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Abstract. High-resolution observation is crucial for study-
ing surface temperatures characterized by complex varia-
tions, particularly surface air temperatures in oceanic re-
gions, which serve as significant indicators of sea-air cou-
pling changes. Due to the scarcity of conventional obser-
vations of surface atmospheric temperatures in these areas,
high-resolution surface atmospheric temperature data de-
rived from satellite inversion has become the primary source
of information. However, missing data resulting from factors
such as the orbital spacing of polar satellites, cloud cover,
sensor errors, and other disruptions poses substantial chal-
lenges to Earth Surface Temperature (EST) estimation. In
this paper, we introduce ESTD-Net, a novel deep learning-
based model designed for surface temperature data inpaint-
ing. ESTD-Net incorporates an enhanced multi-head con-
text attention mechanism and a modified transformer block
to capture long-range pixel dependencies, thereby improv-
ing the model’s ability to focus on boundary regions. Addi-
tionally,the Stage Two employs a convolutional U-Net in an
autoregressive manner to refine the coarse output from the
Stage One, enhancing local spatial continuity and smooth-
ing boundaries. In addition, we adapt two loss components
– weighted reconstruction loss and gradient consistency reg-
ularization – to the specific demands of Earth surface tem-
perature interpolation. Our ablation studies confirm that their
integration significantly improves spatial consistency and ac-
curacy, particularly in textureless regions and in maintaining
physically meaningful gradients. Evaluation results demon-
strate that ESTD-Net outperforms existing methods in both
pixel-level accuracy and perceptual quality. Our approach of-
fers a robust and reliable solution for restoring earth surface
temperature data.

1 Introduction

Earth Surface Temperature (EST) refers to the kinetic tem-
perature of the Earth’s surface, encompassing both land and
ocean regions. In oceanic areas, EST is a crucial parame-
ter that reflects the thermodynamic interactions between the
ocean surface and the atmosphere, playing a vital role in
ocean-atmosphere coupling processes. According to surface
energy balance (SEB) theory, the ocean surface absorbs en-
ergy from both incoming solar radiation and atmospheric
long-wave radiation. This absorbed energy is redistributed
through several mechanisms: (1) outgoing thermal radia-
tion, which directly influences EST; (2) vertical heat trans-
port via ocean mixing and conduction; (3) turbulent heat ex-
changes at the air-sea interface; and (4) phase changes in sur-
face water, including evaporation and condensation. Given
its importance in climate and weather systems, EST over
oceanic regions is typically estimated using various observa-
tional approaches, including in situ measurements, reanaly-
sis datasets, ocean models, and satellite remote sensing tech-
niques (Zhou et al., 2018). Among these methods, satellite-
derived measurements offer a highly efficient and accurate
means of capturing global-scale EST variations, facilitating
continuous monitoring of temperature fluctuations across the
ocean surface. These observations are essential for under-
standing large-scale climate dynamics, enhancing numerical
weather prediction, and supporting oceanographic and mete-
orological research.

Cloud cover presents a significant challenge in obtaining
accurate EST data over oceanic regions, as it consistently ob-
scures more than 55 % of the Earth’s surface (King et al.,
2013). Clouds obstruct satellite sensors from detecting sur-
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face thermal radiation, resulting in extensive missing data in
ocean temperature observations. This issue becomes particu-
larly problematic when cloud masking is inadequate, as thin
cirrus clouds can partially obscure the ocean surface, lead-
ing to anomalously low temperature readings, especially dur-
ing daytime. Additionally, sensor malfunctions and gaps in
satellite coverage further exacerbate data deficiencies. These
missing data points introduce considerable uncertainty in
various oceanographic and atmospheric applications, includ-
ing EST spatiotemporal variability analysis (Xu et al., 2023),
air-sea interaction studies, ocean heat content estimation, and
numerical weather prediction (Deo and Şahin, 2017). Ad-
dressing these data gaps is essential for improving climate
modeling, understanding large-scale ocean-atmosphere ex-
change processes, and enhancing the accuracy of temperature
retrievals based on satellite remote sensing.

Despite these challenges, EST remains a crucial variable in
the climate and oceanic systems, with applications spanning
ocean circulation studies, air-sea interactions, marine ecosys-
tem monitoring, and climate change assessments. Recent ad-
vancements in satellite remote sensing have significantly en-
hanced the accessibility of global EST datasets, providing a
more comprehensive alternative to traditional in situ ocean
temperature measurements. Unlike geostationary satellites,
which offer high temporal resolution but are limited to fixed
observational coverage, polar-orbiting satellites such as FY-
3D provide near-global coverage, making them essential for
large-scale ocean temperature monitoring. One of the key
advantages of microwave imaging instruments, such as the
MWRI onboard FY-3D, is their ability to penetrate most non-
precipitating clouds, thereby facilitating more comprehen-
sive retrievals of ocean surface temperature. However, these
instruments also have inherent limitations, including narrow
swath widths that result in significant inter-orbital gaps, par-
ticularly in tropical regions. These extensive data gaps pose
a considerable challenge, as conventional interpolation tech-
niques often fail to deliver reliable reconstructions due to the
high spatial variability of oceanic temperature patterns. In
this context, deep learning-based image inpainting methods
present a promising solution for reconstructing missing EST
data with greater accuracy and robustness.

EST data can be effectively represented as image-like
datasets, making image inpainting a relevant approach for
restoring missing or degraded observations. Image inpaint-
ing has emerged as a significant research direction in com-
puter vision, aiming to automatically complete incomplete
images (Elharrouss et al., 2020). With advancements in deep
learning, convolutional neural networks (CNNs), such as U-
Net (Ronneberger et al., 2015), and self-attention-based ar-
chitectures like the Transformer (Vaswani et al., 2017), have
driven substantial progress in image inpainting, leading to
their widespread application in tasks involving image recon-
struction. In 2016, Pathak et al. (2016) introduced a CNN-
based autoencoder for image inpainting that learned both
low-level features and high-level semantics by alternately

training on known and unknown regions to achieve automatic
completion. Building on this foundation, Iizuka et al. (2017)
proposed a GAN-based inpainting method in 2017, utiliz-
ing both global and local discriminators to generate high-
quality and diverse inpainting results. In 2021, Deng et al.
(2021) developed a fully convolutional network with atten-
tion modules that improved the model’s ability to capture
spatial affinities between different image regions, leading to
enhanced inpainting quality and consistency. In the domain
of data inpainting, researchers have successfully applied con-
volutional neural networks – including fully convolutional
networks, U-Net (Lepetit et al., 2021), GANs (Geiss and
Hardin, 2021), and conditional GANs (Tan and Chen, 2023)
– to address tasks such as multisource data fusion and re-
covery (Xie et al., 2020). By leveraging the power of deep
learning, these approaches enable neural networks to learn
high-level semantic features, facilitating the generation of
high-quality inpainted results. Consequently, these methods
achieve performance levels that significantly surpass tradi-
tional data correction techniques within the context of data
inpainting applications.

Despite recent advancements, deep neural network meth-
ods still encounter specific challenges in data inpainting
tasks. One significant challenge arises from the differences
between conventional image data and pixel-level remote
sensing data, such as satellite and radar imagery. These
datasets often exhibit complex spatial features and high spa-
tial resolution (Atlas et al., 1973; Lengfeld et al., 2020), char-
acterized by fine-scale structures and surface roughness that
complicate their analysis. To evaluate the quality of these
features, metrics such as peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) (Hore and Ziou, 2010)
are commonly employed. Deep learning models frequently
struggle to accurately capture discrete features, which can
result in issues like over-smoothing in the inpainted regions,
loss of critical details, and an increase in false positives. To
address these limitations, recent approaches have been pro-
posed to mitigate over-smoothing and enhance the preserva-
tion of important details in image inpainting tasks (Petrovska
et al., 2020; Wang et al., 2022). A key aspect of success-
ful inpainting is the ability to effectively capture contextual
information, especially when dealing with large missing re-
gions. To generate realistic structures and textures for these
areas, it is crucial to leverage non-local priors and understand
the broader context of the image. Such methods enable the
model to draw relevant information from distant parts of the
image, thereby ensuring more accurate and natural inpainting
(Berman et al., 2016; Wang et al., 2018). To explicitly model
long-range dependencies, some studies (Xie et al., 2019; Yi
et al., 2020) have integrated attention modules into CNN-
based generators. However, due to the quadratic computa-
tional complexity of attention mechanisms, these modules
are typically limited to small-scale feature maps, restricting
the full utilization of long-range context modeling. Unlike
CNNs with attention modules, transformers (Vaswani et al.,
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2017) are inherently suited for non-local modeling since at-
tention is a fundamental component in each block. Recent re-
search (Wan et al., 2021; Yu et al., 2021) has explored trans-
former architectures for addressing inpainting tasks. How-
ever, due to computational limitations, these approaches of-
ten restrict the use of transformers to low-resolution predic-
tions, which can lead to coarse and incomplete image struc-
tures. This limitation can significantly degrade overall in-
painting quality, especially when handling large missing re-
gions.

In this paper, we present an advanced transformer archi-
tecture specifically designed for data recovery. In scenarios
where useful information is sparse, we have observed that
the standard transformer block struggles to perform effec-
tively during adversarial training. To address this challenge,
we propose modifications to the original transformer block
aimed at improving both stability and performance. Specif-
ically, we eliminate traditional layer normalization (Lei Ba
et al., 2016) and transition from residual learning to fu-
sion learning through feature concatenation. Additionally, to
tackle the computational challenges posed by intensive in-
teractions among numerous tokens in high-resolution inputs,
we introduce a modified version of multi-head self-attention,
termed multi-head context attention (Li et al., 2022). This
variant computes non-local dependencies using only a sub-
set of valid tokens. A dynamic mask, initialized by the in-
put mask and updated through spatial constraints and long-
range interactions, selectively chooses these tokens, thereby
enhancing computational efficiency without compromising
performance. Our contributions are as follows:

– We propose a gradient consistency regularization
framework that enforces physical consistency in in-
painted regions by minimizing the L1-norm of gradient
discrepancies between generated and ground-truth data.
This method excels in preserving critical physical prop-
erties, significantly improving both visual fidelity and
physical accuracy.

– We design an adaptive weighted reconstruction loss
that dynamically prioritizes missing regions during op-
timization. This mechanism forces the network to al-
locate higher attention to masked areas, substantially
improving data recovery precision while maintaining
global coherence.

– We develop a boundary-aware transformer module with
reinforced attention mechanisms for edge preservation.
By explicitly modeling boundary pixel relationships,
it achieves subpixel-level accuracy in transition zones,
yielding seamless blending between inpainted and orig-
inal regions.

– We integrate a lightweight CNN-based U-Net for au-
toregressive refinement, capitalizing on its local texture
modeling strengths. This hybrid design effectively sup-
presses local artifacts.

– We curate a temporally diagnostic dataset of sur-
face temperatures at 06:00/18:00 UTC (capturing ther-
mal transition states during diurnal minima/maxima).
This uniquely timed data provides critical baselines
for studying climate dynamics, with direct applica-
tions in meteorology, agroecology, and environmental
modeling-enabling new insights into diurnal thermal in-
ertia and its systemic effects.

2 Related Work

Accurate reconstruction of missing values in EST data rep-
resents a critical challenge in geoscientific research. Exist-
ing methodologies for EST gap-filling can be systemati-
cally classified into three principal paradigms: Spatial recon-
struction methods, temporal reconstruction methods and spa-
tiotemporal reconstruction methods. Spatial reconstruction
methods utilize surrounding valid pixels to estimate miss-
ing values, employing interpolation techniques such as in-
verse distance weighting (IDW) (Kilibarda et al., 2014; Fleit,
2024), cokriging interpolation (Dowd and Pardo-Igúzquiza,
2024), and spline interpolation (Li and Heap, 2014). These
methods are straightforward to implement and perform effec-
tively in homogeneous areas with limited missing data. How-
ever, their performance deteriorates as the amount of missing
data increases, particularly in complex terrains where captur-
ing spatial patterns becomes more challenging.

Temporal reconstruction methods rely on complementary
images from nearby time intervals to estimate missing pixels.
Common approaches include linear temporal interpolation
(Zhang et al., 2015), harmonic analysis (Mohanasundaram
et al., 2023), and temporal Fourier analysis (Scharlemann
et al., 2008). More advanced techniques, such as LSTM neu-
ral networks (Cui et al., 2022), multi-temporal Bayesian dic-
tionary learning (Li et al., 2014), and time-aware implicit
neural representations (Wang et al., 2023), have been ex-
plored to capture the temporal variability within EST time
series more effectively. While temporal reconstruction meth-
ods successfully capture time-dependent patterns, they may
encounter difficulties when spatial context is not adequately
integrated. To address the limitations of purely spatial or tem-
poral approaches, spatiotemporal methods have been devel-
oped. These methods combine both spatial and temporal in-
formation to reconstruct missing EST values more compre-
hensively. For instance, Liu et al. (2017) introduced a spa-
tiotemporal reconstruction technique for Feng Yun-2F satel-
lite EST data, achieving root mean square error (RMSE) val-
ues within 2 °C in most cases. Similarly, Weiss et al. (2015)
developed a gap-filling method that integrates neighboring
data with historical data from different time periods. While
these techniques offer certain advantages, they often require
substantial manual intervention and depend heavily on large
datasets. Additionally, their performance can degrade in the
presence of extensive missing data, as they struggle to cap-
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ture the complex spatiotemporal relationships inherent in the
data.

Methodologically, recovering missing data in EST is anal-
ogous to image inpainting, where the objective is to re-
store missing regions within an image. Traditional image in-
painting techniques are generally categorized into two types:
diffusion-based methods (Ballester et al., 2001) and patch-
based approaches (Criminisi et al., 2004). Diffusion-based
methods propagate pixel values from neighboring regions
to fill in missing areas, similar to techniques such as linear
interpolation or nearest neighbor. In contrast, patch-based
methods copy pixel information from known regions, uti-
lizing strategies such as mean imputation, k-nearest neigh-
bors (KNN), or regression to restore missing values. Tra-
ditional image inpainting methods often struggle to pre-
serve semantic coherence and texture consistency, particu-
larly when dealing with large missing regions. This limitation
parallels the challenges faced by conventional data recovery
techniques when addressing extensive missing data. In con-
trast, recent advancements in deep learning have significantly
improved image inpainting, resulting in notable enhance-
ments in both performance and consistency. Techniques such
as low-rank decomposition, generative models (e.g., VAE,
GAN), and encoder-decoder CNN architectures have proven
highly effective in producing high-quality inpainting results.
For instance, Malek et al. (2017) employed a contextualized
autoencoder CNN to reconstruct cloud-contaminated remote
sensing images, addressing both pixel- and patch-level in-
painting. Following this, several variants of the U-Net archi-
tecture (Liu et al., 2020; Yan et al., 2018; Zeng et al., 2019)
have been introduced, further enhancing the performance of
image completion tasks.

3 Methodology

3.1 Overall Architecture

In this paper, we propose the ESTD-Net method for re-
constructing missing data, utilizing a two-stage architecture
specifically optimized for surface temperature imagery re-
construction. This two-stage design is crucial for effectively
capturing both global structures and local details, thereby en-
suring more accurate and visually coherent reconstructions.
In the first stage, the network integrates a convolutional mod-
ule with a transformer module to leverage both local spa-
tial correlations and long-range dependencies, resulting in
an initial reconstruction. The second stage employs a Conv-
U-Net structure to further refine the results, enhancing fine-
grained details and structural consistency. Additionally, the
discriminator adopts a PatchGAN-like backbone consisting
of stacked convolutional blocks for local realism evaluation.
Unlike the original fully convolutional PatchGAN, we ap-
pend two fully connected layers after the convolutional back-
bone to produce the final prediction. This modification, in-

spired by CoModGAN (Zhao et al., 2021), enables the dis-
criminator to jointly assess fine-scale local structures and
global temperature distribution patterns, which is beneficial
for maintaining physically plausible reconstructions.

Given an input of size H ×W , the convolutional module
first processes the input channels – comprising three image
channels and one mask channel – transforming them into
180 feature channels through a series of convolutions. Subse-
quently, two strided convolutions, each with a stride of 2, are
applied to downsample the feature map to a size of H

4 ×
W
4 .

The extracted features are then converted into tokens, which
are fed into the masked transformer module. The masked
transformer consists of five stages, with block configura-
tions of {2,3,4,3,2} corresponding to feature map sizes of
{
H
4 ×

W
4 ,

H
8 ×

W
8 ,

H
16 ×

W
16 ,

H
8 ×

W
8 ,

H
4 ×

W
4 }. Both downsam-

pling and upsampling operations are performed using convo-
lutional layers. Details of the transformer block architecture
are provided in Section 3.3. The output tokens from the trans-
former are reshaped into a 2D feature map, which is subse-
quently passed to the reconstruction module.

The convolutional reconstruction module upsamples the
feature map from H

4 ×
W
4 to the original resolution ofH×W ,

producing a complete image. In the second stage, a Conv-
U-Net is employed to refine the output by leveraging both
the coarse prediction and the input mask. This network first
downsamples the features to H

16 ×
W
16 and then upsamples

them back to the original size ofH×W , enhancing local tex-
ture continuity and smoothing boundaries. Shortcut connec-
tions are incorporated at each resolution level to preserve es-
sential spatial information. The encoder begins with 64 con-
volutional channels, doubling the channel count after each
downsampling step until reaching a maximum of 512 chan-
nels. The decoder is symmetrically structured, halving the
number of channels at each upsampling step, thereby ensur-
ing effective information flow and detail restoration through-
out the network.

As illustrated in Fig. 1, the architecture of ESTD-Net
seamlessly integrates these components to leverage the
strengths of both convolutional and transformer-based ap-
proaches. The convolutional module efficiently extracts key
tokens, while the transformer module utilizes the multi-head
context attention mechanism, as outlined in the MAT frame-
work (Li et al., 2022), to capture long-range dependencies
between features. This enables more accurate and context-
aware reconstructions. The output tokens are further refined
through a convolution-based reconstruction module, which
restores the spatial resolution to match the input dimensions.
The subsequent Conv-U-Net stage enhances local texture
continuity and smoothing boundaries by leveraging the lo-
cal texture refinement capabilities of CNNs, thereby improv-
ing the fidelity of the reconstruction. In addition, we have in-
cluded a concise step-by-step process description, as shown
in Fig. 2, which details our workflow, including the input,
the two-stage reconstruction process, and the differences be-
tween training and inference.
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Figure 1. The proposed ESTD-Net framework. In the Stage One, the convolutional module and masked transformer module are employed
for feature extraction and initial reconstruction. Patch merging and patch upsampling handle downsampling and upsampling operations,
respectively. Stage Two utilizes a convolutional U-Net in an autoregressive manner to refine the coarse output from the Stage One, enhancing
local spatial continuity and smoothing boundaries.

Figure 2. The overall workflow of training and inference.

3.2 Convolutional Module

Given a masked temperature fieldXM =X�M , whereM is
a binary mask assigning a value of 1 to valid (observed) grid
points and 0 to missing ones, the goal of the imputation pro-
cess is to reconstruct spatially coherent and physically plausi-
ble values for the missing regions. The convolutional module
processes this incomplete field XM together with the mask
M , producing feature maps at a reduced spatial resolution of
1/4 of the original dimensions. These feature maps are then
flattened and treated as tokens for subsequent Transformer-
based processing.

The module consists of three convolutional layers: one for
adjusting the channel dimensions of the input data and two
for progressively reducing the spatial resolution. It serves
two main purposes: first, to effectively capture the funda-
mental features of the masked temperature fields; second,
by reducing spatial dimensions, it allows the model to focus
on large-scale spatial structures while maintaining computa-
tional efficiency. On one hand, local spatial context is incor-
porated a priori in the initial stage of feature extraction to
enhance representation quality and overall performance. On
the other hand, the reduced resolution significantly lowers
computational cost and memory usage.
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We incorporate a stack of convolutional layers within the
convolutional module to extract tokens specifically tailored
for the temperature-field imputation task. This design offers
several advantages over traditional linear projection methods,
such as those used in Vision Transformers (ViT) (Dosovit-
skiy, 2020), by effectively capturing local spatial patterns and
relationships crucial for accurate data reconstruction. The
stacked convolutions facilitate a gradual and more effective
filling of missing regions in the temperature field, leading
to the generation of more informative tokens. Furthermore,
multi-scale downsampled features are efficiently passed to
the decoder via shortcut connections, which enhances op-
timization and improves the overall imputation process. In
contrast, models that rely solely on linear projections often
introduce artifacts and struggle to fully exploit surrounding
spatial information for reconstructing missing data.

3.3 Masked Transformer Module

The masked transformer module processes tokens by captur-
ing long-range dependencies between different regions of the
temperature field. It consists of five stages, each employing
modified transformer blocks to effectively model these spa-
tial relationships. These blocks integrate an enhanced atten-
tion mechanism that incorporates additional dynamic masks
to guide the process. This attention mechanism enables the
model to focus on the most relevant valid regions, thereby
improving its ability to restore missing or incomplete tem-
perature data accurately. This design is particularly well-
suited for temperature-field imputation tasks, where captur-
ing spatial dependencies across large geographic areas is es-
sential. The dynamic mask further enhances the model’s per-
formance by directing its attention towards observed regions,
ensuring that the reconstructed values remain physically con-
sistent with the surrounding data. Combined with the multi-
stage architecture, this approach significantly improves both
the accuracy and spatial coherence of the restored tempera-
ture fields.

3.3.1 Context Attention Module based on Mask

To efficiently manage large numbers of tokens and address
the low fidelity of individual tokens, the context attention
module employs dynamic masks and shifted windows. This
design facilitates non-local interactions among a relevant
subset of tokens only. The output from the context attention
mechanism is computed as a weighted sum of the valid to-
kens, as follows:

Att(Q,K,V)= Softmax

(
QKT

+M′
√
dk

)
V, (1)

where Q, K, and V are the query, key, and value matrices, re-
spectively, and 1

√
dk

is a scale factor. The mask M′ is defined

as:

M ′ij =

{
0, if token j is valid

−τ, if token j is invalid
, (2)

with τ set to a large integer (100 in this experiment) to sup-
press the impact of invalid tokens. After each attention com-
putation, thew×w windows are shifted by

(
w
2 ,

w
2

)
pixels, en-

abling interactions between tokens across different windows.
This mechanism facilitates better information flow and en-
hances the model’s ability to capture long-range dependen-
cies.

Mask Update

The mask M′ evolves dynamically across layers to represent
the validity of tokens, enabling the model to selectively focus
on relevant regions of the temperature field. Initially, M′ is
identical to the input observation mask; however, it progres-
sively adapts during each propagation step, ensuring that the
model’s attention remains directed toward physically valid
and meaningful areas throughout the process. The key as-
pect of our approach is the adaptive propagation rule: if a
spatial window contains at least one valid token, all tokens
within that window are considered valid after the attention
operation. Conversely, windows without any valid tokens re-
main invalid, ensuring that attention is concentrated only on
sparse but relevant regions where additional information is
most needed.

As illustrated in Fig. 3, this process starts with localized
validity (from (a) to (b)) and gradually expands the valid re-
gions through successive window shifts and attention passes.
This adaptive mask update scheme allows the mask to pro-
gressively cover the entire spatial domain, optimizing to-
ken propagation and enhancing the model’s capability to
capture long-range spatial dependencies for more accurate
temperature-field reconstruction.

Operational Process

The operational logic of the mask-based contextual attention
mechanism is further illustrated in Fig. 4. The pseudocode
representation outlines how missing values are reconstructed
by attending to valid regions within a local spatial window.
Specifically, for each masked region, the attention weights
are computed only over valid tokens, and the missing to-
kens are iteratively updated based on the similarity and spa-
tial correlation with observed neighbors. This formulation al-
lows the model to effectively propagate contextual informa-
tion and maintain spatial coherence during reconstruction.

3.3.2 Modified Transformer Block

In conventional transformer architectures (Vaswani et al.,
2017), each block consists of two essential components:
multi-head self-attention and multi-layer perceptron. Typi-
cally, layer normalization (LN) is applied prior to each block,
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Figure 3. The mask updating process. Orange represents valid areas and white represents invalid areas. Initially, the spatial domain is divided
into 4× 4 regions (highlighted in red). MU represents the mask update that occurs following the attention mechanism and WS denotes the
window shift operation.

and a residual connection (He et al., 2016) is incorporated af-
ter each operation. However, when dealing with masks that
contain large missing regions, we have observed that the
standard block structure often results in unstable optimiza-
tion, including instances of gradient explosion. This insta-
bility can be primarily attributed to the high proportion of
invalid tokens, which are close to zero. In such scenarios,
layer normalization tends to disproportionately amplify these
near-zero tokens, leading to training instability. Furthermore,
the residual connections in conventional transformers gener-
ally encourage the model to focus on high-frequency content,
which may not be optimal for inpainting tasks that require
smooth and coherent reconstructions. Given that a significant
number of tokens are initially invalid, directly learning high-
frequency features becomes challenging. A stable optimiza-
tion process typically requires a robust low-frequency foun-
dation, especially in GAN training, to ensure reliable conver-
gence and avoid instability.

To address these challenges, we propose a modified trans-
former block specifically designed to optimize masks with
missing regions. In this approach, we replace residual con-
nections with concatenation and eliminate layer normaliza-
tion altogether. As illustrated in Fig. 5, our method concate-

nates the output processed by context attention with the un-
processed input before passing it through a fully connected
layer:

Xr,` =MLP
[
FC
([

MCA
(
Xr,`−1

)
,Xr,`−1

])]
, (3)

where Xr,` is the output of multi-layer perceptron at the `th
block in the rth stage. After passing through several modified
transformer blocks, as shown in Fig. 5, we introduce a con-
volutional layer with a global residual connection. Addition-
ally, we cancel positional embeddings in our transformer de-
sign. Previous studies (Wu et al., 2021; Xie et al., 2021) have
demonstrated that 3× 3 convolutions can incorporate posi-
tional information into transformers. Consequently, feature
interactions are primarily driven by feature similarity, which
strengthens long-range dependencies and facilitates more ef-
fective interactions within the data.

3.4 Loss Functions

To enhance the quality of the generated content, we employ
adversarial loss (Mirza and Osindero, 2014) in both stages of
our framework. This loss function guides the model in gen-
erating more realistic outputs by encouraging the generator
to produce content that closely resembles real data, as eval-
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Figure 4. Illustration of the mask-based contextual attention mech-
anism. The pseudocode outlines how missing tokens are recon-
structed by attending to valid spatial regions within the local win-
dow.

Figure 5. Illustration of a single transformer stage, where MTB de-
notes the modified transformer block, and MCA refers to the context
attention module.

uated by the discriminator. Additionally, we incorporate per-
ceptual loss (Johnson et al., 2016) with a reduced empirical
coefficient, as we have observed that this modification im-
proves both optimization stability and effectiveness. Further-
more, perceptual loss directs the model to focus on high-level

feature similarities between the generated and ground-truth
data, thereby enhancing perceptual quality, particularly in the
reconstruction regions. To optimize the quality of generated
data, we calculate the adversarial loss as follows:

LG =−Ex̂[log(D(x̂))], (4)
LD =−Ex[log(D(x))] −Ex̂[log(1−D(x̂))], (5)
Ladv = LD +LG+αLgp, (6)

where x represents the real data and x̂ (the generated data)
is defined as x̂ =G(x). The gradient penalty Lgp is given by
Lgp = Ex̂

∥∥∇x̂D(x̂)∥∥2 (Gulrajani et al., 2017) , enhances the
stability of the model during training and helps mitigate the
risk of overfitting with α = 0.001.

To reduce the difference between real data and gener-
ated data, we utilize the high-level features of the pretrained
VGG-19 (Simonyan, 2014) to construct the perceptual loss:

LP =
5∑
i=4

ηi
∥∥φi(x̂)−φi(x)∥∥1, (7)

where φi(·) represents the activation of layer i in a pre-
trained VGG-19 network ηi are non-negative parameters.

For the task of reconstructing global surface temperature
data – which exhibits comprehensive spatial coverage but
suffers from temporal sparsity and extensive missing values,
we propose an improved loss function architecture based on
generative adversarial networks (GANs). The primary chal-
lenge associated with this dataset stems from the coexistence
of spatial continuity and temporal fragmentation, necessi-
tating not only accurate imputation of missing temperature
values but also seamless spatial and temporal transitions be-
tween observed and reconstructed regions. To address these
challenges, we introduce two key modifications to the loss
function, which collectively enhance the precision of tem-
perature reconstruction while ensuring physically consistent
and smooth gradients across discontinuities. In order to im-
prove the accuracy of temperature reconstruction in missing
regions, we define a weighted reconstruction loss function:

Lrec =

∥∥M⊗
(
x− x̂

)∥∥
1

ς‖M‖1
+

∥∥(1−M)⊗
(
x− x̂

)∥∥
1

‖1−M‖1
, (8)

where x represents ground-truth, x̂ represents generated
data, and M represents mask. ς is the weight between the
known and missing data. This approach ensures that the re-
construction of missing regions closely aligns with the orig-
inal data, while preserving consistency in the known areas.
Similar to mask-based reconstruction losses used in image
restoration tasks, this weighted loss method is particularly
well-suited for surface temperature data reconstruction, ef-
fectively avoiding unnatural temperature gradients.

To improve the physical plausibility and visual coherence
of inpainted data, we introduce a novel gradient regulariza-
tion loss Lgr, designed to minimize the L1 norm of the gradi-
ent difference between the generated output x̂ and the ground
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truth x. The loss is formally defined as:

Lgr = ‖∇(x)−∇(x̂)‖1. (9)

By integrating gradient consistency regularization, our model
learns to produce reconstructions that maintain both visual
smoothness and physical fidelity with respect to the observed
data. This constraint is particularly crucial in applications
where gradient structures, such as temperature fronts or at-
mospheric transitions, play a key role in data interpretation.

The overall first stage loss functions is:

L= Ladv+ ηLP + λLrec+βLgr, (10)

where η, λ and β are non-negative parameters. The total
losses in the second stage are consistent with those in the
first stage.Given that our framework employs two discrim-
inators across dual stages, potential instability during ad-
versarial training was carefully addressed. To enhance con-
vergence stability, we applied R1 gradient penalty to both
discriminators, maintained an exponential moving average
(EMA) of generator weights to smooth updates, and adopted
adaptive data augmentation (ADA) to prevent discriminator
overfitting (Li et al., 2022). These strategies collectively en-
sured stable training without divergence or mode collapse.

4 Experiments

4.1 Datasets and Metrics

The reference dataset employed in this study originates
from the Microwave Radiation Imager (MWRI) aboard the
FengYun-3D (FY-3D) satellite. As a passive microwave sen-
sor, MWRI offers distinct advantages for near-surface tem-
perature retrieval: (1) its low-frequency channels can pene-
trate most non-precipitating clouds, and (2) the peak sensi-
tivity of its weighting functions occurs close to the surface
level. These characteristics make MWRI particularly suitable
for monitoring lower atmospheric and surface temperature.

The analysis focuses on the full calendar year of 2023. FY-
3D operates in an afternoon orbit with an equatorial cross-
ing time of approximately 14:00 UTC. To improve tempo-
ral representativeness, MWRI retrievals are processed into
two global datasets centered at 06:00 and 18:00 UTC, by ag-
gregating the nearest available observations within ±3 h of
each reference time. This yields a twice-daily global grid-
ded surface temperature product at 0.5°× 0.5° spatial reso-
lution. Because MWRI’s narrow swath leaves large orbital
gaps and frequent data voids under cloudy conditions, direct
evaluation against in situ measurements is infeasible. There-
fore, we employ ERA5 reanalysis surface temperature as the
reference baseline for quantitative assessment. ERA5 is se-
lected for three main reasons: (1) its high temporal resolution
(hourly), enabling precise temporal alignment with MWRI
overpasses; (2) its proven reliability and widespread adop-
tion in climate research; and (3) its global coverage, which

allows retrieval of complete “truth” values in regions where
MWRI lacks observations.

To construct a benchmark dataset that realistically mim-
ics MWRI’s missing-data patterns while retaining access
to ground-truth values, we proceed as follows: (1) ERA5
hourly surface temperature data are interpolated to match
the 0.5°× 0.5° MWRI retrieval grid, ensuring precise spatial
alignment. (2) For each MWRI time slice, we generate a va-
lidity mask based on actual MWRI coverage, retaining ERA5
values only at grid points where valid MWRI retrievals ex-
ist, and masking the rest to simulate orbital gaps and missing
observations. (3) The masked ERA5 fields serve as the syn-
thetic “MWRI-like” inputs with gaps, while the correspond-
ing full, unmasked ERA5 fields provide the ground-truth ref-
erence for evaluating reconstruction accuracy in the missing
regions.

The primary focus of this investigation centers on devel-
oping effective reconstruction methods for satellite orbital
gaps (vacancies). Through careful spatiotemporal matching,
we ensure accurate localization of these data voids for sub-
sequent analysis and repair.

To facilitate model training and enhance intercomparabil-
ity of temperature values, we applied global min-max nor-
malization to standardize the data range. The normalization
process follows:

Xnorm =
X−Xmin

Xmax−Xmin
, (11)

where X denotes the original temperature values, with Xmin
and Xmax representing the global minimum and maximum
temperatures across the entire dataset, respectively. This
transformation maps all values to the interval [0,1], ensuring
numerical stability during model optimization while preserv-
ing the relative thermal gradients.

The normalized dataset was systematically partitioned into
256× 256 regions, a size selected to balance computational
efficiency with sufficient spatial context for pattern recog-
nition. From each original data file, we extracted six non-
overlapping subregions through a sliding window approach,
yielding a total of 4374 analyzable units. The complete
dataset was randomly partitioned into training and test sets
containing 3600 and 774 samples respectively, maintaining
an approximately 4 : 1 ratio to ensure sufficient represen-
tation in both subsets. To comprehensively assess the re-
construction performance, we implemented four established
evaluation metrics: mean absolute error (MAE), root mean
square error (RMSE), peak signal-to-noise ratio (PSNR), and
structural similarity index (SSIM). Each of these metrics of-
fers a unique perspective on the accuracy and quality of the
reconstructed data.

– Mean Absolute Error (MAE). MAE is a metric that
quantifies the average magnitude of errors between the
reconstructed data and the ground truth, without ac-
counting for their direction. It offers a clear understand-
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ing of the average deviation of predicted values from ac-
tual values, making it particularly useful for evaluating
overall reconstruction accuracy. The formula for MAE
is:

MAE=
1
n

n∑
i=1
|xi − x̂i |, (12)

where xi represents the ground truth values, x̂i the pre-
dicted values, and n the number of samples.

– Root Mean Square Error (RMSE). RMSE is similar to
MAE, but it places greater emphasis on larger errors by
squaring the differences before averaging. This makes
RMSE more sensitive to outliers and particularly valu-
able when minimizing large reconstruction errors is a
priority. The formula for RMSE is:

RMSE=

√√√√1
n

n∑
i=1
(xi − x̂i)

2. (13)

Both MAE and RMSE assess the overall reconstruction
error, with RMSE placing greater emphasis on larger
deviations due to its sensitivity to outliers. Together,
these metrics offer complementary perspectives on the
quality of the reconstruction.

– Peak Signal-to-Noise Ratio (PSNR). PSNR is a widely
used metric for evaluating the quality of image re-
construction. It compares the maximum possible pixel
value of an image (MAX) to the mean squared error
(MSE) between the ground truth and generated images.
Higher PSNR values indicate better reconstruction qual-
ity, with less distortion. The formula for PSNR is:

PSNR= 20 · log10

(
MAX
RMSE

)
. (14)

– Structural Similarity Index (SSIM). SSIM evaluates the
perceptual quality of the reconstructed data by con-
sidering changes in structural information, luminance,
and contrast. Unlike MSE and RMSE, which focus
on absolute pixel differences, SSIM assesses the sim-
ilarity between corresponding pixels based on their
structural, brightness, and contrast characteristics. This
makes SSIM a more accurate measure of image quality
in terms of human visual perception. The formula for
SSIM is:

SSIM(x, x̂)=
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x +µ

2
x̂
+ c1)(σ 2

x + σ
2
x̂
+ c2)

, (15)

where µx and µx̂ are the mean pixel values of the origi-
nal and generated images, σx and σx̂ are their variances,
σxx̂ is the covariance between the two images, and c1
and c2 are constants to stabilize the division when the
denominator is close to zero.

These four metrics provide a comprehensive evaluation of
the model’s performance, capturing both pixel-level accuracy
and perceptual quality. By integrating these metrics, we en-
sure a thorough assessment of the reconstructed images, con-
sidering both numerical precision and perceptual realism.

4.2 Implementation Details

All experiments were conducted using two NVIDIA A6000
GPUs. The model was trained on the processed ERA5 reanal-
ysis dataset, with a batch size of 32 to optimize training effi-
ciency. During training, we set the learning rate to 0.001. We
employed the Adam optimizer, a widely used choice in deep
learning, due to its effectiveness in managing sparse gradi-
ents and adapting learning rates for individual parameters. ς ,
η, λ and β are set as 10, 0.1,10 and 0.01, respectively.

4.3 Comparative assessment

In this section, we evaluate the effectiveness of our proposed
reconstruction method, ESTD-Net, through a comparative
analysis with both traditional and deep learning-based ap-
proaches. For traditional reconstruction methods, we selected
a technique based on spatial information to minimize man-
ual intervention. Specifically, we employed inverse distance-
weighted interpolation(IDW) (Kilibarda et al., 2014), a sim-
ple yet effective spatial data interpolation method.

For deep learning-based reconstruction, we utilized Par-
tial Convolutions combined with the U-Net architecture (Liu
et al., 2018), which is well-suited for handling irregularly
shaped missing regions in data recovery. Previous studies
have demonstrated that U-Net with partial convolutions out-
performs alternative methods such as PatchMatch (Barnes
et al., 2009), convolutional U-Net architectures with varying
null-value initializations, and extended frameworks like Con-
tent Encoders (Iizuka et al., 2017), which incorporate both
global and local discriminators along with Poisson blend-
ing as a post-processing step. Additionally, Yu et al. (2018)
proposed replacing post-processing with a refinement net-
work that utilizes context attention layers. Despite these al-
ternatives, U-Net with partial convolutions remains the pre-
ferred choice due to its superior ability to handle irregular
gaps, making it particularly effective for reconstruction tasks.
In addition, we also included Palette (Saharia et al., 2022)
(an advanced diffusion-based restoration model) and MAT
(Li et al., 2022) (a model that focuses on reconstruction of
masked areas) in the experimental comparison. The detailed
training configurations of these deep learning-based models
are summarized in Table 1.

The quantitative evaluation results are summarized in Ta-
ble 2. From the results, we can find that our method can
obtain more accurate results. To further assess the perfor-
mance of our method, we conducted a qualitative analysis
by visually comparing the reconstruction results of ESTD-
Net with those of other reconstruction approaches. As il-
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Table 1. Training configurations of baseline models used for comparative experiments. All models were retrained from scratch on our dataset
under identical data splits and masking configurations as ESTD-Net.

Model Optimizer Learning Rate Batch Size Epochs

MAT (Li et al., 2022) Adam (β1 = 0, β2 = 0.99) 1× 10−3 16 300
Palette (Saharia et al., 2022) AdamW (weight decay = 0) 5× 10−5 16 300
PConv U-Net (Liu et al., 2018) Adam (default β1 = 0.9, β2 = 0.999) initial 2× 10−4; fine-tune 1× 10−4 16 200

Table 2. Comparison of different methods.

Method MAE↓ RMSE↓ PSNR↑ SSIM↑

IDW 1.1040 2.9320 33.8333 0.9136
Pconv U-Net 0.0771 0.3223 53.4528 0.9974
Palette 0.1669 0.5558 49.1252 0.9953
MAT 0.0619 0.2717 54.4745 0.9977
ESTD-Net (ours) 0.0522 0.2000 56.9911 0.9985

lustrated in Fig. 6, ESTD-Net demonstrates superior recon-
struction capabilities, particularly in preserving the structural
continuity of missing regions. Specifically, our method ef-
fectively smooths the boundaries of missing areas, mitigates
artifacts commonly observed in conventional interpolation
methods, and accurately reconstructs the internal spatial pat-
terns within these regions. Furthermore, ESTD-Net exhibits
a strong capacity to capture zonal gradient variations in Sea
Surface Temperature (SST), ensuring consistency with large-
scale oceanic temperature structures.

To further highlight the advantages of our method, we
compute the absolute differences between the reconstructed
results and the true values for each approach. To amplify
these differences, we apply the logarithm to the absolute er-
ror plus one, where the addition of one helps avoid nega-
tive infinity values resulting from zero errors. The difference
maps, presented in Fig. 7, provide a detailed visualization of
the reconstruction errors. Compared to traditional and deep
learning-based methods, ESTD-Net significantly reduces er-
rors along the edges of missing regions, better preserves tem-
perature gradients, and maintains physically plausible spatial
patterns. These improvements underscore the model’s ability
to leverage both spatial and temporal correlations for more
accurate and reliable SST reconstructions.

4.4 Ablation and analysis

In this section, we present a detailed analysis of its per-
formance metrics, highlighting the model’s superior results
and elucidating the contributions of each key component.
To systematically evaluate the impact of different loss func-
tion components on reconstruction performance, we con-
ducted an ablation study focusing on the Weighted Recon-
struction Loss and Gradient Consistency Regularization. In
satellite-based temperature retrieval, missing data typically

Table 3. Ablation study on the effect of loss functions.

MAE↓ RMSE↓ PSNR↑ SSIM↑

Ladv+LP 0.0669 0.2658 55.1125 0.9979
Ladv+LP+Lgp 0.0641 0.2473 55.4460 0.9980
Ladv+LP+Lrec 0.0553 0.2177 56.4303 0.9984
Ladv+LP+Lrec+Lgp 0.0522 0.2000 56.9911 0.9985

arise from factors such as cloud contamination and orbital
gaps. In our approach, we employ various weighting schemes
for the reconstruction loss to emphasize the restoration of
these missing regions. Specifically, we compare a baseline
model that incorporates adversarial loss and perceptual loss
against models that introduce a weighting ratio for masked
(missing) to unmasked (observed) areas in the reconstruction
loss. This weighting ensures a stronger emphasis on missing
regions, which is crucial for effectively filling large gaps in
Earth Surface Temperature data.

Additionally, we examine the effect of incorporating Gra-
dient Consistency Regularization, which enforces smooth
transitions and structural coherence in the reconstructed re-
gions. The results, summarized in Table 3, demonstrate
the effectiveness of the proposed loss terms. Compared to
the baseline model, which achieves a Mean Absolute Error
(MAE) of 0.0669, incorporating the Weighted Reconstruc-
tion Loss significantly reduces MAE to 0.0553, represent-
ing a 17.3 % reduction. Similarly, the Root Mean Square
Error (RMSE) decreases from 0.2658 to 0.2177, and Peak
Signal-to-Noise Ratio (PSNR) improves from 55.1125 to
56.4303 dB, indicating enhanced reconstruction accuracy.
The inclusion of Gradient Consistency Regularization fur-
ther refines these results: the full model achieves an MAE
of 0.0522 and an RMSE of 0.2000, corresponding to over-
all reductions of 22.0 % and 24.7 %, respectively, relative
to the baseline model. These improvements suggest that our
approach not only minimizes pixel-level errors but also en-
hances the physical consistency of Sea Surface Temperature
(SST) patterns by better preserving zonal temperature gradi-
ents and reducing discontinuities at the boundaries of missing
regions.

As shown in Table 3, the combination of adversarial loss,
perceptual loss, and weighted reconstruction loss achieves
the best performance among the various configurations. This
combination results in the lowest MAE and RMSE, while
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Figure 6. Reconstruction Results of Surface Temperature. From left to right, the columns display the initial incomplete data, the results of
inverse distance weighting (IDW) interpolation, the results from partial convolution U-Net (Pconv U-Net), the results from Palette, the results
from MAT,the results from our proposed method, and the ground truth. All panels utilize identical color scaling to facilitate direct visual
comparison.

Figure 7. Comparison of Different Methods with Ground Truth. From left to right, the columns display the difference of the reconstructed
data of IDW, Pconv_U-net, Palette, MAT and our method with those of the ground truth.

also yielding the highest PSNR and SSIM. These results
underscore the significance of the weighted reconstruction
loss in guiding the model to accurately reconstruct miss-
ing regions, thereby significantly enhancing overall perfor-
mance. The introduction of Gradient Consistency Regular-
ization, which minimizes gradient discrepancies between the
ground truth and reconstructed data, further improves per-
ceptual quality, as evidenced by the increased PSNR and
SSIM scores. This regularization term helps maintain smooth
transitions and structural integrity within the reconstructed
data. Notably, its effect is most pronounced when combined
with other loss components, highlighting the synergistic ben-
efits of this multi-loss framework.

Overall, the integration of adversarial loss, perceptual loss,
weighted reconstruction loss, and Gradient Consistency Reg-
ularization results in a well-balanced performance that en-
hances both pixel-level accuracy and perceptual quality in
the reconstructed EST data. These findings demonstrate the
robustness of our model in handling large-scale missing data
while effectively capturing complex spatial and temporal de-
pendencies within the EST data.

The experimental results underscore the critical roles of
both weighted reconstruction loss and gradient consistency
regularization in enhancing performance in the surface tem-
perature image inpainting task. The weighted reconstruction
loss, by prioritizing errors in the unmasked regions, is essen-
tial for improving the overall quality of the reconstruction.
Meanwhile, gradient consistency regularization enhances the
structural coherence of the generated images, thereby im-
proving both the overall quality and structural consistency
of the inpainting results.

Table 4. Comparison of model variant.

Model Variant MAE↓ RMSE↓ PSNR↑ SSIM↑

w/o Contextual Attention 0.0717 0.2770 54.2463 0.9975
w/o Stage-II Conv-U-Net 0.1014 0.3902 51.2518 0.9953
Full ESTD-Net 0.0522 0.2000 56.9911 0.9985

To verify the effects of the dedicated mask-based con-
text attention module and the Stage II Conv-U-Net, we con-
ducted relevant ablation experiments. The specific results are
shown in Table 4. Removing the context attention would in-
crease the mean absolute error from 0.0522 to 0.0717, and
reduce the peak signal-to-noise ratio from 56.9911 decibels
to 54.2463 decibels. Omitting the second-stage convolutional
U-network would further degrade the performance (mean ab-
solute error 0.1014, peak signal-to-noise ratio 51.2518 deci-
bels). These verification experiments confirmed the crucial
contributions of these two modules to the reconstruction
quality of the ESTD network.

4.4.1 Gradient setting comparison

To evaluate the effectiveness of gradient consistency regu-
larization in preserving physically meaningful structures, we
conducted a focused assessment over the eastern coastline
of North America and the adjacent Atlantic Ocean, a region
characterized by sharp land-sea thermal contrasts. This area
spans latitudes from 25 to 60° N and longitudes from 279
to 300° E, exhibiting pronounced temperature gradients at
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Figure 8. Comparison of Gradient Settings on different missing ratios. From left to right, the columns display the initial data, the reconstruc-
tion result without gradient settings, the reconstruction result with gradient settings applied, and the ground truth. The white regions in the
original data indicate missing values.

coastal boundaries, thereby making it an ideal testbed for
evaluating boundary reconstruction performance.

As illustrated in Fig. 8, the inclusion of the gradient consis-
tency regularization term significantly enhances the model’s
ability to capture fine-scale temperature variations. The white
regions in the original data indicate missing values. Specif-
ically, this term promotes the alignment of gradient struc-
tures between the generated output and the ground truth, re-
sulting in sharper transitions and improved preservation of
boundary features. In comparison to the reconstruction re-
sult without this setting (Column 2), the model incorporating
gradient consistency regularization (Column 3) demonstrates
clearer and more continuous land-sea edges, more accurately
reflecting the ground truth (Column 4). This enhancement is
particularly evident in the recovery of temperature fronts and
the retention of cross-boundary gradients, which are often
smoothed out or distorted in models lacking explicit gradient
guidance. Such improvements illustrate that this regulariza-
tion not only enhances the visual coherence of the restored
data but also contributes to the physical plausibility of the re-
constructed temperature field, an essential aspect for down-
stream geoscientific analyses where maintaining spatial gra-
dient integrity is critical.

Table 5. Sensitivity analysis of the gradient penalty coefficient α.

α Value MAE↓ RMSE↓ PSNR↑ SSIM↑

0.005 0.0524 0.2021 56.9023 0.9985
0.001 0.0522 0.2000 56.9911 0.9985
0.0005 0.0533 0.2060 56.7626 0.9985

4.4.2 Hyperparameter analysis

Regarding the selection of the hyperparameters α in the gra-
dient penalty term and β in the gradient consistency regular-
ization term, we conducted sensitivity experiments by choos-
ing different values for these hyperparameters. The results
are shown in Tables 5 and 6. The analysis results indicate
that the performance is relatively stable within a wide range
of values, but our chosen hyperparameters yield the best re-
sults.

4.4.3 The role of the Second Stage

The interpolated data generated in the first stage is produced
by applying adaptive weights to valid pixels within local win-
dows. While this method can restore the overall temperature
field, it often results in imprecise outputs in regions with
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Figure 9. Reconstructed data of Stage Two steps. (a) Initial data. (b) Ground truth. (c) Result of the first stage. (d) Result of the second stage.
(e) Difference Between the reconstructed data of the first stage and the ground truth. (f) Difference Between the reconstructed data of the
second stage and the ground truth.

Figure 10. Reconstruction Results of Surface Temperature. From left to right, the columns display the initial incomplete data, the results
from Palette, the results from PConv U-Net, the results of MAT, the results from our proposed method, and the ground truth.

complex spatial variations, leading to localized artifacts and
inconsistent transitions. To address these issues, we intro-
duce a convolutional U-Net in the second stage to autoregres-
sively refine the initial results. This refinement process aims
to enhance local continuity and correct structural inconsis-
tencies.

As illustrated in Fig. 9, a direct visual comparison of the
global outputs from the first and second stages (Fig. 9c and
d) reveals only subtle differences. However, the absolute dif-
ference maps relative to the ground truth (Fig. 9e and f)
more clearly highlight the improvements achieved by the sec-
ond stage. In Fig. 9e, the absolute error between the first-
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Figure 11. Comparison of Different Methods with Ground Truth. From left to right, the columns display the difference of the reconstructed
data of Palette, PConv U-Net, MAT and our method with those of the ground truth.

Figure 12. Temporal stability and multi-model comparison of average surface temperature reconstruction in the selected eastern Pacific
region. (a) Global spatial distribution of Earth Surface Temperature, with the chosen region (282–312° E, 10° N–10° S) outlined in black.
(b) Missing data rates over the entire year of 2023 at 06:00 and 18:00 UTC in the selected region. (c–d) Comparison of regional average
temperatures across different models – Palette (Saharia et al., 2022), PConv U-Net (Liu et al., 2018), MAT (Li et al., 2022), our proposed
ESTD-Net, valid (non-missing) data, and ground truth – at 06:00 and 18:00 UTC, respectively. The blue, red, purple, brown, orange, and
green lines correspond to the average temperatures of the ground truth, Palette, PConv U-Net, MAT, our proposed method, and the valid
(non-missing) data before reconstruction, respectively.

Table 6. Sensitivity analysis of the gradient consistency coefficient
β.

β Value MAE↓ RMSE↓ PSNR↑ SSIM↑

0.05 0.0585 0.2336 56.4033 0.9984
0.01 0.0522 0.2000 56.9911 0.9985
0.005 0.0559 0.2143 56.4088 0.9984

stage output and the ground truth displays numerous scat-
tered high-magnitude differences, reflecting the limitations
of local window-based interpolation in accurately capturing
detailed spatial structures.

In contrast, the absolute difference shown in Fig. 9f is
notably smoother and less concentrated, indicating that the
second-stage U-Net effectively reduces local anomalies and
refines spatial transitions. This improvement is particularly
evident in areas characterized by sharp temperature gradi-
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ents or complex patterns, where the second-stage refine-
ment yields results that align more closely with the physi-
cal characteristics of the temperature field. These enhance-
ments demonstrate that the convolutional U-Net plays a cru-
cial role in improving reconstruction quality by minimizing
abrupt local deviations and producing smoother, more phys-
ically plausible outputs.

4.4.4 Comparison of Edge-Case Temperature
Variations

To verify the data recovery performance of our model in re-
gions with extreme temperature variations, we conducted a
set of experiments. These regions were selected manually
and randomly masked in the temperature map. These re-
gions were chosen based on obvious high spatial gradients
(for example, the boundary areas between land and sea). We
compared the performance of ESTD-Net with three power-
ful baseline models (Palette, PConv U-Net, and MAT), and
the results are shown in Fig. 10. Additionally, we also com-
pared the absolute error graphs of the reconstructed outputs
with the true values, and the results are shown in Fig. 11. Our
model significantly outperforms the baseline models in terms
of continuity and accuracy in high-gradient regions. More-
over, the absolute error graphs indicate that ESTD-Net can
always generate lower reconstruction errors in these chal-
lenging situations, demonstrating its robustness and gener-
alization ability, even under extreme spatial variation condi-
tions.

4.4.5 Temporal Stability Verification of the
Reconstruction Method

To verify the temporal stability of our proposed reconstruc-
tion method over an extended period, we selected a represen-
tative region in the eastern Pacific, spanning longitudes 282
to 312° E and latitudes 10° N to 10° S. This area was cho-
sen for its meteorological significance and diverse surface
types, including oceanic zones, coastal regions, and land ar-
eas influenced by large-scale climatic phenomena. As illus-
trated in Fig. 12a, the selected region is clearly marked on a
global temperature map, highlighting its spatial context. Fig-
ure 12b illustrates the temporal variation in missing data rates
at 06:00 and 18:00 UTC across 2023.

Given the strong El Niño event observed in 2023, which
contributed to notable temperature anomalies – this region
serves as a valuable case for assessing the consistency and ro-
bustness of different reconstruction methods throughout the
year. We compared our method against three representative
deep learning models – Palette (Saharia et al., 2022), PConv
U-Net (Liu et al., 2018), and MAT (Li et al., 2022) – along
with the average of valid (non-missing) data and the ground
truth. Figure 12c and d present the average regional tempera-
tures reconstructed by each model for 06:00 and 18:00 UTC,
respectively. While all methods recover the overall seasonal

Table 7. Training time and model size comparison between ESTD-
Net and ViT-baseline.

Method Training Time Parameters

ViT-baseline 5 d01 h 102 M
ESTD-Net (ours) 4 d14 h 95.8 M

patterns, our model consistently aligns most closely with the
ground-truth temperature. These results indicates that our
method can effectively compensate for missing observations
while preserving temporal consistency over extended periods
and under varying conditions of missing data.

4.4.6 Training Time Comparison

To evaluate the training efficiency of the proposed ESTD-
Net, a comparison was conducted against a conventional
Transformer-based model (ViT-baseline) under identical ex-
perimental settings, including dataset, GPU type, and opti-
mizer configuration. The results, summarized in Table 7, in-
dicate that ESTD-Net achieves faster training convergence
while maintaining lower model complexity, demonstrating
its computational efficiency relative to traditional Trans-
former architectures.

5 Conclusions

This paper presents ESTD-Net, a novel network architecture
specifically designed for surface temperature data inpaint-
ing. Stage I employs an enhanced multi-head context atten-
tion mechanism within modified transformer blocks to ef-
fectively capture long-range pixel dependencies and improve
boundary-aware reconstruction. Stage II utilizes a convolu-
tional U-Net in an autoregressive manner to refine the coarse
output from Stage I, enhancing local spatial continuity and
smoothing boundaries, which is essential for producing co-
herent temperature fields. To further improve restoration fi-
delity, we integrate weighted reconstruction loss and gradient
consistency regularization, ensuring that the inpainted results
align with ground truth in both structural consistency and
pixel-level accuracy.

While the results achieved using simulated data from the
ERA5 reanalysis dataset demonstrate promising outcomes,
real-world data introduces additional complexities. In practi-
cal applications, satellite observations are often incomplete,
with certain regions consistently missing data due to factors
such as cloud cover or sensor limitations. This inherent chal-
lenge results in a scarcity of fully complete surface tempera-
ture data. To address this issue, a practical approach involves
extracting data from regions where observations are intact
and artificially introducing gaps to simulate missing data
for testing and evaluation purposes. This simulated dataset
serves as a proxy for real-world conditions, enabling us to as-
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sess the model’s robustness and performance within a more
practical context.

By employing this method, we can further validate and
fine-tune the reconstruction technique, ensuring its effective-
ness in handling incomplete surface temperature data en-
countered in real-world applications. This approach provides
a viable pathway for bridging the gap between idealized
simulation-based testing and the complexities of real-world
data, ensuring that ESTD-Net remains applicable across a
wide range of environmental and climate research contexts.

Code and data availability. The source codes are available at
https://doi.org/10.5281/zenodo.15273464 (Zhang et al., 2025a).
All data used in this study are publicly available. The
ERA5 reanalysis data used are also available via Zenodo:
https://doi.org/10.5281/zenodo.15734414 (Zhang et al., 2025b).
The Microwave Radiation Imager (MWRI) data aboard the
FengYun-3D (FY-3D) satellite used in this study are archived at
Zenodo: https://doi.org/10.5281/zenodo.15734212 (Zhang et al.,
2025c).
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