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Abstract. The application of ground-based microwave ra-
diometers (GMWRs), which provide high-quality and con-
tinuous vertical atmospheric observations, has traditionally
focused on the indirect assimilation of retrieved profiles.
This study advanced this application by developing a di-
rect assimilation capability for GMWR radiance observa-
tions within the Weather Research and Forecasting Data As-
similation (WRFDA) system, along with a bias correction
scheme based on the random forest technique. The proposed
bias correction scheme effectively reduced the observation-
minus-background (O — B) biases and standard deviations by
0.83K (97.1 %) and 1.63K (64.6 %), respectively. A series
of 10d experiments demonstrated that assimilating GMWR
radiances improves both the initial conditions and the fore-
casts, with additional benefits from higher assimilation fre-
quencies. In the initial conditions, hourly assimilation signif-
icantly enhanced low-level temperature and humidity fields,
reducing the root-mean-square error (RMSE) for tempera-
ture by 6.32 % below 1 km and for water vapor mixing ra-
tio by 1.98 % below 5 km. These improvements extended to
forecasts, where 2 m temperature and humidity showed sus-
tained benefits for over 12h, and precipitation forecasts ex-
hibited improvements to a certain extent. The time-averaged

Fractions Skill Score (FSS) for 3h accumulated precipita-
tion within the 24 h forecasts increased by 0.02-0.04 (3.9 %—
10.2 %) for thresholds of 3—6 mm.

1 Introduction

Data assimilation (DA), a core component of numerical
weather prediction (NWP), plays an important role in im-
proving forecast accuracy by integrating observational data
to refine initial conditions (Bauer et al., 2015; Gustafsson et
al., 2018). Among various types of observations, microwave
radiance data are crucial for DA due to their ability to pene-
trate the atmosphere and their sensitivity to temperature, hu-
midity, clouds, and precipitation. Correspondingly, satellite-
borne microwave radiance observations have been exten-
sively studied and are considered among the most influential
contributors to data assimilation systems (Geer et al., 2017;
Kim et al., 2020; Candy and Migliorini, 2021).

Unlike satellite-borne microwave radiometers, ground-
based microwave radiometers (GMWRs) offer unique advan-
tages for DA, including high temporal resolution (minute-
level) and greater sensitivity to the atmospheric boundary

Published by Copernicus Publications on behalf of the European Geosciences Union.

laded [eoiuyoel pue Juswdojaasg



732

layer (ABL). Over the past two decades, the assimilation of
GMWRs has been increasingly studied, leading to improve-
ments in the accuracy of NWP (Vandenberghe and Ware,
2002; Otkin, 2010; Hartung et al., 2011; Otkin et al., 2011;
Caumont et al., 2016; He et al., 2020; Qi et al., 2021, 2022;
Lin et al., 2023). The assimilation of retrieved temperature
and humidity profiles from GMWRs has shown improve-
ments in forecasting fog, storms, and precipitation. However,
the reliance on indirect assimilation methods introduces un-
certainties and complicates error quantification, which lim-
its their overall effectiveness in enhancing forecast accuracy
(Caumont et al., 2016; Martinet et al., 2017; Lin et al., 2023).

Direct assimilation of GMWR radiances, which bypasses
the retrieval process, offers significant advantages by avoid-
ing retrieval-related errors and improving the effective use
of observations. This approach requires accurate observation
operators and robust bias correction to address differences
between radiance observations and model states. The direct
assimilation of satellite-borne radiance observations is rel-
atively mature (Geer et al., 2008; Bauer et al., 2010; Geer
et al., 2010; Eyre et al., 2020; Sun and Xu, 2021; Eyre et
al., 2022) and utilizes fast radiative transfer models (RTMs)
as observation operators, such as the Radiative Transfer
for Television and Infrared Observation Satellite (RTTOV)
(Saunders et al., 2018). However, the unique characteris-
tics of upward-looking GMWR observations, such as sen-
sitivity to near-surface conditions, require specialized RTMs
and adaptation of existing techniques. Recent studies have
developed fast RTMs suitable for GMWRs, which provide
a foundation for constructing observation operators for as-
similation of GMWR radiances (De Angelis et al., 2016;
Cimini et al., 2019; Shi et al., 2025). The RTTOV-gb, a
ground-based version of the RTTOV model, was used to
simulate brightness temperature from GMWRs, demonstrat-
ing high accuracy (De Angelis et al., 2016, 2017; Cimini
et al., 2019). Recent studies have demonstrated the poten-
tial of direct GMWR radiance assimilation using RTTOV-gb
to improve temperature, humidity, and precipitation forecasts
(Cao et al., 2023; Vural et al., 2024).

Despite these advancements, previous studies have typi-
cally relied on limited GMWR networks or focused on spe-
cific case studies. Additionally, research conducted in re-
gions with relatively simple terrain may not fully address
the complexities of areas like the Tibetan Plateau, where
complex topography often leads to significant model biases
(Yang et al., 2020; Wei et al., 2021). These biases make accu-
rate bias correction essential for improving the effectiveness
of direct assimilation, while traditional bias correction ap-
proaches developed for satellite-borne microwave radiance
observations are not directly applicable to GMWRs.

To address these issues, this study integrates RTTOV-gb
into the Weather Research and Forecasting Data Assimila-
tion (WRFDA) system (Barker et al., 2012) to develop a di-
rect assimilation module for GMWR radiances. A nonlinear
bias correction scheme based on machine learning is also
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Figure 1. Computational domain (shaded). The shading denotes to-
pography (units: m). The green rectangle denotes the target region
of Southwest China. The blue open circles denote radiosondes. The
“x” and “+” symbols denote HATPRO and MP3000A, respectively.

constructed using three months of observational data. The
impact of direct GMWR assimilation is then investigated
through a series of 10d experiments conducted in South-
west China, a region shaped by the influence of the Tibetan
Plateau and characterized by complex terrain. The remainder
of this paper is organized as follows. Section 2 describes the
data, the implementation of RTTOV-gb in WRFDA, and the
model configuration. Section 3 evaluates the performance of
the bias correction scheme. Section 4 presents the impacts
of GMWR assimilation on the initial and forecast fields. The
conclusions and discussion are presented in Sect. 5.

2 Methodology
2.1 Data

Two types of GMWR sensors were assimilated in this study,
as shown in Fig. 1: the MP3000A and the Humidity And
Temperature PROfiler (HATPRO). Atmospheric radiance is
measured as brightness temperatures in 14 channels for HAT-
PRO and 22 channels for MP3000A (Table 1). For HAT-
PRO, channels 1-7 are in the K-band, while channels 8—14
are in the V-band. For MP3000A, channels 1-8 are in the
K-band, and channels 9-22 are in the V-band. The K-band
channels correspond to humidity-sensitive water vapor ab-
sorption lines, whereas the V-band channels correspond to
temperature-sensitive oxygen absorption lines.

The Fengyun-4B (FY-4B) Advanced Geostationary Radi-
ation Imager (AGRI) cloud mask (CLM) is used to identify
GMWR-observed brightness temperatures under clear-sky
conditions. The AGRI-based CLM product has a temporal
resolution of 15 min and a horizontal resolution of 4 km, cat-
egorizing conditions as confidently cloudy, probably cloudy,
probably clear, or confidently clear, with corresponding val-
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Table 1. Central frequency for GMWRs.

733

Sensor Frequencies for K-band (GHz)

Frequencies for V-band (GHz)

HATPRO  22.240;23.040; 23.840; 25.440;
26.240; 27.840; 31.400

51.260; 52.280; 53.860; 54.940;
56.660; 57.300; 58.000

MP3000A  22.234;22.500; 23.034; 23.834;
25.000; 26.234; 28.000; 30.000

51.248; 51.760; 52.280; 52.804;
53.336; 53.848; 54.400; 54.940;
55.500; 56.020; 56.660; 57.288;
57.964; 58.800

ues of 0, 1, 2, and 3, respectively (Min et al., 2017). Due to
its high quality, this cloud mask product is widely applied in
satellite data assimilation (Yin et al., 2020, 2021; Xu et al.,
2023; Shen et al., 2024).

The National Centers for Environmental Prediction
(NCEP) Final Operational Global Analysis data (FNL)
(0.25° x 0.25°, 6-hourly) were used to establish the initial
and boundary conditions for regional NWP. Conventional
observations from the Global Telecommunications System
(GTS) were assimilated and evaluated, including land sur-
face, marine surface, radiosonde, and aircraft reports. The
hourly precipitation analysis product from the China Mete-
orological Administration Multisource Precipitation Analy-
sis System (Shen et al., 2014) was used for evaluation. This
dataset has been widely used in precipitation studies (Xia et
al., 2019; Su et al., 2020; Sun and Xu, 2021; Wang et al.,
2021; Li et al., 2023; Zheng et al., 2024).

2.2 Assimilation system and observation operator

The WRFDA system, developed by the National Center for
Atmospheric Research (NCAR), is designed for data assim-
ilation and includes three-dimensional variational (3DVAR),
four-dimensional variational (4DVAR), and hybrid data as-
similation algorithms. In this study, version 4.5 of the
WRFDA system with 3DVAR is used for the direct assimi-
lation of GMWR radiances. The 3DVAR algorithm produces
the analysis by minimizing a scalar objective cost function:

J(x)—l(x—x TR (x —
=3 b) (x —xp)

- %(y ~H@)'R™ (y — H)), ()
where x and xy represent the analysis and background fields
of the model variables, y is the vector of the observations,
and B and R represent the background and observation error
covariance matrices, respectively. The covariance matrices
determine the weights assigned to the background and ob-
servations in the analysis, dictate how localized observation
information is distributed vertically and horizontally in the
model space, and maintain the balance among the model’s
control variables. H is the nonlinear observation operator
that transforms model variables to the observed quantities.
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The observation operator works slightly differently for dif-
ferent types of observations. For conventional observations
(e.g., temperature), its primary role is to perform spatiotem-
poral interpolation of model grid values to the observation
space. For unconventional observations (e.g., reflectivity and
radiance), where the model state cannot be directly com-
pared with the observations, the observation operator must
also convert model variables into observed variables.

The static background error covariance for the variational
experiments is estimated using the National Meteorological
Center (NMC) method (Parrish and Derber, 1992), which
uses the difference between forecasts at lead times of 24 and
12h (T + 24 h minus T + 12 h) valid at the same time over a
specified period. Control variables option 5 (CV5) is adopted
for the background error covariance used in 3DVAR. CV5
is domain-dependent and therefore must be generated based
on forecast or ensemble data over the same domain. It uti-
lizes streamfunction, unbalanced velocity potential, unbal-
anced temperature, unbalanced surface pressure, and pseudo
relative humidity. In this study, the background error co-
variance matrix was generated using the Generalized Back-
ground Error Covariance Matrix Model (GEN_BE v2.0)
(Descombes et al., 2015) based on one month of forecasts.
Observation-error correlations are typically assumed to be
zero in WRFDA, resulting in a diagonal observation-error
covariance matrix. Observation errors were specified based
on the standard deviation of observation-minus-background
(O — B).

RTMs serve as observation operators for assimilating ra-
diance data by mapping model variables (e.g., temperature
and water vapor) into radiance space. RTTOV, a fast RTM, is
widely used for assimilating satellite radiance data. However,
GMWR radiances are upward-looking microwave observa-
tions, differing from the downward-looking measurements of
satellite-borne microwave radiometers. This difference in di-
rection makes RTTOV difficult to apply to GMWR radiance
assimilation. Fortunately, RTTOV-gb can simulate brightness
temperatures from GMWRs and serves as the observation
operator in this study. The weighting function (WF) quan-
tifies the contribution of emissions from each atmospheric
layer, and the maximum WF height indicates which atmo-
spheric layer contributes most to the measured radiance (Car-
rier et al., 2008). According to Cui et al. (2020), WFs are
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calculated as the derivative of transmittance with respect to
the natural logarithm of pressure. The vertical distribution of
WFs for HATPRO and MP3000A, calculated using RTTOV-
gb, is shown in Fig. 2a-b. The WFs reach their maximum at
1000 hPa and decrease monotonically with height. These re-
sults confirm that the lower atmosphere contributes most to
the observed radiance across all channels, consistent with the
findings of Shu et al. (2012).

It should be noted that RTTOV-gb is not included in the
publicly available version of WRFDA. To address this limi-
tation, a GMWR direct assimilation module was developed
within WRFDA. A single-observation assimilation experi-
ment was conducted to test the GMWR direct assimilation
module. In this experiment, a pseudo radiance observation
from the HATPRO sensor was assimilated at channel 6 (K-
band), with an assigned observation error of 1 K and an in-
novation of 2 K. Results confirm that the GMWR direct as-
similation module performs correctly. The temperature and
water vapor increments are horizontally isotropic and show a
maximum at lower atmospheric levels vertically (Fig. 2c—f).
It should also be noted that this experiment was conducted to
verify the correct performance of the GMWR direct assimi-
lation module and to provide valuable insights into the char-
acteristics of GMWR assimilation. However, it is not repre-
sentative of the subsequent multi-observation, multi-channel
assimilation experiments.

2.3 Model configuration and experimental design

In this study, version 4.5 of the Weather Research and Fore-
casting (WRF) model (Skamarock et al., 2021) is used to
simulate atmospheric evolution. The simulation employs a
single domain (Fig. 1) with a horizontal resolution of 3 km,
comprising 1261 x 811 grid points and 51 vertical levels,
with the top boundary at 10 hPa. The model physics con-
figuration includes the Morrison two-moment microphysics
scheme (Morrison et al., 2009), the Yonsei University PBL
scheme (Hong et al., 2006), the Rapid Radiative Transfer
Model for General Circulation Models (RRTMG) shortwave
and longwave radiation schemes (Iacono et al., 2008), and
the unified Noah land-surface model (Chen and Dudhia,
2001). Cumulus parameterization was excluded due to the
convection-permitting horizontal resolution of 3 km (Li et al.,
2023; Moker et al., 2018).

Similar to previous studies (Jiang et al., 2017; Nie and
Sun, 2023), the target region of Southwest China in this
study is defined as the area within the rectangular domain
22-35°N, 93-110°E (Fig. 1). This region encompasses the
Hengduan Mountains, the Yunnan—Guizhou Plateau, and the
Sichuan Basin. Based on the model configuration described
above, four parallel experiments were conducted to investi-
gate the impact of GMWR assimilation (Table 2). Each ex-
periment started at 12:00 UTC daily, followed by a 12h cy-
cling data assimilation period and a subsequent 24 h fore-
cast. The primary differences among these experiments lie
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Table 2. Experimental design.

Experiment  Assimilated Data  Assimilation
Interval
CNTL GTS 6h
GMWR_6H GTS and GMWR 6h
GMWR_3H GTSand GMWR 3h
GMWR_IH GTSand GMWR 1h

in the assimilated data and assimilation intervals. The CNTL
experiment assimilated GTS data with a 6h interval, while
the GMWR_6H experiment added GMWR assimilation to
the CNTL setup, enabling an evaluation of GMWR assimi-
lation’s impact. The other two experiments, GMWR_3H and
GMWR _1H, assimilated both GTS and GMWR data with 3
and 1 h intervals, respectively, to assess the effects of obser-
vation frequency in GMWR assimilation.

The assimilation experiments were conducted under clear-
sky conditions due to the uncertainties in the model and ob-
servation operators under cloudy or rainy conditions. All ex-
periments were conducted over a 10d period from 13 to 22
October 2023. Among the available GMWR observations
from August to October 2023, this period exhibited a no-
tably higher frequency of clear-sky data, which was more fa-
vorable for demonstrating the role and potential of GMWR
assimilation. Before implementing bias correction, clear-sky
screening, first-guess departure check, and whitelist check
were sequentially applied to improve measurement quality.
Subsequently, a relative departure check was applied prior
to minimization. For the 6, 3, and 1 h assimilation intervals,
34 (0.91 %), 70 (1.42 %), and 76 (0.72 %) observations were
rejected, respectively. Although the experiment with a 1h
assimilation interval rejected the largest number of obser-
vations, its rejection rate remains the lowest because it has
the highest assimilation frequency and assimilates the largest
volume of GMWR data. The detailed procedure prior to a
single assimilation cycle is as follows:

1. Observation Selection. The observation nearest to the
analysis time within +10 min is selected.

2. Clear-sky Screening. Clear-sky GMWR observations
are screened using the AGRI-based CLM, with
background-simulated cloud liquid water path equal to
zero.

3. First-Guess Departure Check. Observations with | O —
B | values greater than 20 K are excluded.

4. Whitelist Check. Observations from stations identified
as unreliable or displaying abnormal behavior are re-
moved.

5. Bias Correction. A machine learning bias correction
scheme is applied (see Sect. 3.2).

https://doi.org/10.5194/gmd-19-731-2026
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Figure 2. Normalized weighting functions of (a) HATPRO and (b) MP3000A calculated using RTTOV-gb. The (¢, d) horizontal and (e,
f) vertical analysis increments for (c, €) temperature and (d, f) water vapor mixing ratio in single-observation assimilation experiment. The
vertical increments are cross-sections along the green lines shown in the horizontal increments. The colorbar tick labels for temperature and
water vapor mixing ratio are expressed in scientific notation as 1 x 1072 and 1 x 1074, respectively.

6. Relative Departure Check. This check is applied when
the absolute value of the O — B exceeds three times the
standard deviation of the observational error, further re-
jecting questionable data.

3 Machine learning based bias correction for GMWR
3.1 Bias characteristics

Variational assimilation assumes that both observation and
background errors follow an unbiased Gaussian distribution.
However, due to instrument errors, limitations of the RTMs,
and errors in the NWP model background, observed bright-
ness temperatures (O) and simulated brightness temperatures
(B) inherently contain errors (denoted as 1° and ), which
may exhibit a biased distribution. Bias correction is a crucial
process in radiance data assimilation, aiming to identify and
remove these biases (Auligné et al., 2007; Dee, 2005). In the
real atmosphere, O and B are regarded as the true value (7')
plus their respective deviations u, as shown in Eq. (2):

O-B=(0-T)—(B—T)=pn°—ub, @

It shows that the statistical expectation value of O — B can
represent the systematic deviation (u° — uP). Therefore, it
is critical to evaluate the bias characteristics of O — B and
correct them.

https://doi.org/10.5194/gmd-19-731-2026

To estimate the bias and develop a bias correction scheme
for GMWR direct assimilation, a long-term experiment was
conducted from August to October 2023, yielding a three-
month sample dataset. In this experiment, the WRF model
was initialized every 6 h using NCEP FNL data, and WRFDA
operated hourly in monitoring mode (only calculating O —
B). After a cloud check using the AGRI-based CLM and a
gross check (| O — B| < 20 K), the bias of O — B for HATPRO
and MP3000A was estimated.

A comparative scatterplot analysis of observed and simu-
lated brightness temperatures was conducted. For most chan-
nels, the scatter points are closely aligned along the diagonal
and exhibit high correlation coefficients, indicating strong
agreement between the simulations and observations. How-
ever, the scatter points for some channels form two dis-
tinct clusters. To further investigate, representative channels
from the K-band (water vapor absorption lines) and the V-
band (temperature-sensitive oxygen absorption lines) were
selected. Figure 3 presents scatterplots for channel 1 (K-
band) and channel 13 (V-band) of HATPRO, as well as chan-
nel 1 (K-band) and channel 14 (V-band) of MP3000A. Re-
sults for the remaining channels are shown in Figs. Al and
A2. For HATPRO, more than 6000 samples were analyzed.
The O — B biases were 1.25K for channel 1 and 2.14K
for channel 13, with standard deviations (SDs) of 3.35 and
2.82 K, respectively. Additionally, the scatter distribution for
channel 13 is not centered, showing a cluster shifted to the
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Figure 3. Scatterplots of observed brightness temperature (7},) ver-
sus simulated 7}, based on samples collected from August to Oc-
tober 2023. The top and bottom rows correspond to the HATPRO
and MP3000A sensors, and the left and right columns represent the
K-band and V-band, respectively. Each panel displays the number
of samples (num), the O — B mean (bias), O — B standard devia-
tion (SD), and the correlation coefficient (r) between observed and
simulated Ty,.

right of the diagonal (Fig. 3b). For MP3000A, more than
2000 samples were analyzed, with O — B biases of 3.06 K for
channel 1 and —0.54 K for channel 14. The O — B SDs were
3.94 and 3.08 K, respectively. Similar to the results for HAT-
PRO channel 13 (V-band), the scatter points for MP3000A
channel 14 (V-band) also show a cluster offset from the di-
agonal, but to the left (Fig. 3d). Based on these results, sig-
nificant O — B biases are detected in GMWR observations,
with their characteristics varying across different sensors and
channels. However, the correlation coefficients between ob-
served and simulated brightness temperatures are high, at
least 0.95, suggesting that these biases can be effectively cor-
rected.

To further analyze the O — B bias characteristics at each
station and investigate the reasons for the band shifting from
the diagonal (Fig. 3b and d), the statistics for each sta-
tion are presented in Fig. 4. For HATPRO, the O — B bias
varies among stations. Stations near complex topography
(e.g., 56312, 56137, 56029, and 55664) exhibit notable pos-
itive O — B biases in channels 8-13 (Fig. 4a), leading to a
rightward shift of the band relative to the diagonal (Fig. 3b).
These positive biases may result from biases in the back-
ground field over the topographic region, the limited applica-
bility of RTTOV-gb coefficients, or calibration issues in the
observations. Overall, the O — B SD at each station for the K-
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band is larger than that for the V-band (Fig. 4b). The correla-
tion coefficients between observed and simulated brightness
temperatures are high across all channels (typically above
0.90), although they are slightly lower for channels 4-9. For
MP3000A, station 57461 exhibits a negative O — B bias in
channels 9-14 (Fig. 4d), contributing to the band shifting to
the left of the diagonal (Fig. 3d). Similar to the results for
HATPRO, the O — B SD in the K-band is generally larger
than that in the V-band (Fig. 4e), and the correlation co-
efficients are also overall higher, typically exceeding 0.90
(Fig. 4f).

3.2 Bias correction

Based on the results above, noticeable O — B biases were ob-
served, varying across sensors, channels, and the geographi-
cal locations of stations. It is essential to remove these biases
before assimilation. Static bias correction (Harris and Kelly,
2001) and variational bias correction (Dee, 2005) are com-
monly used in radiance data assimilation. O — B bias is com-
monly represented using multiple linear regression with sev-
eral predictors. Compared to linear estimates, nonlinear ap-
proaches show improved performance in reducing systematic
biases (Zhang et al., 2023, 2024). Following these works, this
study employed a machine learning—based bias correction
scheme using the Random Forest (RF) technique (Breiman,
2001).

According to Yin et al. (2020), the predictors include the
1000-300 hPa thickness, 200-50 hPa thickness, model sur-
face skin temperature (75) and total precipitable water (PW).
Considering that GMWRs are sensitive to the lower atmo-
sphere, the predictors also include 1000-700 hPa thickness,
700-500 hPa thickness, 500-300 hPa thickness, 2 m temper-
ature (77), 2m water vapor mixing ratio (Q>), 10m zonal
wind (Ujp), 10 m meridional wind (Vjgp), and surface pres-
sure (PS). Finally, latitude, longitude, and observed bright-
ness temperatures (7;) are included as predictors due to their
potential importance (Zhang et al., 2023). The O — B bi-
ases vary across sensors and channels. Therefore, a sepa-
rate model is trained for each sensor and channel. Biases
also vary across the geographical locations of stations, poten-
tially influenced by the large-scale topography of the Tibetan
Plateau. As predictors, 2 m temperature, surface pressure, lat-
itude and longitude are important for explaining these biases.

There are two types of parameters in machine learning
models: model parameters and hyperparameters. Model pa-
rameters are initialized and updated during the learning pro-
cess. Hyperparameters, on the other hand, cannot be directly
estimated from data. They must be configured before train-
ing because they define the model’s architecture. Building an
optimal machine learning model requires exploring a range
of possibilities. The process of determining the ideal model
architecture and hyperparameter configuration is known as
hyperparameter tuning, which is a key component of devel-
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Figure 4. Statistics at each station based on samples collected from
for HATPRO; (c) correlation coefficient (r) between observed and
but for MP3000A. Some stations did not provide observations for s
the figure.

oping an effective machine learning model (Yang and Shami,
2020).

The RF model has four key hyperparameters: the num-
ber of trees in the forest (n_estimators), the maximum depth
of a tree (max_depth), the minimum number of samples re-
quired to split an internal node (min_samples_split), and the
minimum number of samples required to be at a leaf node
(min_samples_leaf). These hyperparameters were tuned us-
ing scikit-learn’s GridSearchCV (Pedregosa et al., 2011)
with 5-fold cross-validation, which exhaustively searches
over a predefined range of hyperparameters, training and
evaluating the model for each configuration. The flowchart il-
lustrating the training and evaluation process of the bias cor-
rection (BC) model is shown in Fig. 5. The three-month sam-
ple dataset (described in Sect. 3.1) was randomly split into
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Channel
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August to October 2023. O — B (a) bias and (b) standard deviation (SD)
simulated brightness temperatures for HATPRO; (d)—(f) same as (a)—(c)
pecific channels; the corresponding missing data are displayed in grey in

a training set (70 %) and a test set (30 %). During training,
GridSearchCV constructed a large grid of possible hyperpa-
rameter configurations, iteratively trained and evaluated the
model for each, and calculated a score. Finally, the optimized
model was trained using the configuration with the highest
score.

To investigate the impact of hyperparameters on model
training time and performance, the fit time and score of the
RF model under various hyperparameter settings were an-
alyzed (figure not shown). During hyperparameter tuning,
n_estimators was varied between 10 and 150, max_depth
was adjusted from 5 to 30, min_samples_leaf was tested
with values between 1 and 3, and min_samples_split was
tuned in the range of 2 to 6. Overall, the fit time and
score tended to increase together. As the min_samples_leaf
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Figure 5. Flowchart of the training and evaluation of bias correction model.

and min_samples_split parameters increased, both fit time
and score decreased monotonically. Conversely, increas-
ing the max_depth and n_estimators parameters resulted
in a monotonic increase in both fit time and score. No-
tably, max_depth had the most significant impact on the
score, while n_estimators primarily affected the fit time. For
n_estimators, the score increased logarithmically, while the
fit time grew linearly. These findings suggest that selecting
a moderately small value for the n_estimators parameter can
achieve better results while reducing computational time.
Using the above BC model, the corrected O — B values are
obtained by subtracting the predicted O — B bias from the
original O — B values. The effectiveness of the BC model is
assessed based on the probability density functions (PDFs)
of the O — B distributions in the test set (see Fig. 6 and Ap-
pendix B). Similar to Fig. 3, channel 1 (K-band) and channel
13 (V-band) of HATPRO, as well as channel 1 (K-band) and
channel 14 (V-band) of MP3000A, are selected for detailed
analysis (Fig. 6). For HATPRO channels 1 and 13, the biases
(SDs) are 1.24K (3.38 K) and 2.21 K (2.90 K), respectively.
For MP3000A channels 1 and 14, the biases (SDs) are 3.00 K
(3.89K) and —0.64 K (3.08 K), respectively. The differences
between the test set (Fig. 6) and the full dataset (Fig. 3) are
negligible, with maximum differences in bias and SD of 0.10
and 0.08 K, respectively, highlighting the strong represen-
tativeness of the test set. The original PDFs generally ex-
hibit a unimodal shape, although their peaks deviate from
zero. Moreover, some channels display bimodal features, of-
ten manifested as secondary peaks superimposed on the pri-
mary distribution — an issue that may affect 3DVAR, which
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typically assumes the errors to follow an unbiased Gaussian
distribution.

After applying the BC model, both the O — B bias and SD
are reduced, and the distribution becomes more sharply con-
centrated around zero, accompanied by an increase in kur-
tosis. For instance, in HATPRO channel 1, the bias (SD)
decreases from 1.24 K (3.38K) to 0.03K (1.44 K), respec-
tively, while the kurtosis markedly increases from 1.53 to
9.44. Tt is noted that the PDFs of corrected O — B approx-
imate an unbiased distribution, and the secondary peaks are
effectively suppressed. These results confirm that the pro-
posed BC scheme effectively reduces both the bias and SD in
the O — B statistics, transforming the PDFs from a bimodal
to a unimodal distribution. The bimodal feature in the O — B
PDFs corresponds to the two distinct clusters observed in the
scatter plots shown in Fig. 3. Specifically, when one clus-
ter is concentrated along the diagonal and the other shifts to
the right, a peak forms on the positive x-axis of the O — B
PDFs, resulting in a bimodal distribution. From the O — B
PDFs (Fig. 6), both instruments exhibit a positive bias with a
unimodal distribution in the K-band. In contrast, the V-band
displays a bimodal distribution: the second peak appears on
the right for HATPRO and on the left for MP3000A. These
results are consistent with the scatter plots shown in Fig. 3.
After BC, the O — B PDFs change from a bimodal to a uni-
modal distribution, indicating that the two clusters have been
effectively merged.

Figure 7 illustrates the O — B bias and SD for each HAT-
PRO channel. Before BC, the O — B bias ranged from O to
2 K, with the bias in the K-band (particularly channels 4—
7) smaller than that in the V-band. After BC, the bias for
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Figure 6. Probability density functions (PDFs) of the O — B dis-
tributions, based on a test set randomly selected from 30 % of the
three-month sample dataset collected from August to October 2023.
The top and bottom rows correspond to the HATPRO and MP3000A
sensors, respectively, while the left and right columns represent the
K-band and V-band, respectively. Each panel displays the number
of samples (num), the mean (bias), standard deviation (SD), skew-
ness, and kurtosis of the distributions.

each channel is approximately O K. In terms of the O — B
SD, values ranged from 2 to 4 K without BC, with channels
4-7 exhibiting smaller values compared to other channels.
After BC, the SD of O — B ranges between 0.5 and 1.5 K.
The application of this BC model significantly reduced both
the O — B bias and SD, with reductions of 0.83 K (97.1 %)
and 1.63K (64.6 %), respectively. Meanwhile, the corrected
O — B distributions display approximately Gaussian charac-
teristics centered around zero, indicating effective removal of
systematic O — B biases.

Diagnosing the contributions of each predictor is crucial.
Figure 7c illustrates the feature importance of several pre-
dictors for HATPRO. This BC model normalizes the feature
importance scores so that their sum equals 1. A higher score
reflects a stronger influence of the predictor on the O — B bi-
ases. Observed brightness temperature, total precipitable wa-
ter, and surface pressure are significant contributors to BC for
the K-band (water vapor channels). For the V-band (temper-
ature channels), observed brightness temperature, latitude,
and surface pressure are the most influential predictors. The
contributions of atmospheric thickness predictors are smaller
compared to the other predictors; however, the 1000700 hPa
thickness predictor has a relatively larger contribution among
them. This may be because GMWR primarily observes radi-

https://doi.org/10.5194/gmd-19-731-2026

739

L (a) = Without BC
L = With BC

== Without BC
= With BC

Channel

- (C) —— K band (water vapor channel)
[ —— V band (temperature channel)

°
~
i

Importance
o
N
I

oY P—

I I T O T T T T T S

O 0 O O D N © S

AR O o O P e oV Ao (W QT Q2 Y Y ?
ROE AP et et »9“\\9«9"‘“

(atmospheric thickness) Predictor

Figure 7. (a) Bias and (b) standard deviation (SD) of O — B, based
on a test set randomly selected from 30 % of the three-month sample
dataset collected from August to October 2023. (¢) Feature impor-
tance of the predictors used in the bias correction (BC) model. For
each band, the shaded regions and solid lines represent the range
and mean feature importance, respectively.

ation from the lower atmosphere. Notably, surface pressure
plays a critical role in BC for the V-band, which may account
for the positive bias in O — B observed at plateau stations
(Fig. 4a).

4 Direct assimilation of GMWR radiance observations
4.1 Assimilation impacts on initial conditions

The performance of GMWR assimilation in the observation
space was evaluated. Figure 8 summarizes the biases and SDs
of the O — B and observation minus analysis (O — A) statis-
tics, aggregated over time for different channels. The bias
of O — A was reduced compared to O — B, particularly in
the V-band. Specifically, for channel 11 of GMWR_1H (1 h
assimilation interval), O — B was —0.40K and O — A was
—0.13 K. When GMWR observations were assimilated, the
simulated brightness temperatures became closer to the ob-
servations, resulting in smaller SDs. Moreover, as the fre-
quency of GMWR observation assimilation increases, the
bias and SD of the O — B gradually converge toward zero.
For channel 3, the O — B SD in GMWR_6H, GMWR_3H,
and GMWR_1H significantly decreased from 1.03, 0.92, and
0.56K to O — A SD values of 0.36, 0.34, and 0.34K, re-
spectively. Although the differences in O — A among experi-
ments are less noticeable, the improvement of O — B suggests
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Figure 8. Verification of the initial conditions against GMWR ob-
servations, based on the 10d assimilation experiment conducted
from 13 to 22 October 2023. (a) Bias and (b) standard deviation
(SD) of the observation minus background (O — B) and observation
minus analysis (O — A) for the GMWR assimilation in the target re-
gion of Southwest China (green rectangle in Fig. 1).

that increasing the frequency in cycling assimilation accumu-
lates the impact of the GMWRs, producing a higher- quality
first-guess field for the final cycle. O — A statistics were also
computed based on the initial fields from the CNTL exper-
iment. The O — A bias in CNTL is slightly larger than that
in the GMWR assimilation experiments, with a more notice-
able difference in the V-band. Regarding the SD, the CNTL
experiment shows higher values across all channels, with the
largest difference approaching 1 K. These results suggest that
assimilating GMWR data improves the consistency between
the initial fields and the observed brightness temperatures.
The assimilation of GMWR observations effectively influ-
ences the brightness temperatures, demonstrating the suc-
cessful processing of GMWR data by the 3DVAR system.
The above evaluation demonstrates the successful imple-
mentation of the newly introduced GMWR radiance direct
assimilation in WRFDA. However, compared to brightness
temperature simulations, greater attention should be given
to the model state variables in the initial conditions, as
they directly influence subsequent model forecasts. To this
end, radiosonde observations in the target region of South-
west China were used to evaluate the impact of GMWR as-
similation. The root-mean-square error (RMSE) was calcu-
lated, and the RMSE differences between CNTL and other
assimilation experiments are shown in Fig. 9. Results in-
dicate that assimilating GMWR radiances enhances low-
level temperature and humidity fields, with higher assimi-
lation frequencies offering the potential for additional im-
provements. GMWR assimilation has a neutral impact on
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atmospheric temperature above 1km above ground level
(a.g.l.), where the RMSE difference is minimal. However, it
positively impacts lower atmospheric temperature, with the
RMSE for temperature decreasing below 1kma.g.l. Specif-
ically, the average RMSE improvements below 1km are
3.67 %, 5.28 %, and 6.32 % for GMWR_6H, GMWR_3H,
and GMWR_1H, respectively. This indicates that increas-
ing assimilation frequency enhances observational impacts
and further improves the initial conditions. The improve-
ment becomes more pronounced with decreasing altitude. At
100 ma.g.l., RMSE reductions are 0.10K (6.25 %), 0.13K
(7.90 %), and 0.19 K (11.34 %) in GMWR_6H, GMWR_3H,
and GMWR_1H, respectively. For the water vapor mixing ra-
tio (QVAPOR), GMWR assimilation demonstrates a positive
impact extending into the middle troposphere, with average
RMSE reductions below 5 km of 2.30 %, 2.20 %, and 1.98 %
for GMWR_6H, GMWR_3H, and GMWR_1H, respectively.
The impact of GMWR assimilation and the effect of assimi-
lation frequency are generally more pronounced in the lower
atmosphere, with average RMSE reductions below 300 m of
3.01 % for GMWR_1H, compared to 2.43 % for GMWR_6H
and 2.05 % for GMWR_3H.

It should be noted that the GMWR assimilation shows a
slight degradation in the wind fields. The RMSE for zonal
and meridional winds exhibits a slight negative effect when
GMWR is assimilated, with meridional winds even show-
ing an increase in RMSE. These negative impacts on the
wind field caused by GMWR assimilation may be attributed
to two factors: (1) When assimilating observed brightness
temperatures, the adjoint model of the observation operator
directly adjusts temperature and humidity to optimize the
simulation, while changes in the wind field are indirectly
driven by these adjustments through the background error
covariance. (2) GMWR assimilation primarily improves the
lower atmosphere, while changes in the upper atmosphere
are also governed by the background error covariance. The
static background error covariance used here is climatolog-
ical and isotropic, which does not fully align with evolving
weather conditions, potentially resulting in ineffective wind
field improvements.

Based on the evaluation against radiosonde observations,
the assimilation of GMWR data improves the initial fields of
temperature and humidity, aligning them more closely with
observations, particularly in the lower atmosphere. Addition-
ally, the initial fields are validated against surface station ob-
servations, including measurements of 2 m temperature, 2 m
relative humidity, and 10 m wind (Fig. 10). The RMSE dif-
ferences indicate that GMWR assimilation effectively en-
hances the 2 m temperature and humidity fields. Under 6-
hourly GMWR assimilation, the temperature RMSE gener-
ally increased on the southern side of the basin, whereas
other regions showed a positive effect with reduced RMSE
values. Moreover, the temperature RMSE reduction in these
positively affected areas further improved as the assimila-
tion frequency increased, with overall differences ranging
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from —0.008 K (—0.3 %) to —0.099 K (—4.1 %). For humid-
ity, GMWR assimilation shows a negative impact on 2 m rel-
ative humidity (RH) at a 6h assimilation frequency. How-
ever, the RMSE over the plateau decreases as the assimila-
tion frequency increases, with the RMSE difference shifting
from positive to negative. In the GMWR_1H experiment, the
RMSE is reduced by 0.276 (1.3 %).

Unlike the temperature and humidity RMSEs, the im-
provement in the wind field RMSE does not exhibit a
distinct spatial pattern. Compared to the CNTL experiment,
the RMSE differences for zonal wind are —0.005ms™!
(—=0.3%), —0.017ms~! (-1.0%), and —0.019ms™'
(-=1.2%) in GMWR_6H, GMWR_3H, and GMWR_1H,
respectively. Similarly, the RMSE differences for meridional
wind are —0.008ms™! (—0.5%), —0.011 ms~! (—0.7 %),
and —0.009ms~! (—0.5%) in GMWR_6H, GMWR_3H,
and GMWR_1H, respectively. While the changes in wind
RMSE are relatively small, the results indicate that assim-
ilating GMWR data improves the initial conditions, with
higher assimilation frequencies offering potential for further
enhancement.

4.2 Assimilation impacts on forecast field

After presenting the improvements in the initial conditions,
this section investigates the impact of GMWR assimilation
on the 24 h forecasts. The time series of RMSE for the CNTL
experiment and RMSE differences (assimilation experiments
minus the CNTL experiment) against surface station obser-
vations for 2 m temperature, 2 m relative humidity, and 10 m
wind fields are shown in Fig. 11. In the CNTL experiment,
the RMSE of temperature and relative humidity initially de-
creases and then increases with lead time, while the RMSE
of the wind field exhibits the opposite trend, increasing at
first and then decreasing. The mean RMSEs over the 24 h
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forecast period are 2.32 K for temperature, 16.26 % for rel-
ative humidity, 1.92ms~! for zonal wind, and 2.08 ms™!
for meridional wind. Regarding assimilation impacts, the
RMSE reduction for temperature gradually decreases, ap-
proaching zero at a lead time of 6 h, with higher assimilation
frequency (GMWR_1H) achieving a greater RMSE reduc-
tion. Similar results are observed for relative humidity, where
the RMSE reduction also decreases and approaches zero at
a lead time of 12h. GMWR_1H consistently demonstrates
the largest RMSE reduction for relative humidity. However,
it should be noted that the direct assimilation of GMWR
data caused a negative impact on relative humidity at a lead
time of 12 h. The degradation of wind fields (Fig. 9) and the
model’s inherent nonlinearity may be responsible. For the
wind field, no increase in the RMSE difference with lead
time was observed, as previously described. However, the
RMSE differences between the assimilation experiments and
the CNTL experiment remain overall negative, indicating
that GMWR assimilation improves wind forecasts. Addition-
ally, GMWR_1H demonstrates the largest RMSE reduction
in meridional wind, suggesting that increasing the frequency
of GMWR assimilation may lead to further improvements.
The quantitative statistics are presented in Table 3. The tem-
perature RMSE differences between GMWR_6H and CNTL
are —0.012, —0.005, and —0.004 K for lead times of 1-6, 1—
12, and 1-24 h, respectively. This gradual decrease in RMSE
differences with increasing forecast time is also observed in
other experiments and variables, indicating a weakening of
the positive impact of GMWR assimilation as the forecast
period extends. When the impact of GMWR assimilation is
most pronounced (at a lead times of 1-6 h), the temperature
RMSE differences range from —0.012K in GMWR_6H to
—0.014 K in GMWR_3H, and —0.019 K in GMWR_1H. The
temperature RMSE reduction increases with the frequency
of GMWR assimilation, a trend also observed in relative hu-
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midity and wind, suggesting that increasing the assimilation
frequency can further improve the short-term forecasts. Al-
though these differences are small, the results reflect the po-
tential for improved model forecasts with GMWR assimila-
tion.

Verification against surface station observations indicated
that assimilating GMWR radiances improves near-surface
forecasts, with higher assimilation frequencies offering po-
tential for further enhancement. To further examine the im-
pact of GMWR assimilation, Fig. 12 presents the fore-

Geosci. Model Dev., 19, 731-754, 2026

cast verification against radiosonde observations. Unlike the
RMSE differences in the initial conditions (Fig. 9), the
GMWR assimilation did not reduce RMSE for temperature
and water vapor mixing ratio, indicating a neutral impact on
forecasts. Similarly, the wind field verification results did
not show noticeable improvements with GMWR assimila-
tion. While the RMSE of zonal wind was reduced in the
GMWR_1H experiment, the RMSE differences for the wind
field in other experiments were close to or greater than zero,
suggesting a neutral to slightly negative impact of GMWR
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Table 3. RMSE difference against surface station observations.

EXP Lead time Temperature Relative Humidity = Zonal wind  Meridional wind
(h) (K) (%) (ms™ (ms~")

GMWR_6H minus CNTL 1-6 —0.012 —0.046 —0.006 —0.004
1-12 —0.005 —0.027 —0.003 —0.006

1-24 —0.004 0.046 —0.003 —0.003

GMWR_3H minus CNTL 1-6 —0.014 —0.046 —0.005 —0.005
1-12 —0.010 —0.036 —0.006 —0.007

1-24 —0.003 0.072 —0.005 —0.003

GMWR_1H minus CNTL 1-6 —0.019 —0.127 —0.007 —0.013
1-12 —0.012 —0.087 —0.006 —0.013

1-24 —0.005 0.065 —0.006 —0.009

assimilation on wind forecasts. Based on radiosonde-based
verification at 12 and 24 h lead times, only limited improve-
ments are evident after GMWR assimilation; however, this
does not rule out larger impacts within 0—6 h, which cannot
be robustly assessed here due to the limited temporal avail-
ability of radiosonde observations. The limited improvement
shown in this figure could be related to the relatively long
forecast lead times (12 and 24 h), during which model er-
rors tend to accumulate and weaken the benefits of improved
initial conditions from GMWR assimilation. In the surface-
station verification, the improvements were primarily con-
fined to the first few hours, particularly for temperature and

https://doi.org/10.5194/gmd-19-731-2026

humidity. After 12h, the impact declined noticeably, with
some cases even exhibiting negative effects (Fig. 11).

To further explore the role of GMWR assimilation in pre-
cipitation forecasting, the fractions skill score (FSS) of 3h
accumulated precipitation forecasts was calculated. The ra-
dius of influence for the FSS was set to 18 km, equivalent to
six times the grid spacing (Ha and Snyder, 2014; Zheng et
al., 2024). Figure 13 presents the time series of FSS for the
CNTL experiment and FSS differences (assimilation experi-
ments minus the CNTL experiment). The assimilation exper-
iments were conducted during a period with a high frequency
of clear-sky observations. Cloud cover and precipitation were

Geosci. Model Dev., 19, 731-754, 2026
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Figure 12. Same as Fig. 9, but for forecasts at lead times of 12 and 24 h, with RMSEs computed from all forecast samples during the 10d

experiment.

sparse over the 10d period, resulting in the absence of fre-
quent heavy rainfall events. Consequently, the FSS was cal-
culated using small precipitation thresholds. In the CNTL ex-
periment, the FSS for 3 h accumulated precipitation showed
an initial decline followed by a subsequent increase with lead
time, with relatively low FSS values observed around the
12 h forecast period. Moreover, the FSS generally decreases
as the precipitation threshold increases. The time mean FSS
values are 0.47, 0.45, 0.42, and 0.39 for thresholds of 3, 4, 5,
and 6 mm, respectively. Regarding the role of GMWR assim-
ilation in precipitation forecasting, the results indicate that
assimilating GMWR radiances enhances precipitation fore-
casts, with FSS differences increasing progressively at higher
precipitation thresholds. Additionally, increasing assimila-
tion frequency showed the potential to further enhance fore-
cast performance. When assimilating GMWR data at a 1 h
frequency, the time-averaged FSS improvements for 3 h ac-
cumulated precipitation are 0.02 (3.9 %) for the 3 mm thresh-
old, 0.02 (4.7 %) for the 4 mm threshold, 0.03 (7.3 %) for
the 5 mm threshold, and 0.04 (10.2 %) for the 6 mm thresh-
old precipitation. For 3h accumulated precipitation with a
threshold of 6 mm, the time-averaged FSS improvements
are 0.01, 0.02, and 0.03 for GMWR_6H, GMWR_3H, and
GMWR_1H, respectively. These findings are consistent with
the above verification against surface station observations,
suggesting that GMWR assimilation can improve forecasts
and that higher-frequency assimilation leads to further en-
hancements.

5 Discussion, conclusions, and future work
5.1 Discussion

This section discusses (i) O — B characteristics and their
potential sources, (ii) the effectiveness and physical inter-
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pretability of the RF-based bias correction, and (iii) the im-
pacts of direct GMWR radiance assimilation on analyses and
forecasts.

In the three-month O — B statistics, the SD in the K-band
is larger than that in the V-band, consistent with Vural et
al. (2024) and Cao et al. (2023). A notable positive O — B
bias is observed at high-altitude stations over the Tibetan
Plateau, which may be related to large-scale topographic
effects. In this region, model simulations may contain er-
rors, and RTTOV-gb coefficients may be inapplicable. The
RTTOV-gb coefficients are based on global atmospheric pro-
files, which may differ significantly from the climatic condi-
tions of plateau regions, potentially affecting simulation ac-
curacy.

To mitigate these systematic O — B biases, a machine
learning-based BC scheme using the RF technique was de-
veloped. The number and depth of trees are critical hyper-
parameters that must be predetermined. Training time in-
creases approximately linearly with the number of trees,
while performance exhibits a logarithmic-like saturation
trend. In terms of tree depth, both training time and perfor-
mance increase approximately logarithmically with depth.
Thus, selecting a modest number (n_estimators) and depth
(max_depth) of trees, such as 50 and 15, can balance ef-
ficiency and accuracy. Feature importance analysis for BC
predictors revealed observed brightness temperature, atmo-
spheric precipitable water, and surface pressure as key fac-
tors for correcting biases. The importance of brightness tem-
peratures aligns with findings in satellite data bias correction
(Liu et al., 2022; Zhang et al., 2023). Atmospheric precip-
itable water is essential for the K-band, a humidity-sensitive
channel. Surface pressure plays a key role in temperature
channels, thereby accounting for the positive bias observed
in plateau regions. Although atmospheric thickness predic-
tors contributed less overall, the 1000-700 hPa thickness was
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Figure 13. The time series of FSS (black line) for the CNTL experiment and FSS differences (colored lines) between the assimilation
experiments and the CNTL experiment. These experiments were conducted from 13 to 22 October 2023. The FSS was calculated for 3h
accumulated precipitation with thresholds of (a) 3 mm, (b) 4 mm, (¢) 5 mm, and (d) 6 mm.

relatively significant, likely due to GMWRs primarily sens-
ing radiation from the lower atmosphere.

The machine learning-based BC scheme effectively mit-
igated the bimodal distribution and systematic errors in the
O — B statistics. To assess its impact on the initial and fore-
cast fields, a parallel experiment without bias correction was
conducted, based on the 1 h assimilation interval experiment
(GMWR_1H). For the initial fields, as verified against ra-
diosonde observations, the experiment without BC yielded
only minor improvements in temperature and even degraded
the water vapor field. As for the forecast fields, verification
against surface station observations showed that the absence
of BC led to a noticeable degradation in the forecast accu-
racy of 2 m temperature and relative humidity. These findings
indicate that the machine learning-based BC scheme had a
beneficial impact on both the initial conditions and the subse-
quent forecasts. Nevertheless, despite its demonstrated effec-
tiveness, the scheme is subject to several limitations. Relying
on offline O — B statistics, it implicitly assumes that all biases
originate from the observations — an assumption that may not
always hold and may, in some instances, mask model biases
(Auligné et al., 2007; Eyre, 2016). These limitations motivate
further improvements in future work (Sect. 5.2).

In this study, direct assimilation of GMWR radiances en-
hances both the initial conditions and the forecasts, show-
ing potential for improving ABL and precipitation simula-
tions. Although the assimilation of GMWR radiances yields
slight improvements in the forecast wind fields (Fig. 11),
it exerts an overall negative impact on the wind fields in
the initial conditions (Fig. 9). It should be noted that as-
similating GMWR radiances improves the wind fields be-
low 500 m a.g.l. in the initial conditions. This improvement is
consistent with the verification of the forecast, which demon-
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strates enhancements in the 10m wind fields. Regarding
the degradation of wind fields above 500 ma.g.l., the back-
ground error covariance may contribute to this negative im-
pact. Specifically, it propagates the RTTOV-gb increments
concentrated in the ABL to higher levels and induces wind
field adjustments in response to temperature and humidity
updates.

5.2 Conclusions and future work

To investigate the impact of directly assimilating GMWRs
in Southwest China, a GMWR assimilation module has been
developed in WRFDA-4.5, where RTTOV-gb is used as the
observation operator. Based on this module, a three-month
sample dataset of O — B was collected to evaluate the bias
and develop a BC model. Furthermore, 10 d assimilation ex-
periments (Table 2) were conducted using this GMWR as-
similation module and BC model to investigate the impact
of direct GMWR assimilation and the effects of assimilation
frequency. The main findings are as follows:

Based on three months of hourly samples, noticeable O —
B biases were observed, varying across sensors, channels,
and geographical locations. The machine learning-based bias
correction scheme, employing an RF model, effectively re-
duced these O — B systematic biases. After applying this BC
model, both the bias and SD of the O — B were substantially
reduced. Specifically, the bias and SD decreased by 0.83 K
(97.1 %) and 1.63K (64.6 %), respectively. For some chan-
nels, the original O — B distribution exhibited a bimodal pat-
tern, which was transformed into a unimodal distribution af-
ter BC. The corrected O — B distributions exhibited Gaussian
characteristics centered around zero.

Geosci. Model Dev., 19, 731-754, 2026
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Assimilating GMWR radiances enhances the accuracy of
initial conditions, with higher assimilation frequencies am-
plifying the positive impact, particularly for temperature and
humidity in the lower atmosphere. Evaluation against ra-
diosonde observations shows that the temperature RMSE be-
low 1kma.g.l. decreases by 3.67 % to 6.32 % as the assim-
ilation frequency increases from 6 to 1 h. For the water va-
por mixing ratio, positive impacts extend up to Skma.g.l.,
with average RMSE improvements ranging from 1.98 % to
2.30 %. Verification against surface station observations fur-
ther supports these findings, indicating that the RMSE for
2 m temperature decreases by up to 4.1 %, while the RMSE
for 2 m relative humidity decreases by up to 1.3 % at the 1 h
assimilation frequency.

The assimilation of GMWR observations leads to im-
provements in forecasts, and increasing assimilation frequen-
cies has the potential to yield further improvements. In the
first 6 h of the forecast, the temperature RMSE decreases by
0.012, 0.014, and 0.019 K with 6, 3, and 1 h assimilation fre-
quency, respectively. Similar trends are observed for relative
humidity, where the experiment with 1 h GMWR assimila-
tion frequency shows the largest decrease in RMSE. GMWR
assimilation also improves precipitation forecasts, with fur-
ther enhancements seen as assimilation frequency increases.
For 1h GMWR assimilation, time-averaged FSS improve-
ments reach 0.02 for both the 3 and 4 mm, 0.03 for the 5 mm,
and 0.04 for the 6 mm thresholds.

Despite these encouraging results, this study has some lim-
itations that motivate future work. Regarding bias correction,
the offline scheme lacks anchoring observations, rendering
the analysis fields more susceptible to model bias. Future
efforts should consider bias correction strategies based on
unbiased reference observations or adopt a constrained cor-
rection scheme, such as the constrained adaptive bias cor-
rection (Han and Bormann, 2016). The GMWR assimilation
was implemented using 3DVAR, based on RTTOV-gb and
WRFDA, and only static background-error covariances were
employed in this study. The background error covariance ma-
trix plays an important role in variational data assimilation,
but this type of covariance is climatological, spatially homo-
geneous, and isotropic. This may limit the impact of GMWR
assimilation, and flow-dependent error covariances should be
considered in future work.
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Moreover, only clear-sky GMWR radiances were assimi-
lated in this study. Since precipitation processes are often ac-
companied by extensive cloud cover, few clear-sky GMWR
observations were available. To better explore the potential
of GMWR assimilation, experiments were conducted during
periods with abundant clear-sky GMWR data (e.g., a 10d pe-
riod in October 2023), which coincided with minimal heavy
precipitation. Studies on satellite all-sky assimilation have
shown that incorporating cloud- and precipitation-affected
data improves forecasts (Ma et al., 2022; Xian et al., 2019),
highlighting the need for future research on all-sky assimila-
tion of GMWRs. Under such conditions, assimilation experi-
ments could be conducted during a different or longer period,
given that assimilated GMWR observations would be rela-
tively more abundant. It is noted that GMWRs exhibit higher
sensitivity and provide more valuable observations of the
lower troposphere and planetary boundary layer compared
to satellite-based microwave radiometers (Shi et al., 2023).
Building on this study, future research could explore the joint
direct assimilation of satellite-based and ground-based mi-
crowave radiometers. A more comprehensive evaluation of
upper-air impacts could also be performed using additional
independent observations, including aircraft reports and ra-
dio occultation data.
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Figure A1. Scatterplots of observed brightness temperature (7},) versus simulated 7}, for HATPRO. Same as Fig. 3 but for additional channels.
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Figure A2. Scatterplots of observed brightness temperature (7) versus simulated 7, for MP300OA. Same as Fig. 3 but for additional
channels.
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Appendix B: PDF distributions of O — B
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Figure B1. Probability density functions (PDFs) of the O — B distributions for HATPRO. Same as Fig. 6 but for additional channels.
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Figure B2. Probability density functions (PDFs) of the O — B distributions for MP3000A. Same as Fig. 6 but for additional channels.
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