local time. The dashed line represents the last closed drift
shell withL∗

max.

tosphere can be compressed by the solar wind and the drift
shells move outward due to adiabatic effects and end up as
open drift shells for which the integral of the magnetic flux
8 (Eq. 2) is not defined. During the main phase of a storm
the increase in ring current causes a decrease in the magnetic
field strength in the inner magnetosphere and a reduction of
the magnetic flux enclosed by an electron drift orbit (Kim and
Chan, 1997; Roederer, 1970). This effect requires two sep-
arate neural networks, one that can tell us the maximumL∗

value (NN-1) that is possible in a given magnetic field config-
uration and a second one (NN-2) that will actually provide us
with theL∗ value for the particle pitch angle and spacecraft
location.
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Fig. 4. Set of neural networks that can calculateL∗ as a function of pitch angle. Each set consists of several neural networks for a range
of pitch angles. One set calculatesL∗ and the other set computes the last closed drift shellL∗

max. The coordinates of the geosynchronous
spacecraft are represented by Lm and MLT.

Fig. 5. Validation for the neural network using an out-of-sample data set from the positions of LANL-GEO spacecraft LANL-01A for 90
degrees pitch angle. Each point represents oneL∗ calculation by the Tsyganenko model versus the neural networkL∗ result. The dashed
green line would represent a perfect prediction by the neural network; the red line is a linear fit to the predictions. The standard deviation
is 1L∗

≈0.04 or less than 1%. (left) Validation data is from the same year as the training data period of 2002. (right) Validation data from
2001 and 2005 was not part of the training data period.

We trained the first neural network NN-1 withL∗
max values

calculated from the full integration of the TSK03 magnetic
field model. We have used a bisection search algorithm to
find the last valid closed drift shell. We calculateL∗ along
the radial coordinate at midnight local time (Fig.3) stepping
outwards until a bad value is found. Then we step back in-
wards and outwards at smaller increments until sufficient ac-
curacy is achieved. Solar wind data including Dst and Kp
were used as input and the obtainedL∗

max values were used
as target for training the network. The training region we
described earlier does not apply to this part of the neural net-

work since the last closed drift shellL∗
max is a global value.

We trained the second neural network NN-2 with theL∗

values provided by the magnetic field model. The input
vector patterns are as described above but also include geo-
magnetic coordinate locations to better define the problem.
Adding these coordinates drastically increased the perfor-
mance of the neural network because they describe the lo-
cation of the spacecraft as a direct function of the asymmet-
ric magnetic field. In addition, we calculatedL∗ for several
pitch angles betweenα∈[10◦, 90◦

]. For a given position, the
magnetic field model producesL∗ values that are a function
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Fig. 6. Histogram plot of the error introduced by using the neural network. (left) Validation data is from the same year as the training data
period of 2002. (right) Validation data from 2001 and 2005 was not part of the training data period.
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Fig. 7. The change in standard deviation using out of sample val-
idation data as a function of pitch angle. The error of the neural
network gradually increases towards lower pitch angles.

of pitch angleα. Since the results from NN-1 and NN-2 de-
pend on the pitch angle, it was necessary to create several
neural networks for a range of pitch angles.

The setup of neural networks is displayed in Fig.4. Each
set consists of nine neural networks, one for each chosen
pitch angle. One set (NN-1) is for calculating the last closed
drift shell L∗

max and the second set (NN-2) is for calculating
the actualL∗ value. We have also added several more pa-
rameters than the ones actually required by TSK03 (see Ta-
ble 1). We found that these additional values, including Kp,
solar wind density, velocity, G1, and especially magnetic co-
ordinates (MacIllwain L, magnetic local time) dramatically
increase the generalization properties of the neural network.

We used the python module ffnet (Wojciechowski, 2007)
to train our neural networks with optimization algorithm pro-
vided in the ffnet package. The ffnet python module has a
functionality that allows exporting the trained neural network
into a FORTRAN subroutine which then enables us to share
the neural network efficiently.

Fig. 8. Test case of calculatingL∗ with the Tsyganenko model
TSK03 (blue) and with the neural network (red) for satellite LANL-
01A. The standard deviation error is1L∗

≈0.04 or less than 1% for
90 degrees pitch angle. The time is give in units of hours since the
beginning of 2002.

The resulting set of neural networks can calculateL∗ in
a fraction of the time required by full drift shell integration.
Half a million calculations can be done in only a few seconds
whereas running the magnetic field model in serial mode
would have taken over 1700 h. This translates into a speedup
of over several million times. These numbers are only for
the actualL∗ calculations. In reality, one still has to pre-
pare the data, perform coordinate transformations and single
field line integrations for obtaining the adiabatic coordinate
K, etc. In principle, it would be also possible to replace the
calculations ofK with a neural network if deemed necessary.
Nevertheless, the overall speedup will still be several orders
of magnitudes.
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Table 1. Input parameters for the neural network LANL∗.

Number Parameter Description Input to TSK03

1 Year Integer number representing the year Yes
2 DOY Day of the year Yes
3 UT Universal Time in units of hours Yes
4 Kp Kp index No
5 Dst Dynamic storm time index [nT] Yes
6 nsw Solar wind density [cm−3] No
7 vsw Solar wind velocity [km/s] No
8 psw Solar wind dynamic pressure [nPA] Yes
9 By Y component of the IMF field [nT] Yes
10 Bz Z component of the IMF field [nT] Yes
11 G1 G1 value (Tsyganenko, 2002b) No
12 G2 G2 value (Tsyganenko, 2002b) Yes
13 G3 G3 value (Tsyganenko et al., 2003) Yes
14 Lm McIllwain value (Roederer, 1970) No
15 MLT magnetic local time [hours] No

Fig. 9. The generalization properties of the neural network shows
how far the neural network can extrapolate into regions that were
not part of the training coordinate ring. We plot the average dif-
ference between the target and the neural networkL∗ and find
that although the training coordinates were very limited to geosyn-
chronous orbit atr≈6.6 the neural network is able to give compa-
rable results between 5.8<r<7.3RE . The gray area represents the
overall accuracy of the neural network,1L∗

=0.047, when com-
pared to data from inside the training region.

6 Testing and validating the network

We validated our neural network by comparing its results to
the results from the full numerical integration of the actual
magnetic field model. We chose a number of LANL geosyn-
chronous satellites and calculated theirL∗ values in hourly
resolution covering the years of 2002 and partially 2001 and
2005. The validation results of the neural network of this
out-of-training-sample are shown in Figs.5 and6. We have

split the validation data for comparing the results from (i) us-
ing the same time period and solar wind conditions of 2002
but with different geographic coordinates than the training
coordinates and (ii) using the different solar wind conditions
of the years 2001 and 2005. We have tested and validated
the neural network with coordinates from several geosyn-
chronous satellites and found similar performance with all of
them. Figures5 and6 show one validation example with the
satellite LANL-01A. In Fig.5, L∗ values of the neural net-
work are plotted against the actual results from using TSK03
for conditions in 2002 (training period) and 2001, 2005 (out-
side of the training period). Figure6 shows the distribution
of errors related to the difference between the neural network
results and the full integration of the TSK03 model. We find
the standard deviation error is1L∗

≈0.04 or less than 1%.
For off-equatorial pitch angles the standard deviation can be
larger to about1L∗

≈0.06 (see Fig.7). This is much lower
than the intrinsic error of empirical magnetic field models
(Huang et al., 2008) which is estimated to be up to 50%
during geomagnetic storms and shows that using the neural
network will add only a marginal error for greatly enhanced
performance. The overall error is calculated by adding the
variances:σ 2

TSK03+σ 2
NN=σ 2

tot. We also show in Fig.8 that
the neural networkL∗ is indeed following theL∗ calculation
from using TSK03 on a point by point time series.

We have tested the generalization (extrapolation) proper-
ties of the neural network as a function of distance to the
training region. We have calculated the average error of the
neural network up to several Earth radii away from the train-
ing ring and find that the neural network can provide com-
parable performance between 5.8<r<7.3RE (see Fig.9) al-
though the training region was very limited from 6.6–6.7RE .
The performance is still within the same uncertainty com-
pared to a validation using data from inside the training ring.
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The complete library of neural networks plus ex-
amples are included as supplemental material to this
publication (http://www.geosci-model-dev.net/2/113/2009/
gmd-2-113-2009-supplement.zip). After extracting the files,
read the “README” file and follow the instructions of us-
ing the Makefile and adopting your FORTRAN compiler. In-
structions for calling the library from IDL are included as
well.

7 Conclusion and summary

We have presented a new, computationally efficient method
of calculating the magnetic adiabatic invariant integral,L∗.
Space weather models for the inner magnetosphere use adi-
abatic invariants to describe charged particle motion in re-
duced ”magnetic coordinates” that are used in models of the
space environment. In particular, models of the radiation belt
environment use the adiabatic coordinateL∗ to study the ac-
celerating, transport, and scattering of radiation belt particles
in order to better understand radiation effects on satellites.

Computationally efficientL∗ calculations are particularly
important for space weather applications that have to process
data in real-time and for those that require time-dependent
models spanning one or more 11-year solar activity cycles.
Both applications of radiation belt models are currently be-
ing developed for operational use but that development has
previously been hindered by the long computation times re-
quired for full numerical integration of modern, sophisticated
models of the Earth’s geomagnetic field.

By using a feedforward neural network as a surrogate
model and training it with full numerical integration of the
TSK03 geomagnetic field model, we have demonstrated that
we can reproduce the TSK03L∗ values with accuracies that
are on the order of 1%. This is to be contrasted with a 10–
50% inherent uncertainty of the TSK03L∗ value relative to
the actual geomagnetic field. The technique we have pre-
sented, however, is general and can be applied to any ge-
omagnetic field model, including any future models with
higher inherent accuracy and with arbitrary levels of com-
plexity.

The ability to efficiently calculateL∗ with insignificant
additional loss of accuracy is fundamentally important for
coupling state-of-the-art geomagnetic field models with next-
generation radiation belt and space environment models.
That coupling will enable better understanding of the physi-
cal processes that control the space environment, better spec-
ification and prediction of the environment for satellite de-
signers and operators, and ultimately more reliable and cost-
effective design and operation of the satellites upon which
our society increasingly depends.

While the current version (V 1.0) of the LANL∗ library has
only been trained and validated for the region near geosyn-
chronous orbit, we are actively working on extending the
neural network training to include the whole inner magne-

tosphere. Codes applicable to the entire near-Earth space en-
vironment will be published in a future version of the LANL∗

library.
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