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Abstract. Spin-up is the period after initialization when a
model transitions away from its dependence on initial condi-
tions toward a dynamic equilibrium between driving bound-
ary conditions and its own internal dynamics. Regional cli-
mate models (RCMs) are often used to simulate conditions
over several decades to inform local adaptation and resilience
activities. The spin-up period represents added cost to al-
ready resource-intensive simulations, and it is often infea-
sible to use a spin-up period that produces complete model
equilibrium. Therefore, a pragmatic compromise is desired
to minimize the effects of spin-up. Here, two overlapping dy-
namically downscaled simulations (31 year and 11 year inte-
grations) using the Weather Research and Forecasting model
over the contiguous US (CONUS) are used to explore con-
vergence associated with model spin-up. The shorter simu-
lation is initialized 20 years after initialization of the longer
(reference) run, and the runs are analysed over the period
covered by both simulations, giving the reference simulation
a 20 year period to attain spin-up prior to comparison. After
initialization, the shorter run features cooler surface and near-
surface temperatures and greater soil moisture compared to
the reference simulation. Differences between the runs de-
crease in magnitude over the first 3 months as autumn tran-
sitions to winter; however, these differences re-emerge and
reach a secondary peak during the proceeding spring and
summer. During this warm season, evaporation and accom-
panying evaporative cooling increase and temperature differ-
ences between the simulations re-emerge. These results sup-
port using at least one year of spin-up time in RCM appli-
cations to account for the seasonality of spin-up behaviour.
Results from some regions of the CONUS indicate that spin-

up durations of 1-4 years are needed to exclude spurious be-
havior in top-layer soil moisture, which exhibits prolonged
spin-up compared with other near-surface variables exam-
ined here.

1 Introduction

Regional climate modelling, or dynamical downscaling, ap-
plications provide data to inform adaptation and resiliency
at local and community scales, including extremes in near-
surface temperature or precipitation. One benefit of using dy-
namical downscaling (as opposed to statistical downscaling)
is that a dynamically consistent suite of three-dimensional
(3D) fields is created at sufficient temporal frequency to drive
other environmental models, such as air quality or hydrology
models. Generating credible dynamical downscaling outputs
can present several challenges to serve a variety of applica-
tions while remaining computationally manageable.

In general, a spin-up period follows model initialization
to allow the model solution to transition from being strongly
influenced by the initial condition to a state of dynamic equi-
librium between the model physics and boundary forcing
from the driving dataset (Giorgi and Mearns, 1999; Denis et
al., 2002). Therefore, the spin-up is a period over which the
model initial conditions are “forgotten” as information from
the lateral boundaries and the model’s internal physics gener-
ate this equilibrium. Long-running simulations (such as those
generated by dynamical downscaling) with the same driving
conditions should converge towards more similar results as
the influence of their initial conditions lessens over time.
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In dynamical downscaling, spin-up time can be influ-
enced by several factors, such as the size of the model do-
main (Leduc and Laprise, 2009), physics configuration (e.g.,
Jankov et al., 2007; Kleczek et al., 2014; Tewari et al., 2022),
or including erroneous or poorly resolved features in initial
conditions (e.g., Cosgrove et al., 2003; Jerez et al., 2020).
Spin-up periods may also be chosen to ensure the initializa-
tion captures antecedent conditions or steering flow within
a case study (e.g., Denis et al., 2002; Liu et al., 2023). Se-
lecting a spin-up period can be critical to minimize the ef-
fects of spurious behaviour within regional climate model
(RCM) simulations that are run “in parallel” (utilizing mul-
tiple initializations to break the simulated period into several
segments), resulting in multiple spin-up periods throughout
the simulation (e.g., Lavin-Gullon et al., 2023; Rahimi et al.,
2024).

Jerez et al. (2020) examined spin-up duration and the in-
fluence of seasonality using the Weather Research and Fore-
casting (WRF) model as an RCM for a European domain
with 50 km grid spacing, with driving conditions provided by
a global climate model (GCM) from the 5th Coupled Model
Intercomparison Project (CMIP5) (Taylor et al., 2012). Sim-
ulations of various lengths were compared to a reference
simulation that was initialized 2 years prior and both at-
mospheric and soil fields were included in the analysis. Al-
though Jerez et al. concluded that 2 m temperature and pre-
cipitation were spun up after one week, a 6 month spin-up
period was recommended as a general guideline for RCM ap-
plications when assessing optimal model performance across
both atmospheric and soil conditions. They note that longer
spin-up periods can be required when key physical mech-
anisms considered in the application are dependent on soil
conditions, as longer times are needed for soil conditions to
converge towards the reference simulation. However, Jerez et
al. concluded that even one year — the longest period consid-
ered in the study — was insufficient for deep soil moisture to
approach equilibrium.

Cosgrove et al. (2003) conducted a spin-up study focused
on soil conditions within the North American Land Data As-
similation System (NLDAS, spatial resolution of 0.125°) uti-
lizing 4 different land surface models (LSMs) across various
experiments, which were driven by external meteorological
forcing. They found multi-year spin-up times were needed
for soil conditions in each LSM, including the Noah LSM.
Cosgrove et al. (2003) performed recursive experiments with
the same driving data used over 11 annual cycles to give sev-
eral years for the LSM to approach equilibrium with the driv-
ing conditions. They found that the soil fields could require
more than 10 years to achieve a “fine-scale equilibrium” over
their domain covering the contiguous US (CONUS). For that
study, the timing for this equilibrium was assessed by com-
paring the same month in each of the annual cycles and equi-
librium was achieved when the percentage change compared
to the last annual cycle was less than 0.01 %.
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Cosgrove et al. (2003) highlighted the influence of the
physical processes in the LSM that are utilized to “for-
get” erroneous conditions in the initial state to achieve spin-
up of land-surface conditions. They compared a reanalysis-
driven LSM simulation to idealized experimental runs where
soil moisture was represented by either idealized “dry” and
“wet” initial conditions. The wet run converged toward the
reanalysis-driven simulation relatively quickly, with the con-
trol and wet simulations achieving a “practical” equilibrium
(percentage change < 1%) at ~ 1-2 years, respectively.
Meanwhile, the dry run took an additional 3—4 years (in com-
parison to the control simulation) to achieve this metric of
spin-up. Cosgrove et al. (2003) concluded that the wet simu-
lation could immediately spur evaporation to reduce high sat-
uration deficits, but the drier run required sufficient precipita-
tion to moisten the soil and converge toward the reference so-
lution. Therefore, longer spin-up times can be expected when
the model relies on intermittent dynamical processes (such as
precipitation) to reduce the influence of its initial conditions
over time.

Here, spin-up time is examined using simulations from
the EPA Dynamically Downscaled Ensemble (EDDE) Ver-
sion 1 dataset (Nolte et al., 2021; EPA, 2024, 2025; Spero
et al., 2025). EDDE contains dynamically downscaled pro-
jections of various CMIP5 GCMs using the WRF model in
the historical past and under various future scenarios (van
Vuuren et al., 2011). While early work testing an experi-
mental set-up for EDDE used spin-up periods of 1-2 months
(Otte et al., 2012; Bowden et al., 2012), the EDDE Version
1 methodology employed a 3 month spin-up period (Nolte
et al., 2018, 2021). These spin-up periods are comparable
to those used by other dynamical downscaling applications.
However, this aspect of the methodologies employed for re-
gional climate and dynamically downscaled simulations vary
widely. Representative examples range from the 1 month
spin-up periods employed within the Western US Dynami-
cally Downscaled Dataset (WUS-D3) dataset (Rahimi et al.,
2024) to the 1 year of spin-up recommended by guidance
within the COordinated Regional climate Downscaling EX-
periment (CORDEX, 2021). Choices in spin-up among these
applications can be determined based on which physical pro-
cesses and affected outputs are considered most important
for their respective applications, the physics of the underly-
ing RCM being used, and compromises imposed by limited
computational resources that constrain the total length of a
simulation.

Here, to assess the effects of spin-up behaviour using the
EDDE data, two EDDE historical simulations that are ini-
tialized 20 years apart are analysed over an 11 year overlap-
ping period. This framework facilitates analysis of the spin-
up of atmospheric variables and soil conditions by compar-
ison against a reference simulation that has two decades to
spin up. This analysis advances upon prior studies that used
sub-decadal timescales to examine spin-up of a full 3D RCM.
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2 Methods

Two RCM simulations are driven by the Community Earth
System Model (CESM, archived resolution of 0.9° x 1.25°)
(Gent et al., 2011) for overlapping historical periods using
version 3.4.1 of the WRF model (Skamarock and Klemp,
2008) on a 36 km domain (Fig. 1). The simulations used 34
terrain-following layers extending to a model top at 50 hPa.
Both runs are initialized at 00:00 UTC on 1 October, with
simulation “I74” initialized in 1974 and “I94” initialized in
1994. Both 174 and 194 are continuous integrations with only
a single initialization. Both runs end at 00:00 UTC on 1 Jan-
uary 2006, such that I74 covers a 31 year and 3 month period,
while 194 covers the last 11 years and 3 months of 174. 194
has been used to examine the impacts of climate change on
air quality (Fann et al., 2015; Nolte et al., 2018, 2021) and
phenological indicators (Mallard et al., 2023). As discussed
in Spero et al. (2025; their Sect. 2), a more prolonged histori-
cal period was later produced with a matching model config-
uration. This simulation, 174, was used to simulate extreme
rainfall events to create rainfall intensity-duration-frequency
curves (Jalowska et al., 2021).

Both WREF runs use matching physics configurations in-
cluding the Kain-Fritsch scheme to parameterize convection
(Kain, 2004) with radiative feedback following Herwehe et
al. (2014), WSM6 microphysics (Hong and Lim, 2006), the
Yonsei University planetary boundary layer (PBL) scheme
(Hong et al., 2006), and the Rapid Radiative Transfer Model
for global models (Tacono et al., 2008) for longwave and
shortwave radiation. Spectral nudging (Miguez-Macho et al.,
2004) is applied to geopotential heights, horizontal wind
components, and temperature following Otte et al. (2012;
their Table 1).

Although spectral nudging may influence spin-up be-
haviour (Gémez and Miguez-Macho, 2017), nudging is ap-
plied here only to large-scale atmospheric features above the
PBL and not to specific humidity. Near-surface vapor pres-
sure deficit is allowed to evolve without direct influence from
spectral nudging. Gémez and Miguez-Macho (2017) demon-
strated the influence of nudging on spin-up time and con-
cluded that the simulation with spectral nudging (similarly,
applied above the PBL) had a faster spin-up time (at ~ 36—
48 hours) relative to a simulation with no nudging applied
(at 96 h). Meanwhile, a grid nudged simulation was found to
reach spin-up the fastest of all runs. The authors concluded
that this most constrained simulation (with nudging applied
across the entire energy spectra) allowed the grid nudged
simulation to reach a balance between the nudging influence
and its own internal dynamics relatively quickly; meanwhile,
the simulation without nudging had the least constraint and
the longest spin-up time. Therefore, while nudging has been
found to effect spin-up, these prior results suggest its influ-
ence is found at temporal scales of hours to a few days and
not at the longer timescales more typical of spin-up in RCM
applications.
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The Noah LSM (Chen and Dudhia, 2001) and the Re-
vised MM5 Monin-Obukhov surface scheme (Jimenez et al.,
2012) are used to simulate soil and surface processes. The
Noah LSM has 4 soil layers (0-10, 10-40, 40-100, and 100-
200 cm, respectively, from top to bottom), and gravitational
flow is allowed out of the bottom layer. Monthly average soil
temperature and moisture from CESM provide initial soil
conditions for WRF. The 24-category US Geological Sur-
vey (USGS) land use dataset provides landuse information
(Loveland et al., 2000), and lake surface temperatures are in-
corporated from the CESM Community Land Model as de-
scribed in Spero et al. (2016).

3 Results

174 and 194 are compared using several atmospheric and soil
fields during the overlap in their simulation periods. In this
analysis, 174 — which was initialized 20 years prior to the
start of 194 — serves as the reference simulation. It is assumed
that the atmospheric and soil fields in 174 are in equilibrium
prior to the initialization of 194. The analysis period begins
at 00:00 UTC 1 October 1994 (the initialization time for 194)
and ends at 00:00 UTC 1 January 2006.

3.1 2m Temperature

At initialization in October 1994, the CONUS-wide average
2 m temperature from 194 is ~ 0.4 K cooler than 174 (Fig. 2a
and b). Although the averaged difference between the runs
diminishes rapidly from ~ 0.4 K in magnitude to <0.1K
in the first 3 months after initialization, it diverges the fol-
lowing spring and forms a secondary peak in magnitude of
~ —0.15 K during the summer of 1995 (Fig. 2b). Seasonally
averaged differences in 2 m temperature are shown for the
first winter (December 1994—February 1995) and first sum-
mer (June—August 1995) of 194, compared with 174 (Fig. 2¢
and d, respectively). During the first winter, 194 is notably
cooler than 174 in the South (specifically, the states of Texas,
Louisiana, Mississippi, and Arkansas; which are located in
the southeastern portion of the South NCEI region, Fig. 1).
By the following summer, 194 has cooler temperatures than
174 across portions of the South, Ohio Valley, Upper Mid-
west, and Northern Rockies and Plains regions (Fig. 2d),
while CONUS-averaged differences reaching a secondary
low of ~—0.15K (Fig. 2b). Although a seasonal cycle of
convergence followed by a re-emergence of temperature dif-
ferences occurs during this first year of the timeseries, from
the beginning of 1996 and onward, the monthly and spatially
averaged 2 m temperatures differ by less than £0.05 K over
the rest of the decadal period.

3.2 Soil Temperature and Moisture

A seasonal cycle is also apparent in top-layer (0—10 cm) soil
temperatures (Fig. 3a and b). Over the CONUS, soil tem-
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Figure 1. The 36 km WRF domain used for simulations 174 and 194, with the nine National Centers for Environmental Information (NCEI)

regions shown within the CONUS.

perature shortly after initialization is colder in 194 than 174
for both top-layer (Fig. 3a and b) and lower-layer soil tem-
peratures (not shown). The magnitude of the monthly and
spatially averaged differences in top-layer soil temperature
exceeds those of 2 m temperatures over the CONUS but fol-
lows a similar pattern of convergence (decreasing in magni-
tude) over the initial transitional season, followed by a diver-
gence during the subsequent spring and summer where a sec-
ondary peak in the magnitude of difference between the two
simulations occurs. During summer 1995, differences in soil
temperature are largest in areas of the central CONUS, corre-
sponding to differences in 2 m temperature (Figs. 2d and 3d).

While 1994-1995 wintertime differences in soil temper-
ature are relatively small over the CONUS (approximately
+1K), the differences are accentuated in the Canadian
Prairies (Fig. 3c). Portions of the model domain in Canada
exhibit substantially warmer temperatures within top and
deeper layer (not shown) soil temperatures during this pe-
riod. Land-surface processes in frozen soils and snow cover
may impact spin-up in those areas.

Alongside cooler temperatures at the surface and near-
surface in the 194 initialization relative to 174, generally soil
moisture values are also wetter in the top layer (Fig. 4) and
deeper layers (Fig. 5). A timeseries of monthly-average top-
layer soil moisture (Fig. 4a and b) shows that most of the con-
vergence between the two simulations occurs within the first
15 months as soil moisture generally decreases in 194 relative
to I74. Over the first winter following initialization, wet and
dry biases (in 194 compared against 174) are present across
the CONUS but greater soil moisture is found throughout
much of the central US (Fig. 4c). Similar to surface and near-
surface temperatures, CONUS-average top-layer soil mois-
ture exhibits a seasonally influenced cycle of rapid conver-

Geosci. Model Dev., 19, 579-594, 2026

gence over the first few months followed by divergence and
a secondary peak in summer 1995 when wet biases are in-
creased throughout the central CONUS (Fig. 4b and d).

Differences in mid- and bottom-layer soil moisture be-
tween 174 and 194 persist longer (Fig. 5a and b) than dif-
ferences in 2 m temperature and top-layer soil temperature
and moisture. Prior studies have found that deep soil mois-
ture requires longer spin-up durations than other LSM vari-
ables, spanning years to decadal periods (e.g., Cosgrove et
al., 2003; Jerez et al., 2020). Also, unlike the top-layer soil
temperature and moisture, a seasonal cycle is not appar-
ent over the 1994-1995 period in lower-layer soil moisture
(Fig. 5). Instead, higher mid- and deep-soil moisture over the
CONUS in 194 decreases precipitously towards 174 through-
out 1995 and finally converges in the summer of 1996, with
minimal CONUS-averaged differences over the rest of the
simulation (Fig. 5a and b).

3.3 Surface Heat Fluxes and Precipitation

The 194 simulation has a soil state that is wet and cool relative
to 174 throughout areas of the central CONUS (Figs. 3 and 4).
In WREF, the LSM interacts with the overlying atmosphere
via turbulent fluxes of heat and moisture. In the months fol-
lowing initialization, latent heat flux in 194 (Fig. 6a and b) is
higher than in 174, while sensible heat flux (Fig. 7a and b)
is reduced relative to I74. This is physically consistent with
a top-layer soil state with greater moisture and cooler tem-
peratures. The timeseries of monthly and spatially averaged
surface fluxes in 194 converge towards 174 over the first
~ 3 months of simulation time, with differences in fluxes
most apparent only in the South during winter 1994 (Fig. 6b
and c). During the following summer, a secondary peak in
increased latent heat flux in 194 occurs in the timeseries, as
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Figure 2. A timeseries beginning in January 1994 of monthly and spatially averaged 2 m temperature [K] over the CONUS for 174 (blue)
and 194 (red) (panel a) and the difference between those timeseries beginning in October 1994 (194 minus 174; panel b). The difference (194
minus 174) in seasonally averaged 2 m temperature for the first winter (December 1994-February 1995; panel ¢) and summer (June—August

1995; panel d) following initialization.

evaporation increases within 194 relative to 174 across the
central CONUS, extending from the South through the Ohio
Valley, Upper Midwest, and Northern Rockies and Plains
(Fig. 6d). These areas of the central CONUS that exhibit
the largest differences in surface and near-surface tempera-
ture and moisture are dominated by various forest, cropland,
and pasture landuse types, as shown by Mallard et al. (2018;

https://doi.org/10.5194/gmd-19-579-2026

their Fig. 2) in similar 36 km WREF simulations utilizing the
USGS landuse data. Meanwhile, sensible heat flux is lower
in 194 than in 174 over the central CONUS during the first
summer of the simulation over the central CONUS (Fig. 7d),
which is consistent with cooler top-layer soil temperatures in
194 (Fig. 3d).

Geosci. Model Dev., 19, 579-594, 2026
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Figure 3. As in Fig. 2 but for top-level (0-10 cm) soil temperature [K].

The seasonal variations in latent heat flux simulated by
both 194 and 174 are driven by multiple factors. In the Noah
LSM, evapotranspiration within a grid cell is the sum of
evaporation from bare soil, evaporation from a wet canopy,
and transpiration from plants (Chen and Dudhia, 2001). All
three components are directly related to the rate of potential
evaporation, Ep. The Noah LSM also includes inhibiting fac-
tors that can prevent evaporation from occurring at this rate,
such as vegetation wilting and the partitioning of evapora-

Geosci. Model Dev., 19, 579-594, 2026

tion (between bare soil and the canopy) based on the fraction
of green vegetation (e.g., Chen and Dudhia, 2001; Ek et al.,
2003; Chaney et al., 2016). The formulation of £}, within the
Noah LSM is based on the Penman approach implemented
by Mahrt and Ek (1984), where Ej, is proportional to the sat-
uration specific humidity of the overlying atmosphere, which
is a function of near-surface atmospheric temperatures. As
temperatures decrease throughout the winter, saturation va-
por pressure deficits decrease. At the same time, reduced
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Figure 4. As in Fig. 2 but for top-layer (0-10 cm) soil moisture expressed as water fraction by volume m3m3].

leaf area index (LAI) results in less transpiration out of the
canopy, hampering evaporation within the grid cell. During
summer, moisture demand and LAI increase, among other
changes, resulting in the robust seasonal cycle of latent heat
flux simulated by both 194 and 174 (Fig. 6a).

The relatively wet initial soil state in 194 (Figs. 4b and 5b)
results in increased evaporation following initialization, but
differences between average soil moisture within 194 and 174
are suppressed over the first winter (3—5 months into the 194
simulation), when evaporation is suppressed by the seasonal

https://doi.org/10.5194/gmd-19-579-2026

influences. Meanwhile, mid- and lower-layer soil moisture
remain high in 194 relative to 174 (Fig. 5b and c). During the
following summer, the greater soil moisture in all soil lay-
ers, along with seasonally increased saturation deficits in the
overlying atmosphere, supports further increases in evapora-
tion and latent heat flux in the 194 simulation (relative to 174)
over time (Figs. 4d, 5d, and 6d). Evaporative cooling con-
tributes to cooler temperatures in 194 (compared with 174)
over the warm season (Fig. 2d).

Geosci. Model Dev., 19, 579-594, 2026
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SMBOTAVG: 174 vs. 194, CONUS

Monthly Avg Bottom Lev Soil Moisture [m3/m3]

& -
& e
&1 — 74
= — 134
h T . r T rr 1= T° -7 T r rr I r°r T°r 1T —7T -
("= - T - N - N O w
F 3 8 8 8B 8 5 5 B BB B 88z 58 888 2 2 8 8
:-:3:3:3:3:-:3:3:3:3:3:—
] ] a8 & a ] ] ] & @ & &
b) § 3 8§ 3 5 3 § 353 53§ 353552583 5§3§3
=
]
=
§°
E g
=
=
&
)
E =
(=
o
[=]
- r r T 1+ T 171 r r rr 1T r+r 171 .
b . SR = T - T - - S N e S - - I - - - - N = = N == T~ N - N -~ B . S = B 7 |
s o o @ @4 & ;& & o > & o o o 9 o o o 9 9 9
E 3 £ 3 £ 3 £ 3 £ 3 E T £ T £ Z £ TZ £ T £ TZ E T
3 5 2 5 £ 5 &8 5 8 5 858 5 8 5 58 5 £ 5 £ 5 825 8 5
-0.25 0.2 05 LR 005 oQm o 0.05 0.1 015 [ ¥ 025

Figure 5. As in Fig. 2 but for lower-layer soil moisture [m3 m—3] from three layers aggregated over 10-200 cm using a depth-weighted
average. Note that, for brevity, this study aggregates the soil fields shown in Fig. 5 by using weighted average (by depth) soil moisture over

the bottom 3 soil layers.

Monthly precipitation in 194 features minimal differences
compared to the reference simulation over the first few
months following initialization, with differences in CONUS-
averaged precipitation of less than 1 mm per month, followed
by increased precipitation in 194 peaking at ~5mm per
month the following summer as averaged over the CONUS
(Fig. 8a and b). Increased precipitation is generally located

Geosci. Model Dev., 19, 579-594, 2026

though the central and eastern CONUS (Fig. 8d). Some ar-
eas of the Southeast do show a mixed pattern of both pos-
itive and negative precipitation differences in 194, relative
to 174. However, precipitation generally increases over ar-
eas of the CONUS that experience increased latent heat re-
lease and evaporation (Fig. 6d) and increased 2 m specific hu-
midity (not shown). As 174 and 194 feature matching bound-

https://doi.org/10.5194/gmd-19-579-2026
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Figure 6. As in Fig. 2 but for latent heat flux [W m~2].

ary conditions and sea surface temperatures, enhancement of
precipitation from increased moisture in the domain would
be driven by differences in the initial soil state in the lower
boundary condition.

3.4 Quantitative Examination of Spin-up

Here, statistical criteria are used to examine spin-up times
for several variables within each of the NCEI regions and
over the CONUS (Table 1). For each variable, cumulative

https://doi.org/10.5194/gmd-19-579-2026

distribution functions (CDFs) are generated for each grid
cell for daily-averaged fields (or daily accumulated precip-
itation) from the 174 and 194 simulations and then compared
using the Kolmogorov—Smirnov (K-S) test (ks.test in the
stats package of R version 4.3.0) where p-value < 0.05 de-
termines statistical significance. A 1 year window is used to
generate each CDF, beginning on the first day of the simula-
tion, then the 1 year window is incremented day-by-day until
the statistical criteria are met. Here, a 1 year window is used
to assess whether statistical criteria have been met so that the

Geosci. Model Dev., 19, 579-594, 2026
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Figure 7. As in Fig. 2 but for sensible heat flux [W m_2].

potential seasonal re-emergence of differences between 174
and 194 is considered in each comparison. When the criteria
are met, the start date for that 1 year window is considered the
time at which the spin-up period for that grid cell is sufficient.
Within each region (Fig. 1), the regional spin-up time is des-
ignated as the first date when most land grid cells (> 50 %) in
that region have achieved spin-up. This methodology is sim-
ilar to spin-up criteria utilized by Jerez et al. (2020), where
a K-S test was used to determine when fields from an exper-

Geosci. Model Dev., 19, 579-594, 2026

imental simulation were statistically similar to those in the
reference simulation.

This spin-up criterion can assess whether the runs have
converged sufficiently to produce fields with similar distribu-
tions over an annual cycle, regardless of the timing of events.
Because these CDFs include weather events throughout the
year, similarly extreme events may be simulated in 174 and
194 but could be temporally displaced at a given grid point
without affecting the statistical criteria for spin-up. There-
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Figure 8. As in Fig. 2 but for monthly total precipitation [mm)].

fore, the comparison of CDFs provides a useful framework
for examining spin-up behaviour in RCM applications. This
approach may be less appropriate for applications where in-
cipient conditions and the timing of events are more impor-
tant, such as case studies or pseudo global warming exper-
iments. Additionally, spin-up times found here can be ex-
pected to be sensitive to choice of model physics (e.g., Cos-
gove et al., 2003; Jankov et al., 2007; Kleczek et al., 2014;
Tewari et al., 2022).

https://doi.org/10.5194/gmd-19-579-2026

Spin-up for 2 m temperature, precipitation, and top-layer
soil temperature occurs within the first annual window (days
1 through 365) in most regions and over the CONUS (Ta-
ble 1). However, the Northern Rockies and Plains, the Up-
per Midwest, and the South take 0.9-5.7 months to spin-up
top-layer soil temperature. As expected, deeper soil temper-
atures require longer spin-up times, ranging between 3.5—
22.7 months, with about 10.8 months sufficient to spin up
across the CONUS. Top-layer soil moisture spin-up occurs

Geosci. Model Dev., 19, 579-594, 2026
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Table 1. Over all 9 NCEI regions and the CONUS, the number of months until spin-up is achieved (or listing as 1-365 d where spin-up is
achieved during the first annual cycle tested) for variables discussed in the text, according to the criteria described in the text. The number of

grid cells is also listed for each region and the CONUS.

2m Temperature  Precipitation Top-Layer Bottom-Layer Top-Layer
Soil Temperature ~ Soil Temperature  Soil Moisture
CONUS 1-365d 1-365d 1-365 d 10.8 21.1
n =15936
Northwest 1-365d 1-365d 1-365d 4.7 3.8
n =489
West 1-365d 1-365d 1-365d 3.5 11.2
n=>526
N. Rockies and Plains 1-365d 3.6 5.7 22.7 50.6
n =938
Southwest 1-365d 1-365d 1-365d 10.1 15.1
n =841
Upper Midwest 1-365d 5.8 44 16.9 42.5
n=>508
South 1-365d 1-365d 0.9 11.0 18.2
n=1114
Ohio Valley 1-365d 1-365d 1-365d 11.0 32.6
n =608
Southeast 1-365d 1.4 1-365d 10.8 18.5
n=>566
Northeast 1-365d 1-365d 1-365d 4.9 12.0
n =346

by 21.1 months across the CONUS but varies widely re-
gionally, with spin-up occuring as quickly as 3.8 months for
the Northwest but as slowly as 50.6 months in the North-
ern Rockies and Plains region. The regions which experi-
ence the longest spin-up durations for top-layer soil mois-
ture (Northern Rockies and Plains and the Upper Midwest)
also feature the longest periods needed for precipitation to
achieve spin-up, ranging from 3.6-5.8 months. For bottom-
layer soil moisture, the criteria applied here did not result
in a majority of grid cells meeting spin-up criteria over the
CONUS and for several of the NCEI regions. Bottom-layer
soil moisture in the West and Northwest achieve spin-up
at 37.3 and 55.0 months, respectively. Generally, prolonged
spin-up times are needed for areas throughout the central
CONUS.

The Northern Rockies and Plains and Upper Midwest re-
gions have the longest spin-up times for all variables where
regional differences are apparent. These areas of the CONUS
exhibit the largest seasonally-influenced differences in soil
temperature and moisture in 194 relative to 174 (Figs. 3
and 4). Contrastingly, spin-up is generally achieved more
quickly in the western portion of the CONUS with the short-
est spin-up times for deep soil temperatures and moisture in

Geosci. Model Dev., 19, 579-594, 2026

the West, and for top-layer soil moisture in the Northwest.
Here, confluence between the increased soil moisture in 194
compared with [74 plays a key role in regional spin-up of soil
moisture values. Based on the idealized work of Cosgrove et
al. (2003), it could be speculated that initially drier soil mois-
ture values in the experimental simulation could result in
even longer spin-up time in regions where initial differences
are the largest, as that study found that an excessively wet
simulation spun up more quickly than an idealized dry sim-
ulation, as described in Sect. 1. However, the present work
does not include an idealized simulation set up with dry soil
anomalies to test this hypothesis and compare directly to re-
sults from Cosgrove et al. (2003) While 1 year satisfies spin-
up of 2 m and top-layer soil temperatures, spin-up periods for
top-layer soil moisture exceed 1 year for most regions and
over the CONUS. Therefore, while utilizing at least a year
of spin-up time would mitigate the obvious seasonal signals
of the spin-up behaviour highlighted above, multiple years of
spin-up (~ 1-4) may be needed in some regions for spin-up
of soil moisture (i.e., in this experiment, the Northern Rock-
ies and Plains and the Upper Midwest).
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4 Conclusions

Here, spin-up behaviour is examined in an RCM, where sur-
face and near-surface fields in an 11 year simulation, 194, are
compared with those from a 31 year reference simulation,
174, that is initialized 20 years earlier. Each is driven by the
same CMIP5 GCM and uses the same RCM configuration,
aside from initialization date and initial model state. Prior
related studies of spin-up periods in regional climate mod-
elling have used “reference” or “control” simulations which
predate their experimental runs by as much as 2 years (Jerez
et al., 2020) or less than 30d (Pan et al., 1999). The current
study uses a multi-decadal period for the reference simula-
tion, which better supports the implicit assumption that the
reference run has already undergone spin-up and that com-
parison with it can provide a robust analysis of spin-up be-
haviour in the experimental simulation. This is especially im-
portant for assessing whether the soil state is spun-up, as soil
processes in the model have been found to require longer
spin-up times than atmospheric processes (e.g., Cosgrove et
al., 2003; Jerez et al., 2020; Lavin-Gullon et al., 2023).

Comparing 194 to the reference 174 shows that key sur-
face and near-surface variables (2m temperature and top-
layer soil temperature and moisture) exhibit a seasonally in-
fluenced pattern as they converge over the first year of the
simulation (Figs. 2-4). Generally, the initial state in 194 has
wetter soil moisture values and cooler near-surface and soil
temperatures than 174. The model solutions artificially ap-
pear to converge over the first ~ 3 months from the October
1 initialization into the winter months. However, during the
proceeding spring, differences between the two simulations
re-emerge and reach a secondary peak the following summer.

194 increases latent heat release and reduces sensible heat
flux (Figs. 6 and 7) in response to cooler and wetter soils,
following the same seasonal pattern of differences as 2m
temperature and top-layer soil temperature that are reduced
in magnitude over the winter and reappeared the following
summer. Meanwhile, during the initial year of the 194 sim-
ulation, deeper soil moisture values remain elevated in 194
(Fig. 5), providing additional soil moisture to drive increases
the following summer when seasonally warmer temperatures
support higher saturation deficits and increased evaporation.
Cooler temperatures in 194 relative to 174 also re-emerge dur-
ing summer 1995 (the first summer of the 194 simulation),
as more near-surface evaporative cooling in the 194 run sus-
tains cooler surface temperatures relative to 174. Precipita-
tion increases are generally found over the central and east-
ern CONUS during the following summer (Fig. 8) fed by
increased evaporation in 194 relative to 174.

The full annual cycle should be considered when choos-
ing optimal spin-up for RCM applications. If analysis had
been limited to a 3 month overlapping period (in this case,
October—December 1994), those results would misleadingly
promote a spin-up period of only a few months. However, the
divergence of the simulations during the following summer

https://doi.org/10.5194/gmd-19-579-2026

indicates that RCM applications would benefit from spin-up
periods that cover a minimum of one full annual cycle so
that seasonally-dependent spin-up behaviour can be excluded
from the period utilized for analysis for a given application.
In the present work, spin-up criteria in Sect. 3.4 are applied
over a moving 365d window, as a shorter (e.g., monthly)
window may produce a false positive result for spin-up hav-
ing been achieved during the transitional and winter months.
Even with this rigorous criteria, 2 m temperature and top-
layer (0—10cm) soil fields satisfy this condition within the
first annual cycle for > 50 % of grid cells over the CONUS.
On average, bottom-layer soil temperatures achieve spin-up
by 11 months across the CONUS except in the Upper Mid-
west and Northern Rockies and Plains. Top-layer soil mois-
ture requires a longer spin-up time of ~ 21 months over the
CONUS. While 4 out of the 9 regions satisfy the spin-up cri-
teria for top-layer soil moisture within ~ 15 months, slower
regional spin-up times of ~ 1.5 to 4 years are found for areas
of the central CONUS. The large differences in soil condi-
tions through the central CONUS between 194 and 174 re-
sulted from differences in data used for initialization, which
may vary in other months. However, prior spin-up studies
discussed above share similar sensitivities in their methods.

Evaporation is important for spin-up, and it is the process
by which 194’s solution “forgets” excessive soil moisture in
its initial state and converges toward the 174 simulation. The
key processes by which the newly initialized model must ad-
dress anomalies in the initial conditions is known to influ-
ence the timescale in which spin-up can be achieved (Cos-
grove et al., 2003). The timescales for spinning up physical
and hydrological processes are also considered in the mod-
elling practice of avoiding winter months for initialization of
an RCM (as recommended by Jerez et al., 2020), as frozen
soil in initial conditions is resolved through seasonal melting.
When examining WREF results over multiple domains within
CORDEX, Lavin-Gullon et al. (2023) found seasonal effects
on spin-up time for soil moisture in South America, where
warm season initializations had greater uncertainty due to
their coinciding with the South American rainy season, a
period of increased variability in precipitation and associ-
ated uncertainty in soil moisture. When discussing the use of
splitting centennial-scale RCM projections into shorter peri-
ods for computational efficiency, Lavin-Gullon et al. (2023)
recommended increased spin-up times and outlined an ap-
proach of utilizing three 30 year time slices with 5 year spin-
up times to account for uncertainty in the time needed for the
soil fields to spin-up.

Utilizing a minimum of one full annual cycle for spin-
up time excludes the re-emergence of spurious seasonally-
influenced spin-up effects that can influence key variables
that are often used in RCM applications, such as seasonally
and monthly averaged 2 m temperatures. Here, regional re-
sults in the central CONUS support the use of spin-up peri-
ods of 14 years to better exclude spin-up behaviour in top-
layer soil moisture. Choice of the appropriate spin-up time
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for RCM applications depends on several factors and often
involves weighing the added computational burden against
the penalty of including the influence of spin-up within the
atmospheric and land-surface fields that are most important
for a given application. While less than a year of spin-up time
may appear adequate for atmospheric fields like 2m tem-
perature, including spurious spin-up behaviour within other
fields, such as soil moisture and evaporation, can cascade to
projections of drought, heat stress, and flooding, among oth-
ers as these moisture processes affect “downstream” fields
within the RCM. Here, results support a pragmatic compro-
mise of using at least 1 year to spin-up mid-latitude RCM
simulations.
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