
qtcm User’s Guide

Johnny Wei-Bing Lin1

September 12, 2008

1Physics Department, North Park University, 3225 W. Foster Ave., Chicago, IL 60625,
USA

2

Contents

1 Introduction 7

1.1 How to Read This Manual . 7

1.2 About the Package . 7

1.3 Conventions In This Manual . 8

1.3.1 Audience . 8

1.3.2 Typographic Conventions . 9

1.3.3 Terminology . 9

1.4 Current Version Information and Acknowledgments 10

1.5 Summary of Release History . 12

1.6 A Brief Description of The QTCM1 12

2 Installation and Configuration 15

2.1 Summary and Conventions . 15

2.2 Fortran Compiler . 17

2.3 Required Packages . 17

2.4 Compiling Extension Modules . 18

2.5 Testing the Installation . 20

2.6 Model Performance . 21

2.7 Installing in Mac OS X . 22

2.7.1 Introduction . 22

2.7.2 Platform and Unix Dependencies 22

2.7.3 Fortran Compiler . 23

2.7.4 NetCDF Libraries . 24

2.7.5 Makefile Configuration . 24

2.7.6 Summary of Steps . 25

2.8 Installing in Ubuntu . 27

2.8.1 Introduction . 27

2.8.2 Fortran Compiler . 27

2.8.3 NetCDF Libraries . 28

2.8.4 Makefile Configuration . 28

2.8.5 Summary of Steps . 30

3

4 CONTENTS

3 Getting Started With qtcm 33
3.1 Your First Model Run . 33
3.2 Managing Directories . 34
3.3 Model Field Variables . 36
3.4 Run Sessions . 37

3.4.1 What is a Run Session? . 37
3.4.2 Changing Variables . 37
3.4.3 Continuing a Model Run . 37
3.4.4 Passing Restart Snapshots Between Run Sessions 38

3.5 Creating Multiple Models . 39
3.5.1 Model Instances . 39
3.5.2 Passing Snapshots To Other Models 39

3.6 Run Lists . 40
3.7 Model Output . 41

3.7.1 NetCDF Output . 41
3.7.2 Visualization . 43

3.8 Documentation . 43

4 Using qtcm 45
4.1 Introduction . 45
4.2 Model Instances . 45
4.3 Initializing a Model Run . 46
4.4 The compiled form Keyword . 47

4.4.1 Initialization for compiled form = ’full’ 47
4.4.2 Initialization for compiled form = ’parts’ 48
4.4.3 Communication Between Python and Fortran-Levels 50

4.5 Restart and Continuation Run Sessions 52
4.5.1 Restart Runs In the Pure-Fortran QTCM1 52
4.5.2 Overview of Restart/Continuation Options In qtcm 52
4.5.3 Restart/Continuation for compiled form = ’full’ Model In-

stances . 53
4.5.4 Restart/Continuation for compiled form = ’parts’ Model In-

stances . 53
4.5.5 Snapshots of a Qtcm Instance 56

4.6 Creating and Using Run Lists . 56
4.7 Field Variables and the Field Class 58

4.7.1 Creating Field Variables . 58
4.7.2 Initial Field Variables . 60
4.7.3 Passing Fields Between the Python and Fortran-Levels 63
4.7.4 Field Variable Shape . 64

4.8 Model Output . 64
4.9 Miscellaneous . 65

CONTENTS 5

4.10 Cookbook of Ways the Model Can Be Used 65

5 Troubleshooting 71
5.1 Error Messages Produced by qtcm . 71
5.2 Other Errors . 71

6 Developer Notes 73
6.1 Introduction . 73
6.2 Changes to QTCM1 Fortran Files . 73
6.3 New Interfaces and Fortran Functionality 75

6.3.1 Fortran Module SetbyPy . 75
6.3.2 Fortran Module WrapCall . 77

6.4 Python qtcm and Pure-Fortran QTCM1 Differences 78
6.4.1 QTCM1 driverinit . 78
6.4.2 The varinit Routine . 79
6.4.3 The qtcm Method of Qtcm . 80
6.4.4 Miscellaneous Differences . 80

6.5 Considerations When Adding Fortran Code 80
6.6 Creating New Standard Extension Modules 81

6.6.1 Makefile Rules . 81
6.6.2 Using f2py . 82
6.6.3 Two Examples . 83

6.7 Attributes and Methods in Qtcm Instances 83
6.7.1 Public num settings Submodule Attributes/Methods 84
6.7.2 Private qtcm Submodule Attributes 84
6.7.3 Private Qtcm Attributes . 84

6.8 Creating Documentation . 85

7 Future Work 87

A Field Settings in defaults 93
A.1 Scalar Field Variables . 93
A.2 Array Field Variables . 95

6 CONTENTS

Chapter 1

Introduction

1.1 How to Read This Manual

Most users: Just read (1) the installation instructions in Chapter 2, (2) Chapter 3,
which tells you all you need to get started using qtcm, and (3) examples in Section 4.10
that give a feel for how you can use the model.

Users having problems: Chapter 5 provides troubleshooting tips for a few
problems. The detailed description of how the package functions, in Chapter 4, will
probably be more useful.

Developers: If you want to change the source code, please read Chapter 6.
Chapter 7 describes all the things I’d like to do to improve the package, but haven’t
gotten to yet.

1.2 About the Package

The single-baroclinic mode Neelin-Zeng Quasi-Equilibrium Tropical Circulation Model
(QTCM1)1 is a primitive equation-based intermediate-level atmospheric model that
focuses on simulating the tropical atmosphere. Being more complicated than a simple
model, the model has full non-linearity with a basic representation of baroclinic in-
stability, includes a radiative-convective feedback package, and includes a simple land
soil moisture routine (but does not include topography). A brief, but more detailed,
description of QTCM1 is given in Section 1.6.

Python2 is an interpreted, object-oriented, multi-platform, open-source language
that is used in a variety of software applications, ranging from game development to
bioinformatics. In climate studies, Python has been used as the core language for
data analysis (e.g., Climate Data Analysis Tools3), visualization (e.g., Matplotlib4),

1http://www.atmos.ucla.edu/∼csi
2http://www.python.org
3http://cdat.sf.net
4http://matplotlib.sf.net

7

http://www.python.org
http://cdat.sf.net
http://matplotlib.sf.net

8 CHAPTER 1. INTRODUCTION

and modeling (e.g., PyCCSM5).
In comparison to traditional compiled languages like Fortran, Python’s lack of a

separate compile step greatly simplifies the debugging and testing phases of develop-
ment, because code snippets can be testing as code is written. Python’s extensive
suite of higher-level tools (e.g., statistics, visualization, string and file manipulation)
accessible at runtime enables modeling and analysis to occur concurrently.

The qtcm package is an implementation of the Neelin-Zeng QTCM1 in a Python
object-oriented environment. The conversion package f2py6 is used to wrap the
QTCM1 Fortran model routines and manage model execution using Python datatypes
and utilities. The result is a modeling package where order and choice of subroutine
execution can be altered at runtime. Model analysis and visualization can also be
integrated with model execution at runtime.

1.3 Conventions In This Manual

1.3.1 Audience

In this manual I assume you have a rudimentary knowledge of Python. Thus, I
do not describe basic Python data types (e.g., dictionaries, lists), object framework
and syntax (e.g., classes, methods, attributes, instantiation), module and package
importing. If you need to brush up (or learn) Python, I’d recommend the following
resources:

� Python Tutorial:7 This tutorial was written by Guido van Rossum, Python’s
original author.

� Instant Hacking:8 Learn how to program with Python.

� Dive Into Python:9 Reasonably complete and cohesive. The entire book is
available for free online.

� Handbook of the Physics Computing Course:10 Written for a science audience.
Recommended.

� CDAT/Python Tips for Earth Scientists:11 This web site is a FAQ of sorts
for people using Python and the Climate Data Analysis Tools (CDAT) in the
earth sciences, and thus focuses on using Python to do science rather than the
computer science aspects of the language.

5http://code.google.com/p/pyccsm/
6http://cens.ioc.ee/projects/f2py2e/
7http://docs.python.org/tut/
8http://www.hetland.org/python/instant-hacking.php
9http://diveintopython.org/index.html

10http://www.pentangle.net/python/handbook/
11http://www.johnny-lin.com/cdat tips/

http://code.google.com/p/pyccsm/
http://cens.ioc.ee/projects/f2py2e/
http://docs.python.org/tut/
http://www.hetland.org/python/instant-hacking.php
http://diveintopython.org/index.html
http://www.pentangle.net/python/handbook/

1.3. CONVENTIONS IN THIS MANUAL 9

The purpose of this package is to make the QTCM1 model easier to use. In order
to interpret the results, however, you still need to have a robust sense of what climate
models can and cannot tell you. A starting point for the QTCM1 model is the brief
description of the model in Section 1.6. After that, I would read the original papers
describing the model formulation and results [3, 5], and papers citing the model
formulation work.12 Being an intermediate-level model using the quasi-equilibrium
assumption, QTCM1 (and thus qtcm) has distinct strengths and limitations; please
be aware of them.

1.3.2 Typographic Conventions

commands to be typed at the command-line are rendered
in a blue, serif, fixed-width typewriter font (e.g.,
make qtcm full 365).

dummy arguments coupled with code or screen display is rendered
in a serif, proportional, italicized font (e.g.,
Error-Value too long in variable).

file and directory names are rendered in a sans-serif, italicized font (e.g.,
setbypy.F90).

screen display is rendered in a green, serif, fixed-width type-
writer font.

module, method, and

subroutine names

are rendered in a blue, serif, fixed-width type-
writer font.

variable and

attribute names

are rendered in a blue, serif, fixed-width type-
writer font.

class names are rendered in a blue, serif, fixed-width type-
writer font.

Blocks of code (usually commands, screen display, and module, variable, and class
names) are displayed in a blue, serif, fixed-width typewriter font.

1.3.3 Terminology

attribute and method references: If there is any possibility of confusion, I will
give the class that an attribute or method comes from when that attribute or
method is referenced. If no class is mentioned by name or context, assume that
the attribute/method comes from the Qtcm class.

“compiled QTCM1 model”: This usually is used to denote when I’m talking
about compiled Fortran QTCM1 routines and variables therein, as an extension
module to the Python qtcm package.. Thus, “compiled QTCM1 model u1” is

12http://scholar.google.com/scholar?hl=en&lr=&cites=14217886709842286738

10 CHAPTER 1. INTRODUCTION

the value of variable u1 in the Fortran model, not the value at the Python-
level. Sometimes I refer to the compiled QTCM1 model as just “QTCM1” or
as “compiled QTCM1 Fortran model”.

“pure-Fortran QTCM1”: This refers to the Neelin-Zeng QTCM1 model in it’s
original Fortran form, not as an extension module to the Python qtcm package.

“Python-level”: This usually denotes the value of a variable as an attribute of a
Qtcm instance. This variable is stored at the Python interpreter level.

Qtcm: This refers to the Python Qtcm class (note the capitalized first letter).

qtcm: This refers to the Python qtcm package.

QTCM1 vs. QTCM: Although the QTCM1 is currently the only version of a quasi-
equilibrium tropical circulation model (QTCM), in principle one can construct
a QTCM with any number of baroclinic modes. In anticipation of this, the
names of the Python package and class do not end in a numeral. In this manual
and the qtcm docstrings, QTCM and QTCM1 are used interchangably. Usually
either of these phrases mean the quasi-equilibrium tropical circulation model in
a generic sense, regardless of its form of implementation.

1.4 Current Version Information and Acknowledg-

ments

This manual describes version 0.1.2 (dated September 12, 2008), of package qtcm.
Johnny Lin is the primary author of the package.

The qtcm package is built upon the pure-Fortran QTCM1 model, version 2.3
(August 2002), with a few minor changes. Those changes are described in detail in
Section 6.2.

The homepage for the qtcm package is http://www.johnny-lin.com/py pkgs/qtcm.
All Python code in this package, and the Fortran files setbypy.F90 and wrapcall.F90 ,
are© 2003–2008 by Johnny Lin13 and constitutes a library that is covered under the
GNU Lesser General Public License (LGPL):

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License14 as published
by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

13http://www.johnny-lin.com
14http://www.gnu.org/copyleft/lesser.html

http://www.johnny-lin.com/py_pkgs/qtcm
http://www.johnny-lin.com
http://www.gnu.org/copyleft/lesser.html

1.4. CURRENT VERSION INFORMATION AND ACKNOWLEDGMENTS 11

This library is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software Founda-
tion, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

You can contact Johnny Lin at his email address or at North Park
University, Physics Department, 3225 W. Foster Ave., Chicago, IL 60625,
USA.

All other Fortran code in this package, as well as the makefiles, are covered by
licenses (if any) chosen by their respective owners.

This manual, in all forms (e.g., HTML, PDF, LATEX), is part of the documentation
of the qtcm package and is © 2007–2008 by Johnny Lin. Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Doc-
umentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license can be found here15.

Transparent copies of this document are located online in PDF16 and HTML17

formats. The LATEX source files are distributed with the qtcm distribution. While the
HTML version is nearly identical to the PDF and LATEX versions, not every feature in
the manual was successfully converted. This is particularly true with figures, which
are unnumbered in the HTML version and may be formatted differently than the au-
thoritative PDF version. Thus, please consider the LATEX version as the authoritative
version.

Acknowledgements: Thanks to David Neelin and Ning Zeng and the Cli-
mate Systems Interactions Group at UCLA for their encouragement and help. On
the Python side, thanks to Alexis Zubrow, Christian Dieterich, Rodrigo Caballero,
Michael Tobis, and Ray Pierrehumbert for steering me straight. Early versions of
some of this work was carried out at the University of Chicago Climate Systems
Center, funded by the National Science Foundation (NSF) Information Technology
Research Program under grant ATM-0121028. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the author and do
not necessarily reflect the views of the NSF.

Intel® and Xeon® are registered trademarks of Intel Corporation. Matlab® is
a registered trademark of The MathWorks. UNIX® is a registered trademark of The
Open Group.

15http://www.gnu.org/licenses/fdl.html
16http://www.johnny-lin.com/py pkgs/qtcm/doc/manual.pdf
17http://www.johnny-lin.com/py pkgs/qtcm/doc/

http://www.gnu.org/licenses/fdl.html
http://www.johnny-lin.com/py_pkgs/qtcm/doc/manual.pdf
http://www.johnny-lin.com/py_pkgs/qtcm/doc/

12 CHAPTER 1. INTRODUCTION

1.5 Summary of Release History

� 2008 Sep 12: Version 0.1.2 released. Summary of changes:

– Create Qtcm method get qtcm1 item. This method is effectively an alias
of method get qtcm item.

– Create Qtcm method set qtcm1 item. This method is effectively an alias
of method set qtcm item.

– Update User’s Guide to phase out references to the get qtcm item and
set qtcm item methods. Adding the “1” to the method names makes the
purpose of the methods clearer.

– Add unit tests to cover methods get qtcm1 item and set qtcm1 item.

� 2008 Jul 30: Updates to the User’s Guide (just the online versions, not the
copies released with the tarball).

� 2008 Jul 15: First publicly available distribution released (v0.1.1).

1.6 A Brief Description of The QTCM1

This description is copied from Ch. 3 of Lin [2], with minor revisions. Model for-
mulation is fully described in Neelin & Zeng [3] and model results are described in
Zeng et al. [5]. Neelin & Zeng [3] is based upon v2.0 of QTCM1 and Zeng et al. [5]
is based on QTCM1 v2.1. The QTCM1 manual18 [4] describes the details of model
implementation.

QTCM1 differs from most full-scale GCMs primarily in how the vertical tem-
perature, humidity, and velocity structure of the atmosphere is represented. First,
instead of representing the vertical structure by finite-differenced levels, the model
uses a Galerkin expansion in the vertical. The vertical basis functions are chosen ac-
cording to analytical solutions under convective quasi-equilibrium conditions, so only
a few need be retained. Temperature and humidity are each described by separate
vertical basis functions (a1 and b1, respectively). Low-level variations in the humidity
basis are larger than in the temperature basis. For velocity, QTCM1 uses a single
baroclinic basis function (V1) defined consistently with the temperature basis func-
tion, as well as a barotropic velocity mode (V0). The vertical profiles of a1, b1, and
V1 are given in Figure 1.1. Currently, QTCM1 does not include a separate vertical
degree of freedom describing the PBL. The horizontal grid spacing of the model is
5.625◦ longitude by 3.75◦ latitude.

These modes are chosen to accurately capture deep convective regions. Outside
deep convective regions the mode is simply a highly truncated Galerkin represen-
tation. The system is much more tightly constrained than a full-scale GCM, yet

18http://www.atmos.ucla.edu/∼csi/qtcm man/v2.3/qtcm manv2.3.pdf

http://www.atmos.ucla.edu/$sim $csi/qtcm_man/v2.3/qtcm_manv2.3.pdf

1.6. A BRIEF DESCRIPTION OF THE QTCM1 13

(a) a1 and b1 (b) V1

Figure 1.1: Vertical profiles of basis functions for (a) temperature a1 (solid) and
humidity b1 (dashed) and (b) baroclinic component of horizontal velocity V1.

hopefully retains the essential dynamics and nonlinear feedbacks. The result is that
QTCM1 is easier to diagnose than a GCM, and is computationally fast (about 8 min-
utes per year on a Sun Ultra 2 workstation). Zeng et al. [5] show results indicating
this intermediate-level model does a reasonable job simulating tropical climatology
and ENSO variability.

Below is a summary of the main model equations [3]:

∂tv1 +DV 1(v0,v1) + fk× v1 = −κ∇T1 − ε1v1 − ε01v0 (1.1)

∂tζ0 + curlz(DV 0(v0,v1)) + βv0 = −curlz(ε0v0)− curlz(ε10v1) (1.2)

â1(∂t +DT1)T1 + MS1∇ · v1 = 〈Qc〉+ (g/pT)(−R↑
t −R↓

s + R↑
s + St − Ss + H) (1.3)

b̂1(∂t +Dq1)q1 −Mq1∇ · v1 = 〈Qq〉+ (g/pT)E (1.4)

where (1.1) describes the baroclinic wind component, (1.2) describes the barotropic
wind component, (1.3) is the temperature equation, and (1.4) is the moisture equa-
tion.

In the simplest formulation, the vertically integrated convective heating and mois-
ture sink are assumed to be equal and opposite, so:

− 〈Qq〉 = 〈Qc〉 = ε∗c(q1 − T1) (1.5)

For its convective parameterization for Qc, this model uses the Betts-Miller [1]
moist convective adjustment scheme, a scheme that is also used in some GCMs. In
the convective parameterization, the coefficient ε∗c is defined as:

ε∗c ≡ â1b̂1(â1 + b̂1)
−1τ−1

c H(C1) (1.6)

14 CHAPTER 1. INTRODUCTION

where H(C1) is zero for C1 ≤ 0, and one for C1 > 0, and C1 is a measure of the con-
vective available potential energy (CAPE), projected onto the model’s temperature
and moisture basis functions.

Sensible heat (H) and evaporation (E) are given as bulk-aerodynamic formula-
tions:

H = ρaCDVs(Ts − (Trs + a1sT1)) (1.7)

E = ρaCDVs(qsat(Ts)− (qrs + b1sq1)) (1.8)

Longwave radiation components are denoted by R, and net shortwave radiation
is denoted by S. The terms DV 1 and DV 0 are the advection-diffusion operators for
the momentum equations (projected onto V0 and V1(p), respectively). The terms
DT1 and Dq1 are the advection-diffusion operators for the temperature and moisture

equations, respectively, using a vertical average projection. The 〈X〉 and X̂ operators
are equivalent and denote vertically integration over the troposphere. Please see
Neelin & Zeng [3] and Zeng et al. [5] for a more complete description of equations
and coefficients.

Chapter 2

Installation and Configuration

2.1 Summary and Conventions

This section provides a summary of the steps needed to install qtcm, and a description
of the naming conventions used in this chapter. If you have had a decent amount of
experience with Python and installing software on a Unix system, this section will
probably be all you need to read. The installation steps are:

1. Install a Fortran compiler (see Section 2.2 for a list of compilers known to work).
This compiler should be in a directory listed in your system path (e.g., /usr/bin,
etc.).

2. Install all required packages (see Section 2.3 for details): Python, matplotlib
(plus the basemap toolkit), NumPy (which includes f2py), Scientific Python,
LATEX, and netCDF.

Python packages are required to be installed on your system in a directory
listed in your sys.path, and the other packages/libraries are required to be
in standard directories listed in your system path (e.g., /usr/bin, /sw/include,
etc.).

Make sure the executable for Python can be called at the Unix command line
by typing both python. You might need to define a Unix alias that maps
python2.4 (or whichever version of Python you are using) to python.

3. Download1 the qtcm tarball and extract the distribution into a temporary di-
rectory for building purposes. qtcm-0.1.2 is the name of the qtcm distribution
directory; the number following the hyphen is the version number of the distri-
bution.

1http://www.johnny-lin.com/py pkgs/qtcm/

15

16 CHAPTER 2. INSTALLATION AND CONFIGURATION

In this manual, the path to qtcm-0.1.2 will be called the “qtcm build path” and
be given as /buildpath. When you see /buildpath, please substitute the actual
temporary directory you created for building purposes.

4. The qtcm distribution directory qtcm-0.1.2 contains the following principal sub-
directories: doc , lib, src , test. Documentation is in doc , all the package modules
are in lib, building of extension modules will take place in src , and testing of
the package is done in test.

5. Compile qtcm extension modules in src : Go to src , copy the makefile from
src/Makefiles corresponding to your system into src , rename to makefile, make
changes to the makefile as needed, and execute:

make clean

make qtcm full 365.so

make qtcm parts 365.so

If you executed the make commands in src,, the extension modules will be
automatically placed in lib in the qtcm-0.1.2 directory. See Section 2.4 for
details.

6. Copy the entire contents of lib in qtcm-0.1.2 (not lib itself) to a directory
named qtcm that is on your sys.path. For instance, for Mac OS X using Fink,
many Python packages are located in a directory named /sw/lib/python2.4/site-
packages, or something similar, and this directory is on the system sys.path. If
this is the case for your system, copy the contents of lib into /sw/lib/python2.4/-
site-packages/qtcm. (For Unix systems, the equivalent directory is usually /usr/-
local/lib/python2.4/site-packages.)

7. Test the qtcm distribution in test: This step is optional and can take a while.
Testing requires you to first generate a suite of benchmarks using the pure-
Fortran QTCM1 model, then running the tests of qtcm by typing:

python test all.py

at the Unix command line while in test. See Section 2.5 for details.

At some point, I will automate the installation using Python’s distutils2 utili-
ties.

2http://docs.python.org/dist/dist.html

http://docs.python.org/dist/dist.html

2.2. FORTRAN COMPILER 17

2.2 Fortran Compiler

You must have a Fortran compiler installed on your system in order to compile qtcm.
The compiler must be able to interface with a pre-processor, as QTCM1 makes copious
use of pre-processor directives. qtcm is known to work with the following Fortran
compilers on the following platforms:

Compiler Compiler Web Site Platform(s)
g95 http://www.g95.org/ Mac OS X

It will probably work with other platforms, but I haven’t been able to test plat-
forms besides those listed above. Note that g95 is not GNU Fortran (gfortran), the
Fortran 95 compiler included with the more recent versions of GCC.

2.3 Required Packages

The following Python packages are required to be installed on your system in a
directory listed in your sys.path:

� Python3: The Python programming language and interpreter. Make sure you
have a version recent enough to be compatible with all the needed Python
packages.

� matplotlib4: Scientific plotting package, using Matlab-like syntax. The basemap
toolkit for matplotlib must also be installed.

� NumPy5: The standard array package for Python. The module name of NumPy
imported in a Python session is numpy.

� Scientific Python6: Has netCDF file operators, in addition to other routines of
use in scientific computing. The module name of Scientific Python imported in
a Python session is Scientific.

One other required Python package, f2py, is now a part of the NumPy package,
and so installation of NumPy is sufficient to give you both.

The package SciPy7, which includes several Python-accessible scientific libraries,
also includes NumPy (and thus f2py), so if you install SciPy, you don’t have to install
NumPy again. Note that SciPy is not the same as Scientific Python; the names are
confusing.

A few non-Python packages are also required:

3http://www.python.org/
4http://matplotlib.sourceforge.net/
5http://numpy.scipy.org/
6http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
7http://www.scipy.org

http://www.g95.org/
http://gcc.gnu.org/fortran/
http://www.python.org/
http://matplotlib.sourceforge.net/
http://numpy.scipy.org/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://www.scipy.org

18 CHAPTER 2. INSTALLATION AND CONFIGURATION

� LATEX: A scientific typesetting program used by the Qtcm instance method
plotm to handle exponents and subscripts. The most common Unix distribution
of LATEX is teTeX8.

� netCDF: This set of libraries enables one to write datasets into a platform
independent, binary format, with metdata attached. The netCDF 3.6.2 library9

source code can be downloaded from UCAR10.

For most Unix installations, the easiest way to install all the above is via a package
manager, for instance apt-get in Debian GNU/Linux, aptitude or synaptic in
Ubuntu GNU/Linux, and fink in Mac OS X. Of course, you can also download a
package’s source code and build direct and/or install using Python’s distutils11

utilities.

2.4 Compiling Extension Modules

The extension modules (.so files) are imported and used by qtcm objects, and contain
the Fortran QTCM1 model that is called by the qtcm Python wrappers. These
extension modules are located in the lib directory of the qtcm distribution, and, in
general, need to be created only when the qtcm package is installed.

Two extension modules are created: qtcm full 365.so and qtcm parts 365.so.
Both modules define QTCM1 models where:

� A year is 365 days long (makefile macro YEAR360 is off).

� Model output is written to netCDF files (makefile macro NETCDFOUT is on).

� The atmospheric boundary layer model is used (makefile macro NO ABL is off).

� A global domain is used (makefile macro SPONGES is off).

� Topography effects due to induced divergence are not included (makefile macro
TOPO is off).

� Coupling between atmosphere and ocean is through mean fluxes (makefile macro
CPLMEAN is off).

� The mixed layer ocean model is not used (makefile macros MXL OCEAN and
BLEND SST are both off).

8http://www.tug.org/teTeX
9http://www.unidata.ucar.edu/software/netcdf/

10http://www.unidata.ucar.edu/downloads/netcdf/netcdf-3 6 2/
11http://docs.python.org/dist/dist.html

http://www.tug.org/teTeX
http://www.unidata.ucar.edu/software/netcdf/
http://docs.python.org/dist/dist.html

2.4. COMPILING EXTENSION MODULES 19

(All other makefile macros not listed are also turned off.) The only difference
between these two extension modules is that the “full” module is used by Qtcm in-
stances where compiled form is set to ’full’, and the “parts” module is used by
Qtcm instances where compiled form is set to ’parts’. See Section 4.4 for details
about the compiled form attribute.

The extension modules are created through the following steps:

1. Go to the qtcm distribution directory qtcm-0.1.2 located in your build path
/buildpath. Go to the src sub-directory. This is where all the building of the
extension modules will take place.

2. Copy the makefile that corresponds to your platform to the src directory, and
rename it makefile. The Makefiles sub-directory of src contains makefiles for
various platforms.

3. In makefile, make the following changes:

(a) Change the FC environment variable as needed, if your Fortran compiler is
different.

(b) Change the FFLAGSM environment variable, if the compiler flags listed are
not supported by your compiler.

(c) Change the -I and -L parts of the NCINC and NCLIB environment variables
so that the paths for the netCDF library and include files match your
system’s installation:

NCINC=-I/yourpath/netcdf/include

NCLIB=-L/yourpath/netcdf/lib -lnetcdf

Set yourpath to the full path to the netcdf directory where the include
and lib sub-directories are that hold the netCDF libraries and include files.
(You shouldn’t have to change the -l part of NCLIB, since it is standard
to name the netCDF library libnetcdf.a. But if you have a non-standard
installation, change the -l part too.)

4. At the Unix prompt, type:

make clean && make qtcm full 365.so && make qtcm parts 365.so

to clean up leftover files from previous compilations, and to compile the exten-
sion module shared object files qtcm full 365.so and qtcm parts 365.so.

The makefile will automatically move the shared object files into ../lib, overwriting
any pre-existing files of the same name. A detailed description of the makefile and
using f2py is given in Section 6.6, if you wish to create a different extension module.

20 CHAPTER 2. INSTALLATION AND CONFIGURATION

2.5 Testing the Installation

The qtcm distribution comes with a set of tests for the package, using Python’s
unittest package. Just to warn you, the tests take around an hour to run. The
tests will not work if the contents of lib after you’ve finished building qtcm have not
been copied to a directory named qtcm that is on your sys.path path, so make sure
you’ve gone through all the install steps (summarized in Section 2.1) before you do
these tests.

NB: For these tests to work, both python and python2.4 must refer to the
executable for the Python installation on your system that you are using for running
qtcm.

The tests require a set of benchmark output files in the test/benchmarks directory
in the qtcm-0.1.2 directory (the output will be in directories whose names begin
with “aquaplanet” or “landon”). These output files are not included with the qtcm

distribution, and must be created, by doing the following:

1. Goto the directory test/benchmarks/create/src in the qtcm-0.1.2 qtcm distribu-
tion directory, and copy the makefile from sub-directory Makesfiles, that cor-
responds to your system to the test/benchmarks/create/src directory. Rename
the makefile in test/benchmarks/create/src to makefile.

2. In makefile, make the following changes:

(a) Change the FC environment variable as needed, if your Fortran compiler is
different.

(b) Change the FFLAGSM environment variable, if the compiler flags listed are
not supported by your compiler.

(c) Change the -I and -L parts of the NCINC and NCLIB environment variables
so that the paths for the netCDF library and include files match your
system’s installation:

NCINC=-I/yourpath/netcdf/include

NCLIB=-L/yourpath/netcdf/lib -lnetcdf

Set yourpath to the full path to the netcdf directory where the include
and lib sub-directories are that hold the netCDF libraries and include files.
(You shouldn’t have to change the -l part of NCLIB, since it is standard
to name the netCDF library libnetcdf.a. But if you have a non-standard
installation, change the -l part too.)

3. Go to the directory test/benchmarks/create in the qtcm-0.1.2 qtcm distribution
directory.

4. Type python create benchmarks.py at the Unix command line to run the
benchmark creation script.

2.6. MODEL PERFORMANCE 21

The created benchmarks will be located in test/benchmarks, in directories with
names related to the run that was done, as described earlier. The benchmarks are
created using the pure-Fortran QTCM1 model code, version 2.3 (August 2002), with
an altered makefile (described above) and the following code change: In all .F90 files,
occurrences of:

Character(len=130)

are changed to:

Character(len=305)

This enables the model to properly deal with longer filenames. The number “305” is
chosen to make search and replace easier.

Once the benchmarks are created, you can test the qtcm package by doing the
following:

1. Go to the test directory in the qtcm-0.1.2 directory.

2. Type python test all.py at the Unix command line.

If at the end of the test runs you see this message (or something similar):

--

Ran 93 tests in 1244.205s

OK

then everything worked fine! If you get any other message, the test(s) have failed.

2.6 Model Performance

The wall-clock time values below give the mean over three separate 365 day aqua-
planet runs, using climatological sea surface temperature for lower boundary forcing.
NetCDF output is written daily, for both instantaneous and mean values. The time
step is 1200 sec, and the version of qtcm used is 0.1.1. The horizontal grid spacing of
all model versions is 5.625◦ longitude by 3.75◦ latitude. Values are in seconds:

System Pure Full Parts
Mac OS X: MacBook 1.83 GHz Intel Core
Duo running Mac OS X 10.4.10 with 1 GB
RAM (Python 2.4.3, NumPy 1.0.3, f2py

2 3816).

152.59 153.63 158.94

Ubuntu GNU/Linux: Dell PowerEdge 860
with 2.66 GHz Quad Core Intel Xeon pro-
cessors (64 bit) running Ubuntu 8.04.1 LTS
(Python 2.5.2, NumPy 1.1.0, f2py 2 5237).

43.73 44.79 47.45

22 CHAPTER 2. INSTALLATION AND CONFIGURATION

“Pure” refers to the pure-Fortran version of QTCM1. “Full” refers to a qtcm run
session with compiled form set to ’full’. “Parts” refers to a qtcm run session with
compiled form set to ’parts’. (Section 4.4 has details about the difference between
compiled forms.)

The ’parts’ version of qtcm gives Python the maximum flexibility in accessing
compiled QTCM1 model subroutines and variables. The price of that flexibility is
an increase in run time of approximately 4–9% over the pure-Fortran version. The
difference in performance between the ’full’ version of qtcm and the pure-Fortran
version of QTCM1 is between negligible and 3% longer.

To make a timing for the pure-Fortran model, go to test/benchmarks/timing/work
in /buildpath and run the timing 365.sh script in that directory. That script runs the
QTCM1 model using /usr/bin/time, which at the end of the script will output the
amount of time it took to make the model run. Run the timing script three times
and average the values to obtain a time comparable to the above.

To make a timing for the qtcm model, type python timing 365.py while in the
test directory in /buildpath. Three run sessions will be made for compiled form equal
to ’full’ and ’parts’, the times are averaged, and the value are output at the end
of the script.

2.7 Installing in Mac OS X

2.7.1 Introduction

This section describes issues and a summary of the installation steps I followed to in-
stall qtcm on a Mac running OS X. It is a specific realization of the general installation
instructions found in Sections 2.1–2.5. I first worked through these installation steps
during June–July 2007, with updates during July 2008. The best way to go through
this section is to go through the summary of the installation steps in Section 2.7.6,
and looking back to other sections as needed.

2.7.2 Platform and Unix Dependencies

This work was done on a MacBook 1.83 GHz Intel Core Duo running Mac OS X
10.4.11. My machine has 1 GB RAM and 64 GB of disk in its main partition.

I recommend you turn-off your antivirus software before you do the installs. Prob-
lems have been reported by Fink users12 using the Fink package manager with an-
tivirus software enabled.

There are a variety of dependencies that are required to get your Mac up-and-
running as a scientific computing platform. The most basic is installing Apple’s

12http://finkproject.org/faq/usage-fink.php?phpLang=en#kernel-panics

2.7. INSTALLING IN MAC OS X 23

XCode13 developer tools.14 This set of tools contains compilers and libraries needed
to do anything further. You have to be a member of Apple’s Developer Connection,
but registration is free.

Besides XCode, there are a variety of Unix libraries and utilities that you need.
I first tried installing them by myself, from scratch, into /usr/local , but it was hard
to keep track of all the dependencies. A few that did work, and that I installed
from their disk images, are: MacTeX15, MAMP16, and Tcl/Tk Aqua BI (Batteries
Included)17.18

For everything else, thankfully, there’s the Fink Project19 which uses a package
manager built upon Debian tools to install ports of Unix programs onto a Mac. I
just downloaded20 a binary version of the Fink 0.8.1 installer for Intel Macs, installed
Fink, and used its package management tools to install (almost) everything else I
needed.21

Although you do not need anything besides a Fortran compiler and the netCDF
libraries to run QTCM1 in its pure-Fortran form, in order to manipulate the model
and use this Python version qtcm, you need to have Python installed. The default
Python that comes with the Mac is a little old, so I used Fink to also install Python
2.5 and related packages, including matplotlib23, ScientificPython24, and SciPy25 (see
Section ?? for details).

2.7.3 Fortran Compiler

There are a variety of high-quality, commercial Fortran compilers. Unfortunately,
because I do not have a research budget, I am not able to use those compilers. The
GNU Compiler Collection26 (GCC) provides a suite of open-source compilers, some of

13http://developer.apple.com/tools/xcode/
14The package should work in Mac OS X 10.4 with XCode 2.4.1 and higher; I’ve tried it with both

2.4.1 and XCode 2.5. Note that XCode 3.1 only works on Mac OS X 10.5.
15http://www.tug.org/mactex/
16http://www.mamp.info/
17http://tcltkaqua.sourceforge.net/
18Theoretically you can use Fink to install the equivalent of these packages, but I like the specific

collection found in these packages. For instance, Tcl/Tk Aqua BI runs natively on the Mac.
19http://www.finkproject.org/
20http://www.finkproject.org/download/index.php?phpLang=en
21The one drawback of Fink is that it sometimes has stability problems. In those cases, Fink

provides command line suggestions to fix the problems, which sometimes will work. If not, sometimes
deleting Fink and everything it installed,22 and starting afresh, will do the trick. It also appeared to
me that sometimes when I installed multiple packages via one fink install call, the installation
did not work as well as when I installed only one package per call.

23http://matplotlib.sourceforge.net/
24http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
25http://www.scipy.org
26http://gcc.gnu.org/

http://developer.apple.com/tools/xcode/
http://www.tug.org/mactex/
http://www.mamp.info/
http://tcltkaqua.sourceforge.net/
http://www.finkproject.org/
http://www.finkproject.org/download/index.php?phpLang=en
http://matplotlib.sourceforge.net/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://www.scipy.org
http://gcc.gnu.org/

24 CHAPTER 2. INSTALLATION AND CONFIGURATION

which are the standards of their language. Most of the GCC compilers are installed
on your Mac when you install XCode.

GNU Fortran27 (gfortran), is the Fortran 95 compiler included with the more
recent versions of GCC. Unfortunately, I was not able to get it to compile QTCM1.
There is a second open-source Fortran compiler, G9528 (g95), which some feel is
farther along in its development than gfortran. I was able to successfully compile
QTCM1 with g95 on my Mac. I used Fink to install G95 (see Section ?? for details).

2.7.4 NetCDF Libraries

For some reason, the netCDF libraries and include files installed by Fink didn’t
correspond to the files needed by the calling routines in qtcm. To solve this, I compiled
my own set of netCDF 3.6.2 libraries29 using the tarball downloaded from UCAR30.

Once I uncompressed and untarred the package, and went into the top-level direc-
tory of the package, I built the package by typing the following at the Unix prompt:

./configure --prefix=/Users/jlin/extra/netcdf

make check

make install

This installed the netCDF binaries, libraries, and include files into sub-directories
bin, lib, and include in the directory specified by --prefix. If you want to install
the netCDF libraries in the default (usually /usr/local), just leave out the --prefix

option.

Note: When you build netCDF, make sure the build directory is not in the direc-
tory tree of --prefix (or the default directory /usr/local).

2.7.5 Makefile Configuration

NetCDF

In the src directory in the qtcm distribution, there is a sub-directory Makefiles that
contains the makefiles for a variety of platforms. Edit the file makefile.osx g95 so that
the lines specifying the environment variables for the netCDF libraries and include
files:

NCINC=-I/Users/jlin/extra/netcdf/include

NCLIB=-L/Users/jlin/extra/netcdf/lib -lnetcdf

27http://gcc.gnu.org/fortran/
28http://www.g95.org/
29http://www.unidata.ucar.edu/software/netcdf/
30http://www.unidata.ucar.edu/downloads/netcdf/netcdf-3 6 2/

http://gcc.gnu.org/fortran/
http://www.g95.org/
http://www.unidata.ucar.edu/software/netcdf/

2.7. INSTALLING IN MAC OS X 25

are changed to the path where your manually compiled netCDF libraries and
include files are.

Copy makefile.osx g95 from the Makefiles sub-directory in src into src . In other
words, from the qtcm distribution directory (i.e., /buildpath), at the Unix prompt
execute:

cp src/Makefiles/makefile.osx g95 src/makefile

Linking Order

Compilers in the GNU Compiler Collection (GCC) search libraries and object files in
the order they are listed in the command-line, from left-to-right31. Thus, if routines
in b.o call routines in a.o, you must list the files in the order a.o b.o.

For some reason, that isn’t the case for g95. Thus, you will find g95 makefile rules
structured like the following (below is part of the rule to create an executable (qtcm)
for benchmark runs):

qtcm: main.o

$(FC) -O $(NCINC) -o $@ main.o $(QTCMLIB) $(NCLIB)

even though main.o depends on the QTCM library (specified in macro setting
$(QTCMLIB)), which in turn depends on the netCDF library (specified in macro setting
$(NCLIB)).

2.7.6 Summary of Steps

The following summarizes all the steps I took to install qtcm in Mac OS X:

1. Install XCode 2.532.

2. Install MacTeX33, MAMP34, and TCL/Tk Aqua BI (Batteries Included)35.

3. Install Fink 0.8.136. Make sure you set up your environment to enable you to
use the packages you install with Fink (e.g. PATH settings, etc.). Most of the
time, that just means adding the line source /sw/bin/init.csh to your .cshrc
file (or the equivalent in your .bashrc).

Note that for many of the packages needed to run qtcm, you need to con-
figure Fink to download packages from the unstable trees. To do that, add
unstable/main and unstable/crypto to the Trees: line in /sw/etc/fink.conf ,
and run:

31http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Link-Options.html#index-l-670
32http://developer.apple.com/tools/xcode/
33http://www.tug.org/mactex/
34http://www.mamp.info/
35http://tcltkaqua.sourceforge.net/
36http://www.finkproject.org/download/index.php?phpLang=en

http://www.finkproject.org/doc/users-guide/install.php#setup
http://www.finkproject.org/faq/usage-fink.php?phpLang=en#unstable
http://www.finkproject.org/faq/usage-fink.php?phpLang=en#unstable
http://developer.apple.com/tools/xcode/
http://www.tug.org/mactex/
http://www.mamp.info/
http://tcltkaqua.sourceforge.net/
http://www.finkproject.org/download/index.php?phpLang=en

26 CHAPTER 2. INSTALLATION AND CONFIGURATION

fink selfupdate

fink index

fink scanpackages

fink update-all

When selfupdate runs, choose rsync for the self update method. If you do
not, Fink will not look in the unstable trees for packages.

4. Use Fink to install the g95 Fortran compiler. From a Unix prompt, type:

fink --use-binary-dist install g95

5. Use Fink to install Python and the NumPy package (which f2py is a part of).
From a Unix prompt, type:

fink --use-binary-dist install python25

fink --use-binary-dist install scipy-core-py25

(Numpy used to be called SciPy Core.) If you want to install Python 2.4 instead,
just change the “25” and “py25” above (and in later occurrences) to “24” and
“py24”, respectively. Note that Fink does not have a version of epydoc for
Python 2.4, so if you wish to create documentation using epydoc, you will need
to install Python 2.5.

6. Install teTeX and LATEX2HTML using Fink. From a Unix prompt, type:

fink --use-binary-dist install tetex

fink --use-binary-dist install latex2html

When prompted, choose ghostscript and ghostscript-fonts to satistfy the de-
pendency (which should be the default options). I tried choosing system-
ghostscript8, but Fink looks for ghostscript 8.51 and didn’t recognize ghostscript
8.57 that was already installed in /usr/local (via my MacTeX install). LATEX2HTML
has a package required by the qtcm manual LATEX file.

7. Install additional programming and scientific packages and libraries using Fink.
From a Unix prompt, type:

fink --use-binary-dist install scientificpython-py25

fink --use-binary-dist install matplotlib-py25

fink --use-binary-dist install matplotlib-basemap-py25

fink --use-binary-dist install matplotlib-basemap-data-py25

fink --use-binary-dist install xaw3d

fink --use-binary-dist install fftw fftw3

fink --use-binary-dist install epydoc-py25

fink --use-binary-dist install graphviz

fink --use-binary-dist install scipy-py25

2.8. INSTALLING IN UBUNTU 27

8. Manually install netCDF 3.6.2 (see Section 2.7.4).

9. From this point on, you can follow the general instructions given in Section 2.1,
starting with step 3. Please do not ignore, however, Section 2.7’s Mac-specific
details.

2.8 Installing in Ubuntu

2.8.1 Introduction

This section describes installation issues I followed to install qtcm on my Dell Pow-
erEdge 860 running Ubuntu GNU/Linux 8.04.1 LTS (Hardy). The machine has 2.66
GHz Quad Core Intel Xeon processors (64 bit), 4 GB RAM, and 677 GB of disk in
its main partition. This section is a specific realization of the general installation in-
structions found in Sections 2.1–2.5. I worked through these installation steps during
July 2008. The best way to go through this section is to go through the summary of
the installation steps in Section 2.8.5, and looking back to other sections as needed.

2.8.2 Fortran Compiler

The easiest Fortran compiler to install in Ubuntu 8.04.1 is GNU Fortran37 (gfortran),
the Fortran 95 compiler included with the more recent versions of the GNU Compiler
Collection (GCC); you can use any package manager (e.g., apt-get, aptitude) to
install it. Unfortunately, I was not able to get it to compile QTCM1. I was, however,
able to successfully compile QTCM1 using the second open-source Fortran compiler,
G9538 (g95), which some feel is farther along in its development than gfortran. G95,
however, is not supported as an Ubuntu package, and so I had to manually install it.

I downloaded the binary version of G95 v0.91 (the Linux x86 64/EMT64 with 32
bit default integers) using the following curl command:39

curl -o g95.tgz http://ftp.g95.org/v0.91/g95-x86 64-32-linux.tgz

which saves the .tgz file as the local file g95.tgz . After that, I followed the G95
project’s standard installation instructions40 to finish the install.41 The regular Linux

37http://gcc.gnu.org/fortran/
38http://www.g95.org/
39I use curl because I usually access my Ubuntu server via a terminal session.
40http://g95.sourceforge.net/docs.html#starting
41The G95 installation instructions say you can put g95-install anywhere, and make a link to the

executable g95 in ∼/bin. I put g95-install in /usr/local , and while in /usr/local/bin, I put a link to
the G95 executable using the command:

sudo ln -s ../g95-install 64/bin/x86 64-suse-linux-gnu-g95 g95.

http://gcc.gnu.org/fortran/
http://www.g95.org/

28 CHAPTER 2. INSTALLATION AND CONFIGURATION

x86 version of G95 (in g95-x86-linux.tgz from the G95 website) did not work on my
machine.

2.8.3 NetCDF Libraries

For some reason, the netCDF libraries and include files installed from the Ubuntu
packages do not correspond to the files needed by the calling routines in qtcm. To solve
this, I compiled my own set of netCDF 3.6.2 libraries42 using the tarball downloaded
from UCAR43.

Once I uncompressed and untarred the package, and went into the top-level direc-
tory of the package, I built the package by typing the following at the Unix prompt:

export FC=g95

export FFLAGS="-O -fPIC"

export FFLAGS="-fPIC"

export F90FLAGS="-fPIC"

export CFLAGS="-fPIC"

export CXXFLAGS="-fPIC"

./configure

make check

sudo make install

(The export commands set environment variables for the Fortran compiler and
Fortran and other compiler flags. The -fPIC flag enables the compilers to create
position independent code, needed for shared libraries in Ubuntu on a 64 bit Intel
processor.)

The above installs the netCDF binaries, libraries, and include files into sub-
directories bin, lib, and include in /usr/local , the default. The include files for this
netCDF installation are thus located in /usr/local/include, and the libraries for this
netCDF installation are location in /usr/local/lib. (If you want to specify a different
installation location, use the --prefix option in configure.) While you don’t have
to have root privileges during the configuration and check steps, you do during the
installation step if you’re installing into /usr/local (thus the sudo in the last step).44

2.8.4 Makefile Configuration

NetCDF

In the src directory in the qtcm distribution, there is a sub-directory Makefiles that
contains the makefiles for a variety of platforms. Edit the file makefile.ubuntu 64 g95

42http://www.unidata.ucar.edu/software/netcdf/
43http://www.unidata.ucar.edu/downloads/netcdf/netcdf-3 6 2/
44Note that when you build netCDF, make sure the build directory is not in the directory tree of

--prefix or the default directory /usr/local .

http://www.unidata.ucar.edu/software/netcdf/

2.8. INSTALLING IN UBUNTU 29

so that the lines specifying the environment variables for the netCDF libraries and
include files:

NCINC=-I/usr/local/include

NCLIB=-L/usr/local/lib -lnetcdf

are changed to the path where your manually compiled netCDF libraries and
include files are.

Copy makefile.ubuntu 64 g95 from the Makefiles sub-directory in src into src . In
other words, from the qtcm distribution directory (i.e., /buildpath), at the Unix
prompt execute:

cp src/Makefiles/makefile.ubuntu 64 g95 src/makefile

Linking Order

Compilers in the GNU Compiler Collection (GCC) search libraries and object files in
the order they are listed in the command-line, from left-to-right45. Thus, if routines
in b.o call routines in a.o, you must list the files in the order a.o b.o.

For some reason, that isn’t the case for g95. Thus, you will find g95 makefile rules
structured like the following (below is part of the rule to create an executable (qtcm)
for benchmark runs):

qtcm: main.o

$(FC) -O $(NCINC) -o $@ main.o $(QTCMLIB) $(NCLIB)

even though main.o depends on the QTCM library (specified in macro setting
QTCMLIB), which in turn depends on the netCDF library (specified in macro setting
NCLIB).

Shared Object PIC

In order to compile the model in Ubuntu on a 64 bit Intel processor, the model and
the netCDF library it is linked to needs to be compiled to be position independent
code (PIC).46 This is accomplished with the -fPIC flag47.

In the qtcm makefiles, the -fPIC flag is introduced in the macro FFLAGSM, for
instance:

FFLAGSM = -O -fPIC

For makefiles used in creating extension modules, -fPIC must be passed into the f2py
call. To do so, put the flags:

45http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Link-Options.html#index-l-670
46http://www.gentoo.org/proj/en/base/amd64/howtos/index.xml?part=1&chap=3
47http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html

http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html

30 CHAPTER 2. INSTALLATION AND CONFIGURATION

--f90flags="-fPIC" --f77flags="-fPIC"

after the --fcompiler flag in the f2py calling line.
The -fPIC flag must also be used when compiling the netCDF libraries, as de-

scribed in Section 2.8.3. Failure to create PIC libraries in 64 bit Ubuntu can result
in errors like the following when creating the qtcm extension modules:

ld: /usr/local/lib/libnetcdf.a(fort-attio.o): relocation

R X86 64 32 against ‘a local symbol’ can not be used

when making a shared object; recompile with -fPIC

/usr/local/lib/libnetcdf.a: could not read symbols: Bad value

2.8.5 Summary of Steps

The following summarizes all the steps I took to install qtcm in Ubuntu 8.04.1 LTS
(Hardy) running on a Quad Core Intel Xeon (64 bit) machine. Note that while I use
the aptitude package manager, you are free to use any manager of your choice (e.g.,
apt-get, synaptic, etc.):

1. Install the G95 Fortran compiler from the binary distribution. See Section 2.8.2
for details.

2. Use an Ubuntu package manager to install the following packages, by typing:

sudo aptitude update

sudo aptitude install curl

sudo aptitude install python-epydoc

sudo aptitude install python-matplotlib

sudo aptitude install python-netcdf

sudo aptitude install python-scientific

sudo aptitude install python-scipy

sudo aptitude install texlive

Installing python-scipy will also install NumPy and f2py, so you don’t have
to install the python-numpy package separately.

Early-on as I debugged my qtcm install on Ubuntu, I encountered errors that
I thought came from an old version of NumPy48, and thus I replaced Ubuntu’s
packaged NumPy with NumPy 1.1.0 built directly from source.49 (Note, you
shouldn’t install your new NumPy in the default location, which may cause
problems later-on with Ubuntu’s package manager.) Later on, I concluded the
errors I had encountered were not because of the NumPy version, but by then
I didn’t want to try to reinstall NumPy again. So strictly speaking, the version

48http://cens.ioc.ee/pipermail/f2py-users/2008-June/001617.html
49http://sourceforge.net/project/showfiles.php?group id=1369&package id=175103

http://cens.ioc.ee/pipermail/f2py-users/2008-June/001617.html

2.8. INSTALLING IN UBUNTU 31

of Numpy I used is not the one bundled with python-scipy, but that shouldn’t
be a problem.

3. Manually install netCDF 3.6.2 from source (see Section 2.8.3).

4. Manually install the basemap package of matplotlib. The source for the
basemap toolkit is available from Sourceforge50 I obtained version 0.9.9.1 us-
ing the following curl command:

curl -o basemap.tar.gz \

http://voxel.dl.sourceforge.net/sourceforge/matplotlib/basemap-0.9.9.1.tar.gz

The README file in the basemap-0.9.9.1 directory has detailed installation
instructions. Note that you have to install the GEOS library first (README
has detailed directions on how to do that too). To be on the safe-side, I would
set the FC environment variable to the G95 compiler (e.g., with export FC=g95

in Bash).

5. From this point on, you can follow the general instructions given in Section 2.1,
starting with step 3. Please do not ignore, however, Section 2.8’s Ubuntu-
specific details.

50http://sourceforge.net/project/showfiles.php?group id=80706

32 CHAPTER 2. INSTALLATION AND CONFIGURATION

Chapter 3

Getting Started With qtcm

3.1 Your First Model Run

Figure 3.1 shows an example of a script to make a 30 day seasonal, aquaplanet model
run, with run name “test”, starting from November 1, Year 1.

from qtcm import Qtcm

inputs = {}
inputs[’runname’] = ’test’

inputs[’landon’] = 0

inputs[’year0’] = 1

inputs[’month0’] = 11

inputs[’day0’] = 1

inputs[’lastday’] = 30

inputs[’mrestart’] = 0

inputs[’compiled form’] = ’parts’

model = Qtcm(**inputs)

model.run session()

Figure 3.1: An example of a simple qtcm run.

The class describing the QTCM1 model is Qtcm. An instance of Qtcm, in this
example model, is created the same way you create an instance of any class. When
instantiating an instance of Qtcm, keyword parameters can be used to override any
default settings. In the example above, the dictionary inputs specifying all keyword
parameters is passed in on the instantiation of model.

The keyword parameter settings in Figure 3.1 have the following meanings:

� runname: This string (“test”) is used in the output filename. QTCM1 writes
mean and instantaneous output files to the directory given in model.outdir.value,

33

34 CHAPTER 3. GETTING STARTED WITH QTCM

with filenames qm runname.nc for mean output and qi runname.nc for instan-
taneous output.

� landon: When set to “0”, the land is turned off and the run is an aquaplanet
run. When set to “1”, the land model is turned on.

� year0: The year the run starts on.

� month0: The month the run starts on (11 = November).

� day0: The day of the month the run starts on.

� lastday: The model runs from day 1 to lastday.

� mrestart: When set to “0”, the run starts from default initial conditions (see
Section 4.7.2 for a table of those values). When set to “1”, the run starts from
a restart file.

� compiled form: This keyword sets what form the compiled QTCM1 model
has, and its value is saved to the instance’s compiled form attribute. It is a
string and can be set either to “parts” or “full”. Most of the time, you will
want to set it to ’parts’. This keyword is the only one that must be specified
on instantiation; the model instance will at least instantiate using only the
default settings for all the other keyword parameters (given in Appendix A).
See Section 4.4 for details about what the compiled form attribute controls.

By default, the SSTmode attribute, which controls whether the model will use
climatological sea-surface temperatures (SST) or real SSTs, is set to the value “sea-
sonal”, thus giving a run with seasonal forcing at the lower-boundary over the ocean.

This example assumes that the boundary condition files, sea surface temperature
files, and the model output directories are as specified in submodule defaults. Those
values are described in Section A.1.

3.2 Managing Directories

Most of the time, your boundary condition files and output files will not be in the
locations specified in Section A.1, or in the directory your Python script resides. The
easiest way to tell your Qtcm instance where your input/output files are is to pass
them in as keyword parameters on instantiation.

Figure 3.2 shows an example run where those directories are explicitly speci-
fied; in all other aspects, the run is identical to the one in Figure 3.1. In Fig-
ure 3.2, output from the model is directed to the directory described by string vari-
able dirbasepath. dirbasepath is created by joining the current working directory

3.2. MANAGING DIRECTORIES 35

from qtcm import Qtcm

rundirname = ’test’

dirbasepath = os.path.join(os.getcwd(), rundirname)

inputs = {}
inputs[’bnddir’] = os.path.join(os.getcwd(), ’bnddir’,

’r64x42’)

inputs[’SSTdir’] = os.path.join(os.getcwd(), ’bnddir’,

’r64x42’, ’SST Reynolds’)

inputs[’outdir’] = dirbasepath

inputs[’runname’] = rundirname

inputs[’landon’] = 0

inputs[’year0’] = 1

inputs[’month0’] = 11

inputs[’day0’] = 1

inputs[’lastday’] = 30

inputs[’mrestart’] = 0

inputs[’compiled form’] = ’parts’

model = Qtcm(**inputs)

model.run session()

Figure 3.2: An example qtcm run showing detailed description of input and output
directories.

36 CHAPTER 3. GETTING STARTED WITH QTCM

with the run name given in string variable rundirname.1 Setting keyword parameter
outdir to dirbasepath sends output to dirbasepath. Keywords bnddir and SSTdir

specify the directories where non-SST and SST boundary condition files, respectively,
are found.

Interestingly, the default version of QTCM1 does not send all output from the
model to outdir. The restart file qtcm yyyymmdd .restart (where yyyymmdd is the
year, month, and day of the model date when the restart file was written) is written
into the current working directory, not the output directory. Thus, if you do multiple
runs, you’ll have to manually deal with the restart files that will proliferate.

Neither the QTCM1 model nor the Qtcm object create the directories specified in
bnddir, SSTdir, and outdir. Failure to do so will create an error. I use Python’s
file management tools to make sure the output directory is created, and any old
output files are deleted. Here’s an example that does that, using the dirbasepath

and rundirname variables from Figure 3.2:

if not os.path.exists(dirbasepath): os.makedirs(dirbasepath)

qi file = os.path.join(dirbasepath, ’qi ’+rundirname+’.nc’)

qm file = os.path.join(dirbasepath, ’qm ’+rundirname+’.nc’)

if os.path.exists(qi file): os.remove(qi file)

if os.path.exists(qm file): os.remove(qm file)

3.3 Model Field Variables

The term “field” variable refers to QTCM1 model variables that are accessible at both
the compiled Fortran QTCM1 model-level as well as the Python Qtcm instance-level.
Field variables are all instances of the Field class, and are stored as attributes of the
Qtcm instance.2

Field class instances have the following attributes:

� id: A string naming the field (e.g., “Qc”, “mrestart”). This string should
contain no whitespace.

� value: The value of the field. Can be of any type, though typically is either a
string or numeric scalar or a numeric array.

� units: A string giving the units of the field.

� long name: A string giving a description of the field.

1The Python os module enables platform-independent handling of files and directories. The
os.path.join function resolves paths without the programmer needing to know all the possible
directory separation characters; the function chooses the correct separation character at runtime.
The os.getcwd function returns the current working directory.

2Note non-field variables can also be instances of Field, and that Qtcm instances have other
attributes that are not equal to Field instances.

3.4. RUN SESSIONS 37

Field instances also have methods to return the rank and typecode of value.
Remember, if you want to access the value of a Field object, make sure you

access that object’s value attribute. Thus, for example, to assign a variable foo to
the lastday value for a given Qtcm instance model, type the following:

foo = model.lastday.value

For scalars, this assignment sets foo by value (i.e., a copy of the value of attribute
model.lastday is set to foo). In general, however, Python assigns variables by
reference. Use the copy module if you truly want a copy of a field variable’s value
(such as an array), rather than an alias. For more details about field variables, see
Section 4.7.

3.4 Run Sessions

3.4.1 What is a Run Session?

A run session is a unit of simulation where the model is run from day 1 of simulation
to the day specified by the lastday attribute of a Qtcm instance. A run session
is a “complete” model run, at the beginning of which all compiled QTCM1 model
variables are set to the values given at the Python-level, and at the end of which
restart files are written, the values at the Python-level are overwritten by the values
in the Fortran model, and a Python-accessible snapshot is taken of the model variables
that were written to the restart file.

3.4.2 Changing Variables

Between run sessions, changing any field variable is as easy as a Python assignment.
For instance, to change the atmosphere mixed layer depth to 100 m, just type:

model.ziml.value = 100.0

When changing arrays, be careful to try to match the shape of the array.3 You
can use the NumPy shape function on a NumPy array to check its shape.

3.4.3 Continuing a Model Run

Figure 3.3 shows an example of two run sessions, where the second run session is a
continuation of the first.

3At the very least, match the rank of the array, which is required for the routines in setbypy
to properly choose which Fortran subroutine to use in reading the Python value. I haven’t tested
if only the rank is needed, however, for the passing to work, for a continuation run (my hunch is it
won’t).

38 CHAPTER 3. GETTING STARTED WITH QTCM

inputs[’year0’] = 1

inputs[’month0’] = 11

inputs[’day0’] = 1

inputs[’lastday’] = 10

inputs[’mrestart’] = 0

inputs[’compiled form’] = ’parts’

model = Qtcm(**inputs)

model.run session()

model.u1.value = model.u1.value * 2.0

model.init with instance state = True

model.run session(cont=30)

Figure 3.3: An example of two qtcm run sessions where the second run session is a
continuation of the first. Assume inputs is a dictionary, and that earlier in the script
the run name and all input and output directory names were added to the dictionary.

The first run session runs from day 1 to day 10. The second run session runs
the model for another 30 days. Setting the init with instance state of model to
True tells the model to use the the values of the instance attributes (for prognostic
variables, right-hand sides, and start date) are currently stored model as the initial
values for the run session.4 The cont keyword in the second run session call specifies
a continuation run, and the value gives the number of additional days to run the
model.

The set of runs described above would produce the exact same results as if you
had gone into the Fortran model after 10 days, doubled the first baroclinic mode
zonal velocity, and continued the run for another 30 days. With the Python example
above, however, you didn’t need to know you were going to do that ahead of starting
the model run (which is what a compiled model requires you to do). Section 4.5
describes continuation runs in detail.

3.4.4 Passing Restart Snapshots Between Run Sessions

The pure-Fortran QTCM1 uses a restart file to enable continuation runs. A Qtcm

instance can also make use of that option, through setting the mrestart attribute
value (see Section 4.5 and Neelin et al. [4] for details). It’s easier, however, instead of
using a restart file, to pass along a “snapshot” dictionary.

The Qtcm instance method make snapshot copies the variables that would be
written out to a restart file into a dictionary that is saves as the instance attribute

4Unless overridden, by default, init with instance state is set to True on Qtcm instance in-
stantiation.

3.5. CREATING MULTIPLE MODELS 39

snapshot. This snapshot can be saved separately, for later recall. Note that snapshots
are automatically made at the end of a run session.

The following example shows a model run session call, following which the snap-
shot is saved to the variable snapshot:5

model.run session()

mysnapshot = model.snapshot

After taking the snapshot, you might continue the run a while, and then decide to
return to the snapshot you saved. To do so, use the sync set py values to snapshot

method to reset the model instance values to mysnapshot before your next run session:

model.sync set py values to snapshot(snapshot=mysnapshot)

model.init with instance state = True

model.run session()

See Section 4.5.5 for details regarding the use of snapshots, as well as for a list of
what variables are saved in a snapshot.

3.5 Creating Multiple Models

3.5.1 Model Instances

Creating a new QTCM1 model is as simple as creating another Qtcm instance. For
instance, to instantiate two QTCM1 models, model1 and model2, type the following:

from qtcm import Qtcm

model1 = Qtcm(compiled form=’parts’)

model2 = Qtcm(compiled form=’parts’)

model1 and model2 do not share any variables in common, including the extension
modules holding the Fortran code. In creating the instances, a copy of the extension
modules are saved in temporary directories.

3.5.2 Passing Snapshots To Other Models

The snapshots described in Section 3.4.4 can also be passed around to other model
instances, enabling you to easily branch a model run:

5Remember Python assignment defaults to assignment by reference, so in this example
the variable mysnapshot is a pointer to the model.snapshot attribute. (However, note that
model.snapshot itself is not a reference, but a distinct copy of those variables; to do otherwise would
result in a non-static snapshot.) If the model.snapshot attribute is dereferenced, then mysnapshot
will become the sole pointer to the dictionary.

40 CHAPTER 3. GETTING STARTED WITH QTCM

model.run session()

mysnapshot = model.snapshot

model1.sync set py values to snapshot(snapshot=mysnapshot)

model2.sync set py values to snapshot(snapshot=mysnapshot)

model1.run session()

model2.run session()

The state of model after its run session is used to start model1 and model2. This
is an easy way to save time in spinning-up multiple models.

3.6 Run Lists

This feature of Qtcm objects is what really gives Qtcm model instances their flexibility.
A run list is a list of strings and dictionaries that specify what routines to run in
order to execute a particular part of the model. Each element of the run list specifies
the method or subroutine to execute, and the order of the elements specifies their
execution order.

For instance, the standard run list for initializing the the atmospheric portion of
the model is named “qtcminit”, and equals the following list:

[’ qtcm.wrapcall.wparinit’,

’ qtcm.wrapcall.wbndinit’,

’varinit’,

{’ qtcm.wrapcall.wtimemanager’: [1]},
’atm physics1’]

This list is stored as an entry in the runlists dictionary (with key ’qtcminit’).
runlists is an attribute of a Qtcm instance. Table 4.3 lists all standard run lists.

When the run list element in the list is a string, the string gives the name of
the routine to execute. The routine has no parameter list. The routine can be a
compiled QTCM1 model subroutine for which an interface has been written (e.g.,
qtcm.wrapcall.wparinit), a method of the of the Python model instance (e.g.,

varinit), or another run list (e.g., atm physics1).
When the run list element is a 1-element dictionary, the key of the dictionary

element is the name of the routine, and the value of the dictionary element is a list
specifying input parameters to be passed to the routine on call. Thus, the element:

{’ qtcm.wrapcall.wtimemanager’: [1]}

calls the qtcm.wrapcall.wtimemanager routine, passing in one input parameter,
which in this case is the value 1.

If you want to change the order of the run list, just change the order of the list.
To add or remove routines to be executed, just add and remove their names from the

3.7. MODEL OUTPUT 41

Qtcm Attribute Name NetCDF Output Name
’Qc’ ’Prec’

’FLWut’ ’OLR’

’STYPE’ ’stype’

Table 3.1: NetCDF output names for Qtcm field variables that are different from the
Qtcm and compiled QTCM1 model variable names. The netCDF names are case-
sensitive.

run list. Python provides a number of methods to manipulate lists (e.g., append).
Since lists are dynamic data types in Python, you do not have to do any recompiling
to implement the change.

The compiled form attribute must be set to ’parts’ in the Qtcm instance in
order to take advantage of the run lists feature of the class. Run lists are not available
for compiled form = ’full’, because subroutine calls are hardwired in the compiled
QTCM1 model Fortran code in that case.

3.7 Model Output

3.7.1 NetCDF Output

Model output is written to netCDF files in the directory specified by the Qtcm instance
attribute outdir. Mean values are written to an output file beginning with qm , and
instantaneous values are written to an output file beginning with qi .

The frequency of mean output is controlled by ntout, and the frequency of instan-
taneous output is controlled by ntouti. ntout.value gives the number of days over
which to average (and if equals -30, monthly means are calculated). ntouti.value

gives the frequency in days that instantaneous values are output (monthly if it equals
-30). (See Section 4.7.2 for a description of other output-control variables, and see the
QTCM1 manual [4] for a detailed description of how these variables control output.)

Figure 3.4 gives an example of a block of code to read netCDF output, where
datafn is the netCDF filename, and id is the string name of the field variable (e.g.,
’u1’, ’T1’, etc.). (Note that the netCDF identifier for field variables is the same as
the name in Qtcm, except for the variables given in Table 3.1.)

In the code in Figure 3.4, the array value is read into data, and the longitude
values, latitude values, and time values are read into variables lon, lat, and time,
respectively. As netCDF files also hold metadata, a description and the units of the
variable given by id, and each dimension, are read into variables ending in name and
units, respectively.

NB: All netCDF array output is dimensioned (time, latitude, longitude) when
read into Python using the Scientific package. This differs from the way Qtcm

42 CHAPTER 3. GETTING STARTED WITH QTCM

import numpy as N

import Scientific as S

fileobj = S.NetCDFFile(datafn, mode=’r’)

data = N.array(fileobj.variables[id].getValue())

data name = fileobj.variables[id].long name

data units = fileobj.variables[id].units

lat = N.array(fileobj.variables[’lat’].getValue())

lat name = fileobj.variables[’lat’].long name

lat units = fileobj.variables[’lat’].units

lon = N.array(fileobj.variables[’lon’].getValue())

lon name = fileobj.variables[’lon’].long name

lon units = fileobj.variables[’lon’].units

time = N.array(fileobj.variables[’time’].getValue())

time name = fileobj.variables[’time’].long name

time units = fileobj.variables[’time’].units

fileobj.close()

Figure 3.4: Example of Python code to read netCDF output. See text for description.

3.8. DOCUMENTATION 43

saves field variables, which follows Fortran convention (longitude, latitude). Please
be careful when relating the two types of arrays. Section 4.7.4 for a discussion of why
there is this discrepancy.

3.7.2 Visualization

The plotm method of Qtcm instances creates line plots or contour plots, as appropri-
ate, of model output of average fields of run session(s) associated with the instance.
Some examples, assuming model is an instance of Qtcm and has already executed a
run session:

� model.plotm(’Qc’, lat=1.875): A time vs. longitude contour plot is made
for the full range of time and longitude, at the latitude 1.875 deg N, for mean
precipitation.

� model.plotm(’Qc’, time=10): A latitude vs. longitude contour plot of pre-
cipitation is made for the full spatial domain at day 10 of the model run.

� model.plotm(’Evap’, lat=1.875, lon=[100,200]): A contour plot of time
vs. longitude of evaporation is made for the longitude points between 100 and
200 degrees E, at the latitude 1.875 deg N.

� model.plotm(’cl1’, lat=1.875, lon=[100,200], time=20): A deep cloud
amount vs. longitude line plot is made for the longitude points between 100 and
200 degrees east, at the latitude 1.875 deg N, at day 20 of the model run.

In these examples, the number of days over which the mean is taken equals
model.ntout.value. Also, the plotm method automatically takes into account the
Qtcm/netCDF variable differences described in Table 3.1.

3.8 Documentation

Section 1.4 gives the online locations of the transparent copies of this manual. Model
formulation is fully described in Neelin & Zeng [3] and model results are described in
Zeng et al. [5] ([3] is based upon v2.0 of QTCM1 and [5] is based on QTCM1 v2.1).
Additional documentation you’ll find useful include:

� The qtcm Package API Documentation6

� The Pure-Fortran QTCM1 Manual7 [4]

6http://www.johnny-lin.com/py pkgs/qtcm/doc/html-api/
7http://www.atmos.ucla.edu/∼csi/qtcm man/v2.3/qtcm manv2.3.pdf

http://www.johnny-lin.com/py_pkgs/qtcm/doc/html-api/
http://www.atmos.ucla.edu/$sim $csi/qtcm_man/v2.3/qtcm_manv2.3.pdf

44 CHAPTER 3. GETTING STARTED WITH QTCM

Chapter 4

Using qtcm

4.1 Introduction

Now that you’ve successfully run your first model instances, in this chapter I provide
detailed explanations regarding the features of qtcm. I present these explanations in
a documentary rather than didactic fashion; my goal is to document how the features
work. More details are given in the code docstrings. At the end of the chapter, in
Section 4.10, I provide a few cookbook ideas/examples of ways to use the model.

4.2 Model Instances

An instance of a Qtcm model is created in qtcm the same way you create an instance
of any class. For instance, to instantiate two Qtcm models, model1 and model2, I type
the following:

from qtcm import Qtcm

model1 = Qtcm(compiled form = ’full’)

model2 = Qtcm(compiled form = ’parts’)

In the above example, model1 uses the compiled QTCM1 model that runs the
model (essentially) using the Fortran driver, while model2 uses the compiled QTCM1
model where execution order and content all the way down to the atmospheric
timestep level is controlled by Python run lists. (Section 4.4 has more details about
the difference between compiled forms.)

For each instance of Qtcm, copies of all needed extension modules (e.g., .so files)
are copied to a temporary directory that is automatically created by Python. The full
path name of that directory is saved in the instance attribute sodir. These exten-
sion modules are then associated with the specific instance through private instance
attributes, and thus every instance of Qtcm has its own separate variable and name

45

46 CHAPTER 4. USING QTCM

space on both the Fortran and Python sides.1 The temporary directory and all of its
contents are deleted when the model instance is deleted.

On instantiation, Qtcm instances set all scalar field variables to their default values
as given in the submodule defaults (and listed in Section A.1), and assign the fields
as instance attributes. The instance attribute init with instance state is set to
True by default, unless overridden on instantiation.

4.3 Initializing a Model Run

In the pure-Fortran QTCM1, there are three broad classes of initialized variables:

1. Those that are read-in using a namelist,

2. Those that the are read-in from a restart file, and

3. Those that are set by assignment in the Fortran code.

These variables are a combination of scalars and arrays.
For qtcm, interfaces were built so that all classes of initialized variables that could

be user-controlled are accessible and changeable at the Python-level. For qtcm, the
set of variables that could be changed is also expanded, to include not just the first
and second classes of pure-Fortran QTCM1 initialized variables. This was done to
make qtcm more flexible. All variables that can be passed between the compiled
QTCM1 model and Python model levels are called field variables, and are described
in detail in Section sec:field.variables.

As it happens, all the namelist-set variables are scalars. In the pure-Fortran
QTCM1, those variables are given default values prior to reading in of the namelist.
To duplicate this functionality, on model instantiation, all scalar fields are set to
their default values as given in the submodule defaults and listed in Section A.1.
Most of the default values in defaults are the same as in the pure-Fortran QTCM1,
but there are a few differences.2 This setting of scalar defaults is the same for both
compiled form = ’full’ and compiled form = ’parts’ instances. Of course, all qtcm
fields are user-controllable, both via keyword input parameters at model instantiation
as well as through direct manipulation of the instance attribute that stores the field
variable.

The pure-Fortran QTCM1 initialized prognostic variables and right-hand sides are
set in the Fortran subroutine varinit. Their they are read-in from a restart file or,
as default, set by assignment. In qtcm, the same variables are initialized by a Qtcm in-
stance method of the same name, varinit, for the case when compiled form = ’parts’.

1The private instance attribute is qtcm. See Section 6.7.3 for details about private Qtcm instance
attributes.

2One difference being mrestart, which in qtcm will have the value of 0 in contrast to the pure-
Fortran QTCM1 where the default is the 1.

4.4. THE COMPILED FORM KEYWORD 47

For the case of compiled form = ’full’, the compiled QTCM1 subroutine that is
the same as in the pure-Fortran case is used, and that routine is inaccessible at the
Python level. See Section 4.5.5’s listing of snapshot variables, which also includes the
prognostic variables and right-hand sides that are set in varinit (both Fortran and
Python).

4.4 The compiled form Keyword

The qtcm package is a Python wrap of the Fortran routines that make up QTCM1.
The wrapping layer adds flexibility and functionality, but at the cost of speed. Thus,
I created two types of extension modules from the Fortran QTCM1 code, one which
permits very little control over the compiled Fortran routines at the Python level, and
one that allows the Python-level to control model execution in the compiled QTCM1
model all the way down to the atmospheric timestep level.3 The former extension
module corresponds to compiled form = ’full’ and the latter extension module to
compiled form = ’parts’.

For compiled form = ’full’, the compiled portion of the model encompasses
(nearly) the entire QTCM1 model as a whole. Thus, the only compiled QTCM1 model
modules or subroutines that Python should interact with is the driver routine (which
executes the entire model) and the setbypy module (which enables communication
between the compiled model and the Python-level of model fields.4

For compiled form = ’parts’, the compiled portion of the model does not en-
compasses the model as a whole, but rather is broken up into separate units (as
appropriate) all the way down to an atmosphere timestep. Thus, compiled QTCM1
model modules/subroutines that are accessible at the Python-level include those that
are executed within an atmosphere timestep on up.

Because the difference in compiled forms fundamentally affects how the Qtcm

instance facilitates Python-Fortran communication, this attribute must be set on
instantiation via a keyword input parameter.

In the rest of this section, to avoid being verbose, when I write ’full’, I mean the
situation where compiled form = ’full’. Likewise, when I write ’parts’, I mean
the situation where compiled form = ’parts’.

4.4.1 Initialization for compiled form = ’full’

For a model run of this case, the Qtcm instance will initialize the model using the
Fortran varinit subroutine in the compiled QTCM1 model. This subroutine does
the following:

3That control is via run lists, which are described in Section 4.6.
4The setbypy Python module is the wrap of the Fortran QTCM1 SetByPy module.

48 CHAPTER 4. USING QTCM

� If mrestart = 1, the restart file is used to initialize all prognostic variables. In
terms of start date, the following rules are used:

1. Variable dateofmodel is read from the restart file.

2. If day0, month0, and year0 are negative, or otherwise invalid (e.g., month0
greater than 12), the invalid value is replaced with the day, month, and/or
year of the day after that given by dateofmodel. If the value of day0,
month0, or year0 is not invalid in this sense, it is not replaced.

Thus, if the restart file gives dateofmodel equal to 101102 (year 10, month 11,
day 2), and day0 = -1, month0 = -1, year0 = -1, and mrestart = 1, the model will
start running from year 10, month 11, day 3. If dateofmodel equals to 101102,
and day0 = -1, month0 = 3, year0 = -1, the model will start running from year
10, month 3, day 3.

� If mrestart = 0, all prognostic variables and right-hand sides are set to an initial
value (which for most of those variables is zero). In terms of start date, day0
is set to 1 (and thus the value of day0 previously input is ignored), and both
month0 and year0 are set to 1 if their previously input values are invalid (where
invalid means less than 1, or, for month0, greater than 12). Otherwise, month0
and year0 are left unchanged. Variable dateofmodel has the value it had when
the variable was declared (which is determined by the compiler and usually is
zero; dateofmodel will not be properly set until subroutine TimeManager is
called.

Thus, if day0 = -1, month0 = -1, year0 = -1 is input into the model (say from a
namelist) and mrestart = 0, the model will start running from year 1, month
1, day 1, and dateofmodel at the exit of subroutine varinit will equal its
compiler-set default. If day0 = 14, month0 = 3, year0 = 11, and mrestart = 0 on
input into the model, the model will start running from year 11, month 3, day 1,
and dateofmodel at the exit of subroutine varinit will equal its compiler-set
default.

Note that dateofmodel can thus be inconsistent with month0 and year0 at the
exit of subroutine varinit.

This behavior with respect to initializing the start date is different than in QTCM1
versions 1.0 and 2.1. Please see the source code from those earlier QTCM1 versions
for details.

4.4.2 Initialization for compiled form = ’parts’

For ’parts’ model, the methodology of how initialized prognostic variables, right-
hand sides, and start date related variables are set is controlled by the Qtcm instance

4.4. THE COMPILED FORM KEYWORD 49

attribute/flag init with instance state. The initialization is (mostly) executed in
the Python varinit method in the following way:

� If init with instance state is False: The method as described for initializa-
tion for the ’full’ case is generally followed, with the exception that dateof-
model is set to match day0, month0, year0, prior to exit of varinit.

� If init with instance state is True: the model object will initialize the model
based on the current state of the model instance. This enables you to set a model
run session’s initial conditions based upon the state of the prognostic variables
and parameters stored at the Python level, which is accessible at runtime.

Since the init with instance state = False case is mainly described by the ini-
tialization method for the ’full’ case, I refer the reader to Section 4.4.1. For the
case of init with instance state is True, however, the task is more complicated.
Specifically, for that case, initialization includes the following:

1. If not currently defined, variable dateofmodel is set to a default value of 0,
which is specified in the module defaults.

2. The mrestart flag is ignored for variable initialization.

3. All prognostic variables and right-hand sides are set to an initial value (which
for most of those variables is zero), unless the variable is defined at the Python
level, in which case the inital value is set to the Python level defined value.

4. If dateofmodel is greater than 0, day0, month0, and year0 are overwritten with
values derived from dateofmodel in order to set the run to start the day after
dateofmodel.

5. If dateofmodel is less than or equal to 0, day0, month0, and year0 are set to
their respective instance attribute values, if valid. For invalid instance attribute
values, the invalid day0, month0, and/or year0 is set to 1.

6. Variable dateofmodel is recalculated and overwritten to match day0, month0,
year0, prior to exit of varinit.

As a result, for init with instance state is True, the way you indicate to the
model that a run session is a brand-new run is by setting, before the run session

method call, dateofmodel to a value less than or equal to 0, and day0, model0, and
year0 to the day you want the model to begin the run session. To indicate to the
model you wish to continue a run, set dateofmodel to the day before you want the
model to start running from.

Examples:

50 CHAPTER 4. USING QTCM

� If day0 = -1, month0 = -1, year0 = -1, and dateofmodel = 0 is input into the
model the model will start running from year 1, month 1, day 1, and variable
dateofmodel at the exit of subroutine varinit will equal 10101.

� If day0 = 14, month0 = 3, year0 = 11, and dateofmodel = 0 is input into the
model, the model will start running from year 11, month 3, day 14, and variable
dateofmodel at the exit of subroutine varinit will equal 110314.

� If day0 = 14, month0 = 3, year0 = 11, and dateofmodel = 341023 is input into
the model, the model will start running from year 34, month 10, day 24, and at
the exit of subroutine varinit, dateofmodel will equal 341024, with day0 = 24,
month0 = 10, and year0 = 34.

4.4.3 Communication Between Python and Fortran-Levels

After initialization, the second major difference between a ’full’ and ’parts’ model
is how and when communication between the Python and Fortran levels can occur.
For the ’full’ case, except for the passing in and out of variables before and after
a run session, all variable passing and subroutine calling happens in the compiled
QTCM1 model, with no control at the Python level. For the ’parts’ case, variables
can be passed between the Python and Fortran-levels at all levels down to the at-
mospheric timestep, and many Fortran QTCM1 subroutines can be called from the
Python-level.

Passing Variables

For all compiled form cases, variables are passed back and forth between the Python
Qtcm instance level and the compiled QTCM1 model Fortran-level using the Qtcm

instance methods get qtcm1 item and set qtcm1 item:5

� get qtcm1 item(key): Returns the value of the field variable given by the string
key. If the compiled QTCM1 model variable given by key is unreadable, the
custom exception FieldNotReadableFromCompiledModel is thrown. The value
returned is a copy of the value on the Fortran side, not a reference to the variable
in memory.

� set qtcm1 item: Sets the value of a field variable in the compiled QTCM1
model and at the Python-level, automatically overriding any previous value at
both levels. Thus, calling this method will change/create the Qtcm instance

5All Fortran routines used to pass variables back and forth are defined in the setbypy module
of the .so extension module stored in the Qtcm instance variable qtcm. All Fortran wrappers that
enable Python to call compiled QTCM1 model subroutines are defined in the wrapcall module
stored in the Qtcm instance variable qtcm. These modules are described in detail in Sections 6.3.1
and 6.3.2, respectively.

4.4. THE COMPILED FORM KEYWORD 51

attribute corresponding to the field variable. When the compiled QTCM1 model
variable is set, a copy of the Python value is passed to the Fortran model; the
variable is not passed by reference. This value comes from the set qtcm1 item

calling parameter list, not from the Qtcm instance attribute corresponding to
the field variable.

The set qtcm1 item method has two calling forms, one with one argument and
the other with two arguments:

� One argument: The method is called as set qtcm1 item(arg), where arg is
either a string giving the name of the field variable or a Field instance.

� Two arguments: The method is called as set qtcm1 item(key, value), where
key is the string giving the name of the field variable and value is the value to
set the model field variable to (note value can be a Field instance).

In either calling form, if no value given, the default value as defined in module
defaults is used.

Some compiled QTCM1 model variables are not in a state where they can be set.
An example is a compiled QTCM1 model pointer variable, prior to the pointer being
associated with a target (an attempt to set would yield a bus error). In such cases, the
set qtcm1 item method will throw a FieldNotReadableFromCompiledModel excep-
tion, nothing will be set in the compiled QTCM1 model, and the Python counterpart
field variable (if it previously existed) would be left unchanged.6

Examples, typed in at a Python prompt, and assuming that model is a Qtcm

instance:

� dtvalue = model.get qtcm1 item(’dt’): Retrieves the value of field variable
dt (timestep) from the compiled QTCM1 Fortran model and sets it to the
Python variable dtvalue.

� model.set qtcm1 item(’dt’): Sets the value of field variable dt in the com-
piled QTCM1 Fortran model to the default value (as given in defaults), and
sets the value of Python attribute model.dt also to that default value. Remem-
ber that model.dt is a Field instance.

� model.set qtcm1 item(’dt’, 2000.): Sets the value of field variable dt in
the compiled QTCM1 Fortran model to 2000 (as a real), and sets the value of
Python attribute model.dt also to 2000.

6We handle this situation in this way to enable the Qtcm instance to store variables even if the
compiled model is not yet ready to accept them.

52 CHAPTER 4. USING QTCM

Calling Compiled QTCM1 Model Subroutines

All compiled QTCM1 model subroutines that can be called (except driver and
varptrinit) are in the setbypy or wrapcall modules of the Qtcm instance private
attribute qtcm. (On Qtcm instance instantiation, qtcm is set to the .so exten-
sion module that is the compiled QTCM1 Fortran model.) Thus, to call wmconvct
in wrapcall at the Python-level, just type model. qtcm.wrapcall.wmconvct()

(where model is a Qtcm instance). For driver and varptrinit, these subroutines
are not contained in a qtcm module, and thus can be called directly (e.g., just type
model. qtcm.driver()). See Sections 6.3.1 and 6.3.2 for more information on the
setbypy and wrapcall modules.

For the ’full’ case, the only compiled QTCM1 model subroutine you can usefully
call during a run session is driver. For the ’parts’ case, while you can essentially
call any subroutine given in a run list, you usually will not directly call a compiled
QTCM1 model subroutine but will instead call it through including it in a run list.
For example, if you have the following run list in a ’parts’ model:

[’qtcminit’, ’ qtcm.wrapcall.woutpinit’]

Running this list using the Qtcm instance method run list will result in Qtcm in-
stance method qtcminit first being run, then the compiled QTCM1 Fortran model
subroutine woutpinit in Fortran module wrapcall being run. See Section 4.6 and
Table 4.3 for a discussion and list of the standard run lists that control routine exe-
cution content and order in the ’parts’ case.

4.5 Restart and Continuation Run Sessions

4.5.1 Restart Runs In the Pure-Fortran QTCM1

To enable restart of a model run, the pure-Fortran QTCM1 model writes out a restart
file with the state of the prognostic variables and select right-hand sides at that point
in the run (for a list of the variables, see Section 4.5.5). This binary file can then be
read in by later model runs. The Fortran mrestart flag is passed in via a namelist;
if mrestart is 1, the run uses the restart file (named qtcm.restart).

One of the problems with using the restart file to do a continuation run is that
the continuation run will not be perfect. In other words, a 15 day run followed by a
25 day run based on the restart file generated at the end of the 15 day run will not
give the exact same output as a continuous 40 day run.

4.5.2 Overview of Restart/Continuation Options In qtcm

For a Qtcm instance, in contrast to the pure-Fortran QTCM1, more than one method
of continuation is available. Thus, for a continuation run, you need to tell the model

4.5. RESTART AND CONTINUATION RUN SESSIONS 53

“continue from what?” The Qtcm class provides three choices for restart/continuing
a run:

1. From a restart file: Move/rename a QTCM1 restart file to the current working
directory to qtcm.restart.

2. From a snapshot from another run session (see Sections 3.4.4 and 4.5.5).

3. From the values of the Qtcm instance you will be calling run session from.

Restart/continuation methods 1 and 2 both suffer from the same problem as the
pure-Fortran QTCM1 restart process: They do not produce perfect restarts (see Sec-
tion sec:puref90.restart for details). In this section, I discuss the restart/continuation
options for each compiled form option.

Methods 1 and 2 are best used when making a run session from a newly instanti-
ated Qtcm instance. Method 3 is best used when executing a run session using a Qtcm

instance that has already gone through at least one run session. Regardless of which
method you use, however, please note that anytime you execute a run session using
a Qtcm instance that already has made a previous run session, some variables cannot
be updated between run sessions. This feature is most noticeable with the output
filename, and occurs because the name persists in the compiled QTCM model, and
is stored in the extension module (.so files in sodir) associated with the instance.
If you wish to control all variables possible from the Python level (including output
filename), you need do the run session from a new model instance.

4.5.3 Restart/Continuation for compiled form = ’full’ Model
Instances

The only option for restart when using compiled form = ’full’ model instances is
method 1, to use a QTCM1 restart file.7 To use this option, the value of the mrestart
attribute must equal 1, the restart file must be named qtcm.restart, and the restart file
must be in the current working directory. As with the pure-Fortran QTCM1 restart
process, this method does not produce perfect restarts.

4.5.4 Restart/Continuation for compiled form = ’parts’ Model
Instances

For the compiled form = ’parts’ case, all three restart/continuation methods de-
scribed in Section 4.5.2 are available.

7The cont keyword parameter in run session and the value of the init with instance state
attribute have no effect if compiled form = ’full’. With ’full’, the call to initialize variables all
happens at the Fortran level (via the Fortran varinit, not the Python varinit), with no reference
to the Python field states (or even existing Fortran field states, if present).

54 CHAPTER 4. USING QTCM

Method 1: From a QTCM1 Restart File

To use the QTCM1 restart file mechanism, not only must the mrestart attribute
have a value to 1, but the init with instance state flag also has to be False,
otherwise the mrestart attribute value will be ignored. As with the pure-Fortran
QTCM1 restart process, this method does not produce perfect restarts.

Method 2: From a Qtcm Instance Snapshot

You can take snapshots of the model state of a Qtcm instance by the make snapshot

instance method. This snapshot saves a copy of all the variables saved to a QTCM1
restart file (see Section 4.5.5 for the full list of fields), which then can be passed to
other Qtcm instances for use in other run sessions.

The key difference between this method and method 3 (described below) is that
run session calls using the snapshot are done without the cont keyword input pa-
rameter (by default, cont is False). If the cont keyword is not False, it says the run
session is a continuation run that uses the state of the compiled QTCM1 model for
all variables that are not specified at, and read-in from, the Python level. If the cont

keyword is False, the run session initializes as if it were a new run.
See Section 3.4.4 for details and an example of using snapshots to initialize a run

session. Note that as with the pure-Fortran QTCM1 restart process, this method
does not produce perfect restarts.

Method 3: From the Calling Qtcm Instance

This method is used when you want to make a run session that is a “true” continuation
run, i.e., one that uses the current state of the compiled QTCM1 model for all variables
that are not read-in from the Python level (remember that Qtcm instances hold a
subset of the variables defined at the Fortran level). The key reason to use this
method for a continuation run session is that the continuation is byte-for-byte the
same (if no fields are changed) as if the run just went straight on through. Thus, the
continuation would be perfect: A 15 day run followed by a 25 day run using the same
Qtcm instance with the cont keyword will give the exact same output as a continuous
40 day run. This is not the case when making a new instance and passing a restart file
or a snapshot, because a separate extension module is used for those new instances.

Control of this method is accomplished through the cont keyword input parameter
to the run session method and the init with instance state attribute of a Qtcm

instance:

� cont: If set to False, the run session is not a continuation of the previous run,
but a new run session. If set to True, the run session is a continuation of the
previous run session. If set to an integer greater than zero, the run session is
a continuation just like cont = True, but the value cont is set to is used for
lastday and replaces lastday.value in the Qtcm instance.

4.5. RESTART AND CONTINUATION RUN SESSIONS 55

� init with instance state: If True, for a run session call using the cont

keyword, whatever the field values are in the Python instance are used in the
run session. If False, model variables are set and initialized as described in
Section 4.4.2. In that case, previous compiled QTCM1 model values will likely
be overwritten. Thus, if you want a continuation run that uses the state of all
field variables except for those you explicitly change at the Python-level, make
sure init with instance state is True.

(Note that the cont keyword has no effect if compiled form is ’full’. The
default value of cont in a run session call is False. The value of keyword cont

is stored as private instance attribute cont, in case you really need to access it
elsewhere; see Section 6.7.3 for more details).

The example described in Section 3.4.3 is an example of method 3 in the list
above: The second run session is continued from the state of model, with the values
of model’s instance variables overriding any values in the compiled QTCM1 model in
initializing the second run session.

This method has a few caveats worthy of note:

� The init with instance state attribute value will have no effect unless the
instance prognostic variables are set, i.e., unless a previous run session has
been done. Another way to put it is for an initial run session right after a
Qtcm instance is created, varinit will use the same initial values for prognostic
variables (defined in defaults module variable init prognostic dict)8 as it
would with for both init with instance state set to True or False).

� Continuation run sessions using this method have to continue with the next
day from wherever the last run session left off, contiguously.9 If you want to do
a non-contiguous run, create a new Qtcm instance initialized with a snapshot
instead of the continuation method describe in this section. will use restart
rules to run a new model.

� When making a continuation run session using this method, you cannot change
some variables, for instance, outdir and any of the date related variables. In
fact, the only thing you should change for your continuation run session are
the prognostic and diagnostic variables and lastday. This is because some
variables cannot be updated between run sessions. As noted in Section 4.5.2, if
you wish to control all variables possible from the Python level (including output
filename), you need to execute the run session from a new model instance.

8init prognostic dict is the dictionary giving the default initial values of each prognostic
variable and right-hand side (as defined by the restart file specification).

9For continuation run sessions, you keep the same extension module (the compiled .so library),
and all the values that define the state where it left off.

56 CHAPTER 4. USING QTCM

4.5.5 Snapshots of a Qtcm Instance

The snapshot dictionary (briefly described in Section 3.4.4), saved as the Qtcm in-
stance attribute snapshot, and generated by the method make snapshot, saves the
current state of the following instance field variables:

Field Shape Units Description
T1 (64, 44) K
Ts (64, 42) K Surface temperature
WD (64, 42)
dateofmodel Date of model coded as an integer

as yyyymmdd
psi0 (64, 43)
q1 (64, 44) K
rhsu0bar (3,)
rhsvort0 (64, 42, 3)
title A descriptive title
u0 (64, 44) m/s Barotropic zonal wind
u0bar

u1 (64, 44) m/s Current time step baroclinic zonal
wind

v0 (64, 43) m/s Barotropic meridional wind
v1 (64, 43) m/s
vort0 (64, 42)

These are the same variables saved to a QTCM1 restart file, and so a snapshot
duplicates the restart functionality in the Python environment, but with more flex-
ibility. Since the snapshot dictionary is a Python variable like any other, you can
manipulate it and alter it to fit any condition you wish.

4.6 Creating and Using Run Lists

Section 3.6 provides an introduction to the role and use of run lists. A run list is a
list of methods, Fortran subroutines, and other run lists that can be executed by the
Qtcm instance run list method. Run lists are stored in the Qtcm instance attribute
runlists, which is a dictionary of run lists. The names of run lists should not be
preceeded by two underscores (though elements of a run list may be very private
variables), nor should names of run lists be the same as any instance attribute. Run
lists are not available for compiled form = ’full’.

4.6. CREATING AND USING RUN LISTS 57

The run list method takes a single input parameter, a list, and runs through
that list of elements that specify other run lists or instance method names to execute.
Methods with private attribute names are automatically mangled as needed to become
executable by the method. Note that if an item in the input run list is an instance
method, it should be the entire name (not including the instance name) of the callable
method, separated by periods as appropriate.

Elements in a run list are either strings or 1-element dictionaries. Consider the
following example, where model is a Qtcm instance, and run list is called using
mylist as input:

model = Qtcm(...)

mylist = [{’varinit’:None},
’init model’,

’ qtcm.driver’,

{’set qtcm1 item’: [’outdir’, ’/home/jlin’]}]

model.run list(mylist)

The first element in mylist refers to a method that requires no positional input
parameters be passed in (as shown by the None). The second and third elements in
mylist also refers to methods that require no positional input parameters be passed
in. The last element in mylist refers to a method with two input parameters. Note
that while I use the term “method” to describe the elements, the strings/keys do not
have to be only Python instance methods. The second element, for instance, refers to
another run list, and the third element refers to a compiled QTCM1 model subroutine
(note the qtcm attribute).

When the run list method is called, the items in the input run list are called
in the order given in the list. For each element, the run list method first checks
if the string or dictionary key name corresponds to the key of an entry in the Qtcm

instance attribute runlists. If so, run list is called using that run list (i.e., it is a
“recursive” call). If the string or dictionary key name does not refer to another run
list, the run list method checks if the string or dictionary key name is a method
of the Qtcm instance, and if so the method is called. Any other value throws an
exception.

If input parameters for a method are of class Field, the run list method first
tries to pass the parameters into the method as is, i.e., as Field object(s). If that
fails, the run list method passes its parameters in as the value attribute of the
Field object.

If you want a variable that is being passed into a run list to be continuously
updated, you have to set the parameter in the run list to a Field instance that is a
Qtcm instance attribute, not just to the value of the field variable (or to a non-Field
object). Otherwise, subsequent calls to that run list element will not use the updated
values as input parameters.

For instance, if you had a run list element:

58 CHAPTER 4. USING QTCM

{’ qtcm.timemanager’:[model.coupling day,]}

and model.coupling day were an integer (it’s not by default, but pretend it was),
then run list calling qtcm.timemanager will pass in a scalar integer rather than
a binding to the variable model.coupling day. In such a situation, if the variable
model.coupling day were updated in time, the run list call of qtcm.timemanager

would not be updated in time. This happens because when the dictionary that is the
run list element is created, the value of list element(s) attached to the dictionary
element is set to the scalar value of model.coupling day at that instant.

You can get around this feature by setting Qtcm instance attributes that will
change with model execution to Field instances, and then referring to those attributes
in the parameter list in the run list element. In that case:

{’ qtcm.timemanager’:[model.coupling day,]}

will use the current value of model.coupling day anytime qtcm.timemanager is
called by run list, if model.coupling day is a Field object.

When run list, encounters a calling input parameter that is a Field object, it
will first try to pass the entire Field object to the method/routine being called. If that
raises an exception, it will then try to pass just the value of the entire Field object.
This is done to enable run list to be used for both pure-Python and compiled QTCM
Fortran model routines. Fortran cannot handle Field objects as input parameters,
only values.

Table 4.3 shows all standard run lists stored in the runlists attribute upon
instantiation of a Qtcm instance.

Of course, feel free to change the contents of any of the run lists after instantiation,
or to add additional run lists to the runlists attribute dictionary. The ability to
alter run lists at runtime gives the qtcm package much of its flexibility.

4.7 Field Variables and the Field Class

The term “field” variable refers to QTCM1 model variables that are accessible at both
the compiled Fortran QTCM1 model-level as well as the Python Qtcm instance-level.
Field variables are all instances of the Field class (though non-field variables can also
be instances of Field).

Section 3.3 gives a brief introduction to the attributes and methods in a Field

instance. A nitty gritty description of the class is found in its docstrings.

4.7.1 Creating Field Variables

To create a Field instance whose value is set to the default, instantiate with the field
id as the only positional input argument. Thus:

4.7. FIELD VARIABLES AND THE FIELD CLASS 59

Run List Name/Description List Element(s) Name(s) # Arg(s)
atm bartr mode (calculate the at-
mospheric barotropic mode at the
barotropic timestep)

qtcm.wrapcall.wsavebartr None
qtcm.wrapcall.wbartr None
qtcm.wrapcall.wgradphis None

atm oc step (calculate the atmo-
sphere and ocean models at a cou-
pling timestep)

first method at atm oc step None
qtcm.wrapcall.wtimemanager 1
qtcm.wrapcall.wocean 2

qtcm None
qtcm.wrapcall.woutpall None

atm physics1 (calculate atmo-
spheric physics at one instant)

qtcm.wrapcall.wmconvct None
qtcm.wrapcall.wcloud None
qtcm.wrapcall.wradsw None
qtcm.wrapcall.wradlw None
qtcm.wrapcall.wsflux None

atm step (calculate the entire
atmosphere at one atmosphere
timestep)

atm physics1 None
qtcm.wrapcall.wsland1 None
qtcm.wrapcall.wadvctuv None
qtcm.wrapcall.wadvcttq None
qtcm.wrapcall.wdffus None
qtcm.wrapcall.wbarcl None

bartropic mode at atm step None
qtcm.wrapcall.wvarmean None

init model (initialize the entire
model, i.e., the atmosphere and
ocean components and output)

qtcminit None
qtcm.wrapcall.woceaninit None
qtcm.wrapcall.woutpinit None

qtcminit (initialize the atmo-
sphere portion of the entire
model)

qtcm.wrapcall.wparinit None
qtcm.wrapcall.wbndinit None

varinit None
qtcm.wrapcall.wtimemanager 1

atm physics1 None

Table 4.3: Standard run lists stored in the runlists attribute upon instantiation of
a Qtcm instance. The run list and list element names are stored as strings.

60 CHAPTER 4. USING QTCM

foo = Field(’lastday’)

will return foo as a Field instance with foo.value set to the value listed in
Section A.1. The value of all Field instances upon creation are specified in the
defaults submodule of package qtcm, and listed in Sections A.1 and A.2.

To create Field instances whose attributes are set different from their defaults,
you can specify the different settings in the instantiation parameter list, or change
the attributes once the instance is created. See the Field docstring for details.

4.7.2 Initial Field Variables

Field variables include both model parameters that do not change for a Qtcm instance
as well as prognostic variables that do change during model integration. As a result,
many field variables have values different from the default values listed in Sections A.1
and A.2. In this section, I list the initial values of all field variables. The “initial”
values are the settings for Qtcm field variables execution of the run session method,
but prior to cycling through an atmosphere-ocean coupling timestep. This is in
contrast to “default” values, which the field variables are given on instantiation, if
no other value is specified. Numerical values are rounded as per the conventions of
Python’s %g format code.

Scalars

For the fields that give the input/output directory names, and the run name, the
entry “value varies” is provided in the “Value” column.

Field Value Units Description
SSTdir value varies Where SST files are
SSTmode seasonal Decide what kind of SST to use
VVsmin 4.5 m/s Minimum wind speed for fluxes
bnddir value varies Boundary data other than SST
dateofmodel 10101 Date of model coded as an integer

as yyyymmdd
day0 1 dy Starting day; if < 0 use day in

restart
dt 1200 s Time step
eps c 0.000138889 1/s 1/tau c NZ (5.7)
interval 1 dy Atmosphere-ocean coupling interval
it 1 Time of day in time steps
landon 1 If not 1: land = ocean with fake SST
lastday 0 dy Last day of integration
month0 1 mo Starting month; if < 0 use mo in

restart

4.7. FIELD VARIABLES AND THE FIELD CLASS 61

Field Value Units Description
mrestart 0 =1: restart using qtcm.restart
mt0 1 Barotropic timestep every mt0

timesteps
nastep 1 Number of atmosphere time steps

within one air-sea coupling interval
noout 0 dy No output for the first noout days
nooutr 0 dy No restart file for the first nooutr

days
ntout -30 dy Monthly mean output
ntouti 0 dy Monthly instantaneous data output
ntoutr 0 dy Restart file only at end of model run
outdir value varies Where output goes to
runname value varies String for an output filename
title value varies A descriptive title
u0bar 0
visc4x 700000 m2/s Del 4 viscocity parameter in x
visc4y 700000 m2/s Del 4 viscocity parameter in y
viscxT 1.2e+06 m2/s Temperature diffusion parameter in

x
viscxq 1.2e+06 m2/s Humidity diffusion parameter in x
viscxu0 700000 m2/s Viscocity parameter for u0 in x
viscxu1 700000 m2/s Viscocity parameter for u1 in x
viscyT 1.2e+06 m2/s Temperature diffusion parameter in

y
viscyq 1.2e+06 m2/s Humidity diffusion parameter in y
viscyu0 700000 m2/s Viscocity parameter for u0 in y
viscyu1 700000 m2/s Viscocity parameter for u1 in y
weml 0.01 m/s Mixed layer entrainment velocity
year0 1 yr Starting year; if < 0 use year in

restart
ziml 500 m Atmosphere mixed layer depth ∼

cloud base

Arrays

Field Shape Max Min Units Description
Evap (64, 42) 1502.56 223.552
FLW (64, 42) 74.5136 74.5136
FLWds (64, 42) 206.424 206.424
FLWus (64, 42) 429.708 429.708
FLWut (64, 42) 148.771 148.771

62 CHAPTER 4. USING QTCM

Field Shape Max Min Units Description
FSW (64, 42) 147.767 0
FSWds (64, 42) 410.895 -6.99713
FSWus (64, 42) 356.831 -4.49983
FSWut (64, 42) 332.431 0
FTs (64, 42) 930.115 138.383
Qc (64, 42) 0 0 K Precipitation
S0 (64, 42) 534.264 0
STYPE (64, 42) 3 0 Surface type; ocean or

vegetation type over land
T1 (64, 44) -100 -100 K
Ts (64, 42) 295 295 K Surface temperature
WD (64, 42) 350 0
WD0 (4,) 500 0 Field capacity SIB2/CSU

(approximately)
arr1 (64, 42) 0 0 Auxiliary optional output

array 1
arr2 (64, 42) 0 0 Auxiliary optional output

array 2
arr3 (64, 42) 0.138699 0.138699 Auxiliary optional output

array 3
arr4 (64, 42) 0 0 Auxiliary optional output

array 4
arr5 (64, 42) 0 0 Auxiliary optional output

array 5
arr6 (64, 42) 0 0 Auxiliary optional output

array 6
arr7 (64, 42) 0 0 Auxiliary optional output

array 7
arr8 (64, 42) 0 0 Auxiliary optional output

array 8
psi0 (64, 43) 0 0
q1 (64, 44) -50 -50 K
rhsu0bar (3,) 0 0
rhsvort0 (64, 42, 3) 0 0
taux (64, 42) 0 0
tauy (64, 42) 0 0
u0 (64, 44) 0 0 m/s Barotropic zonal wind
u1 (64, 44) 0 0 m/s Current time step baro-

clinic zonal wind
v0 (64, 43) 0 0 m/s Barotropic meridional

wind

4.7. FIELD VARIABLES AND THE FIELD CLASS 63

Field Shape Max Min Units Description
v1 (64, 43) 0 0 m/s
vort0 (64, 42) 0 0

4.7.3 Passing Fields Between the Python and Fortran-Levels

Section 4.4.3 discusses the differences between how the ’full’ and ’parts’ compiled
forms pass field variables between the Python and Fortran-levels. That discussion
gives a detailed description of the methods used for passing fields to and from the
Python and Fortran-levels (i.e., the get qtcm1 item and set qtcm1 item methods).

Please note the following regarding field variables as you pass them back and forth
between the Python and Fortran-levels:

� Field variables with ghost latitudes, such as u1, on the Python end are always
the full variables (i.e., including the ghost latitudes). On the Fortran end,
variables like u1 also always have the ghost latitudes while in the model, but
when stored as restart files, do not have the ghost latitudes; the end points are
not saved in restart files or written to the netCDF output files. See the QTCM1
manual10 [4] for details about ghost latitudes.

� You should assume there is only a full synchronizing between compiled QTCM1
model and Python model field variables at the beginning and end of a run
session.

� If you have a variable at the Python-level, but at the compiled QTCM1 Fortran
model-level the variable is not readable, if you try to call set qtcm1 item on
the variable, nothing is done, and the Python-level value is left alone. If you
have a compiled QTCM1 model variable, but no Python-level equivalent, if you
call set qtcm1 item on the variable, the Python-level variable (as an attribute)
is created.

� To be precise, only compiled QTCM1 model variables can be passed pass back
and forth between the Python and Fortran-levels; there are many Qtcm instance
attributes that do not have any counterparts at the Fortran-level.11

� Although dayofmodel is described in module setbypy as an option for the
get qtcm1 item and set qtcm1 item methods to operate on, in reality those
methods cannot operate on dayofmodel, but dayofmodel is not defined in
defaults.12

10http://www.atmos.ucla.edu/∼csi/qtcm man/v2.3/qtcm manv2.3.pdf
11I use the term “field variables” to refer to compiled QTCM1 model variables that can be passed

back and forth to the Python level.
12All field variables must be defined in defaults in order for the proper Fortran routine to be

called according to the variable’s type.

http://www.atmos.ucla.edu/$sim $csi/qtcm_man/v2.3/qtcm_manv2.3.pdf

64 CHAPTER 4. USING QTCM

4.7.4 Field Variable Shape

Normally, Python arrays have a different dimension order than Fortran arrays. While
Fortran arrays are dimensioned (col, row, slice), with adjacent columns being contigu-
ous, then rows, and then slices, Python arrays are dimensioned (slice, row, col), with
adjacent columns being contiguous, then rows, and then slices. Based on this, you
would think that everytime you passed an array between the Python and Fortran-
levels you would need to transpose the array.

Thankfully, we don’t have to do this because f2py handles array dimension order
transparently so we can refer to each element the same way whether we’re in Python or
Fortran. Thus, the array Qc in Fortran is dimensioned (longitude, latitude), (64,42)
by default, and the Python Qtcm instance attribute Qc has a value attribute also
dimensioned (longitude, latitude), (64,42) by default. And at both the Fortran and
Python-levels, the first longtude, second latitude element is referred to as Qc(1,2).

In contrast, however, netCDF output saved by the compiled QTCM1 model and
read into Python (using the Scientific package) is not in Fortran array order.
Arrays read from netCDF output into Python are in Python array order, and are
dimensioned (latitude, longitude) or (time, latitude, longitude). The Qtcm routines
that manipulate netCDF data (e.g., plotm), however, automatically adjust for this,
so you only need to be aware of this when reading in output for your own analysis
(see Section 4.8).

4.8 Model Output

Section 3.7 gives an overview of how to use qtcm model output to netCDF files.
All netCDF array output is dimensioned (time, latitude, longitude) when read into

Python using the Scientific package. This differs from the way Qtcm saves field
variables, which follows Fortran convention (longitude, latitude). Thus, the shapes in
Section 4.7.2, Appendix A, etc., are not the shapes of arrays read from the netCDF
output. See Section 4.7.4 for a discussion of why there is this discrepancy.

Because netCDF files allow you to specify an “unlimited” dimension, it is possible
to close a netCDF file, reopen it, and add more slices of data to the file. Thus,
continuous Qtcm run sessions (i.e., those that use the cont keyword input parameter
in the run session method) will automatically append output to the netCDF output
files.

Field variables with ghost latitudes, such as u1, on the Python and Fortran ends
are always the full variables (i.e., including the ghost latitudes). The ghost latitudes
are not written to the netCDF output files, however. See the QTCM1 manual13 [4]
for details about ghost latitude structure.

Qtcm instances have a few built-in tools to visualization model output. These are
briefly described in Section 3.7.2. Note that the plotm method is linked to a specific

13http://www.atmos.ucla.edu/∼csi/qtcm man/v2.3/qtcm manv2.3.pdf

http://www.atmos.ucla.edu/$sim $csi/qtcm_man/v2.3/qtcm_manv2.3.pdf

4.9. MISCELLANEOUS 65

inputs = {}
inputs[’runname’] = ’test’

inputs[’landon’] = 0

inputs[’year0’] = 1

inputs[’month0’] = 11

inputs[’day0’] = 1

inputs[’lastday’] = 30

inputs[’mrestart’] = 0

inputs[’init with instance state’] = True

inputs[’compiled form’] = ’parts’

Figure 4.1: The initial definition of the inputs dictionary for examples given in
Section 4.10. These settings imply that a run session will start on November 1, Year
1, last for 30 days, and will be an aquaplanet run.

Qtcm instance. Do not use plotm outside of the instance it is linked to. It must also
be used only after a successful run session (i.e., not in the middle of a run session).

4.9 Miscellaneous

A few miscellaneous items/issues about the model:

� The land model runs at same timestep as the atmosphere.

� If the land model runs less often than sflux in physics1, the calculation of
evaporation over the land needs to be fixed in sflux.

� The units of some field variables are not what you would expect. For instance,
Qc is in energy units, i.e., K, and not mm/day. See the QTCM1 manual14 [4]
for details.

4.10 Cookbook of Ways the Model Can Be Used

This cookbook of a few ways to use the model is arranged by science tasks, i.e.,
certain types of runs we want to do. For some of the examples below, I assume that
the dictionary inputs is initially defined as given in Figure 4.1. All examples assume
that from qtcm import Qtcm has already been executed.

Plain model run: Here I just want to make a single model run. Tasks: Instantiate
a fresh model and execute a run session. The code to run the model is just:

14http://www.atmos.ucla.edu/∼csi/qtcm man/v2.3/qtcm manv2.3.pdf

http://www.atmos.ucla.edu/$sim $csi/qtcm_man/v2.3/qtcm_manv2.3.pdf

66 CHAPTER 4. USING QTCM

inputs[’init with instance state’] = False

model = Qtcm(**inputs)

model.run session()

where inputs is initialized with the code in Figure 4.1.

Explore parameter space with a set of models: Here I want to create an entire
suite of separate models, in order to determine the sensitivity of the model to
changing a parameter. To do this, I instantiate multiple fresh models, and
execute a run session for each instance, all within a for loop:

import os

inputs[’init with instance state’] = False

for i in xrange(0,1002,10):

iname = ’ziml-’ + str(i) + ’m’

ipath = os.path.join(’proc’, iname)

os.makedirs(ipath)

model = Qtcm(**inputs)

model.ziml.value = float(i)

model.runname.value = iname

model.outdir.value = ipath

model.run session()

del model

The loop explores mixed-layer depth ziml from 0 m to 1000 m, in 10 m inter-
vals. I create the outdir directory before every model call, since the compiled
QTCM1 model requires the output directory exist, specifying the run name
and output directory as the string iname. The output directories are assumed
to all be in the proc sub-directory of the current working directory. inputs is
initialized with the code in Figure 4.1.

Conditionally explore parameter space: Here I want to conditionally explore
the parameter space, on the basis of some mathematical criteria. To do this, I
instantiate a model, evaluate results using that criteria, and run another fresh
model depending on the results (passing the previous model state via a snap-
shot), all within a while loop. Note that this type of investigation is very
difficult to automate if all you can use are shell scripts and Fortran. See Fig-
ure 4.2 for a detailed example.

With interactive adjustments at run time: The example in Figure 3.4.3 illus-
trates this type of run. In this example, I instantiate a fresh model, execute
a run session, analyze the output, change variables in the model instance, and
then execute a continuation run session.

4.10. COOKBOOK OF WAYS THE MODEL CAN BE USED 67

Test alternative parameterizations: I’ve already described how we can use run
lists to arbitrarily change model execution order and content at run time. We
can take advantage of Python’s inheritance abilities, along with run lists, to
simplify this. Figure 4.3 provides an example of this use.

Of course, you can use pre-processor directives and shell scripts to accomplish
the same functionality seen in Figure 4.3 using just Fortran. The Python solu-
tion, however, shortcuts the compile/linking step, and enables you to easily do
run time swapping between subroutine choices based upon run time calculated
tests (see Figure 4.2 for an example of such tests).

68 CHAPTER 4. USING QTCM

import os

import numpy as N

maxu1 = 0.0

while maxu1 < 10.0:

iziml = 0.1 * maxu1

iname = ’ziml-’ + str(iziml) + ’m’

ipath = os.path.join(’proc’, iname)

os.makedirs(ipath)

model = Qtcm(**inputs)

try:

model.sync set py values to snapshot(snapshot=mysnapshot)

model.init with instance state = True

except:

model.init with instance state = False

model.ziml.value = iziml

model.runname.value = iname

model.outdir.value = ipath

model.run session()

maxu1 = N.max(N.abs(model.u1.value))

mysnapshot = model.snapshot

del model

Figure 4.2: This code explores different values of mixed-layer depth ziml for 30 day
runs, as a function of maximum u1 magnitude, until it finds a case where the maxi-
mum u1 is greater than 10 m/s. (The relationship between ziml and the maximum
of the speed of u1, where ziml = 0.1 * maxu1, is made up.) With each iteration, the
new run uses the snapshot from a previous run to initialize (as well as the new value
of ziml); the try statement is used to ensure the model works even if mysnapshot
is not defined (which is the case the first time around). The inputs dictionary is
initialized with the code in Figure 4.1.

4.10. COOKBOOK OF WAYS THE MODEL CAN BE USED 69

import os

class NewQtcm(Qtcm):

def cloud0(self):

[...]

def cloud1(self):

[...]

def cloud2(self):

[...]

[...]

inputs[’init with instance state’] = False

for i in xrange(10):

iname = ’cloudroutine-’ + str(i)

ipath = os.path.join(’proc’, iname)

os.makedirs(ipath)

model = NewQtcm(**inputs)

model.runlists[’atm physics1’][1] = ’cloud’ + str(i)

model.runname.value = iname

model.outdir.value = ipath

model.run session()

del model

Figure 4.3: Let’s say we have 9 different cloud physics schemes we wish to try out
in 9 different runs. The easiest way to do this is to create a new class NewQtcm that
inherits everything from Qtcm, and to which we’ll add the additional cloud schemes
(cloud0, cloud1, etc.). In the for loop, I change the cloud model run list entry in
the run list that governs atmospheric physics at one instant to whatever the cloud
model is at this point in the loop. The inputs dictionary is initialized with the
code in Figure 4.1. Of course, we could do the same thing by running the 9 models
separately, but this set-up makes it easy to do hypothesis testing with these 9 models.
For instance, we can create a test by which we will choose which of the 9 models to
use: Within this framework, the selection of those models can be altered by changing
a string.

70 CHAPTER 4. USING QTCM

Chapter 5

Troubleshooting

5.1 Error Messages Produced by qtcm

Error-Value too long in SetbyPy module getitem str for key : This message
is produced by the Fortran subroutine getitem str in the module SetbyPy in
the compiled QTCM1 Fortran code. The code is in the file setbypy.F90 . This
error occurs when the Fortran variable whose name is given by the string key has
a value that is greater than the local parameter maxitemlen in getitem str.
To fix this, you have to go into setbypy.F90 and change the value of maxitemlen.

Error-real rank1 array should be deallocated: Fortran module SetByPy’s sub-
routine getitem real array generates this message (or a similar message for
other ranks) if the Fortran variable for the input key are allocated on entry to
the routine. This may indicate the user has written another Fortran routine to
access the real rank1 array variable outside of the standard interfaces..

Error-Bad call to SetbyPy module ...: Often times, this error occurs because a
get or set routine in SetByPy tried to act on a variable for which the correspond-
ing input key is not defined. The solution is to add that case in the if/then
construct for the get and set routines in SetByPy and rebuild the extension
modules.

5.2 Other Errors

Python cannot find some packages: This error often happens when the version
of Python in which you have installed all your packages is not the version that
is called at the Unix command line by typing in python. To get around this,
define a Unix alias that maps python2.4 (or whichever version of Python has
all your packages installed) to python. If you have multiple Python’s installed
on your system, you might have to use a more specific name for the Python

71

72 CHAPTER 5. TROUBLESHOOTING

executable. As a result, you may have to change the test scripts in test in the
qtcm distribution directory.

get qtcm1 item and compiled QTCM1 model pointer variables: If you try to
use the get qtcm1 item method on a compiled QTCM1 model pointer variable
(i.e., u1, v1, q1, T1), before the compiled model varinit subroutine is run,
you’ll get a bus error with no additional message.

Mismatch between Python and Fortran array field variables: You change an
array field variable on the Python side, but it seems like the wrong elements
are changed on the Fortran side. Or you type in the same index address for
accessing a qtcm netCDF output array as well as its Qtcm instance attribute
counterpart, and find you get different answers. Some possible reasons and
fixes:

� This will occur if you haven’t accounted for the difference in how field
variables are saved at the Python-level, Fortran-level, and in a netCDF
file. All netCDF array output is dimensioned (time, latitude, longitude)
when read into Python using the Scientific package. This differs from
the way Qtcm saves field variables, both at the Python- and Fortran-levels,
which follows Fortran convention (longitude, latitude).

Note that the way Qtcm saves field variables at the Python- and Fortran-
levels is different than the default way Python and Fortran save arrays.
Section 4.7.4 for more information.

� You may have forgotten that array indices in Python start at 0, while
indices in Fortran (generally) start at 1. Also, ranges in Python are ex-
clusive at the upper-bound, while ranges in Fortran are inclusive at the
upper-bound. (Both Python and Fortran array indice ranges are inclusive
at the lower-bound.)

� You may have forgotten some field variables have ghost latitudes, and
thus there are extra latitude bands when the array is stored as a Python
or Fortran field variable, but there are no extra latitude bands when the
array is stored as netCDF output (the QTCM1 output routines strip off the
ghost latitudes when writing those field variables out). See the QTCM1
manual1 [4] for details about ghost latitudes.

The safest and easiest way to tell whether the variable has a ghost latitudes
is to look at its shape. A call to the Qtcm instance method get qtcm1 item

will give you the array, and the use of NumPy’s shape function will give
you the shape.

1http://www.atmos.ucla.edu/∼csi/qtcm man/v2.3/qtcm manv2.3.pdf

http://www.atmos.ucla.edu/$sim $csi/qtcm_man/v2.3/qtcm_manv2.3.pdf

Chapter 6

Developer Notes

6.1 Introduction

This section describes programming practices and issues related to the qtcm package
that might be of interest to users wishing to add/change code in the package. Please
see the package API documentation,1 which includes the source code, for details.

6.2 Changes to QTCM1 Fortran Files

The source code used to generate the shared object files used in this Python package is
unchanged from the pure-Fortran QTCM1 model source code, except in the following
ways:

� The suffix of all source code files has been changed from .f90 to .F90 , in order
to ensure the compiler preprocesses the source code. Some compilers use the
capitalization to tell whether or not to run the code through a preprocessor.

� In all .F90 files, occurrences of:

Character(len=130)

are changed to:

Character(len=305)

This enables the model to properly deal with longer filenames. The number
“305” is chosen to make search and replace easier.

� In qtcmpar.F90 , the eps c variable is changed from an unchangable parameter
to a changeable real, so that it can be changed in the model at runtime.

1http://www.johnny-lin.com/py pkgs/qtcm/doc/html-api/

73

74 CHAPTER 6. DEVELOPER NOTES

� All occurrences of an underscore (“ ”) character in a subroutine or function
name are removed. The presence of the underscore messes up the dynamic
lookup mechanism for the f2py generated extension module. The following
names are changed, both in subroutine definitions and calls:

– out restart to outrestart,

– save bartr to savebartr,

– grad phis to gradphis.

� driver.F90 is changed so that program driver becomes a subroutine, and sub-
routine driverinit is deleted (along with all calls to it) because basic model
initialization is handled at the Python level.

� In clrad.F90 , subroutine cloud, the first COUNTCAP preprocessor macro, a com-
ment line for that ifdef is moved to prevent a warning message during building
with f2py.

� The order of subroutine qtcminit is changed. The original pure-Fortran QTCM1
qtcminit code has the following calling sequence:

Call parinit !Initialize model parameters

Call varinit !Initialize variables

Call TimeManager(1) !mm set model time

Call bndinit !input boundary datasets

Call physics1 !diagnostic fields for initial condition

For the qtcm package, I’ve altered this order so bndinit comes after parinit

but before varinit:

Call parinit !Initialize model parameters

Call bndinit !input boundary datasets

Call varinit !Initialize variables

Call TimeManager(1) !mm set model time

Call physics1 !diagnostic fields for initial condition

This is done because STYPE is not read in for the landon True case until
bndinit, but in varinit STYPE is used to calculate the original values of WD for
the non-restart case. This also corrects the conflicting order found in the pure-
Fortran QTCM1 manual (compare pp. 29 and 32). As far as I can tell, bndinit
has no dependencies that require it to come after timemanager or varinit.

In addition, the Fortran files setbypy.F90 , wrapcall.F90 , and varptrinit.F90 are
added. The routines in these files, however, just add more flexibility and function-
ality to the model; they do not automatically affect any model computations. See
Section 6.3 for details.

6.3. NEW INTERFACES AND FORTRAN FUNCTIONALITY 75

6.3 New Interfaces and Fortran Functionality

As described in Section 6.2, the Fortran files setbypy.F90 , wrapcall.F90 , and varp-
trinit.F90 are added to the QTCM1 source directory. The first two files define the
Fortran 90 modules (SetbyPy and WrapCall) needed to interface the Python and
Fortran levels. The last file defines a new Fortran subroutine varptrinit that as-
sociates QTCM1 model pointer variables at the Fortran level. In a pure-Fortran
run of QTCM1, this occurs in subroutine varinit; for a compiled form = ’parts’

run, since the functionality of the Fortran varinit is now in the Python varinit

method, a separate Fortran pointer association subroutine needed to be defined.
The Fortran subroutine varptrinit is called as the varptrinit function of the
compiled form = ’parts’ .so extension module.

6.3.1 Fortran Module SetbyPy

Design Description

This module defines functions and subroutines used to read variables from the Fortran-
level to the Python-level, and in setting Fortran-level variables using the Python-level
values. These routines are used by Qtcm methods get qtcm1 item and set qtcm1 item

(and dependencies thereof) to “get” and “set” the Fortran-level variables. Note that
the Fortran module SetbyPy is referred to in lowercase at the Python level, i.e., as
the attribute .qtcm.setbypy of a Qtcm instance.

Because Fortran variables are not dynamically typed, separate Fortran functions
and subroutines need to be defined to get and set variables of different types.2 The
Qtcm methods get qtcm1 item and set qtcm1 item know which one of the Fortran
routines to call on the basis of the type and rank of the value for the field variable in
the defaults submodule. This is why all field variables need to have defaults defined
in defaults. For array variables, the field variable defaults also provide the rank of
the Fortran-level variable being gotten or set. However, the array default values do
not have to have the same shape as the Fortran-level variables; on the Python-side,
variable shape adjusts to what is declared on the Fortran-side. Thus, if you change the
resolution of the compiled QTCM1 model, you do not have to change the dimensions
of the field variable values in defaults.

The Qtcm method get qtcm1 item directly calls the SetByPy routines. The Qtcm

method set qtcm1 item makes use of private instance methods that make the calls

2The interface construct in Fortran 90 is supposed to provide a way to create a single interface
to multiple routines, e.g.:

Interface setitem
Module Procedure setitem real, setitem int, setitem str

End Interface

This construct, however, causes a bus error (Mac OS X 10.4, Intel). Thus, I put the same function-
ality in the Python code.

76 CHAPTER 6. DEVELOPER NOTES

to the SetByPy routines.
For scalar field variables, SetByPy provides functions and subroutines that provide

the value of the variable on output. For array field variables, SetByPy dynamic module
arrays are used to pass array variables in and out; I could not get the SetByPy Fortran
routines to set locally defined dynamic arrays (that is, locally within a function or
subroutine).3 In the SetByPy module, these dynamic arrays are defined as follows:

Real, allocatable, dimension(:) :: real rank1 array

Real, allocatable, dimension(:,:) :: real rank2 array

Real, allocatable, dimension(:,:,:) :: real rank3 array

For all field variables, scalar or array, the SetByPy module has a fourth module
variable defined, is readable, that the Fortran get and set routines will set to .TRUE.

if the variable is readable and .FALSE. if not (it’s declared as a logical variable). This
Fortran variable can be used to prevent Python from accessing pointer variables that
aren’t yet associated to targets.

In general, SetByPy routines make use of Fortran constructs to enable them to
accomodate all possible variables of a given type and shape. However, for string
scalars, the SetByPy function getitem str has to have a return value of a predefined
length, in order to work properly. That length is given by the parameter maxitemlen
and is set to 505 (the value is chosen to be larger than all filename variables described
in Section 6.2 and to be easily found in the .F90 files).

Module Structure

If you’re a Fortran programmer, you can probably get all the information in this
section from just reading the setbypy.F90 file directly. This description of the module
structure, however, permits me to highlight what you need to do if you want to make
additional compiled QTCM1 variables accessible to Python Qtcm objects.

� All Use statements are given in the beginning of the SetByPy module. These
statements cover nearly all of the QTCM1 Fortran modules that contain vari-
ables of interest. If the QTCM1 variable you’re interested in isn’t in a module
listed here, you’ll have to add your own Use statement of that module here.

� Next comes the definitions for the real rank1 array, real rank2 array, and
real rank3 array dynamic array variables, and the is readable boolean vari-
able.

� The Contains block of the module defines the module routines called by the
Qtcm instance methods to set and get the compiled QTCM1 model variables.
The routines are:

3I tried to implement Fortran subroutine getitem real array using traditional array dimension
passing (e.g., subroutine foo(nx, ny, a)) as well as declaring the allocatable array inside the
subroutine, but neither option worked on my f2py (version 2 3816) and Python (version 2.4.3).

6.3. NEW INTERFACES AND FORTRAN FUNCTIONALITY 77

– Function getitem real

– Subroutine getitem real array

– Function getitem int

– Function getitem str

– Subroutine setitem real

– Subroutine setitem real array

– Subroutine setitem int

– Subroutine setitem str

Each of the routines in the module Contains block is essentially a list of if/elseif
statements. The list tests for the name of the variable of interest (a string), and
gets or sets the compiled QTCM1 model variable corresponding to that name. For
pointer array variables, a test is also made as to whether or not the variable has been
associated. If not, the variable is not readable and is readable is set to .FALSE.

accordingly.
If you wish to add another compiled QTCM1 model variable to be accessible

to Qtcm instance methods get qtcm1 item and set qtcm1 item, just add another
if/elseif, like the other if/elseif blocks, in the Fortran set and get routines
corresponding to the QTCM1 variable type (scalar vs. array, and real, integer, or
string). On the Python side, add an entry in defaults corresponding to the new field
variable you’ve created access to. I would strongly recommend making the Python
name of your new field variable (given in defaults) be the same as the compiled
QTCM1 model variable name.

6.3.2 Fortran Module WrapCall

Most of the time, if you want to call a compiled QTCM1 model subroutine from the
Python level, you will use the version of the subroutine that is found in this Fortran
module. Note that the Fortran module WrapCall is referred to in lowercase at the
Python level, i.e., as the attribute .qtcm.wrapcall of a Qtcm instance.

All the routines in this module do is wrap one of the compiled QTCM1 model
routines. For instance, WrapCall subroutine wadvcttq is defined as just:

Subroutine wadvcttq

Call advcttq

End Subroutine wadvcttq

All subroutines in this module begin with “w”, with the rest of the name being
the Fortran QTCM1 subroutine name. The calling interface for the “w” version is
the same as the Fortran QTCM1 original version. There are no subroutines in this
module that do not have an exact counterpart in the Fortran QTCM1 code, and thus

78 CHAPTER 6. DEVELOPER NOTES

this module’s subroutines sole purpose is to call other subroutines in the compiled
QTCM1 model.

These wrapper routines are needed because f2py, for some reason I can’t figure
out, will not properly wrap Fortran routines (that are then callable at the Python
level) that create local arrays using parameters obtained through a Fortran use stat-
ment. Thus, as an example, a Fortran subroutine foo with the following definition:

subroutine foo

use dimensions

real a(nx,ny)

[...]

end subroutine foo

where nx and ny are defined in the module varsdimensions, will return an error,
with the result that the extension module will not be created, or an extension modules
that yields output that is different from running the pure-Fortran version of QTCM1.

By wrapping these calls into this file, I also avoid having to separate out the For-
tran QTCM1 subroutines into separate .F90 files. For Fortran subroutines that you
want callable from the Python level, f2py seems to require each Fortran subroutine
to be in its own file of the same name (e.g., the version of driver.F90 for this package).
If several Fortran subroutines are all found in a single .F90 files, f2py seems unable
to create wrappers for those subroutines.

6.4 Python qtcm and Pure-Fortran QTCM1 Differ-

ences

This section describes differences between how the qtcm package and the pure-Fortran
QTCM1 assign some varables. A list of changes to the QTCM1 Fortran Files for use
in the qtcm package is found in Section 6.2.

6.4.1 QTCM1 driverinit

In the pure-Fortran version of QTCM1, by default, the following variables are set by
reference (as given below), not by value, in the driverinit routine:4

4In the pure-Fortran version of QTCM1, this routine is found in driver.F90 .

6.4. PYTHON QTCM AND PURE-FORTRAN QTCM1 DIFFERENCES 79

lastday = daysperyear

viscxu0 = viscU

viscyu0 = viscU

visc4x = viscU

visc4y = viscU

viscxu1 = viscU

viscyu1 = viscU

viscxT = viscT

viscyT = viscT

viscxq = viscQ

viscyq = viscQ

Thus, in pure-Fortran QTCM1, if you change daysperyear, viscU, etc. and re-
compile (as needed), you will automatically change lastday, viscxu0, etc. (Though,
in the pure-Fortran QTCM1, the default values may be overwritten by namelist input
values.)

The driverinit routine is eliminated in the Python qtcm package. Instead, inital
values of field variables are specified in the defaults submodule and set by value to
attributes of the Qtcm instance. Thus, for instance, in a Qtcm instance, lastday is set
to 365 by default, not to some variable daysperyear. For the diffusion and viscosity
terms, the Qtcm instance attributes corresponding to those terms are set to literals.5

In contrast, in the pure-Fortran QTCM1, driverinit declares local variables
viscU, viscT, and viscQ, and reads values into those variables via the input namelist.
Those values are then used to set viscxu0, viscyu0, etc., as described above. In pure-
Fortran QTCM1, viscU, viscT, and viscQ are not directly accessed anywhere else
in the model. Thus, viscU, viscT, and viscQ are not defined as field variables in
the qtcm package, and Qtcm instances do not have attributes corresponding to those
names. Additionally, if you wish to change a viscosity parameter visc* (given above),
the parameter for each direction must be set one-by-one even if the flow is isotropic.

6.4.2 The varinit Routine

One of the functions of the pure-Fortran QTCM1 varinit subroutine is to associate
the pointer variables u1, v1, q1, and T1. For the extension modules in the qtcm

package, a Fortran subroutine varptrinit is added that can also do this association.
This subroutine is called in the Qtcm instance method varinit6 (which duplicates
and extends the function of its pure-Fortran counterpart, enabling alternative ways
of handling restart).

The varptrinit is not accessed via wrapcall. Remember that wrapcall contains
only those routines that were in the original pure-Fortran QTCM1 code, and that we
want to have access to at the Python level.

5Those literals are defined by defaults private module variables viscT, viscQ, and viscU.
6http://www.johnny-lin.com/py docs/qtcm/doc/html-api/qtcm.qtcm.Qtcm-class.html#varinit

80 CHAPTER 6. DEVELOPER NOTES

6.4.3 The qtcm Method of Qtcm

The Qtcm method qtcm duplicates the functionality of the qtcm subroutine in the
pure-Fortran QTCM1 model. There are a few differences, however. First, the qtcm

method for Qtcm instances does not include a call to cplmean, which uses mean surface
flux for air-sea coupling. This state is consistent with the pure-Fortran QTCM1 pre-
processor macro CPLMEAN being off. Thus, if you wish to use mean surface flux for
air-sea coupling, you will have to revise the qtcm method of Qtcm to call cplmean.
You’ll also have to check for any other code additions needed that are associated with
the CPLMEAN macro.

Second, the qtcm method for Qtcm instances does not include the option of not
using the atmospheric boundary layer model. This is consistent with macro NO ABL

being off. If you wish to have no atmospheric boundary layer model, change the run
list atm bartr mode so that the wsavebartr and wgradphis routines are not called.
You’ll also have to check for any other code additions needed that are associated with
the NO ABL macro.

6.4.4 Miscellaneous Differences

� In Python Qtcm instances, dateofmodel is set to 0 by default. In contrast, in
the compiled QTCM1 model, the default (i.e., initial value) is calculated from
day0, month0, and year0. See Section 4.4.1 for details.

� The Qtcm instance attribute qtcm is not copyable using copy.deepcopy.

� In general, when executing a Qtcm instance method, if you change a Qtcm in-
stance attribute that has a counterpart in the compiled QTCM1 model, the
compiled QTCM1 counterpart is not changed until the end of the method. Like-
wise, if you call a compiled QTCM1 model subroutine and change a compiled
QTCM1 model variable with a Qtcm instance counterpart, the Qtcm instance
counterpart is not changed until the end of the subroutine.

� In general, even though some of the compiled QTCM1 model Fortran subrou-
tines/functions have counterparts in Qtcm that duplicate the former’s function-
ality, the Fortran versions are kept intact so that the compiled form = ’full’

case will work.

6.5 Considerations When Adding Fortran Code

In this section I describe issues to consider if you wish to add your own compiled code
to the package as separate extension modules. (This is different from creating new
standard extension modules, which is described in Section 6.6.):

6.6. CREATING NEW STANDARD EXTENSION MODULES 81

� The Qtcm class assumes that the directory path to the original shared object
file is the same as for the package version module.

� If you want to be able to pass other Fortran variables in and out to/from Python,
please see the Section 6.3.1 discussion of the Fotran SetByPy module.

� Fortran and Python routines to get and set compiled QTCM1 model arrays are
currently written only for floating point array.

� If you ever change Qtcm instance method set qtcm array item in model to
work with non-floating point values, you will also have to change the array
handling section in set qtcm1 item.

� The restart mechanism in the pure-Fortran QTCM1 model is not bit-for-bit
correct. Thus, if you compare the final output from a 40 day run with a 30
day run restarted from a 10 day run, the output will not be the same. This
behavior has been duplicated in Qtcm instances when the mrestart flag is used
and applicable.

� When creating new extension modules using the src makefile, be sure you first
use the make clean command to clean-up any old files.

6.6 Creating New Standard Extension Modules

The steps involved in creating the standard extension modules (e.g., qtcm full 365.so,
etc.) on installation are given in Section 2.4. The makefile provided in /buildpath/src
uses a Fortran compiler to create the object code, runs f2py to create the shared
object file in src , and moves the shared object files into ../lib, overwriting any pre-
existing files of the same name. In this section, I describe the makefile and f2py

in a little more detail, in case you wish to create standard extension modules with
additions from the ones the default makefile creates.

6.6.1 Makefile Rules

This section describes the rules of the makefile found in the src directory of the qtcm

distribution. This makefile is used by the Python package to create the extension
module (.so files) imported and used by qtcm objects (as described in Section 2.4).
The makefile will, in general, be used only during qtcm installation, but if you wish to
recompile the QTCM1 libraries and make changes in the Python extension module,
you’ll want to use/change this makefile.

clean Removes old files in preparation for compiling new extension modules.

82 CHAPTER 6. DEVELOPER NOTES

libqtcm.a Creates library libqtcm.a that contains all QTCM1 object files in the di-
rectory src ,, except setbypy.o, wrapcall.o, varptrinit.o, and driver.o. This archive
is compiled with the netCDF libraries. Previous versions of libqtcm.a are over-
written.

qtcm full 365.so Creates the extension module qtcm full 365.so. f2py is run on
applicable code in src , and the extension module is moved to ../lib. Any previous
versions of ../lib/ qtcm full 365.so are overwritten.

qtcm parts 365.so Creates the extension module qtcm parts 365.so. f2py is run
on applicable code in src , and the extension module is moved to ../lib. Any
previous versions of ../lib/ qtcm parts 365.so are overwritten.

6.6.2 Using f2py

This section briefly describes how f2py is used in the makefile during the creation of
the extension modules. F2py is a program that generates shared object libraries that
allow you to call Fortran routines in Python. F2py comes with Python’s NumPy array
handling package, so you do not need to install anything extra if you have NumPy
already installed.

To create the extension modules in qtcm using the makefile described in Sec-
tion 6.6.1, I use a method similar to the “Quick and Smart Way,”7 described in the
f2py manual. For the qtcm full 365.so extension module, the f2py call is:

f2py --fcompiler=$(FC) -c -m qtcm full 365 driver.F90 \
setbypy.F90 libqtcm.a $(NCLIB)

and for the qtcm parts 365.so extension module, the call is:

f2py --fcompiler=$(FC) -c -m qtcm parts 365 \
varptrinit.F90 wrapcall.F90 setbypy.F90 \
libqtcm.a $(NCLIB)

For both calls, FC and NCLIB are the environment variables in the makefile spec-
ifying the Fortran compiler and netCDF libraries, respectively. The -m flag specifies
the extension module name (without the .so suffix). The .F90 files specify the files
that have modules and routines that will be accessible at the extension module level,
and the rest of the Fortran files in QTCM1 are compiled and archived in a library
libqtcm.a. For f2py to work properly, the .F90 files may define only one module or
routine.

If you add Fortran files containing new modules, and you wish those modules to
be accessible at the Python level, compile your new code with f2py. If we have a
file of such new code, newcode.F90 , the f2py call to create the qtcm parts 365.so
extension module will become:

7http://cens.ioc.ee/projects/f2py2e/usersguide/index.html#the-quick-and-smart-way

http://cens.ioc.ee/projects/f2py2e/
http://numpy.scipy.org/

6.7. ATTRIBUTES AND METHODS IN QTCM INSTANCES 83

f2py --fcompiler=$(FC) -c -m qtcm parts 365 \
varptrinit.F90 wrapcall.F90 setbypy.F90 \
newcode.F90 \
libqtcm.a $(NCLIB)

If you write new Fortran code for the compiled QTCM1 model that will not be
accessed from the Python-level, just add the object code filename to the variable
QTCMOBJS in the makefile; you don’t have to do anything else. If you are adding
Fortran code to existing Fortran modules, it’s even easier: You don’t need change the
makefile. Note that for 64 bit processor machines, you may have to use f2py with
the -fPIC flag; see Section 2.8.4 for details on how the lines above will change.

6.6.3 Two Examples

A Function: Let’s say you have written a piece of Fortran code called myfunction.F90
that contains one function called myfunction, and you want to have this function
callable from the Python level through the Qtcm instance method qtcm.myfunction.
Do the following:

1. Move myfunction.F90 to src in the qtcm distribution directory /buildpath.

2. Add myfunction.o to the end of the object file list lines after the target names
qtcm full 365.so and qtcm parts 365.so.

3. In the qtcm full 365.so and qtcm parts 365.so target descriptions, add
myfunction.F90 to the beginning of the list of .F90 names in the f2py lines.

A Module: Let’s say you have written a piece of Fortran code called mymod-
ule.F90 that contains the Fortran module MyModule containing multiple routines
and variables. You want to have those routines and variables callable from the
Python level through the Qtcm instance attribute qtcm.mymodule. The steps to
add MyModule to the extension modules are exactly the same as for a single function,
with mymodule being substituted in the makefile everywhere you have myfunction.

6.7 Attributes and Methods in Qtcm Instances

In this section I describe some attributes, particularly private ones, that may be
of interest to developers. As is the convention in Python, private attributes and
methods are prepended by one or two underscores, with two underscores being the
“more” private attribute. Please see the package API documentation8 for details
about all variables, including private variables.

8http://www.johnny-lin.com/py pkgs/qtcm/doc/html-api/

84 CHAPTER 6. DEVELOPER NOTES

6.7.1 Public num settings Submodule Attributes/Methods

� typecode: This module function returns the type code of the data array passed
in as its argument.

� typecodes: This dictionary is the same as the NumPy (or Numeric and numarray)
dictionary typecodes, except that the character ’S’ and ’c’ are added to the
typecodes[’Character’] entry, if absent. This functionality is added because I
found typecodes[’Character’] had different values in Mac OS X and Ubuntu
GNU/Linux.

6.7.2 Private qtcm Submodule Attributes

This submodule of the package qtcm is the module that defines the Qtcm class.

� init prog dict: This dictionary contains the default values of all prognostic
variables and right-hand sides that can be initialized. In the submodule qtcm,
it is set to the init prognostic dict module variable in submodule defaults.

� init vars keys: List of all keys in init prog dict, plus ’dateofmodel’ and
’title’. These names correspond to the field variables that are usually written
out into a restart file.

� test field: Field object instance used in type tests.

6.7.3 Private Qtcm Attributes

� cont: A boolean attribute that is True if the run session is a continuation run
session and False if not. Set the value passed in by the keyword cont when
the run session method is executed.

� monlen: Integer array of the number of days in each month, assuming a 365 day
year.

� qtcm: The extension module that is the compiled QTCM1 Fortran model for
this instance. This attribute is unique for every instance: The extension module
.so file is first copied to a temporary directory (given by the sodir instance
attribute) and then imported to the Qtcm instance. This private attribute is set
on instantiation.

� qtcm fields ids: Field ids for all default field variables, set on instantiation.

� runlists long names: Dictionary holding the descriptions of the standard run
lists. The keys of the dictionary are the names of the standard run lists.

6.8. CREATING DOCUMENTATION 85

6.8 Creating Documentation

The distribution of qtcm comes with the full set of documentation in readable form
(PDF and HTML). The documentation consists of two kinds: this User’s Guide and
the API documentation. The User’s Guide is written in LATEX. The PDF version is
generated directly from LATEX, and the HTML version is created by LATEX2HTML.

I use the make docs shell script in doc creates all these documents. Briefly, that
script does the following:

� In the doc/latex directory, uses python to run code to latex.py , which generates
the LATEX files describing the current qtcm package settings, including text in
the manual which gives all uses of the current version number.

� LATEX is run on the LATEX files in the doc/latex directory. The PDF generated
by the run is moved from doc/latex to doc .

� LATEX2HTML is run on the LATEX files in doc/latex . The HTML files generated
by the run are moved to doc/html .

� epydoc is run on the qtcm package libraries. This is run in doc , to make use of
the epydoc configuration file present there. The syntax from the command line
is:

epydoc -v --config epydocrc [name]

[name] is either qtcm, if the qtcm package is installed in a directory listed in
sys.path, or [name] is the name of the directory the qtcm package is located
in (e.g., /usr/lib/python2.4/site-packages/qtcm).

The make docs script cannot be used without customizing it to your system, so
please DO NOT USE IT if you do not know what you are doing. You could easily
wipe out all your documentation by mistake.

86 CHAPTER 6. DEVELOPER NOTES

Chapter 7

Future Work

This section describes the features and fixes I plan to work on in this package. The
most urgent items are listed closer to the begining of the lists.

� Automate the installation using Python’s distutils1 utilities.

� Describe a way of using job control (either via the operating system or IPython’s
jobctrl module) to do a quick-and-dirty parallelization of multiple Qtcm in-
stance run sessions. Or use some sort of threading to fire up two simulata-
neously running models. Check that the simultaneously running models have
different memory space.

� Add capability for create benchmark.py to overwrite existing benchmark files.

� Make compiled form set to ’parts’ as the default instantiation. Change doc-
umentation accordingly.

� Currently, the Qtcm plotm method works only on 3-D output (time, latitude,
longitude). Some of the fields in the netCDF output files are 2-D. Add the
capability to plot netcdf output in the plot submodule to handle 2-D fields.

� Add documentation about removing temporary files. Add documentation in
Section 4.2 of details of what occurs during instantiation of a Qtcm instance.

� Add the units and long names for all field variables in the defaults module.

� Create a keyword to automatically change precipitation and evaporation units
to mm/day (or similar).

� Add ability to calculate and plot fields at different pressure levels. Create an-
other module like defaults that specifies the vertical fields and gives the equation
to use to calculate those fields; call the module “derivfields” or something sim-
ilar.

1http://docs.python.org/dist/dist.html

87

http://docs.python.org/dist/dist.html

88 CHAPTER 7. FUTURE WORK

� Throughout the qtcm package I use the condition N.rank(arg) = 0 to test whether
arg is a scalar. This works fine for numpy objects, but it does not work properly
for Numeric and numarray arrays. In those array packages, rank(’abc’) re-
turns the value 1. This is not a problem, as long as everyone has numpy, but in
order to make the package interoperable, I need to find a better way of testing
for scalars. The definitions of isscalar need to be changed in num settings.

� num settings needs to be changed to truly enable me to test whether qtcm

works for numarray and Numeric arrays. The tests do not do this right now,
because num settings defaults to numpy, if it exists.

� Create makefiles for other platforms.

� A few fields (e.g., u1) have data for extra latitude bands, due to the use of
“ghost latitudes” as part of the implementation of the numerics. Details are
found in the QTCM1 manual2 [4].

Though adjusting to this idiosyncracy is not that difficult, in the future I hope
to implement a method of handing fields with ghost latitudes so that they have
the same dimensions as the other gridded output variables. In order to do this,
I plan to write a Python method to read the Fortran generated binary restart
file.

� Change the set qtcm item method so that it can automatically accomodate
setting Fortran real variables if integer values are input.

� Currently, the get item qtcm and set item qtcm methods will not work on
integer and character arrays, only scalars and real arrays. Add that missing
functionality to those methods.

� Currently, the make snapshot method duplicates the functionality of the pure-
Fortran QTCM1 restart file mechanism. However, the restart file mechanism
itself does not do a true restart. A continuous run does not provide the same
results as two runs over the same period, joined by the restart file.

To see whether saving more variables would do the trick, I altered make snapshot

to store all Python level variables (i.e., self. qtcm fields ids). However, the
restart failing described above still continued. In the future, I hope to figure
out exactly how many variables are needed in order to make the restart feature
do a true restart.

� Add a test of using the mrestart = 1 restart option. Does the qtcm.restart file
need to be in the current working directory or another?

2http://www.atmos.ucla.edu/∼csi/qtcm man/v2.3/qtcm manv2.3.pdf

http://www.atmos.ucla.edu/$sim $csi/qtcm_man/v2.3/qtcm_manv2.3.pdf

89

� Add a test in the unit test scripts to confirm that the init with instance state

attribute setting only has an effect if compiled form = ’parts’.

� Document tmppreview keyword in plot.plot ncdf output.

� Confirm and document that for netCDF output, time is model time since dd-
mm-yyyy.

� Add to the plotm method the ability to plot as text onto the figure the runname
string and the calling line for the plotm method.

� Couple with the CliMT3 climate modeling toolkit.

� Enable Python to set arr1name, etc., which are string variables at the Python
level. I haven’t really thought through how arr1 variables work with the Python
Qtcm instance.

� Possible: In the Qtcm method setattr , add a test to raise an exception if
the instance tries to set viscU, viscT, or viscQ as attributes. Also create a
method isotropic visc that will set all viscosity parameters non-dependent
on direction. See Section 6.4.1 for details.

� Go through the manual and create HTML-only versions of tables that have
table numbers (use a similar construct as in figure environments).

� Go through documentation to check that output variable names are capitalized
consistently.

� Create way to redirect stdout.

� Create a step method to run an arbitrary number of timesteps at the atmosphere
level.

3http://maths.ucd.ie/∼rca/climt/

90 CHAPTER 7. FUTURE WORK

Bibliography

[1] A. K. Betts and M. J. Miller. A new convective adjustment scheme. Part II: Single
column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets.
Quart. J. Roy. Meteor. Soc., 112:693–709, 1986.

[2] Johnny Wei-Bing Lin. The Effects of Evaporation-Wind Feedback, Mid-Latitude
Storms, and Stochastic Convective Processes on Tropical Intraseasonal Variability.
Ph.D. Dissertation, University of California, Los Angeles, 2000.

[3] J. David Neelin and Ning Zeng. A quasi-equilibrium tropical circulation model—
formulation. J. Atmos. Sci., 57(11):1741–1766, June 1, 2000.

[4] J. David Neelin, Ning Zeng, Chia Chou, Johnny Lin, Hui Su, Matthias Munnich,
Katrina Hales, and Joyce Meyerson. The Neelin-Zeng Quasi-Equilibrium Tropical
Circulation Model (QTCM1), Version 2.3. UCLA Department of Atmospheric
Sciences, Los Angeles, 2002.

[5] Ning Zeng, J. David Neelin, and Chia Chou. A quasi-equilibrium tropical cir-
culation model—implementation and simulation. J. Atmos. Sci., 57:1767–1796,
2000.

91

92 BIBLIOGRAPHY

Appendix A

Field Settings in defaults

A.1 Scalar Field Variables

This table lists the default settings for scalar qtcm fields as set by the defaults

submodule. All fields are of class Field. Numerical values are rounded as per the
conventions of Python’s %g format code. To create a Field instance whose value is
set to the default, instantiate with the field id as the argument

Field Value Units Description
SSTdir ../bnddata/SST Reynolds Where SST files are
SSTmode seasonal Decide what kind of SST

to use
VVsmin 4.5 m/s Minimum wind speed for

fluxes
bnddir ../bnddata Boundary data other

than SST
dateofmodel 0 Date of model coded as

an integer as yyyymmdd
day0 -1 dy Starting day; if < 0 use

day in restart
dt 1200 s Time step
eps c 0.000138889 1/s 1/tau c NZ (5.7)
interval 1 dy Atmosphere-ocean cou-

pling interval
it 1 Time of day in time steps
landon 1 If not 1: land = ocean

with fake SST
lastday 365 dy Last day of integration
month0 -1 mo Starting month; if < 0 use

mo in restart

93

94 APPENDIX A. FIELD SETTINGS IN DEFAULTS

Field Value Units Description
mrestart 0 =1: restart using

qtcm.restart
mt0 1 Barotropic timestep ev-

ery mt0 timesteps
nastep 1 Number of atmosphere

time steps within one air-
sea coupling interval

noout 0 dy No output for the first
noout days

nooutr 0 dy No restart file for the first
nooutr days

ntout -30 dy Monthly mean output
ntouti 0 dy Monthly instantaneous

data output
ntoutr 0 dy Restart file only at end of

model run
outdir ../proc/qtcm output Where output goes to
runname runname String for an output file-

name
title QTCM default title A descriptive title
u0bar 0
visc4x 700000 m2/s Del 4 viscocity parameter

in x
visc4y 700000 m2/s Del 4 viscocity parameter

in y
viscxT 1.2e+06 m2/s Temperature diffusion

parameter in x
viscxq 1.2e+06 m2/s Humidity diffusion pa-

rameter in x
viscxu0 700000 m2/s Viscocity parameter for

u0 in x
viscxu1 700000 m2/s Viscocity parameter for

u1 in x
viscyT 1.2e+06 m2/s Temperature diffusion

parameter in y
viscyq 1.2e+06 m2/s Humidity diffusion pa-

rameter in y
viscyu0 700000 m2/s Viscocity parameter for

u0 in y
viscyu1 700000 m2/s Viscocity parameter for

u1 in y

A.2. ARRAY FIELD VARIABLES 95

Field Value Units Description
weml 0.01 m/s Mixed layer entrainment

velocity
year0 0 yr Starting year; if < 0 use

year in restart
ziml 500 m Atmosphere mixed layer

depth ∼ cloud base

A.2 Array Field Variables

This table lists the default settings for array qtcm fields as set by the defaults

submodule. All fields are of class Field. Numerical values are rounded as per the
conventions of Python’s %g format code.

Field Shape Max Min Units Description
Evap (1, 1) 0 0
FLW (1, 1) 0 0
FLWds (1, 1) 0 0
FLWus (1, 1) 0 0
FLWut (1, 1) 0 0
FSW (1, 1) 0 0
FSWds (1, 1) 0 0
FSWus (1, 1) 0 0
FSWut (1, 1) 0 0
FTs (1, 1) 0 0
Qc (1, 1) 0 0 K Precipitation
S0 (1, 1) 0 0
STYPE (1, 1) 0 0 Surface type; ocean or vegeta-

tion type over land
T1 (1, 1) 0 0 K
Ts (1, 1) 0 0 K Surface temperature
WD (1, 1) 0 0
WD0 (1,) 0 0 Field capacity SIB2/CSU (ap-

proximately)
arr1 (1, 1) 0 0 Auxiliary optional output array

1
arr2 (1, 1) 0 0 Auxiliary optional output array

2
arr3 (1, 1) 0 0 Auxiliary optional output array

3
arr4 (1, 1) 0 0 Auxiliary optional output array

4

96 APPENDIX A. FIELD SETTINGS IN DEFAULTS

Field Shape Max Min Units Description
arr5 (1, 1) 0 0 Auxiliary optional output array

5
arr6 (1, 1) 0 0 Auxiliary optional output array

6
arr7 (1, 1) 0 0 Auxiliary optional output array

7
arr8 (1, 1) 0 0 Auxiliary optional output array

8
psi0 (1, 1) 0 0
q1 (1, 1) 0 0 K
rhsu0bar (1,) 0 0
rhsvort0 (1, 1, 1) 0 0
taux (1, 1) 0 0
tauy (1, 1) 0 0
u0 (1, 1) 0 0 m/s Barotropic zonal wind
u1 (1, 1) 0 0 m/s Current time step baroclinic

zonal wind
v0 (1, 1) 0 0 m/s Barotropic meridional wind
v1 (1, 1) 0 0 m/s
vort0 (1, 1) 0 0

	Introduction
	How to Read This Manual
	About the Package
	Conventions In This Manual
	Audience
	Typographic Conventions
	Terminology

	Current Version Information and Acknowledgments
	Summary of Release History
	A Brief Description of The QTCM1

	Installation and Configuration
	Summary and Conventions
	Fortran Compiler
	Required Packages
	Compiling Extension Modules
	Testing the Installation
	Model Performance
	Installing in Mac OS X
	Introduction
	Platform and Unix Dependencies
	Fortran Compiler
	NetCDF Libraries
	Makefile Configuration
	Summary of Steps

	Installing in Ubuntu
	Introduction
	Fortran Compiler
	NetCDF Libraries
	Makefile Configuration
	Summary of Steps

	Getting Started With qtcm
	Your First Model Run
	Managing Directories
	Model Field Variables
	Run Sessions
	What is a Run Session?
	Changing Variables
	Continuing a Model Run
	Passing Restart Snapshots Between Run Sessions

	Creating Multiple Models
	Model Instances
	Passing Snapshots To Other Models

	Run Lists
	Model Output
	NetCDF Output
	Visualization

	Documentation

	Using qtcm
	Introduction
	Model Instances
	Initializing a Model Run
	The compiled_form Keyword
	Initialization for compiled_form='full'
	Initialization for compiled_form='parts'
	Communication Between Python and Fortran-Levels

	Restart and Continuation Run Sessions
	Restart Runs In the Pure-Fortran QTCM1
	Overview of Restart/Continuation Options In qtcm
	Restart/Continuation for compiled_form='full' Model Instances
	Restart/Continuation for compiled_form='parts' Model Instances
	Snapshots of a Qtcm Instance

	Creating and Using Run Lists
	Field Variables and the Field Class
	Creating Field Variables
	Initial Field Variables
	Passing Fields Between the Python and Fortran-Levels
	Field Variable Shape

	Model Output
	Miscellaneous
	Cookbook of Ways the Model Can Be Used

	Troubleshooting
	Error Messages Produced by qtcm
	Other Errors

	Developer Notes
	Introduction
	Changes to QTCM1 Fortran Files
	New Interfaces and Fortran Functionality
	Fortran Module SetbyPy
	Fortran Module WrapCall

	Python qtcm and Pure-Fortran QTCM1 Differences
	QTCM1 driverinit
	The varinit Routine
	The qtcm Method of Qtcm
	Miscellaneous Differences

	Considerations When Adding Fortran Code
	Creating New Standard Extension Modules
	Makefile Rules
	Using f2py
	Two Examples

	Attributes and Methods in Qtcm Instances
	Public num_settings Submodule Attributes/Methods
	Private qtcm Submodule Attributes
	Private Qtcm Attributes

	Creating Documentation

	Future Work
	Field Settings in defaults
	Scalar Field Variables
	Array Field Variables

