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Abstract. Accurately representing permafrost in Earth Sys-
tem Models is a grand challenge that creates major uncer-
tainty. A promising path forward is to create hybrid models
that synergize process-based physics with deep learning, but
this is fundamentally hindered by the non-differentiable na-
ture of traditional land surface models (LSMs), which are
incompatible with modern AI workflows. To overcome this
limitation, we present NoahPy, a differentiable LSM de-
veloped by reconstructing the Noah LSM’s governing par-
tial differential equations into a process-encapsulated Recur-
rent Neural Network (RNN), with the heat–moisture solver
forming the computational core. We first demonstrate that
NoahPy very closely replicates the numerical behaviour of
the modified Noah LSM, achieving Nash-Sutcliffe Efficiency
(NSE) coefficients above 0.99 for both soil temperature and
liquid water. We then show that at a permafrost site, the cal-
ibrated NoahPy achieves robust simulation performance for
soil temperature (NSE > 0.9) and liquid water (NSE> 0.8).
Critically, the differentiable workflow, when combined with
the Adam optimizer, is significantly faster, more stable, and
yields simulations with lower uncertainty compared to tradi-
tional Shuffled Complex Evolution (SCE-UA) calibration al-
gorithm. NoahPy thus provides a foundational, “glass-box”
framework that closes a key technical gap, enabling the
development of the next generation of hybrid AI-physics

models needed to more reliably predict the future of the
cryosphere.

1 Introduction

The advent of deep learning has catalyzed a paradigm shift
in Earth system science. Large-scale, data-driven models
like Google DeepMind’s GraphCast (Lam et al., 2023) and
Huawei’s Pangu-Weather (Bi et al., 2023) demonstrate re-
markable skill in Earth system forecasting. However, their
predictive power is often shadowed by a critical limitation:
as “black-box” systems, they offer no guarantee of physi-
cal consistency or interpretability (Nearing et al., 2021; Wi
and Steinschneider, 2022). While techniques from eXplain-
able AI (XAI) can provide post-hoc insights (Rudin, 2019;
O’Loughlin et al., 2025), they cannot enforce physical laws,
creating the risk of learning statistically powerful but mecha-
nistically flawed relationships. This challenge is especially
pronounced in complex, data-scare environments like the
cryosphere. This “physics gap” has spurred a movement to-
wards hybrid modeling that synergize the predictive prowess
of machine learning with the mechanistic rigor of process-
based physical models (Irrgang et al., 2021; Reichstein et al.,
2019; Chen et al., 2023).
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A powerful approach in this domain is the physics-
informed neural network, which embeds the governing equa-
tions of a physical system directly into the model’s archi-
tecture (Reichstein et al., 2019; Chen et al., 2023). Un-
like “loosely-coupled” hybrids that use physics as a soft
penalty in the loss function (Wang et al., 2020; Xie et
al., 2022) or use machine learning to correct a physical
model’s output (Bonavita and Laloyaux, 2020), this deeply-
integrated approach imposes hard constraints, rendering the
model structurally incapable of violating fundamental laws.
The primary obstacle to this integration for the land sur-
face and permafrost modeling community has been techni-
cal: most established geophysical models, including well-
known land surface models (LSMs), are implemented as non-
differentiable numerical solvers, making them incompatible
with the gradient-based optimization central to deep learning
(Rumelhart et al., 1986). A transformative solution is dif-
ferentiable programming, which involves rewriting a phys-
ical model’s logic using differentiable operations within a
machine learning framework like PyTorch or TensorFlow.
This recasts the physical model into a “glass-box” system
that is both physically interpretable and trainable end-to-end
via backpropagation (Shen et al., 2023). Recent successes in
hydrology have demonstrated the potential of this approach,
yielding models with higher accuracy and improved general-
ization (Feng et al., 2022; Wang et al., 2024).

This approach is particularly critical for modeling per-
mafrost. Improving the representation of freeze-thaw pro-
cesses in Earth system models is a grand challenge (Schädel
et al., 2024). Covering nearly 15 % of the Northern Hemi-
sphere’s exposed land area, permafrost is a crucial regula-
tor of global water, energy, and carbon cycles (Obu, 2021).
Despite its vast scale, state-of-the-art LSMs), as the founda-
tional components of climate models, have well-documented
deficiencies in representing freeze-thaw processes in these
regions (Matthes et al., 2025; Abdelhamed et al., 2023). They
often simplify or omit key thermo-hydrological dynamics,
such as abrupt thaw (thermokarst), the formation of excess
ground ice, the insulation from thick organic soil layers, and
complex water transport at the freeze-thaw front (cryosuc-
tion). These simplifications lead to significant biases in sim-
ulating active layer dynamics and the rate of permafrost thaw,
and low confidence in the timing and magnitude of the per-
mafrost carbon feedback, undermining the reliability of cli-
mate projections and estimates of the remaining carbon bud-
get. While significant effort has gone into improving the
physics of permafrost specific models (Ji et al., 2022; Wu
et al., 2018; Xiao et al., 2013; Zhao et al., 2023), these im-
proved models remain non-differentiable, preventing their in-
tegration into model AI-driven calibration and hybrid mod-
eling workflows.

A differentiable LSM, by itself, does not inherently fix
these physical deficiencies. Its true power is unlocked when
applied to an already improved physical core, enabling it to
serve as a foundational component for more sophisticated

hybrid artificial intelligence (AI) systems. A differentiable,
permafrost-focused LSM enables AI-driven parameteriza-
tion, where the differentiable LSM is coupled with a neural
network that learns to predict its internal parameters (e.g., hy-
draulic conductivity, thermal properties) from external data,
thus addressing the long-standing challenge of parameter un-
certainty (Tsai et al., 2021; Wang et al., 2024; Sun et al.,
2024). More importantly, it can be embedded as a physics
core within a larger, end-to-end trainable AI-based Earth sys-
tem model. This forces the larger model to follow the laws of
land surface physics, providing essential bounds for its pre-
dictions in data-scarce permafrost regions.

Therefore, creating a differentiable permafrost-focused
LSM is not an incremental step but a necessary foundation
for the next generation of hybrid Earth system models. To
address this gap, we introduce NoahPy: a differentiable LSM
built upon a version of the Noah LSM already modified
and validated for simulating permafrost thermos-hydrology
on the Qinghai-Tibet Plateau (QTP). We have rewritten this
permafrost-centric, Fortran-based model into a differentiable
Python framework by encapsulating its governing partial
differential equations within a Recurrent Neural Network
(RNN) structure. This novel implementation preserves the
complete mechanistic integrity of the physically-improved
model while unlocking the full power of gradient-based op-
timization.

2 Material and methods

2.1 The modified Noah LSM

The Noah LSM (v3.4.1) (Chen et al., 1997) is a widely used
model that simulates one-dimensional thermo-hydrological
transport within the atmosphere-vegetation-soil continuum.
It serves as the land-surface module in prominent systems
like the Weather Research and Forecasting (WRF) model (Ek
et al., 2003) and the Global Land Data Assimilation System
(GLDAS) (Rodell et al., 2004). In the Noah LSM, the gov-
erning equation for soil heat transfer is the one-dimensional
heat conduction equation:

Cs
∂Ts

∂t
=
∂

∂z

(
λ
∂Ts

∂z

)
+Q (1)

where Ts is the soil temperature (K), t is time (s), z is
soil depth (m), Cs is the volumetric soil heat capacity
(J m−3 K−1), λ is the soil thermal conductivity (W m−1 K−1),
and Q represents the source/sink term (W m−3), such as the
latent heat of fusion during ice-water phase change. The soil
heat capacity, Cs , is calculated as a weighted sum of its con-
stituents:

Cs (θ,θice)= (θ − θice)Cw+ θiceCice+ (1− θs)Csoil

+ (θs− θ)Cair (2)
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where θ is the volumetric water content (m3 m−3), θice is the
volumetric ice content (m3 m−3), θs is the saturated volumet-
ric water content (m3 m−3), and Cw, Cice, Csoil, and Cair are
the heat capacities of water, ice, soil solids, and air, respec-
tively.

Liquid water movement in the soil is simulated by the
Richards’ equation (Chen et al., 1996):

∂θ

∂t
=
∂

∂z

[
D(θ)

∂θ

∂z

]
+
∂K (θ)

∂z
+ S (θ) (3)

where D =K (θ) ∂9
∂θ

, known as the soil-water diffusivity
(m2 s−1), K is the hydraulic conductivity (m s−1), 9 is
the soil matric potential (m). S represents water sources
and sinks (s−1) (e.g., infiltration and evapotranspiration).
The empirical soil hydraulic scheme proposed by Campbell
(1974) is utilized to parameterize 9–θ and K–θ , relation-
ships:

K (θ)=Ks

(
θ

θs

)2b+3

(4)

9 (θ)=9s

(
θ

θs

)−b
(5)

where Ks represents the saturated hydraulic conductivity
(m s−1), 9s is the soil water potential at air entry (m), and b
is an empirical parameter (dimensionless) related to the pore
size distribution of the soil matrix.

For this study, we used a version of the Noah LSM specifi-
cally modified for permafrost applications (Chen et al., 2015;
Wu et al., 2018), which improves upon the original model
(Noah LSM v3.4.1) in several key ways. These modifica-
tions include an improved thermodynamic roughness length
parameterization for sparse vegetation (Rodell et al., 2004)
to correct the underestimation of ground heat flux, a new
thermal conductivity scheme (Côté and Konrad, 2005) bet-
ter suited for the coarse-grained, high-porosity soils com-
mon on the QTP, and an impedance factor related to ground
ice content, which constrains the soil hydraulic conductivity
to account for the impedance of water flow by ice (Zhang
et al., 2007). The model’s soil column was extended to a
depth beyond the zero annual amplitude (∼ 10 m for typi-
cal permafrost on the QTP (Zhao et al., 2010) and discretized
into multiple, vertically heterogeneous soil layers. This mod-
ified Noah LSM has been successfully validated at the Tang-
gula (TGL) site and applied in previous studies of permafrost
degradation on the QTP (Ji et al., 2022; Zhang et al., 2022a),
confirming its robust simulation capabilities in permafrost
environment.

2.2 Implementation of NoahPy

The implementation of NoahPy involves recasting the nu-
merical solution of the modified Noah LSM’s governing
equations into a differentiable computational structure. We

use the following partial differential equations (PDEs) set to
describe the dynamic system of the modified Noah LSM:{

∂
∂t
s(t,z)= F(s(t,z),u(t,z),βF )

y(t,z)=G(s(t,z),u(t,z),βG)
(6)

where, s (t,z) represents the state vectors that vary in time t
and space z (e.g. soil temperature profile), u(t,z) is the input
vector of external forcings (e.g., meteorological data), y (t,z)
is the output vector (e.g., simulated variables for validation),
and βF and βG are the parameters associated with the state
update function F and the output function G.

In the Noah LSM, the heat conduction (Eq. 1) and
Richards’ (Eq. 3) equations are solved using a finite-
difference numerical approach. Following the spatial dis-
cretization scheme of Pan and Mahrt (1987) and the temporal
scheme of Kalnay and Kanamitsu (1988), the PDEs are ex-
pressed in terms of explicit coefficients and implicit states.
After discretization, the PDEs can be converted into a sys-
tem of algebraic equations, which is then efficiently solved
using the tridiagonal matrix algorithm. To ensure numerical
stability, this calculation is applied twice for each time step
when infiltration fluxes are large (Zheng et al., 2015).

The discretized form of Richards’ equation, for example,
for each soil layer k and time step t is:

θ t+1
k − θ tk

1t
=

1
1zk

[
D(θk−1)

θ t+1
k−1− θ

t+1
k

1̃zk−1

−D(θk)
θ t+1
k − θ t+1

k+1

1̃zk
+Kk−1−Kk + S

]
(7)

By letting A=−D(θk−1)1t
1zk1z̃k−1

, C =−D(θk)1t
1zk1z̃k

, Eq. (7) can be
rearranged to:

A
(
θ t+1
k−1− θ

t
k−1

)
+B

(
θ t+1
k − θ tk

)
+C

(
θ t+1
k+1− θ

t
k+1

)
= RHS (8)

RHS=
S+Kk−1−Kk

1zk
·1t +A

(
θ tk − θ

t
k−1

)
+C

(
θ tk − θ

t
k+1

)
, B = 1− (A+C) (9)

where 1zk is the thickness of the kth soil layer; and 1z̃k is
the distance between the centers of layer k and layer k+ 1.
This equation can be rearranged into a tridiagonal system of
linear equations, which is solved at each time step to update
the soil moisture profile, θ t+1:
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(10)

To make this process differentiable, we implemented the
model within a RNN framework. A standard RNN updates an
abstract hidden state, ht , using a learned function (Fig. 1a):

ht = σ
(
Whh(t−1)+Wxxt + bh

)
(11)

where σ is the nonlinear activation function; ht−1 and ht are
the hidden states at the previous and current time steps, re-
spectively; Wh and Wx are the weight matrices applied to
the previous hidden state and the current input vector xt , re-
spectively; and bh is the bias vector.

In NoahPy, we replace this learned function with the entire
physical time-step solution described above. The state of the
system is a vector of physically meaningful variables, st (e.g.,
soil temperature, moisture), which is updated according to
the model’s deterministic physics (Fig. 1b):

st = FNoah LSM

(
st−1, xt ,

−→
β
)

(12)

where FNoah LSM represents the complete numerical solution
for one time step, including the differentiable solver for the
tridiagonal system derived from Eq. (6); xt is the meteoro-
logical forcing, and β is the set of model parameters. This
is made possible by implementing every step of the numeri-
cal solution using the differentiable operations native to the
PyTorch deep learning library (Paszke et al., 2019).

It is important to note that this reformulation includes
all physical parameterizations, such as those for vegetation
and snow processes shown in Fig. 1c. While some of these
processes are mathematically not strictly differentiable, re-
implementing them within PyTorch ensures that a valid gra-
dient can be computed for every operation via the automatic
differentiation engine. This makes the model differentiable in
the context of gradient-based optimization. A specific exam-
ple of this is the handling of phase-dependent processes. The
Noah LSM handles the latent heat of fusion using a source
term method, as represented by the Q term in the heat con-
duction equation (Eq. 1). This term explicitly calculates and

applies the latent heat required to be released or absorbed
to keep the soil temperature at the freezing point during a
phase change. While this represents an abrupt physical tran-
sition, numerically, this is not a true discontinuity but is im-
plemented as a conditional logic check. In NoahPy, this en-
tire conditional logic is re-expressed using a chain of native,
computationally differentiable PyTorch operations, primarily
torch.where, torch.min, and torch.max. PyTorch’s automatic
differentiation engine is designed to backpropagate through
these subgradients, which is the same fundamental principle
that enables the training of neural networks with ReLU acti-
vations (Glorot et al., 2011). This numerical implementation
avoids a mathematical discontinuity. Therefore, PyTorch’s
autograd engine can compute a valid gradient through this
logic.

By constructing the model in this way, the entire time-
stepping simulation allows the gradient of any model output
with respect to any parameter (β) to be calculated efficiently
using the backpropagation through time (BPTT) (Werbos,
1990), powered by PyTorch’s automatic differentiation en-
gine. Furthermore, all operations in NoahPy are vectorized
to maximize the parallel computing power of modern hard-
ware.

2.3 Validations

2.3.1 Validation of numerical equivalence

The first validation step was to confirm that NoahPy, writ-
ten in Python, accurately reproduces the numerical output of
the original Fortran-based modified Noah LSM. This bench-
mark test ensures that the model reformulation process did
not introduce numerical artifacts. The experiment was con-
ducted at three randomly selected grid cells on the QTP:
Grid1 (28.75° N, 93.85° E), Grid2 (34.75° N, 98.25° E) and
Grid3 (37.55° N, 100.55° E). Both models were driven by the
China Meteorological Forcing Dataset (ITP-forcing) (He et
al., 2020) for the period of 2000–2010. The year 1999 was
used as a spin-up period (repeating for 500 years) to allow
the model to reach equilibrium, and the model states at the
end of this period were used as the initial conditions for the
formal simulation. For both models, soil types were defined
using the MSTD dataset (Wu and Nan, 2016), and vegeta-
tion types were based on the 1 : 1000000 China Vegetation
Type Map (Zhang, 2007). Since the goal was a direct numer-
ical comparison, model parameters were assigned using the
default lookup table values corresponding to the soil and veg-
etation types. The soil column was configured with 18 layers
extending to a depth of 15.2 m.

To quantify the agreement between the two models, we
used three statistical metrics: Bias, Pearson correlation co-
efficient (Corr), and the Nash-Sutcliffe Efficiency coefficient
(NSE):
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Figure 1. NoahPy architecture as a physics-based Recurrent Neural Network (RNN). (a) A standard RNN recurrent cell; (b) The NoahPy
recurrent cell, which replaces the learned transformation with the physical model (FNoah LSM); (c) The unfolded representation of the
NoahPy simulation, where the model state (S) is updated at each time step. X, S, and O represent the meteorological forcing, state, and
observation vectors, respectively, and β is the vector of model parameters.

Bias=
1
N

N∑
i=1

(
yi − y

∗

i

)
(13)

Corr=

N∑
i=1

[
(yi − y)(y

∗

i − y
∗)
]

√√√√ N∑
i=1

[
(yi − y)

2]√ N∑
i=1

[(
y∗i − y

∗
)2] (14)

NSE= 1−

N∑
i=1

[
(yi − y)

2]
N∑
i=1

[(
y∗i − y

∗
)2] (15)

where, yi is a value from the NoahPy simulation time series,
y∗i is the corresponding value from the modified Noah LSM
simulation, y and y∗ are the mean values of their respective
time series, and N is the total number of samples.

2.3.2 Validation of backpropagation capability

To validate NoahPy’s capability for backpropagation-driven
parameter optimization, we conducted an experiment using
observational data from the TGL permafrost site on the QTP.
The model was driven by daily meteorological observations
from the TGL station from 1 April 2007 to 31 December
2010. These data included air temperature, wind speed, rela-
tive humidity, incoming shortwave and longwave radiation,
and precipitation. In-situ observations of active layer soil
temperature and liquid water content from the site were used
to constrain the model during optimization. The dataset was
split into a training period (1 April 2007 to 31 December
2009) and a validation period (1 January 2010 to 31 Decem-
ber 2010). The NoahPy soil column was discretized into 20
layers to match the observation depths at the site. This in-
cluded ten shallow, higher-resolution layers (at 0.045, 0.091,
0.166, 0.289, 0.493, 0.829, 1.2, 1.6, 2.0, and 2.4 m) to capture
rapid variations near the surface, and ten deeper layers (2.8,
3.8, 4.8, 5.8, 6.8, 7.8, 8.8, 10.8, 12.8, and 14.8 m) extending
to 14.8 m. The lower boundary of the simulation domain was
set to a depth of 40 m, with the boundary temperature con-
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dition prescribed according to previous studies (Chen et al.,
2015).

We selected four key soil hydraulic parameters, known to
be highly sensitive to liquid water content (Brandhorst and
Neuweiler, 2023; Szabó et al., 2024; Teuling et al., 2009),
as the target for optimization: saturated hydraulic conductiv-
ity (Ks), saturated water content (θs), soil matric potential at
air entry (ψs), and the pore-size distribution index (b). The
allowable ranges for these parameters, drawn from previous
studies (Rosero et al., 2009; Stuurop et al., 2021; Li et al.,
2019; Wang et al., 2021), are provided in Table 1. Initial val-
ues were chosen randomly within these bounds. To ensure
physical realism, we imposed a constraint that parameter val-
ues for the same soil type could not vary by more than 10 %
across different depths (Zhao et al., 2023).

The observational data for this study extend to a maximum
depth of 2.45 m, corresponding to the model’s 10th soil layer.
Therefore, simulated liquid water content from the top ten
model layers was interpolated to the measurement depths.
The NSE between the interpolated simulations and the ob-
servations was used as the loss function to be maximized.
We used the widely adopted Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.0005 and default decay
rates of 0.9 and 0.999. To improve convergence, a ReduceL-
ROnPlateau learning rate scheduler was implemented. This
scheduler monitored the NSE on the validation set and au-
tomatically reduced the learning rate by a factor of 0.1 if no
improvement was observed for ten consecutive epochs. The
training was run for a maximum of 300 epochs, with a min-
imum learning rate of 1× 10−6 to prevent stagnation. The
agreement between the optimized model simulations and the
observations was quantified using the NSE, correlation coef-
ficient, and Root Mean Square Error (RMSE).

2.3.3 Performance comparison with traditional
optimization

To demonstrate the advantages of a differentiable model-
ing approach, we compared the performance of NoahPy
against both the original and modified Noah LSMs when
calibrated with a traditional, widely used optimization al-
gorithm. We evaluated three distinct model-optimizer com-
binations: NoahPy optimized with the gradient-based Adam
optimizer; the modified Noah LSM calibrated with the Shuf-
fled Complex Evolution (SCE-UA) algorithm (Duan et al.,
1994); and the original Noah LSM (v3.4.1) calibrated with
the SCE-UA algorithm. The SCE-UA is a widely used global
optimization algorithm that does not require gradient infor-
mation. Its primary strength is its robust global search capa-
bility, which helps it avoid getting trapped in local optima
by systematically exploring the parameter space (Rahnamay
Naeini et al., 2019). The model configurations, forcing data,
and target parameters for all three setups were identical to
those described in Sect. 2.3.2. A key difference is that the
original Noah LSM does not account for vertical soil hetero-

geneity; therefore, its soil profile was configured uniformly
using the properties of the surface layer. For a robust com-
parison, each optimization algorithm was run ten times with
a maximum of 500 iterations.

In addition to the NSE, we used the Kling-Gupta Effi-
ciency (KGE) as a more comprehensive performance metric.
KGE provides a multi-faceted assessment by decomposing
performance into three distinct components:

KGE= 1 −
√
(Corr − 1)2+ ( α− 1)2+ ( γ − 1 )2 (16)

where, Corr is the Pearson correlation coefficient between
simulated and observed values, α is the bias ratio (mean of
simulated values/mean of observed values), and γ is the vari-
ability ratio (coefficient of variation of simulated values/co-
efficient of variation of observed values). To determine if
the performance differences among the three model setups
were statistically significant, we employed a two-step non-
parametric testing procedure on the KGE values from all soil
depths. First, the Friedman test was used to assess whether
any significant differences existed within the group of three
models. If the Friedman test returned a p-value< 0.05, we
then performed the Dunn’s post-hoc test for pairwise com-
parisons to identify which specific model pairs differed sig-
nificantly from one another. A p-value< 0.05 in the Dunn’s
test was considered a statistically significant difference in
performance.

3 Results

3.1 Numerical equivalence with the modified Noah
LSM

The validation confirms that NoahPy successfully replicates
the numerical behaviour of the Fortran-based modified Noah
LSM. As shown in the scatter plots in Fig. 2, the simulated
daily soil temperature and liquid water content from NoahPy
exhibit a near-perfect 1 : 1 relationship with the outputs from
the modified LSM across all tested depths (0.1, 0.5, 0.8,
1.3, and 2.5 m) aggregated from three randomly chosen grid
cells on the QTP. The performance is exceptionally strong,
with NSE coefficients greater than 0.999 and near-zero bias
(< 0.01) for both variables at every depth.

A minor degree of scatter is visible in the soil moisture
comparisons (Fig. 2b, d, f, h, j), which is not present in the
soil temperature results. These small deviations are likely at-
tributable to minor differences in floating-point arithmetic
and numerical precision between the Python/PyTorch en-
vironment and the original Fortran compiler. Importantly,
NoahPy maintains this high accuracy in deeper soil layers,
with no amplification of numerical errors with depth. This
demonstrates the high numerical stability of the NoahPy im-
plementation and confirms that it serves as a faithful and re-
liable replacement for the original model.
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Table 1. Target parameters to be optimized by backpropagation and their value ranges.

Parameter Symbol (Unit) Value Range

saturated hydraulic conductivity Ks (m s−1) 10−7–6× 10−3

saturated water content θs (m3 m−3) 0.3–0.65
soil matric potential at air entry ψs (m) 0.01–0.65
pore-size distribution b (Dimensionless) 2.5–12

Figure 2. Comparison of NoahPy and modified Noah LSM outputs for soil temperature and moisture. The density scatter plots compare
daily model outputs at five different soil depths (0.1, 0.5, 0.8, 1.3, and 2.5 m), aggregated from three randomly chosen grid cells (28.75° N,
93.85° E; 34.75° N, 98.25° E; 37.55° N, 100.55° E) on the Tibetan Plateau (QTP). The dashed line represents perfect agreement (y = x). Inset
values show the Bias, correlation (Corr), and NSE.
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3.2 Performance of the calibrated NoahPy at the
Tanggula site

The gradient-based optimization process effectively cali-
brated the NoahPy model parameters. The training process
demonstrates rapid convergence, with the NSE for soil liquid
water increasing from an initial value of −0.2 to an optimal
value of 0.84 (Fig. 3). Correspondingly, the RMSE steadily
decreases. This result successfully validates that NoahPy’s
differentiable framework allows for the effective use of back-
propagation to optimize model parameters against observa-
tional data.

After calibration, NoahPy’s simulations showed excellent
agreement with the observed data at the TGL site during both
the calibration (2007–2009) and validation (2010) periods
(Fig. 4). The model accurately reproduced the seasonal cycle
of soil temperature at all depths. For most layers, the NSE
values exceeded 0.9, and the RMSE decreased with depth,
reflecting the reduced temperature variability in deeper soil.
However, the model exhibits a cold bias during the winter of
2008–2009, with simulated temperatures falling below ob-
servations (Fig. 4a). This period was characterized by heavy
snowfall at the site. The cold bias is confirmed to be a direct
result of the relatively simplistic snow scheme in the Noah
LSM. A direct comparison with observed snow depth data
from the TGL site shows the model significantly underesti-
mates the peak snow accumulation during this exact 2008-
2009 winter and melts the snowpack too rapidly. The result-
ing shallower simulated snowpack provides less insulation,
allowing excessive heat loss from the soil to the cold atmo-
sphere. Additionally, anomalous fluctuations were observed
in the measured deep soil temperatures (1.05 and 2.45 m)
during the summer of 2009 (Fig. 4d, e). Given that deep
soil temperatures should respond slowly to short-term atmo-
spheric changes, these fluctuations are likely attributable to
instrumental error.

While more complex than temperature, the dynamics of
soil liquid water were also well-captured, with NSE val-
ues exceeding 0.7 and RMSE values below 0.05 m3 m−3 for
most layers. The model successfully simulated soil mois-
ture responses to freeze-thaw cycles and summer precipita-
tion events, particularly in the shallow soil layers (Fig. 4f,
g). However, several discrepancies were noted, particularly
in deeper soil. Simulations at depths of 1.05 and 2.45 m de-
viate more pronouncedly from the measured data (Fig. 4i,
j). The model tended to overestimate liquid water content
during the winter freezing period at some depths (Fig. 4h,
i). This can be attributed to the model’s hydraulic parame-
terization scheme, which is based on the Campbell formu-
lation; this approach neglects the effects of ice suction and
effective porosity. Omitting these mechanisms, which influ-
ence soil water redistribution at the freezing front, can lead
to an overestimation of liquid water content during winter
(Zhao et al., 2023). Additionally, some observations appear
anomalous. For example, the measured unfrozen water con-

tent in winter drops to exactly zero at 0.4 and 1.05 m, which
is physically unlikely and suggests potential instrument error
at low moisture levels. Similarly, sharp, isolated increases in
measured water content at deeper layers during the summer
of 2009 (Fig. 4h, i, j) without corresponding signals in the
layers above suggest these are likely not caused by surface
infiltration and may also be data artifacts.

Despite the well-diagnosed limitations of specific model
parameterizations and potential artifacts in the observational
data, the results for all soil depths demonstrate that the cal-
ibrated NoahPy model reliably reproduces the key seasonal
dynamics of soil temperature and liquid water during com-
plex freeze-thaw cycles at the TGL site.

3.3 Comparative performance evaluation

The primary advantage of the differentiable approach is ev-
ident in the parameter optimization process. NoahPy paired
with the Adam optimizer converges extremely rapidly, reach-
ing a high level of accuracy within only 100 iterations
(Fig. 5). This is due to the Adam optimizer’s use of gradi-
ent information and an adaptive learning rate. In contrast, the
traditional SCE-UA algorithm applied to the Noah and mod-
ified Noah LSMs converges much more slowly, requiring
significantly more iterations to approach an optimal solution
(Fig. 5). While the SCE-UA algorithm’s strength is its global
search capability, which helps it avoid getting trapped in local
optima, its convergence becomes prohibitively slow in high-
dimensional parameter spaces, requiring significantly more
iterations to find a solution. Furthermore, the gradient-based
approach demonstrates greater stability. The shaded 95 % un-
certainty band around the convergence trajectory for NoahPy
is visibly narrower than for the SCE-UA method (Fig. 5), in-
dicating that the Adam optimizer finds a robust solution more
consistently across repeated runs.

When comparing the calibrated models’ ability to simu-
late soil temperature (Fig. 6), all three setups perform well
in the shallow soil layers (0.05 and 0.4 m), with NSE values
exceeding 0.9. However, a major performance gap appears
in the deep soil (2.45 m). The original Noah LSM, which
neglects vertical soil heterogeneity, exhibits a pronounced
cold bias, with an RMSE of 1.68 °C (Fig. 6i). NoahPy and
the modified Noah LSM, which both account for varying
soil layers, perform significantly better, with RMSE values
of 0.51 °C (Fig. 6c) and 0.85 °C (Fig. 6f), respectively. In
essence, the error is magnified with depth because the im-
pact of incorrect thermal properties is compounded over the
longer time and distance it takes for heat to travel to the deep
soil.

The results for soil liquid water simulation show an even
starker contrast (Fig. 7). Both NoahPy and the modified
Noah LSM produce satisfactory results, with RMSE below
0.05 m3 m−3 across all three layers. These models accurately
capture the key seasonal dynamics, including soil moisture
fluctuations driven by summer precipitation and the rapid
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Figure 3. Training convergence for the soil liquid water simulation at the Tanggula site. The plot shows the improvement in the Nash-Sutcliffe
Efficiency (NSE, blue line) and the corresponding reduction in the Root Mean Square Error (RMSE, orange line) over 500 optimization
iterations. The dashed red lines mark the best performance achieved.

changes associated with freeze-thaw phase transitions, which
align well with observations. The original Noah LSM, how-
ever, performs poorly. It fails to capture moisture fluctuations
from summer rainfall and shows significant biases in win-
ter. Its performance deteriorates sharply with depth, with the
NSE value dropping to −0.09 in the deepest layer (2.45 m)
(Fig. 7i). This negative NSE reflects a substantial underesti-
mation of the liquid water increase during the spring thaw.
This finding is consistent with previous research (Wu et al.,
2018).

A Friedman test performed on the KGE values for all mod-
els (Table 2) confirmed a statistically significant difference
in their overall performance (p ≈ 0). A subsequent Dunn’s
post-hoc test revealed that both NoahPy and the modified
Noah LSM performed significantly better than the original
Noah LSM. Interestingly, the statistical test showed no sig-
nificant difference between NoahPy and the modified Noah
LSM (p = 0.1659). This is expected, as they share iden-
tical physics. However, NoahPy consistently demonstrated
practical advantages in performance. As shown in Fig. 5,
NoahPy converges markedly faster with the Adam optimizer,
approaching its optimal solution in roughly 100 iterations,
whereas the modified Noah LSM requires substantially more
iterations to converge with the SCE-UA algorithm. Further-
more, NoahPy’s final calibrated simulations have noticeably
lower uncertainty (i.e., smaller shaded bands in Figs. 6 and 7)
compared to the modified Noah LSM, particularly for winter

liquid water content (Fig. 7a, c vs. d, f). This lower uncer-
tainty is a direct result of the more stable and efficient op-
timization provided by the gradient-based Adam algorithm,
highlighting a key practical advantage of the differentiable
modeling approach.

4 Discussion

This study successfully demonstrated the development
and application of NoahPy, a differentiable land surface
model for permafrost. Our results confirm that this re-
implementation not only preserves this enhanced physical
integrity of the modified Noah LSM but also unlocks a pa-
rameter optimization workflow that is significantly faster and
more robust than traditional methods. The successful cali-
bration and diagnostic analysis in this study highlight the
theoretical merits of our “glass-box” approach. A common
alternative for making a physical model compatible with ma-
chine learning workflows is to develop a surrogate model: a
neural network trained to mimic the input-output behavior
of the original, non-differentiable code (Razavi et al., 2012).
While easier to implement, this approach treats the model
as a “black box” and suffers from the curse of dimensional-
ity (Asher et al., 2015). As the number of parameters grows,
the required simulations increase exponentially, making sur-
rogates infeasible for complex LSMs. While such a surro-
gate could potentially replicate the final simulation results,
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Figure 4. Simulated and observed daily soil temperature and liquid soil water content at various depths (daily; 0.05, 0.1, 0.4, 1.05, and
2.45 m) for the Tanggula (TGL) site. The vertical black dashed line separates the calibration period (1 April 2007–31 December 2009) from
the validation period (1 January 2010–31 December 2010). Inset text in each panel provides the NSE, RMSE, and correlation coefficient
(Corr) for both periods.

it obscures the internal model dynamics. In contrast, the full
interpretability of NoahPy allowed us to diagnose specific
physical process errors, such as the cold bias from the sim-
plified snow scheme and the overestimation of winter liquid
water due to missing cryosuction physics. This ability to di-
rectly attribute simulation errors to specific physical param-
eterizations is a fundamental advantage of the differentiable
physics-based approach and is essential for targeted scientific
model improvement.

Gradient-based optimization is particularly advantageous
when coupling NoahPy with neural networks for hybrid
modeling. It allows the simultaneous calibration of a large
number of model parameters, which would be prohibitively
difficult using traditional gradient-free methods such as SCE-

UA. While SCE-UA can perform a global search and avoid
local minima, its performance degrades substantially in high-
dimensional parameter spaces. By contrast, optimizers like
Adam exploit precise gradients to iteratively improve param-
eter values, facilitating effective end-to-end training of hy-
brid systems. It should be noted that we do not provide ab-
solute comparisons of computational speed, as differences
in model implementation (Fortran vs Python) and numerical
schemes limit direct benchmarking. Instead, the focus here
is on the iterative optimization capability of gradient-based
methods, which underpins the scalability and feasibility of
hybrid training strategies.

This study has two primary limitations. First, while suc-
cessfully validated at the Tanggula site on the Qinghai-Tibet
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Table 2. Mean Kling-Gupta Efficiency (KGE) values for the three calibrated models. Values represent the mean KGE from 10 repeated
optimization runs for NoahPy, the modified Noah LSM, and the original Noah LSM.

Variable Depth NoahPy Modified Noah original Noah
(m) LSM LSM

soil temperature 0.05 0.83 0.79 0.79
0.1 0.86 0.81 0.8
0.4 0.93 0.91 0.74

1.05 0.89 0.85 0.57
2.45 0.93 0.83 0.28

soil liquid water 0.05 0.91 0.82 0.51
content 0.1 0.95 0.88 0.69

0.4 0.64 0.51 0.23
1.05 0.64 0.52 0.31
2.45 0.8 0.56 0.27

Figure 5. Convergence of NoahPy, the modified Noah LSM, and
the original Noah LSM in terms of NSE. Each line represents the
mean NSE from 10 optimization runs, with the shaded area indi-
cating the 95 % uncertainty band. NoahPy was optimized with the
Adam optimizer, while the other two models were calibrated with
the SCE-UA algorithm.

Plateau, the performance and applicability of NoahPy in
other permafrost regions with different characteristics (e.g.,
the ice-rich Yedoma of Siberia or the boreal forests of North
America) have yet to be confirmed. Second, NoahPy inher-
its the known physical deficiencies of its parent Noah LSM,
including a simplistic snow scheme and the omission of pro-
cesses critical to permafrost carbon cycling, such as the ef-
fects of soil organic matter, convective heat transfer, and
abrupt thaw dynamics.

However, these limitations highlight its future potential
and intended purpose. The framework presented here is not
intended as a final product, but as a flexible and extensible
foundation for the community to address these very issues.

This framework holds promise for addressing challenges
in permafrost domain, where parameterization for key soil
properties in permafrost environment such as Qinghai-Tibet
Plateau (QTP) like thermal conductivity (Ji et al., 2024), hy-
draulic conductivity (Hu et al., 2023), and matric potential
(Zhao et al., 2023) may be incomplete. While NoahPy, in
its current form, inherits the physical limitations of its par-
ent model, its true power lies in its potential as a founda-
tional framework for a new generation of hybrid models.The
NoahPy framework allows for coupling with external ma-
chine learning models that can learn the complex mapping
between environmental covariates (e.g., topography, vegeta-
tion, soil type) and the model’s physical parameters (such as
hydraulic and thermal parameters) from direct observations
(e.g., soil temperature, soil moisture content). This could dra-
matically improve the spatial transferability of parameters
across diverse regions, reducing the reliance on costly site-
specific calibration and mitigating parameter uncertainty, a
key challenge in permafrost modelling (Harp et al., 2016; Dai
et al., 2019). The hybrid, seamless physics-machine learning
models coupling enabled by automatic differentiation also
allows for targeted replacement of model components. For
instance, empirical parameterizations where physical knowl-
edge is weak, such as the Campbell-based hydraulic scheme,
can be replaced by an embedded neural network. In such a
hybrid mode, the neural network can learn more complex
and accurate relationships from data, while the surrounding
physical equations ensure its predictions remain constrained
by fundamental laws like the conservation of mass and en-
ergy. By recasting a permafrost-capable LSM into the deep
learning ecosystem, we have created a tool that can lever-
age the rapid advancements in computational hardware (e.g.,
GPUs, TPUs) and software (Sevilla et al., 2022; Kochkov et
al., 2024). This work helps bridge the gap between process-
based modeling and AI, establishing a path toward the next
generation of hybrid Earth System Models capable of reduc-
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Figure 6. Comparison of calibrated model performance for daily soil temperature at the TGL site. Each panel compares in-situ observations
(red dashed line) against the simulations from the three calibrated models at a specific depth. The models are NoahPy (optimized with Adam;
blue line and shading), the modified Noah LSM (calibrated with SCE-UA; orange line and shading), and the original Noah LSM (calibrated
with SCE-UA; gray dashed line and shading). The shaded areas represent the 95 % uncertainty band from 10 repeated optimization runs. The
vertical dashed line separates the calibration and validation periods.

ing uncertainty and providing more reliable projections of
the future of the cryosphere.

5 Conclusions

In this study, we developed NoahPy, a differentiable land
surface model specifically improved for permafrost thermo-
hydrology. We successfully recast the widely-used, Fortran-
based Noah LSM into a “glass-box” Python framework that
is both physically interpretable and implements differen-
tiable operations for gradient-based optimization. Based on
our results, we draw the following key conclusions:

1. NoahPy faithfully reproduces the numerical behaviour
of the permafrost-specific modified Noah LSM. Vali-
dations show a very close match, with NSE values ex-
ceeding 0.99 for both soil temperature and liquid wa-
ter across all soil layers, confirming the fidelity of the
model’s re-implementation.

2. The differentiable framework enables robust, gradient-
based parameter optimization. Validation at a per-
mafrost site on the QTP demonstrates that NoahPy can
effectively use backpropagation to learn from observa-
tional data. The resulting calibrated model shows strong
performance, achieving NSE values above 0.9 for soil
temperature and 0.8 for liquid water.

3. The NoahPy-Adam workflow is superior to traditional
calibration methods. The combination of the differen-
tiable model with a gradient-based optimizer (Adam)
results in a parameter optimization that is significantly
faster, more stable, and yields final simulations with
lower uncertainty compared to the traditional SCE-UA
algorithm.

This work delivers a foundational tool that was previously
missing for the permafrost community. It closes the technical
gap that has hindered the development of deeply-integrated
hybrid models for the cryosphere. This study thus lays the
necessary groundwork for future AI-based models that aim
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Figure 7. Comparison of calibrated model performance for daily liquid soil water at the TGL site. Each panel compares in-situ observations
(red dashed line) against the simulations from the three calibrated models at a specific depth. The models are NoahPy (optimized with Adam;
blue line and shading), the modified Noah LSM (calibrated with SCE-UA; orange line and shading), and the original Noah LSM (calibrated
with SCE-UA; gray dashed line and shading). The shaded areas represent the 95 % uncertainty band from 10 repeated optimization runs. The
vertical dashed line separates the calibration and validation periods.

to lower uncertainty and deliver more credible predictions of
permafrost’s response to a changing climate.

Code and data availability. The NoahPy model code used in
this study is available at https://github.com/nanzt/NoahPy (last
access: 20 December 2025), and the exact version used to
generate the results presented here is archived on Zenodo
(Tian and Nan, 2025a, https://doi.org/10.5281/zenodo.17000249).
The original Noah LSM (v3.4.1) code used in this study
is available at https://ral.ucar.edu/model/unified-noah-lsm (last
access: 28 August 2025). The modified version of Noah
LSM code is available at https://doi.org/10.17605/osf.io/g7jqr
(Zhang et al., 2022b). The simulation data generated in
this study are available on Figshare (Tian and Nan, 2025b,
https://doi.org/10.6084/m9.figshare.29988163).
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