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Abstract. Numerical weather prediction and climate mod-
els require continuous adaptation to take advantage of ad-
vances in high-performance computing hardware. This paper
presents the port of the ICON model to GPUs using Ope-
nACC compiler directives for numerical weather prediction
applications. In the context of an end-to-end operational fore-
cast application, we adopted a full-port strategy: the entire
workflow, from physical parameterizations to data assimila-
tion, was analyzed and ported to GPUs as needed. Perfor-
mance tuning and mixed-precision optimization yield a 5.5×
speed-up compared to the CPU baseline in a socket-to-socket
comparison. The ported ICON model meets strict require-
ments for time-to-solution and meteorological quality, in or-
der for MeteoSwiss to be the first national weather service to
run ICON operationally on GPUs with its ICON-CH1-EPS
and ICON-CH2-EPS ensemble forecasting systems. We dis-
cuss key performance strategies, operational challenges, and
the broader implications of transitioning community models
to GPU-based platforms.

1 Introduction

Numerical weather prediction (NWP) plays a critical role in
our society, supporting applications ranging from renewable
energy management to the protection of life and property
during severe weather events. The growing demand for accu-
rate weather forecasts requires the use of advanced computa-
tional techniques to improve the performance of NWP mod-
els. With greater computing power, models can run at higher
resolutions, capturing finer-scale atmospheric processes and
local weather phenomena that coarser models cannot resolve
(Palmer, 2014; Bauer et al., 2015). This could improve the
accuracy of predictions for severe weather events such as
thunderstorms, hurricanes, and heavy rainfall. Furthermore,
greater computational power allows for more frequent up-
dates and the execution of larger ensemble forecasts, thereby
enhancing forecast reliability through quantification of un-
certainty. In recent years, graphics processing units (GPUs)
have emerged as a cornerstone of high-performance comput-
ing (HPC), offering high throughput and improved energy
efficiency through massive parallelism. However, in order
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to benefit from the latest advancements in HPC technology,
weather and climate models must be adapted to operate effec-
tively on this hardware. Furthermore in the context of emerg-
ing machine learning for weather forecasting having a GPU
capable model is of great interest since both the Machine
Learning algorithms as well as the traditional NWP model
can run on the same GPU hardware allowing for synergies in
terms of system investment.

Weather and climate models are typically large commu-
nity codes comprising millions of lines of Fortran or C/C++
code. Adapting such a large code base to GPUs requires
significant effort. While many attempts have been made to
port individual components, only a handful of these models
have been fully ported and are being used in production on
GPU-based or hybrid systems. Different groups have adopted
various strategies. Some early work includes the Japanese
ASUCA model (Shimokawabe et al., 2011) which has been
ported with a CUDA (Nickolls et al., 2008) rewrite. An-
other approach is to use compiler directives such as Ope-
nACC or OpenMP for accelerators. The advantage of this
approach is that it can be incrementally inserted into ex-
isting code and may be more easily accepted by the mod-
eling community. The MesoNH (non-hydrostatic mesoscale
atmospheric) model was ported to GPUs using such Ope-
nACC compiler directives (Escobar et al., 2024). Other mod-
els have or are beeing re-written using a Domain Specific
language (DSL) approach, allowing to potentially reach a
better performance portability as well as a separation of con-
cerns between the user code and hardware optimizations. The
COSMO (Consortium for Small-scale Modeling) model was
ported using a combination of DSL rewrite and OpenACC
directives, achieving substantial speed-ups on GPU systems
with respect to the CPU baseline (Lapillonne and Fuhrer,
2014; Fuhrer et al., 2014). It was also the first model used by
a national weather service for operational numerical weather
prediction on GPUs. The LFric model developed by the UK
MetOffice is using the Psychlone DSL (Adams et al., 2019).
Several ongoing effort are considering the GT4py (Grid
Tools for python) DSL this includes the Pace model (Dahm
et al., 2023) from Allen Institute for Artificial Intelligence
(AI2), the Portable Model for Multi-Scale Atmospheric Pre-
dictions (PMAP) model (Ubbiali et al., 2025) at ECMWF,
or the ICON (Icosahedral Nonhydrostatic) model (Dipankar
et al., 2025). Recently the Energy Exascale Earth System
(E3SM) was entirely rewritten using C++ and the Kokkos
library (Donahue et al., 2024). These diverse efforts highlight
the growing necessity of exploiting modern hardware archi-
tectures, such as GPUs, to meet the increasing computational
demands of weather and climate modeling.

To take advantage of advances in hardware architectures,
the ICON (Icosahedral Nonhydrostatic) model (Zängl et al.,
2015) – a state-of-the-art model for weather and climate sim-
ulations – was first successfully ported to GPU architectures
using OpenACC compiler directives which have been ap-
plied to the existing Fortran-based code. The initial effort

targeted climate applications (Giorgetta et al., 2022), leav-
ing components essential for NWP unported. Building on
this foundation, we extend the GPU support to weather appli-
cations by porting the missing components using OpenACC
directives. Although several other configurations are ported
and supported on GPU, this work particularly focuses on the
operational setup at the Swiss National Weather Service Me-
teoSwiss. Our comprehensive approach spans the entire oper-
ational workflow, from initialization to output, while meeting
stringent time-to-solution requirements of various products
such as forecasts for aviation or other NWP-specific applica-
tions.

2 The ICON model

The ICON (Icosahedral Nonhydrostatic) model, by Zängl
et al. (2015), is a climate and numerical weather predic-
tion system developed through a partnership involving the
German Weather Service (DWD), the Max Planck Insti-
tute for Meteorology (MPI-M), the German Climate Com-
puting Center (DKRZ), the Karlsruhe Institute of Technol-
ogy (KIT), and the Center for Climate Systems Modeling
(C2SM). Besides climate and research applications, ICON
is used operationally by the DWD, MeteoSwiss and several
national weather services of the COSMO consortium for nu-
merical weather prediction. The model employs an icosa-
hedral grid structure, which divides the globe into triangu-
lar cells, providing quasi-uniform resolution and eliminat-
ing the pole problem inherent to traditional latitude-longitude
grids. This grid structure supports local refinement, enabling
higher resolution in areas of interest without compromising
global coverage. The model uses a finite-volume discretiza-
tion method on these triangular cells, ensuring mass conser-
vation and accurate representation of atmospheric dynamics.
The coupling between dynamics and physics in ICON fol-
lows a split-explicit strategy, where the fast dynamical core is
sub-stepped relative to the physics time step, allowing for sta-
ble integration while maintaining computational efficiency.

For parallelization, ICON adopts a horizontal domain de-
composition strategy, where the computational domain is
divided into smaller subdomains distributed across multi-
ple processors. The communication accross nodes is imple-
mented using the Message Passing Interface (MPI) library
and the model is scaling well up to thousand nodes (Giorgetta
et al., 2022). The vertical discretization in ICON is based on a
terrain-following hybrid coordinate system which combines
the advantages of pressure-based and height-based coordi-
nates. This system allows for a more accurate representation
of the atmospheric boundary layer and better resolution of
vertical atmospheric processes, particularly in regions with
complex topography such as the Alps.
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3 GPU port for NWP

3.1 Overview

The GPU port of the ICON model is based on OpenACC
compiler directives, which are added as comments to the
original Fortran source code; see Listing 1. The choice of
a directive-based approach was decided over a re-write in
a GPU-specific language like CUDA or a DSL, mainly be-
cause of its broader acceptance by the ICON community,
increasing the chance to re-integrate the work in the main
code. In addition, although there is an ongoing project, us-
ing the GT4Py DSL to re-write ICON, it was not clear if all
features, such as the icosahedral grid, or even if a full re-
write could be ready in time for the life cylce of the HPC
and operational model at MeteoSwiss. Furthermore the Ope-
nACC directives were chosen over OpenMP for accelera-
tor after an evaluation at the begining of the project show-
ing that the compilers supporting OpenMP were less mature.
The OpenACC directives guide the compiler in generating
GPU code, reducing the need for manual intervention. A sim-
ple code analysis indicates that the ICON model consists of
approximately 1.2 million lines of Fortran code, excluding
comments and non-executable directives, with an additional
21 000 OpenACC pragmas introduced for GPU acceleration.
Restricting the analysis to the subfolders used in operational
numerical weather prediction (NWP), it reduces these figures
to around 660 000 and 13 000 lines, respectively. One of the
key aspects of the port is to reduce data movement between
the host CPU and the GPU memory while also maximizing
the utilization of the GPU’s computational resources.

In atmospheric models, the arithmetic intensity, i.e., the
ratio of computation (floating-point operations) to memory
accesses, is generally low (Adamidis et al., 2025). As a re-
sult, only porting isolated kernels to the GPU would incur a
significant penalty of data transfer between the CPU and the
GPU that cannot be amortized by the ported kernel execu-
tion time. Instead, most model components must be ported
together, which we refer to as a full port strategy. Timing
measurements confirm that transferring all the variables from
the CPU to the GPU memory takes approximately as long as
performing one full time step on the GPU. To achieve any
performance gain using a GPU under these conditions, it is
essential that such data transfers are avoided at every time
step. Instead, data transfers between CPU and GPU should
be limited to infrequent operations, such as writing output to
disk. Accordingly, the ICON GPU port is designed such that
after the initialization phase on the CPU, all data are copied
to the GPU and during the time loop all components called
at high temporal frequency are executed on the GPU (Fig. 1).
If any code needs to run on the CPU within the time loop, a
data copy is added from GPU to CPU.

3.2 Strategy and performance consideration

ICON operates on a three-dimensional computational do-
main: in the horizontal grid cells are enumerated with a
space-filling curve, which is split into nblocks blocks of
user-defined block size nproma, while the vertical direc-
tion comprises nlev levels. Most arrays in ICON follow
the index ordering (nproma, nlev, nblocks), possi-
bly with additional dimensions of limited size. In the GPU
port, nproma is set as large as possible, ideally such that
all cell grid points of a computational domain, including first
and second-level halo points, fit into a single block, yield-
ing nblocks=1. This design choice reduces the complex-
ity of the porting process: parallelization is required only
along the nproma and nlev dimensions, while nblock
loop can be omitted, since its value is either one or very
small. This particularly reduces the call tree size inside a
parallel region, since many parameterizations are called in-
side the block loop. Loops over nproma are usually the in-
nermost loops and rarely contain additional subroutine calls.
Although nblocks=1 should not be a requirement from the
OpenACC standard point of view, in practice many compiler
issues and limitations were circumvented by avoiding call-
ing nested subroutines in accelerated regions. The nproma
dimension, with unit stride in memory, is the main direction
of fine-grain parallelism and is associated with the OpenACC
keyword vector to ensure coalesced memory access.

In our porting approach, all components in the time-
stepping loop (with minor exceptions) run on the GPU, while
components in the initialization run on the CPU (cf. Fig. 1).
A challenge arises from the fact that both initialization and
time-stepping invoke shared low-level routines. To distin-
guish between the execution context, an additional logical ar-
gument, lacc, is introduced and used as a conditional guard
on all parallel and data regions within the shared routines.
An example is shown in Listing 2, when the correspond-
ing routine should run on CPU the logical lzacc is set to
.FALSE..

The GPU implementation assumes one compute MPI task
per GPU. The original communication library is ported to
GPU and supports GPU-to-GPU (G2G) communication, en-
abling efficient data exchange between GPUs during parallel
execution. This comprehensive approach to porting ICON to
GPUs aims to maximize performance gains and reduce to the
minimum data transfer.

3.3 Basic Optimization

Multiple general optimization strategies are considered for
the initial GPU port of ICON and are applied throughout the
code when possible. The first design choice is to apply ACC
LOOP VECTOR to the innermost loop to allow contiguous
memory accesses. The inner nproma-loop can be collapsed
with the outer nlev loop when appropriate, significantly in-
creasing the amount of available parallelism. This allows to
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Listing 1. Example of a simple one dimensional loop addition parallelized with OpenACC. The !$ACC PARALLEL indicate the parallel
region, while the LOOP statement indicate which loop to parallelized.

Figure 1. GPU port of the ICON model. After initialization on the CPU all the main components of the time loop are run on the GPU.

use larger kernel grids that, typically, improves average oc-
cupancy and thus helps better hide memory latency.

The second optimization is to merge multiple loops nested
together into one large parallel region. This reduces the
kernel launch overhead. However, a drawback of this ap-
proach is that it often prevents the use of the COLLAPSE
clause and thus reduces the available parallelism, as every
parallel loop in the whole region needs to have the same
bounds, which is not always the case in the vertical direc-
tion. Nevertheless, for ICON, larger parallel regions gener-
ally yield better GPU performance. When dependencies ex-
ist between the different loop nests inside a parallel region,
the GANG(STATIC: 1) clause is required. This clause en-
sures that the same GANG indices will be executed consec-
utively in each sub-loop, which is otherwise not guaranteed.
Since the GANG(STATIC: 1) clause does not degrade per-
formance noticeably, the clause is always added when mul-
tiple loop nests are in a larger parallel region. This practice
ensures robustness against future modifications by domain
scientists who may introduce inter-loop dependencies. This
is the second most widely used approach in the code.

An alternative to COLLAPSE is the use of the TILE di-
rective. TILE splits the iteration space into blocks of user-
defined size. This can improve cache-usage, especially in
cases for neighbor accesses or for memory transposes. For
instance, the execution time for this parallel region can be re-
duced from 19 to 2.5 ms by using the TILE directive instead
of COLLAPSE(3), see Listing 3. The choice of tile sizes is
hardware-specific and has been selected to yield optimal per-
formance on NVIDIA GPUs, which is generally consistent
across most NVIDIA architecture generations. In this case, it

has also been demonstrated that even a suboptimal tile size
can outperform a plain loop collapse. This approach is used
only in cases involving either neighbor accesses or special
transposes, which occur in the dynamical core and the radia-
tion scheme, respectively.

Furthermore, advanced optimizations which are specific to
different parts of the code are described in Sect. 6.2.

3.4 Dynamics

The Dynamics, or dynamical core of the model, solves the
equations governing atmospheric flow. Most components of
the dynamical core are shared between the climate and NWP
configurations, so only a few additional components had to
be ported in addition to the initial work described in Gior-
getta et al. (2022). Most loops are parallelized along the
nproma and nlev directions when there is no vertical de-
pendency. The code has been GPU-optimized while preserv-
ing portability. Although OpenACC directives support exe-
cution on both CPU and GPU targets, around ten instances in
the code use architecture-specific variants to achieve optimal
performance on each platform. These conditional branches
enable tailored implementations where the GPU and CPU
exhibit substantially different performance characteristics.

3.5 Tracer Transport

The transport module is responsible for the large-scale re-
distribution of water substances, chemical constituents, or
aerosols, for example pollen, by solving the tracer mass con-
tinuity equation. The Tracer advection is divided into inde-
pendent horizontal and vertical advection using the Strang
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Listing 2. Example using the lzacc conditional inside a routine in the turbulence component that may be called on the CPU or on the GPU.

Listing 3. Example for the use of the OpenACC tile directive.

splitting approach see (Reinert, 2020). Both horizontal and
vertical transport use semi-Lagrangian algorithms as de-
scribed in (Reinert and Zängl, 2021). The computational
structure of the transport routines resembles that of the dy-
namical core, involving access patterns from the current
edge/cell to neighboring edges or cells. This similarity al-
lows for the adoption of a comparable GPU porting strategy.
Different transport algorithms with different computational
cost/accuracy trade-offs can be chosen for different tracers.
For example, cloud ice, cloud water, precipitation, graupel
are transported using the same scheme, while water vapor
is treated with a higher-order horizontal advection method.
This high-order scheme poses the greatest challenge for GPU
porting using OpenACC, as it involves indirect addressing
using index lists. To address this, a tailored GPU implemen-
tation was developed to ensure efficient execution on GPUs.

3.6 Physics

The so-called physical parameterizations are additional com-
ponents that describe physical processes not represented by
the equations of the dynamics, such as sub-grid scale tur-
bulence, radiation or the physical processes associated to
cloud formation and precipitation. These parameterizations
are computed on the three-dimensional model grid and are
invoked frequently, some at every time step, thus requir-
ing GPU porting. Due to anisotropy in the atmosphere and
the timescales of the physical processes relative to atmo-

spheric flow, horizontal interactions can be neglected for
most parameterizations. As a result, they can be formulated
as column-independent computations. This makes them very
attractive for parallelization, as the parameterizations can be
trivially parallelized along the horizontal direction, nproma
in our case. Many parameterizations, however, do have verti-
cal dependencies, e.g., when the vertical loop must be com-
puted sequentially. This is true, for example, in the main
computations of the microphysics and the turbulence. All pa-
rameterizations required for the main NWP applications have
been ported to GPU.

3.6.1 Treatment of the soil tiles

In ICON, subgrid heterogeneity of the land surface is repre-
sented using a so-called tile approach. For example, a given
grid point may consist of 50 % forest and 50 % grass, and the
tile composition may change dynamically over the simula-
tion. The ICON implementation is such that at each time step
a list is created for each type of tile, which are then computed
one after the other. Executing each tile type sequentially on
the GPU would lead to poor performance, since some tile
types may contain too few grid points on a given subdomain
to fully utilize the GPU. To circumvent this issue, each tile
type is run in an independent queue, equivalent to a CUDA
stream on NVIDIA GPUs, using the ASYNC(stream) con-
struct. In combination with CUDA Graphs, an optimization

https://doi.org/10.5194/gmd-19-755-2026 Geosci. Model Dev., 19, 755–772, 2026



760 X. Lapillonne et al.: NWP forecast with ICON on GPUs

further described in Sect. 6.2.5, this approach yields good
performance for parameterization using tiles.

3.6.2 Radiation

The radiation scheme ecRad (Hogan and Bozzo, 2016), de-
veloped at the European Centre for Medium-Range Weather
Forecasts (ECMWF), is operationally used in ECMWF’s In-
tegrated Forecasting System (IFS) and is also employed in
ICON. The code structure and data layout of ecRad differ
significantly from those in the rest of ICON. In addition, its
memory consumption is substantial, as it processes approx-
imately 300 wavelengths per grid point. To reduce compu-
tational time and modestly decrease memory usage, radia-
tion calculations are performed on a coarser grid, so called
reduced grid, approximately four times less dense than the
full-resolution grid.

Thus, a solution is still needed to manage memory con-
sumption, and the porting strategy had to be adapted to
accommodate the distinct data layout and code structure.
To address the memory consumption, we introduced sub-
blocking at the interface between ecRad and ICON. The sub-
blocking divides the grid points on the reduced grid into
nproma_sub-sized batches, which are computed sequen-
tially. This approach ensures that only one radiation sub-
block must be held in memory at any given time (see Fig. 2).
While this method effectively controls memory usage, it re-
duces the available parallelism in ecRad. In practice, this
trade-off between memory usage and parallelism must be
carefully balanced to ensure the computation fits within the
available GPU memory while still achieving high hardware
utilization.

The data layout in ecRad differs from the rest of ICON
(see Sect. 3.2) in terms of loop ordering and dimension struc-
ture. While ICON typically operates on a two-dimensional
domain, ecRad uses a three-dimensional domain: the hor-
izontal dimension matches the standard ICON grid but is
further subdivided into nblcks_sub subblocks of size
nproma_sub; the vertical dimension retains nlev lev-
els, as in ICON; and a third dimension spans the wave-
lengths (ng). The resulting index order is (ng, nlev,
nproma_sub), instead of ICON’s (nproma, nlev).

This layout introduces challenges for parallelization. The
wavelength dimension provides only limited parallelism – on
the order of hundreds of wavelengths – insufficient to fully
saturate the GPU with GANG VECTOR parallelism. The hor-
izontal dimension can be tuned to provide adequate paral-
lelism, but doing so leads to non-coalesced memory accesses.

To evaluate alternatives, two strategies were tested in stan-
dalone versions of ecRad solvers. The first reorders the loops
so that the horizontal dimension is innermost, enabling ef-
ficient GANG VECTOR parallelism. The second strategy re-
tains the original layout and applies vector parallelism to the
wavelength dimension and gang parallelism to the horizontal
dimension.

Figure 2. Example of the mapping of an ICON array, of horizontal
size nproma, to an ecRad array, of horizontal size nproma_sub, over
two iterations of the radiation sub-block loop. This simplified sketch
omits additional vertical levels, the wavelength dimension, and the
many variables involved in the computation.

Both strategies performed equally well in our benchmarks.
Therefore, we selected the second approach, as illustrated in
Listing 4, as it requires fewer code modifications.

Note that the jg loop uses WORKER VECTOR parallelism
instead of a standard VECTOR loop. This configuration ad-
dresses compiler limitations and ensures proper utilization
of the desired number of CUDA threads.

3.7 Pollen

Pollen forecasts play a critical role in public health by en-
abling individuals with allergic conditions – such as hay fever
and asthma – to anticipate high-exposure days, plan outdoor
activities, and initiate preventive measures like early medica-
tion use. The modeling of pollen species in ICON is coupled
with the aerosol module ART (Aerosol and Reactive Trace
gases (Rieger et al., 2015; Schröter et al., 2018) developed at
the Karlsruhe Institute of Technology (KIT). In general, ART
enables modeling a variety of trace gases and aerosols and
their associated chemical processes. However, in the context
of NWP production at MeteoSwiss, ART is used exclusively
to simulate emissions, transport (see Sect. 3.5), sedimenta-
tion, and washout processes of five pollen species during
their blooming season, namely hazel, alder, birch, grasses,
and ambrosia.

For production purposes, only the necessary ART sub-
routines required for modeling the above-mentioned pollen
species are ported to GPUs. These porting efforts follow the
same strategy as used for the ICON model (see Sect. 3.2).
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Listing 4. Example of an OpenACC block from the radiation component, with parallelization along nproma, jc loop, and ng, jg loop.

3.8 Data Assimilation

Data assimilation combines observational data with model
output to generate the best possible estimate of the atmo-
spheric state. This estimate, known as the “analysis”, serves
as the initial condition for subsequent numerical weather pre-
diction (NWP) forecasts. Accurate and timely analyses are
essential for high-quality short-range forecasts, particularly
in data-rich regions like Europe.

Here we consider the so-called KENDA (Kilometer-scale
Ensemble Data Assimilation) system (Schraff et al., 2016)
used within ICON. It employs an ensemble Kalman filter,
specifically the Local Ensemble Transform Kalman Filter
(LETKF) by Hunt et al. (2007), to assimilate a wide range
of observational data. This includes conventional data from
radiosondes, aircraft, wind radars and wind Light Detection
and Ranging (LIDAR) instruments, and surface stations. Ad-
ditionally, radar-derived surface precipitation rates are assim-
ilated through a technique known as latent heat nudging.

The assimilation cycle consists of several stages, which
can be seen in Fig. 3. First, a one-hour ICON ensemble fore-
cast is run starting from the previous ensemble analysis mem-
bers (red dots) at time t−1, providing the so-called first guess
(black arrow). During this forecast, observation operators are
applied to transform model variables (e.g., temperature, pres-
sure, humidity) into the observational space and written to
disk. The resulting innovations (observation-minus-forecast
differences) are passed to the LETKF software to generate
the new ensemble analysis at time t (red dots). This new
analysis then provides the initial condition for the next fore-
cast cycle. Observation operators pose unique challenges for
GPU acceleration. In contrast to the structured grid-based

computations found in most of ICON, these operators work
in the observational space, which is often sparse and irregu-
lar. This makes them poorly suited for execution on GPUs,
which require enough data parallelism and benefit from reg-
ular memory access patterns for optimal performance. A de-
tailed analysis of the computational patterns and data flow
shows that for most operational configurations these oper-
ators are only called at very low frequency, every 30 min,
and only need a subset of the model state. Based on this, the
following hybrid strategy is adopted: the first guess ICON
run is executed on the GPU but the data assimilation ob-
servation operators are kept on the CPU, and the required
data are transferred from GPU to CPU during the run. The
data transfer time for this data assimilation component for
this configuration corresponds to 0.09 % of the total runtime.
The only exception to this porting strategy is the so-called
latent heat nudging of radar precipitation, which needs to be
called at higher frequency and is therefore ported to GPU.
The LETKF analysis step itself remains on the CPU.

3.9 Diagnostics and output

For operational NWP applications, a wide range of diagnos-
tics must be computed to meet the needs of various clients
and users. These include, for example, wind gust statistics,
lightning indices, and other derived meteorological prod-
ucts. Many of these diagnostics are evaluated at high tem-
poral frequency, often every model time step, which makes
GPU acceleration essential for performance. To minimize
data transfer overhead, most high-frequency diagnostics have
been ported to the GPU. This ensures that intermediate re-
sults remain on the GPU memory during the time-stepping
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Figure 3. Diagram illustrating the GPU-CPU hybrid implementation of the ensemble KENDA assimilation cycle followed by a forecast. The
red dots represents different ensemble members of the Analysis, while the balck arrows represents the so-called first guess ensemble.

loop, avoiding costly CPU-GPU transfers. At designated out-
put intervals, the required diagnostic and model data are
transferred from the GPU to the CPU. Output-related op-
erations such as file I/O are then performed on the CPU,
which is more suitable for these latency-tolerant and system-
dependent tasks. Pre-processing steps for output – such as
interpolations to pressure levels, standard height levels, or
user-defined layers – are also ported to the GPU and executed
before the data transfer. This further reduces CPU workload
and ensures that only the final, ready-to-write fields are trans-
ferred from GPU memory.

4 Validation and acceptance

4.1 Probabilistic testing

To ensure the correctness of the GPU port of ICON, a prob-
abilistic testing framework, probtest (Probtest, 2023), was
developed. This framework is designed to validate scientific
consistency between the GPU and CPU versions of the code
while accounting for expected differences due to rounding er-
rors and non-bit-reproducible floating-point behavior. Such
differences commonly arise from hardware- and compiler-
specific implementations of intrinsic mathematical functions
or from numerical optimizations such as fused multiply-add
(FMA) operations, which are applied aggressively on GPUs.

The key idea of probtest is to approximate the effect of
rounding errors by constructing a CPU-based ensemble in
which small perturbations are introduced into selected input
fields – typically in the least significant digits. This generates
a reference ensemble that captures the natural variability due
to rounding effects in the CPU computation.

A short and computationally inexpensive configuration,
obtained by using a reduced horizontal domain, is used to run
the perturbed ensemble and determine the expected spread
of each variable. Based on this ensemble spread, variable-
specific statistical tolerances are derived. The GPU simula-
tion is then compared against this CPU-based ensemble using
the same configuration, and the test passes if the GPU result
falls within the ensemble spread for all diagnosed fields.

This probabilistic test is integrated into the automatic con-
tinuous integration (CI) pipeline, and is set up for the set of

configurations which are supported on GPU using a reduced
domain size. For example one test is using the exact same
configuration as the ICON-CH1-EPS configuration, but on a
much smaller domain, ensuring that code path used in oper-
ation are tested. Every change to the model must pass this
validation step to be accepted. In case of physical changes to
the model that affect results beyond numerical noise, a new
ensemble reference is generated to update the tolerance base-
line.

4.2 Validation against observation

Due to the complexity of the model and to the fact that many
conditional statements are data-driven, for example a cloud-
no-cloud situation, it is not possible to have full code cover-
age with the above-mentioned automatic testing. In order to
ensure the quality of the weather forecast, for every new ver-
sion of a model that shall be used for production by a weather
prediction center, an extensive validation, or so called ver-
ification, is required. To this end, the new version of the
model is compared against observation for an extended pe-
riod of time using different metrics such as Mean Error or
Root Mean Square Error. Typically, the period of time can be
a few weeks for the four seasons for past periods. Such ver-
ification has been carried out over multiple seasons for the
MeteoSwiss configurations and is described in more details
in Sect. 5.2. Such a verification should be repeated in case the
model would be used for weather prediction using a different
configuration.

4.3 Challenges of porting large community code

Ensuring the correctness of a GPU port for a large commu-
nity is a critical step in integrating the port into the main code
base. However, there is also a human aspect that should not
be underestimated when integrating a major code extension
that spans a broad range of components in a community-
driven code like ICON.

Many ICON components, such as those described in
Sect. 3.4 to 3.8, are developed and maintained by individual
domain scientists (DSs), who are responsible for the scien-
tific integrity and evolution of their respective modules. In
contrast, a research software engineer (RSE) ports a model
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to GPU by working across multiple code components with-
out affecting the scientific value of the implemented equa-
tions. As a result, establishing trust between DSs and RSEs
is essential, enabling DSs to understand the modifications re-
quired for the GPU port and maintain their ability to maintain
and develop the ported code independently.

To facilitate this collaboration, we employ two strategies.
First, ported code components are merged incrementally into
the main code base. Second, DSs are trained in the basics
of the GPU port, OpenACC, and tools for GPU verification,
such as tolerance validation with probtest. In parallel, the
RSEs gain familiarity with the scientific context of the code
they work on, facilitating the interactions.

Incremental porting of the code ensures that the ported
code remains up-to-date with the latest scientific advance-
ments, simplifies testing and debugging, and allows DSs to
continue working on their components immediately. Also,
keeping the partially ported code in a working state enables
early integration of GPU tests and probtest into the general
ICON CI testing pipeline. Early GPU testing helps to avoid
regression when a DS extends an already ported code compo-
nent. To give a magnitude of the porting effort and the impor-
tance of an incremental approach, the source code is about 2
millions line of code, to which about 15 000 OpenACC state-
ment have been added.

The GPU training provided for DSs and other RSEs work-
ing on ICON was well received by the ICON developer
community, which comprises many scientists without a for-
mal computer science background. The training was tai-
lored specifically to ICON and the use of OpenACC within
it. It was offered in live sessions and is also available for
self-study, with many supporting documents, guidelines, and
hands-on tutorials published and available to ICON develop-
ers.

While no formal evaluation was conducted, feedback from
participants indicates that the training was perceived as help-
ful and played a positive role in promoting the acceptance of
the GPU port and OpenACC-based development within the
ICON community. Finally thanks to the training most ICON
developers are able to contribute further changes and addi-
tions to ported code. For more complex implementation sup-
port from expert GPU developers is provided.

5 Operational NWP configuration at MeteoSwiss

MeteoSwiss currently runs two regional NWP ensemble sys-
tems, ICON-CH1-EPS and ICON-CH2-EPS, operationally.
The ICON-CH1-EPS configuration has a horizontal grid
spacing equivalent to 1 km and 80 vertical levels, with a time
step of 10 s. It is run eight times per day, producing 33 h fore-
casts for 11 members. The 03:00 UTC run is additionally ex-
tended to 45 h to fully cover the next day. ICON-CH2-EPS
uses a coarser grid spacing of approximately 2.1 km, with the
same 80 levels and a 20 s time step. It runs four times per day

providing 5 d forecasts for 21 members, offering a broader
temporal range while maintaining high spatial resolution for
medium-range weather forecasting. In order to capture key
weather phenomena for Switzerland, the regional configura-
tions are running on a simulation domain that includes the
entire Alpine region as illustrated in Fig. 4 such that ICON-
CH1-EPS and ICON-CH2-EPS have, respectively, 1147980
and 283876 horizontal grid points. The initial conditions are
provided by the KENDA-CH1 system, which combines a
wide range of observations into the model grid and physical
equation. KENDA-CH1 has the same computational grid as
ICON-CH1-EPS and is run for 41 members. Lateral bound-
ary conditions for these systems are supplied by ECMWF’s
IFS ENS system, which supplies high-quality global atmo-
spheric data.

5.1 Operational GPU System at CSCS

The MeteoSwiss computing infrastructure is part of the
larger Alps Supercomputer at the Swiss National Supercom-
puting Centre CSCS (Alps, 2025) and is implemented as a
so-called versatile cluster, vCluster (Martinasso et al., 2024),
deployed across multiple geographical sites for increased op-
erational resilience. The production vCluster named Tasna
is hosted in Lausanne (western Switzerland), while the fail-
over and R&D vCluster Balfrin is located in Lugano (south-
ern Switzerland). vCluster technology enables flexible con-
figuration of the software environment and allocation of
compute resources. Operational forecasting system is com-
posed of 42 nodes, each equipped with one AMD 64-core
EPYC CPU and four NVIDIA A100 96 GB GPUs. The nodes
are connected by a Cray Slingshot-11 interconnect. Each
member of ICON-CH1-EPS is running on 3 nodes, i.e. re-
quiring 33 nodes for the 11 members, while ICON-CH2-EPS
is running on 2 nodes per members, e.g. 42 nodes for the 21
members. Finally KENDA-CH1-EPS is running in 2 batches
using 2 nodes per member. The 3 configuratoin ICON-CH1-
EPS, ICON-CH2-EPS and KENDA-CH1 are run sequen-
tially. The R&D size is of 42 compute nodes or larger de-
pending on the needs and in coordination with CSCS.

5.2 Verification of the MeteoSwiss configuration

After successfully ensuring the consistency of the GPU
port against the CPU execution with automated testing (see
Sect. 4), an extended verification of the ICON model was
conducted. Before introducing it into operations, the fore-
cast quality of the new system was thoroughly assessed
and compared to the previous operational system that was
based on the COSMO model (Steppeler et al., 2003; Baldauf
et al., 2011). To this end, MeteoSwiss ran ICON-CH1-EPS
and ICON-CH2-EPS control forecasts on a regular schedule
(00:00 and 12:00 UTC runs) starting in summer 2021, tran-
sitioning to full ensemble runs in summer 2023. For the first

https://doi.org/10.5194/gmd-19-755-2026 Geosci. Model Dev., 19, 755–772, 2026



764 X. Lapillonne et al.: NWP forecast with ICON on GPUs

Figure 4. ICON-CH1-EPS and ICON-CH2-EPS domain covering the Alpine Region.

period the model was run on CPU, and from November 2022
on it was run on GPU.

Figure 5 presents an extended verification of ICON-CH1-
EPS against the then-operational COSMO-1E system. Since
summer 2023, when ICON ensemble data became avail-
able, the median of ICON-CH1-EPS consistently outper-
forms COSMO-1E in terms of the equitable threat score
(ETS) for 12-hourly precipitation exceeding 0.1 mm, indi-
cating greater skill in capturing the occurrence of precipi-
tation. Moreover, the mean absolute error (MAE) for 2 m
temperature and 10 m wind speed is slightly lower since
summer 2023, suggesting an improved overall forecast ac-
curacy for these surface parameters. The only exception is
total cloud cover, where the ETS for the 2.5 octa threshold
shows slightly lower performance for ICON-CH1-EPS in re-
cent seasons.

Given the slightly improved performance of ICON-CH1-
EPS (and ICON-CH2-EPS; not shown) in many of the impor-
tant parameters (see some of them in Fig. 5), the quality crite-
ria for operational introduction were met and ICON replaced
COSMO as the operational NWP system at MeteoSwiss on
28 May 2024. Nevertheless, several known model deficien-
cies remain, including a warm bias in Alpine valleys, an over-
estimation of convective precipitation maxima, and an exces-
sive ensemble spread in precipitation forecasts. These defi-
ciencies are the focus of ongoing development with the goal
to further enhance the quality of the weather forecasts.

6 Optimization and performance results

6.1 Benchmark configuration

The benchmarking experiments presented in this section are
based on the operational ICON-CH1-EPS configuration (see
Sect. 5), using a single ensemble member for a one-hour
forecast. This choice is representative of a forecast simula-
tion, particularly considering that diagnostic and output com-
ponents are typically called at hourly intervals, while most
other model components are invoked at sub-hourly frequen-
cies. The reported timings includes all data transfers to and
from the GPU which are required at initialization, as well
as for writting the output. The exact configuration namelist
can be found in the open source ICON release (https://www.
icon-model.org/, last access: 9 October 2024, release icon-
2024.10) under the test name mch_icon-ch1. Each bench-
mark measurement was repeated ten times, and the mean
elapsed time and its standard deviation were recorded. The
ICON version used for the benchmarking is based on the
release-2024.10, on top of which some of the optimization
discussed below have been added. Most of the optimizations
are part of the official public release-2025.4 of ICON.

All experiments are run on the Balfrin hybrid system
(see the specification in Sect. 5.1). Unless stated otherwise,
benchmarks are executed on two GPU nodes, e.g. using a
total of 8 NVIDIA A100 96 GB GPUs. The optimization
parameter controlling the block size for the horizontal grid
nblocks_c is set to 1, and the radiation block parameter
nproma_sub is set to 6054. The code was compiled, both
for CPU and GPU, using the NVIDIA HPC SDK, nvhpc,
compiler version 23.3 with CUDA version 11.8.0.
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Figure 5. Extended verification of COSMO-1E and ICON-CH1-EPS forecasts for the lead-time range of 13–24 h, evaluated against obser-
vations from 159 surface stations across Switzerland. Shown are key meteorological verification scores: (a) ETS for 12-hourly precipitation
> 0.1 mm, (b) ETS for total cloud cover > 2.5 octa, (c) MAE of 2 m temperature, and (d) MAE of 10 m wind speed. Each panel presents
individual seasonal score values (points) and a moving yearly average (lines), computed from the current and the three preceding seasons, for
COSMO-1E (blue) and ICON-CH1-EPS (orange). Scores are based on the ensemble median, except for ICON-CH1-EPS prior to JJA 2023,
where ensemble data were not yet available. The model was run on GPU from November 2022 on, the results in the previous periods have
been obtained on CPU.

We note that for a typical NWP run, most of the run time
is spent in the dynamics, about 50 % , and the physics, about
30 %. The rest is spend in the communication, 8 %, initial-
ization, which includes the data transfers to the GPU, 4 %,
diagnostics and output which are below 5 % each. The out-
put is done asynchronously, and is to a large part overlapped
with the computations.

6.2 GPU optimization

After porting and validating the ICON code on GPUs, a range
of optimizations have been introduced to improve perfor-
mance. These optimizations are described below, and the re-
sulting performance of the combined optimization is shown
in Table 1 and summarized in Fig. 6.

6.2.1 Baseline

The GPU timings are compared to a CPU reference.
Since some of the optimizations also improve the CPU
runtime, we use the best-performing optimized ver-
sion as the CPU reference, including mixed precision

and radiation in single precision. The CPU reference
is compiled with the following optimization flags -O2
-Mrecursive -Mallocatable=03 -Mbackslash
-Mstack_arrays inlcuding inlining and is run using 8
AMD 7713 64 cores EPYC Milan CPUs, using MPI paral-
lelization over all cores. The parameters for the horizontal
blocking are set to nproma= 8 and nproma_sub= 8
which are optimal values on CPU for this configuration.
The total time for this 1 h-benchmark is 525.8 s. Note
that due to an issue with the nvhpc compiler available
on the system, the hybrid OpenMP – MPI parallelization
did not work on the CPU for this configuration and is
not reported in the Rable 1. The problem was reported
to Nvidia, and shall be adressed in later release of the
compiler. The base GPU code is compiled with -O
-Mrecursive -Mallocatable=03 -Mbackslash
-acc=verystrict -Minfo=accel,inline
-gpu=cc80. Comparing the CPU reference on 8 CPU
sockets with the GPU code running on 8 A100 GPUs, we
observe a total runtime of 125.6 s and a speed-up factor
of about 4.2. Note that we favor this socket-to-socket
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Table 1. Performance metrics for different parts of the model with various optimizations. For the speedup reference the CPU version is
used, which includes all the optimizations that also affects the CPU performance like CPU optimization flags, in-lining, opt-rank-node,
mixed-precision and ecRad in single precision.

Name
Dycore Physics Total

Mean [s] Std [s] Speedup Mean [s] Std [s] Speedup Mean [s] Std [s] Speedup

CPU ref 418.8 1.360 1. 131.0 0.8560 1. 525.8 0.7624 1.

base GPU 64.53 0.2718 6.491 40.41 0.2821 3.243 125.6 0.5964 4.185
comp-opt 63.19 0.09597 6.628 36.05 0.1576 3.635 117.0 0.1766 4.493
async 62.01 0.09919 6.754 35.67 0.07311 3.673 115.3 0.1222 4.560
inlining 62.03 0.01604 6.752 33.28 0.02778 3.937 113.2 0.03935 4.646
cuda-graphs 62.06 0.09837 6.748 27.68 0.1052 4.734 107.4 0.06748 4.895
opt-rank-node 61.29 0.05912 6.834 27.70 0.2921 4.730 106.3 0.09753 4.947
compile-time nproma 61.00 0.08110 6.866 27.54 0.07775 4.758 105.6 0.07021 4.978
mixed-precision 52.68 0.1008 7.950 27.55 0.2176 4.756 96.65 0.2031 5.440
ecRad-single-precision 52.76 0.1240 7.939 26.73 0.5259 4.902 95.80 0.2762 5.489

comparison as opposed to a node-to-node comparison since
the GPU nodes have more GPUs than CPUs which would be
too favorable for the GPUs. For ecRad, the additional flag
-gpu=maxregcount:96 is used to limit the maximum
number of registers per thread on the GPU, which improves
performance. However, for the entire ICON model, no
single register limit provides optimal performance across all
kernels. Adjusting the register count on a per-file basis could
be considered, but this approach would require considerable
effort. Since the weather model ICON is mostly memory
bandwidth limited (Adamidis et al., 2025), it is instructive to
compare the speedup observed with the hardware specifica-
tion. The NVIDIA A100 96 GB and the AMD 7713 EPYC
CPU have a maximum theoretical bandwidth to the main
memory of, respectively, 1560 and 204.8 GB s−1, which
gives a ratio of 7.8. This is consistent with the observed
speedup of a factor of 4.3, which suggests that the initial
port is performing reasonably well and that no significant
computations have been left on the CPU. But it also indicates
that there is potential room for improvement.

6.2.2 Compiler optimizations level and flags, comp-opt

First, various optimization flags at the compiler level have
been investigated and compared. Aggressive optimization
flags such as -03 or -fasthmath have not been consid-
ered for accuracy and validation reasons. Using -O2 and
-Mstack_arrays noticeably reduces the total runtime by
about 6.8% to 117.0 s Most of the gain comes from the flag
-Mstack_arrays which places all temporary Fortran au-
tomatic arrays on the stack. Although this change only af-
fects memory allocation on the CPU, it also impacts GPU
runtime when using OpenACC, because these automatic ar-
rays are still allocated, even if never used on the CPU. The
effect is, in fact, larger for the GPU run, because of the very

large nproma used (see Sect. 3.2), which leads to large tem-
porary arrays.

6.2.3 Asynchronous execution between CPU and GPU

By default, OpenACC synchronizes CPU and GPU execu-
tion, such that the CPU needs to wait for the GPU ker-
nels to complete before being able to proceed. This can be
adapted by using the OpenACC ASYNC(INT) constructs in
parallel regions, allowing the CPU to continue execution af-
ter launching the kernel. Asynchronous computation needs
a careful analysis of the code to ensure that no data com-
puted on the GPU are used at a later stage on the CPU, while
computation is still ongoing on the GPU. In such a case, the
construct ACC WAIT(INT_LIST) is used to wait for com-
pletion of the GPU execution before proceeding. The Ope-
nACC ASYNC construct further allows the specification of
the queue – corresponding to the cuda-stream on NVIDIA
devices – where the asynchronous execution is done. In most
of the ICON code, the asynchronous queue is explicitly set
to 1, except for specific parts where multiple code paths are
executed in parallel queues. This is, for example, the case for
the different tiles of the soil as described in Sect. 6.2.5. With
asynchronous execution, the CPU can proceed and launch
multiple kernels, significantly reducing or even eliminating
kernel launch overhead. As shown in Table 1 this brings
down the total runtime to 115.3 s, i.e., about 1.5 % additional
performance improvement.

6.2.4 Inlining

Inlining is a general optimization technique that replaces the
call to a function by the actual code of the function. This
can reduce function call overhead and allows for additional
compile-time optimizations. It is particularly beneficial for
functions which are called from the innermost-loop. In For-
tran there is no language construct, as in the C programming
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language for example, to control inlining. However, most
compiler vendors provide solutions to inline functions. With
the nvhpc (NVIDIA) compiler there is a pre-compilation step
added where the user gives a list of functions that should be
inlined, such that these functions are extracted as code into an
inline library. This inline library is then used for the compila-
tion of the full code. Inlining is not always beneficial and sig-
nificantly increases the compilation time. For this reason, in-
lining is restricted to functions resulting in a significant per-
formance improvement. In ICON, these are primarily in the
physics scheme. The total runtime reduces to 113.2 s, which
corresponds to a relative improvement of 1.8 %.

6.2.5 CUDA Graphs

CUDA Graphs are an NVIDIA-specific GPU optimization
feature that allow GPU workloads to be expressed as a di-
rected acyclic graph (DAG) of operations, rather than launch-
ing individual kernels sequentially. This enables the GPU
runtime to schedule and execute kernels with significantly
reduced launch overhead and memory allocation costs. In
ICON, CUDA Graphs are employed within selected physi-
cal parameterizations, most notably in the turbulence and soil
components of the NWP configuration. In addition to the tur-
bulence transfer and the soil model, the CUDA graph is used
in association with multiple asynchronous queues to run all
the independent soil type tiles concurrently in different GPU
queues.

At runtime, all GPU kernels, memory allo-
cations, and de-allocations with their respec-
tive dependencies between the OpenACC exten-
sion APIs accx_begin_capture_async and
accx_end_capture_async are recorded as a graph.
After that, the recorded graph can be executed on the GPU
via the accx_graph_launch API multiple times, which
is called a graph replay.

Although the required code changes are minimal, their
use introduces certain limitations, which may require further
adaptations to the code. The most critical aspect is that, dur-
ing graph replay, no CPU work should be carried out; only
prerecorded GPU kernels should be launched. In addition,
all OpenACC statements within the capture region must be
asynchronous. Moreover, kernel parameters are captured by
value during the recording and cannot be changed later in the
execution. This means that all array shapes and pointers can-
not change from one graph replay to another. In ICON some
fields have two time levels, so that the pointers associated
with such fields are different for odd and even time steps.
Therefore, for the part of the code that uses fields with two
time levels, two graphs need to be recorded, one for odd and
one for even time steps.

The application of CUDA Graphs to the soil and tur-
bulence routines yields significant local speedups (3× and
3.5×, respectively). While these routines constitute a rela-
tively small portion of the total runtime, the aggregate benefit

of CUDA Graphs translates to a 5 % overall runtime reduc-
tion, bringing the benchmark execution time down to 107.4 s.

6.2.6 opt-rank-distribution

When running the model on multi-GPU nodes, there is one
MPI task associated to each GPU. In addition, some of the
remaining CPU cores on the node are used for I/O related
tasks, namely asynchronous I/O MPI tasks and a pre-fetch
MPI task. Pure CPU MPI tasks should be evenly distributed
over all nodes. Since I/O related tasks are at the end of the
MPI communicator, they can be distinguished from compute
tasks in a straightforward way by using the slurm SBATCH
--distribution=cyclic command. However, this has
the drawback that close MPI ranks are on different nodes,
which could mean close domains are on different nodes,
leading to more inter-node communication. An optimiza-
tion of the rank distribution (opt-rank-distribution) can be
achieved using SBATCH --distribution=plane=4.
In this plane distribution, tasks are allocated in blocks of size
4 and distributed in a round-robin fashion across the allo-
cated nodes. With this change, the total time improved by
1 % to 106.3 s.

6.2.7 Compile-time nproma

The parameter nproma is usually set during runtime via a
namelist switch. The nproma is chosen for the best perfor-
mance dependent on the computing architecture. In many ar-
chitectures, this is fixed to accommodate for the cache size
or vector length. For GPU, the nproma is chosen to be as
large as possible and dependent on the number of grid points.
Setting the value at compile time provides a performance in-
crease. Although this optimization is available, it is currently
not used for the operation at MeteoSwiss since the two con-
figurations ICON-CH1-EPS and ICON-CH2-EPS have dif-
ferent numbers of points and therefore would require two
different executables with different nproma. With this opti-
mization, a gain of 0.7 % is obtained corresponding to a total
runtime of 106.3 s.

6.2.8 Dycore mixed-precision

Using single precision can give multiple advantages over
double precision. On the one hand, more floating point op-
erations can be done in the same time as double precision
operations. On the other hand, it decreases memory pressure,
which is useful, especially considering the limited amount of
memory available on the GPU. The drawback of using single
precision is that the errors of using floating point numbers
increase, and the effect on the numerical integration need to
be carefully analyzed. For this reason a mixed-precision ap-
proach has been implemented in ICON’s dycore. Scientific
expertise determines which fields and operations can be put
in single precision. The mixed-precision model was validated
against a double-precision version by comparing to observa-
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tions over a long period of time, which showed no impact on
the meteorological scores. The performance is improved by
8 % to 96.65 s. This performance improvement is somewhat
less that one could expect, and may results from several as-
pects. First there are only a limited number of fields in ICON
that are set to single precisions in the dycore. Another possi-
ble explanation is that the overhead of other operation such as
integer arithmetic for example for index computation, might
be taking a non significant part of the time, and become a
limitation in mixed precision.

6.2.9 ecRad single-precision

Similar considerations as for the dycore have been made for
the radiation parameterization ecRad regarding the floating-
point precision. We also note that ecRad is already used
in single-precision for operations at the ECMWF in com-
bination with the weather model IFS which provides addi-
tional validation to this approach. With this change, the to-
tal runtime is improved by 0.9 % to 95.80 s. The ecRad pa-
rameterization is a memory-intensive component such that
using single-precision has a significant impact on the total
memory consumption. This could be beneficial for the over-
all performance since it allows to increase nproma_sub
to use more parallelism and reduce launching overhead.
The flag to limit the maximum use register is adapted to
-gpu=maxregcount:48.

Looking at the overall improvement, the benchmark run-
time was optimized by 23 % from 125.6 to 95.80 s. Compar-
ing to the CPU reference at 536.5 s this gives a final socket-
to-socket speedup of 5.5× on the GPU. This speedup factor
is consistent with previous results for climate configuration
setup (Giorgetta et al., 2022). The speed up factor also means
that compared to a CPU only a GPU system for operation is
more compact, 5.5× time more CPUs would be needed for
the required time to solution. Although we did not perform
energy measurement in this work, a previous study (Cum-
ming et al., 2014) considering a similar model, shows that
the better performance also translates in a more energy effi-
cient system.

6.3 Strong scaling

To assess strong scaling behavior, the ICON-CH1 benchmark
is run using an increasing number of GPUs. The reference
time is given for 4 GPUs, which is the smallest number on
which the problem fits in terms of memory. The most op-
timized version from the previous Sect. 6.2, which is the
ecRad-single-precision version, is used for this test. In Fig. 7,
it can be seen that the problem scales well up to 12 GPUs.
Beyond 12 GPUs, there is a noticeable degradation in perfor-
mance in the physics component, while the dynamical core
(dycore) continues to scale well. Considering that the ICON-
CH1-EPS grid has 1147980 grid points, with 12 GPUs the
number of grid points per GPU is below 100000. At this

point, the per-GPU workload becomes too small to fully
utilize the compute and memory throughput capabilities of
the NVIDIA A100 GPUs. In particular, the ability to over-
lap memory access with computation is reduced, leading to
under-utilization. We also note that there is little communi-
cation in the physics as compared to the dycore, which fur-
ther supports that the non-optimal scaling results from non-
optimal use of the GPUs rather than communication over-
head.

6.4 Timing for the operational configuration

For the operational ICON-CH1-EPS configuration at Me-
teoSwiss, each 33 h ensemble forecast must be completed
within 50 min (3000 s) to meet the stringent timing require-
ments for delivering downstream critical products to clients.
When ICON was first deployed operationally in May 2024,
not all GPU optimizations were yet in place. At that time,
the runtime on two nodes (8 NVIDIA A100 GPUs) was ap-
proximately 3200 s, exceeding the operational time limit. As
a result, each ensemble member had to be executed on three
nodes (12 GPUs) to stay within the required timeframe. Af-
ter applying the full set of optimizations, the runtime for a
33 h forecast on two nodes was reduced to 2642 s, well within
the operational constraint, enabling more efficient and cost-
effective use of computational resources.

7 Conclusions

We have successfully ported all essential components of the
ICON model required for operational numerical weather pre-
diction (NWP) to GPUs using OpenACC compiler directives.
This includes the dynamical core, all physical parameteriza-
tions, and the data assimilation system (KENDA). The port-
ing and optimization strategy has enabled a single ensemble
member of the operational ICON-CH1-EPS configuration to
run within the required time-to-solution on 8 NVIDIA A100
GPUs.

When comparing the same number of CPU and GPU sock-
ets, the speedup on the GPU hardware is 5.5×. This poten-
tially allows for a much more compact and energy-efficient
system than a CPU-only system. The OpenACC approach
enabled the implementation of changes in a step-by-step
manner in the code while maintaining performance on other
architectures. Besides the MeteoSwiss configuration, several
other configurations are also supported and tested including
one global configuration from Germany’s National Meteoro-
logical Service, the Deutscher Wetterdienst (DWD).

All changes have been merged into the main ICON code
and OpenACC training in ICON was provided to the com-
munity to promote a seamless adoption of the port and would
allow other NWP centers or users to run ICON on GPU. The
code changes are included in the ICON open-source distribu-
tion, with the exception of the data assimilation part, making
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Figure 6. Performance of ICON-CH1-EPS benchmark for the two main components, dynamics and physics, as well as the total time for
different optimizations. The performance relative to the previous optimization is indicated on each column.

Figure 7. Strong scaling of the regional ICON-CH1-EPS 1 h benchmark on A100 NVIDIA GPUs. For this configuration the model stops
scaling at about 12 GPUs which corresponds to about 100 000 Grid points per GPUs and is not enough work to optimally use the hardware.

it available for many use cases to the broader NWP commu-
nity. The ICON model was thoroughly verified over multi-
ple seasons against observations and the previous operational
model COSMO achieving the required quality level for the
MeteoSwiss configurations. The port allowed MeteoSwiss to
be the first weather service to use the ICON model on the
GPU in production for operational NWP prediction. Thanks
to the computing efficiency of GPUs, MeteoSwiss can run, in
particular, the ICON-CH1-EPS configuration at up to 1 km
resolution, which remains one of the highest-resolution en-
semble systems to date.

Beyond immediate operational gains, the GPU-capable
ICON model is well positioned to benefit from the growing
convergence of physics-based and machine learning (ML)
approaches in weather and climate modeling. Indeed in case
of an hybrid setup both physical model and the ML inference
could be run on GPU without requiring data transfer. The
main synergy for MeteoSwiss with the described production
system is that the GPU infrastructure that was acquired for
the NWP forecast can be used for training and inference of
ML weather models.

Nonetheless, the OpenACC approach comes with limi-
tations in terms of maintainability, optimization and porta-
bility. The directives have been added on top of existing
OpenMP but also vendor specific optimization directives
which decrease the overall readability of the code. Further-
more, currently the OpenACC standard is only fully sup-
ported by the nvhpc compiler on NVIDIA hardware. Run-
ning ICON with AMD GPUs is, for example, only possi-
ble on a Hewlett Packard Enterprise (HPE) system using
the Cray compiler for climate configuration, while there are
some unresolved issues with some NWP components on such
system. Finally, there are no solutions for running OpenACC
code on Intel GPUs. To improve portability and performance
on GPU hardware, the ICON community is investigating sev-
eral other approaches, including a rewrite using the Python
domain-specific language GT4Py (Paredes et al., 2023; Di-
pankar et al., 2025).

Code and data availability. The full ICON version needed for
all production configurations at MeteoSwiss, including the
closed source Data Assimilation components for the KENDA
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cycle, used in the paper is archived on the Zenodo server
(https://doi.org/10.5281/zenodo.15674269, ICON partnership,
2024b). This code version is available under restricted access for
review and for research purpose. For the icon-ch1-eps benchmark
used for the performance results reported in the paper, the data
assimilation component is not needed, the benchmark results
can be reproduced using the official open-source release source
code, configurations and scripts available under BSD-3 License
archived on the World Data Center for Climate server from DKRZ
(https://doi.org/10.35089/WDCC/IconRelease2024.10, ICON
partnership, 2024a). A copy of the input data required to run the
ICON-CH1-EPS benchmark as well as the raw data used for the
verification for the years 2021–2024 is available on the Zenodo
server under https://doi.org/10.5281/zenodo.16760638 (Federal
Office of Meteorology and Climatology MeteoSwiss, 2024).
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