Geosci. Model Dev., 19, 423-445, 2026
https://doi.org/10.5194/gmd-19-423-2026

© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

Implementation and evaluation of sea level operators in
OceanVar2.0: an open-source oceanographic three-dimensional
variational data assimilation system

Paolo Oddo'?, Mario Adani>?, Francesco Carere’, Andrea Cipollone”, Anna Chiara Goglio?, Eric Jansen?,

3

Ali Aydogdu?, Francesca Mele?, Italo Epicoco®*, Jenny Pistoia?, Emanuela Clementi2, Nadia Pinardi'-2, and

Simona Masina?

! Department of Physics and Astronomy, Bologna University, Bologna, Italy

2CMCC Foundation — Euro-Mediterranean Center on Climate Change, Bologna, Italy

3CMCC Foundation — Euro-Mediterranean Center on Climate Change, Lecce, Italy

4Department of Engineering for Innovation, University of Salento, Lecce, Italy

2now at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA),

Bologna, 40129, Italy
Correspondence: Paolo Oddo (paolo.oddo@unibo.it)

Received: 1 April 2025 — Discussion started: 10 June 2025

Revised: 5 December 2025 — Accepted: 23 December 2025 — Published: 15 January 2026

Abstract. This study presents the development and sensi-
tivity analysis of the sea level operator within the Ocean-
Var software which implements an oceanographic incremen-
tal three-dimensional variational data assimilation scheme.
In OceanVar, the background error covariance matrix is de-
composed into a sequence of physically based linear oper-
ators, allowing for individual analysis of specific error ma-
trix components. The key development of OceanVar2.0 is
the full integration of both dynamic height and barotropic
model formulations as a flexible option for handling sea level
covariance. The comparison of the two formulations of the
sea level operator which provides correlations between Sea
Level Anomaly, temperature and salinity increments is pre-
sented. The sensitivity experiments were performed in the
Mediterranean Sea and the quality of the analysis assessed
by comparing background estimates with observations for
the period January—December 2021. The results confirm the
methodological advantage of the barotropic model operator,
which successfully overcomes the physical and operational
limitations associated with choosing an appropriate level-of-
no-motion for the dynamic height formulation. Furthermore,
we present a method to assimilate along-track satellite al-
timetry considering a forecasting model with tides.

1 Introduction

Understanding the past state of the ocean and predicting
its future behaviour is critical for sustainable development
and for climate change mitigation and adaptation strategies.
Oceans are a key component of the Earth’s climate system,
and they require specific data assimilation schemes due to
the sparsity of data in the ocean interior. There are different
methodologies for ocean data assimilation, each with its own
strengths and weaknesses. Within inverse problem theory, the
two most used approaches are the variational and the Kalman
filter (Carrassi et al., 2018). Schemes based on Monte-Carlo
algorithms, such as the Particle filter, have been proven to
be successful on low-dimensional systems and have become
feasible for high-dimensional geophysical systems only re-
cently (Van Leeuwen et al., 2019). The choice of data as-
similation method depends on factors such as the type of the
observations, the desired forecast horizon, and the available
computational resources.

Recent machine learning (ML) advancements offer po-
tential optimizations for ocean data assimilation (e.g.,
Barthélémy et al., 2022; Beauchamp et al., 2023). ML can re-
fine the representation of the errors and reveal complex rela-
tionships, improving accuracy. To fully leverage ML and new
data streams, modular and flexible data assimilation software
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is essential. As research progresses, these advancements will
significantly enhance our ability to understand and predict
ocean behaviour.

The data assimilation community has made substantial
strides in developing widely used software tools and spe-
cific implementations. General frameworks such as PDAF
(Nerger and Hiller, 2013) and DART (Data Assimilation Re-
search Testbed, Anderson et al., 2009) have contributed sig-
nificantly to the field. Additionally, model-specific imple-
mentations such as ROMS-4DVAR (Moore et al., 2011) have
been instrumental in advancing ocean data assimilation. Each
of these tools offers unique capabilities, and the increasing
complexity of data assimilation problems — particularly with
the adoption of ML — drives the continuous development and
innovation of both existing and new tools in the community,
as evidenced by recent research (Martin et al., 2025).

OceanVar is the data assimilation software used in this
study. It was first introduced by Dobricic and Pinardi
(2008, hereafter DP08) and implements an incremental three-
dimensional variational method. OceanVar features a mod-
ular design that allows for flexibility in incorporating di-
verse data sources and error covariance representations. This
adaptability has made it suitable for a wide range of appli-
cations and research needs. The software has been exten-
sively used in several operational and reanalysis systems, as
evidenced by numerous publications (Dobricic et al., 2007,
Storto et al., 2016; Escudier et al., 2021; Lima et al., 2021;
Ciliberti et al., 2022; Coppini et al., 2023). It has been used
to test new hybrid formulations (Oddo et al., 2016; Storto et
al., 2018) and to implement new observational operators for
different data types, including Lagrangian trajectories (Nils-
son et al., 2012), sea-ice variables (Cipollone et al., 2023),
daytime SST from SEVIRI (Storto and Oddo, 2019), and Al-
based operators (Storto et al., 2021; Broccoli and Cipollone,
2025). Furthermore, it has been instrumental in improving
error covariance models (Dobricic et al., 2015) and advanc-
ing specific applications, such as biogeochemical modelling
(Teruzzi et al., 2014, 2018), and new interdisciplinary uses
like assessing the impact on underwater acoustic predictions
(Storto et al., 2020).

The extensive use of the code in diverse applications has
led to the creation of different versions, some of which are in-
consistent or incompatible. This core issue drives the devel-
opment presented here. For this study, we used OceanVar2.0
(hereafter OceanVar2 for improved readability), a new ver-
sion of the underlying OceanVar framework that unifies the
various developments into a single, consistent, and fully par-
allelized software package.

In DPO8 and all subsequent developments, horizontal co-
variance was approximated using the recursive filter (Lorenc,
1992; Hayden and Purser, 1995). The filter is conceptually
simple, typically requiring only a few iterations to approxi-
mate the Gaussian function, and its application on a horizon-
tal grid can be split into two independent directions (Purser et
al., 2003). However, in cases of spatially or temporally vary-
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ing correlation radii, the computational advantage of the re-
cursive filter may be questioned (Purser et al., 2022). To pro-
vide the system with greater flexibility in terms of horizon-
tal correlation radii, OceanVar2 models the horizontal cor-
relation by a repeated application of the Laplacian operator,
which is also the solution of the horizontal diffusion equation
(e.g., Derber and Rosati, 1989; Weaver and Courtier, 2001).

Satellite altimetry and satellite-derived sea surface temper-
ature are crucial in bridging gaps left by in-situ observations
(Le Traon et al., 2025). Satellites help to cover almost the en-
tire ocean surface and satellite altimetry contains information
of the subsurface thermohaline structure that is key to obtain
best estimates of the ocean variability at depth. Satellite alti-
metric sea level data are available from 1992, and altimeters
have increased in coverage in the past ten years. The effec-
tive integration of satellite altimetry and sea surface tempera-
ture data into model corrections requires advanced extrapola-
tion algorithms. While this necessity was first emphasized in
foundational work (De Mey and Robinson, 1987), it contin-
ues to drive development in the field, as evidenced by cutting-
edge solutions using machine learning (Zavala-Romero et al.,
2025). In this work we demonstrate the capability of Ocean-
Var2 to effectively assimilate along-track satellite altimetry
with the use of a barotropic model operator and multivari-
ate sea level, temperature and salinity statistics. Although the
barotropic model was conceptually defined in DP08, its im-
plementation was not carried forward or maintained in sub-
sequent mainline versions. This work presents its full inte-
gration and optimization within the OceanVar2 framework.
We present, for the first time, a detailed, direct comparison
of the barotropic model defined by DP08 with the dynamic
height operator. Additionally, OceanVar2 is applied to the
latest version of the Mediterranean Sea forecasting System
(Clementi et al., 2023) that considers tidal forcing. Tides are
becoming an essential component of the resolved variabil-
ity of the ocean general circulation, and they can no longer
be neglected in numerical ocean circulation models (Arbic,
2022). Satellite altimeters sample tides along their track as
well as the mesoscales. Using OceanVar2 we present a pre-
liminary solution to the problem of assimilation in presence
of tidal components both in model and observations.

The manuscript is organized as follows. After the introduc-
tion, Sect. 2 provides a general overview of the variational
formulation and the characteristics of OceanVar2. Section 3
presents the background and the observational error covari-
ance matrix formulation and their specific operators. Sec-
tion 4 describes the experimental setup and the altimetry as-
similation methods. Section 5 discusses the results. Section 6
provides an overview of the computational performance of
the code. Finally, Sect. 7 provides the summary and conclu-
sions.
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2 Formulation of the Variational Assimilation Scheme

The standard cost function in three-dimensional variational
data assimilation is defined as:

1 Tp—1
J(x)=§(x—xb) B~ (x —xp)
1
+5(y—h[x]>TR—1<y—h[x]> (1

where, x is the analysis state vector containing the ocean
model prognostic variables, xy, is the background state vec-
tor, B is the background error covariance matrix, k is the
non-linear observational operator, y are the observations, R
is the observational error covariance matrix and T indicates
the matrix transpose. Equation (1) is linearized around the
background state (e.g., Lorenc, 1997) and expressed in terms
of the increments §x = x — xp,:

1 1
J (8x) = Eé)‘xTB—lé‘x + 5(a! —Hsx)"R™!(d —Hsx), (2)

where d = y — h[x}] are the misfits (or innovations), and H
is the Jacobian matrix of h at x = xy,. The analysis at a par-
ticular time is defined as x, = xp 4+ éx, where J attains its
minimum.

Existence and uniqueness of x, is guaranteed because J is
quadratic with R and B positive definite matrices. The min-
imum can be found by forcing the gradient of the cost func-
tion to zero. The gradient of Eq. (2) is:

VJ (8x) = (B—l + HTR—IH) sx —H'R 'd

Following DPO08, the OceanVar scheme assumes that the B
matrix can be decomposed as:

B=VVT

and the cost function may equivalently be minimized using a
new control variable v (e.g., Lorenc, 1997) defined using the
transformation matrix V*:

v=VTtsx,

where the superscript “+” indicates the generalized inverse.
The vector v is defined on the control space, and the incre-
ment vector éx on the physical space. The cost function (2)
now obtains the form:

1 1
J(v) = EvTv + 5(HVv —d)"R'"HVv—d).

The misfit in OceanVar is estimated using the FGAT (First
Guess at Appropriate Time) method. The valid time of the
increment using the FGAT algorithm has been discussed and
investigated in literature (see Massart et al., 2010). The pur-
pose of FGAT is to ensure that each observation (y;) falling
within the assimilation window [#,; #,+1] is compared against
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the model background (xy) at the specific time of the obser-
vation (t;), rather than only at the final analysis time (¢,41).
The innovations (d;) are thus computed as:

di = (y;—hlxs @)]),

where xp, (¢;) is the model background interpolated to the ob-
servational time #;. The assimilation system then minimizes
all these innovations to compute a single analysis increment
(6x) which is applied at #,41. Formally our analysis is de-
fined as the instantaneous field:

Xy (tny1) = Xp (tyy1) +0x,

where xy, (,+1) is the instantaneous background field simu-
lated by the nonlinear ocean model starting from #,,.

3 Modelling the background error covariance matrix

The transformation matrix V is modelled at each minimiza-
tion iteration as a sequence of linear operators (e.g., Weaver
et al., 2003). In this way, V successively transforms incre-
ments in the control space towards final increments in the
physical space.

In OceanVar and OceanVar2 the matrix V is defined in the
following way:

V =VpV,,V,VuVy 3)

From right to left, Vy defines the vertical error covariance;
V4 the horizontal error correlation; V,, is the sea level oper-
ator containing correlation between temperature, salinity and
sea surface elevation; and V,, ,, forces a geostrophic balance
between temperature, salinity and the velocity components.
Finally, Vp is a divergence-damping operator avoiding spu-
rious currents close to the coast in the presence of complex
coastlines, as defined by DP0S.
The vertical transformation operator Vy has the form:

Vy =ScA?
where columns of S contain eigenvectors and A, is a diag-
onal matrix with eigenvalues of multivariate Empirical Or-
thogonal Functions (EOFs). In the OceanVar and OceanVar2
code, the EOFs can be defined pointwise (Coppini et al.,
2023) or by regions (DPOS).

Differently from DP08, to account for horizontal correla-
tions, Vg is considered as the discretized form of the diffu-
sive operator:

Vu=Vy- (kcVuC)

where Vy is the horizontal differential operator, k is the spa-
tially variable diffusivity coefficient corresponding to hori-
zontal correlation lengths, and C is a generic increment. As-
suming a gaussian solution (Weaver and Courtier, 2001), the
relation between k. and the horizontal correlation radius is:

Ry =/ 2k At
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Where Ry, in meters, is the horizontal correlation radius, and
At = 15 is the pseudo time-step used to integrate the diffu-
sion equation. This filter was implemented using a dimen-
sional splitting approach. The operator is discretized with
a Euler-Backward implicit scheme solved by means of LU
decomposition of a tridiagonal matrix, following Hoffman
and Frankel (2001). The tridiagonal matrix algorithm is cho-
sen for its simplicity and the resulting ease of implement-
ing its adjoint operator, its memory efficiency, and its abil-
ity to avoid external libraries implementing direct methods,
thus forming a compact implementation which simplifies the
porting of OceanVar?2.

The V,, operator, the focus of this study, incorporates cor-
relations between sea surface elevation and the subsurface
thermohaline structure. Section 3.1 is dedicated to the de-
tailed description of the two formulations implemented in
OceanVar2.

The present formulation of OceanVar also allows for
the computation of corrections for the velocity field: the
V.., operator computes the velocity corrections assuming
geostrophic balance. This assumption results in an operator
with small computational cost. However, this assumption is
not valid at the equator and may produce velocity vectors
orthogonal to the coast. When imposing the zero-boundary
condition for the velocity component perpendicular to the
coast, the divergence component of the velocity field may be-
come unrealistically large. Therefore, the divergence damp-
ing operator Vp in Eq. (3) is implemented to damp veloc-
ity divergence near coasts, while the vorticity remains un-
changed. Details on the implementation of the divergence
damping operator are provided in DPOS.

As highlighted in DPO0S, the sequence of operator multi-
plication is critical and determined through a combination
of physical reasoning and iterative experimentation. Initially,
all increments are projected onto multivariate EOFs for sea
level, temperature, and salinity, as these effectively capture
ocean stratification (Sanchez de la Lama et al., 2016) and the
relationship with sea level for assimilation purposes (De Mey
and Robinson, 1987). Next, the increments are distributed
horizontally. Following this, adjustments due to the sea level
operator are computed based on the vertically projected tem-
perature and salinity increments. Subsequently, increments in
horizontal velocities are derived, and the process concludes
with the application of the divergence damping filter.

3.1 The sea level operator and its relationship with the
velocity terms

Dobricic et al. (2007) found that the vertical EOFs computed
from the covariance between temperature, salinity and sea
level could produce corrections that are not geostrophically
balanced and proved that the enforcement of the geostrophic
relationship for the sea level in the error covariance matrix
has a significant positive impact on the accuracy of the anal-
ysis. Thus, in OceanVar2 the sea surface height increments
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from EOF projections are overwritten using a sea level oper-
ator. Two different sea level operators, with different levels
of complexity, are implemented in OceanVar?2.

The first is the commonly used Dynamic Height operator
(V,] = VDH), which is defined as:

0
1
Vou =Pl = / [—aT + B5S]dz @
-D

Where D is a uniform reference level, corresponding to a
level-of-no-motion, §7 and &S are temperature and salin-
ity increments respectively, « and g the expansion and
contraction coefficients. The correlation between Sea Level
Anomaly (SLA) from altimetry measurements and the dy-
namic height anomaly computed from in-situ measurements
is high for regions deeper than 1000 m (Dhomps et al., 2011),
at synoptic, seasonal and interannual time scales.

OceanVar2 allows the application of a more complex lin-
ear V,,. This operator is based on the formulation published
in DPO8 and derives from the steady state results of a linear
barotropic model forced by buoyancy anomalies induced by
the temperature and salinity increments. While the methodol-
ogy was previously described in the literature, the barotropic
model code itself was fully re-introduced and parallelized
to function efficiently within the new OceanVar2 frame-
work, with its general mathematical structure remaining un-
changed. Its inclusion as a fully integrated option is a new
feature of this version. The barotropic model equations, dis-
cretized in time by the semi-implicit scheme (Kwizak and
Robert, 1971), are:

Un+1 _ Unfl
A V=
an* i 03(5b) , 271k
—H Lz
Vn+l Vn—l
2At U=
an* i 03(51?) / 21 %
—H Lz
n+1 _ n—1 QU * aV*
71T 4 + =0
2At ax ay

where U and V are vertically integrated velocity compo-
nents, f is the Coriolis parameter, g is the acceleration due
to gravity, H is the bottom depth, 1 is the surface elevation,
8b is the buoyancy anomaly, and y is the horizontal viscosity
coefficient. The superscripts indicate the time step relative
to n, and the superscript “x” indicates the weighted average
between two timesteps. A more detailed description of the
barotropic model and its discretization can be found in DPOS.
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In the present version the barotropic model assumes closed
lateral boundaries.

In the previous Eqgs. (5) and (6), the buoyancy forcing term
is defined as:

S
o

and the density perturbation 8p is estimated by the linear
equation of state:

8p =T — BSS 7

Expansion and contraction coefficients (o and ) in Egs. (4)
and (7) can be assumed space independent or spatially vari-
able and estimated by linearizing the equation of state around
a user defined background temperature (7}) and salinity field
(Sb):

ap
a= a_T|T:Tb,S:Sb

ap
B= ﬁlT:Tb,S=sb

In the latter case the coefficients are read from an external
input file.

In OceanVar2 the sea level operators produce the final sea
surface height increments, replacing the increment produced
by the cross-covariance between temperature, salinity and
sea level provided by the EOFs (DPO08, Storto et al., 2018).

The choice on the sea level operator has consequences on
the velocity operator V,, ,. V,,, computes the velocity cor-
rection assuming geostrophic balance under the Boussinesq
and incompressibility approximations:

1 ap
fug@)=——"
¢ po Ay

1 ap
fvg(Z)—‘I‘%a

Decomposing the pressure p at any level z as:

0
3p
p(2) = Ppam+gpo | n+ %dz

—Z
where p,m is the atmospheric pressure, g is the effective
gravity, n is the free surface elevation and §p is the den-
sity departure from a reference state pg. Neglecting the atmo-
spheric pressure, and rewriting the hydrostatic term as buoy-
ancy term, the geostrophic velocities become:

0
on a8b
fug (2) = — g——l—/—dz 8)
d 0
v J oy
0
an 38h
fvg (z) =+ ga+/¥dz 9

—Z
When adopting the barotropic model as V,, the sea surface
height in Eqgs. (8) and (9) is replaced by the increments de-
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riving from the solution of the barotropic model and the
lower limit of the baroclinic integral reaches — H (x, y), the
ocean floor. On the other hand, when V; = Vpy the hori-
zontal pressure-gradient force must vanish at the level-of-no-
motion, D, in Eq. (4). In Eqgs. (8) and (9) 7 is then substituted
with §nPH and the velocity increments are computed only up
to depth D. Thus, in case of the barotropic model, velocity
corrections are provided for the entire water column, while
in case of dynamic height, velocity corrections are provided
from the surface to the level-of-no-motion.

3.2 The observational error covariance matrix and
quality checks

The observation error € is defined as the difference between
the observation vector y and the observation counterpart in
the true state x* (Cohn, 1997)

y=h*[xt]—|-eo N €0=(y_yt)_(h*[xt]_yt)=€m_|_€r7

where y' is the true (unknown) observation value, A* is an
observation operator, €™ labels the instrumental or measure-
ment error (distance of the actual value from the true state)
and €' gathers the different components of the representa-
tiveness errors, due to inaccuracies in A* and the sampling
error of the observations with respect to the true signal. Un-
der the assumption of unbiased error (€% =0 and that €™
and €' are uncorrelated, the error covariance matrix R can be
constructed as the sum of two terms that can be estimated
independently:

R = (%) ~ (™e™) + (¢"€") = R™ + R".

If the errors associated to different observations are uncor-
related, the two matrices simplify greatly in diagonal ones.
This hypothesis is valid for most of the current global/re-
gional observational datasets and it is generally correct when
observations are sampled relatively far in time (say few hours
to avoid cross-correlation term in R™) or are sparse with re-
spect to the model grid resolution (to not include off-diagonal
elements in R"). Observation errors are a function of obser-
vation type in OceanVar2.

OceanVar2 contains various procedures for the quality
control and preprocessing of observations. A background
quality check is included to reject observations that are too
far from the model estimate. This quality check uses a thresh-
old on the squared misfit. While OceanVar2 supports ap-
proximating the misfit distribution with a Huber norm PDF
(Storto, 2016) to mitigate the impact of outliers, this feature
was not required for the analysis presented in this work.

To ensure that the assumption of spatially and temporally
uncorrelated observation error is satisfied, data thinning and
superobbing procedures are employed. Horizontal thinning
rejects observations that are too close in space, and in cases
where multiple data from the same instrument fall into the
same model grid cell, only the observation closest to the anal-
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ysis time is retained. Along the vertical dimension, a super-
obbing procedure takes the average of all data falling within
the same model layer. Additionally, two important rejection
criteria can be activated: coastal rejection prevents the assim-
ilation of altimetric and in-situ coastal observations to avoid
inconsistencies between observed and modelled coastal pro-
cesses, and a bathymetry-based rejection prevents the assim-
ilation of data in shallow areas.

4 Experimental Design

The experiments are designed to determine the best configu-
ration of OceanVar2 for the assimilation of satellite altimetry
together with ARGO floats and XBT in the Mediterranean
Sea. The setup of the ocean model used in this study is a
simplified version of the physical component of the Mediter-
ranean Forecasting System of the Copernicus Marine Service
(Clementi et al., 2023). The model is implemented over the
entire Mediterranean basin (Fig. 1) with a horizontal grid res-
olution of 1/24° (approx. 4 km) and 141 non-uniformly dis-
tributed vertical levels. The ocean model code is based on the
Nucleus for European Modelling of the Ocean (NEMO) v4.2
(Madec and the NEMO System Team, 2023) and includes the
representation of tides. Atmospheric forcings are calculated
interactively with the operational fields of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). The
only difference to the Copernicus operational system is the
omission of the surface wave model coupling.

Starting from an operational analysis, we performed a 1-
year simulation followed by one year of daily assimilation
cycles of in-situ (XBT and ARGO floats) and satellite SLA
data for the whole year of 2021. Figure 1 shows the positions
of the assimilated in-situ and SLA data. The SLA data cov-
erage in the bottom panel refers to the full 21 d repeat cycle
of the satellite orbits. In our experimental setup we perform
daily assimilation cycles starting at midnight every day and
we assimilate all observations available in the 24 h before the
analysis time. The figure also highlights the data used during
a single daily cycle (11 August 2021), specifically showing
the in-situ and SLA track subset daily coverage.

4.1 Correcting the misfits for tides

A fundamental aspect to consider when assimilating SLA is
the possible presence of tides in the modelled solution and
in the observed data. Discrepancies between modelled and
observed tides can, as a first approximation, be attributed
to inaccuracies in the bathymetry of the model, the bottom
and/or the coastal frictional dynamics. If the difference be-
tween observed and modelled estimates is due to tides, then
this part of the misfit is primarily composed of external grav-
ity waves. In the present OceanVar2 formulation, this high-
frequency signal would be incorrectly projected into baro-
clinic increments by the covariance matrix of the background
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error (Eq. 3). Since tidal errors are not dynamically linked to
the slow baroclinic ocean state, using the standard B matrix
leads to spurious analysis increments. It is therefore essential
to filter out the tidal signal from both the observed and mod-
elled SLA. This work offers a solution to the assimilation of
satellite altimetry in a model with tides, showing that a filter-
ing procedure can be accurate enough and that no additional
adjustment is required in the analysis.

The Copernicus along-track sea level anomalies are pro-
vided together with an estimate of the tidal signal along the
tracks so tides can be filtered easily from the observations.
To remove the tidal signal from the model background field,
the tidal amplitude and phase for the eight components in-
cluded in the Mediterranean Sea model (M2, S2, K1, O1, N2,
P1, QI and K2) have been derived from a simulation output
by harmonic analysis of the hourly sea level field. Following
Cao et al. (2015), six months of hourly data were used for
the harmonic analysis. The harmonic analysis was performed
using the Pawlowicz et al. (2002) algorithm, based on the
Foreman method (Foreman, 1977, 1978) at each model grid
point. Knowing the tidal constants, it is possible to estimate
the model tidal sea level at the exact time and location of the
altimetry data and remove this component from the model
outputs.

During the model simulation, misfits between model es-
timates and observations are computed and before entering
OceanVar2, the misfits are updated, removing the tidal sig-
nal from both observations and model results. In Fig. 2 an
example of an SLA satellite track is provided with model es-
timates and the satellite observations, the position of the track
is shown in Fig. 1. In the upper panel of Fig. 2, the full signal
from the model simulation and the observations is drawn as
a function of latitude along the track. The middle panel of
Fig. 2 shows the signals without tides, in addition to a debi-
asing procedure described by Dobricic et al. (2012). Dobricic
et al. (2012) show that this method is the best for consider-
ing differences between the large-scale steric signal and the
mean dynamic topography between observations and model.
The average difference along the track is removed if the track
is continuous, or for individual segments if the track is dis-
continuous due to the presence of land. Finally, in the bottom
panel of Fig. 2 the two tidal components for the observational
and modelled SLA are shown indicating the large-scale sig-
nal of tides in the open ocean.

4.2 Sensitivity experiments

In addition to a free-run (non-assimilative model simulation),
we present results from two sets of six 1-year assimilative
experiments each, comparing them against each other and
against observations. All the experiments assimilate ARGO
floats and XBT temperature and salinity data in the whole do-
main including the Atlantic part, while SLA data are assim-
ilated only within the Mediterranean Basin (see Fig. 1). In
every experiment the vertical component of the background
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Figure 1. Top panel: Model domain and bathymetry. Green and yellow dots indicate the position of the assimilated ARGO floats and XBT
respectively. Red triangles indicate the subset of in-situ data assimilated during the single daily cycle of 11 August 2021. Bottom panel: an
example of 21 d altimetry data. Satellite tracks in red and green are used in Figs. 2 and 6 respectively. The solid, bold black tracks highlight
the satellite altimetry data available during the single daily assimilation cycle of 11 August 2021. Three isobaths are drawn in both panels:

150, 350 and 1000 m.

error covariance matrix is modelled using 25 tri-variate EOFs
(temperature, salinity and SLA) computed following Dobri-
cic et al. (2006) for every model grid point. The EOFs are
computed from a 30-year timeseries of the Mediterranean
Sea reanalysis (Escudier et al., 2021). The horizontal correla-
tion radius was set to a constant value of 27 km, determined
through sensitivity experiments. The diffusive filter was it-
erated five times to model the horizontal covariance. To ac-
count for coastal effects, the correlation radius was linearly
decreased starting from about 30 km offshore to the mini-
mum grid resolution near the coast. Additionally, a Neumann
boundary condition was applied at the coast, setting the nor-
mal derivative of the field to zero. Observations are rejected
if they are less than 15 km from the coast and if the misfits
are larger than fixed thresholds: 5 °C for temperature, 2 psu
for salinity; and 30 cm for SLA. The observational error co-
variance matrix is assumed diagonal. The results presented
in Fig. 2 demonstrate that our model accurately reproduces
along-track SLA tidal gradients, with the difference between
the modelled and observed tidal signal being nearly constant.
We effectively remove this along-track bias by subtracting
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the mean residual along each satellite track. This critical step
ensures that the resulting misfit is very similar to the one
computed without tides. Based on these considerations, we
decided not to modify the SLA observational error, maintain-
ing consistency with previous work (Escudier et al., 2021).
Consequently, all the SLA data have an associated error of
3 cm regardless of the satellite and the geographic distribu-
tion. The observational errors for in-situ observations were
tuned via the Desroziers’ method (Desroziers et al., 2005)
and vary monthly. We first prescribed the observation errors
used in the previous system. The assimilation system was
then run repeatedly, using the innovations and residuals to
apply the Desroziers’ formula to obtain an estimate for the
observation error R. This process was iterated until the errors
converged (e.g., Escudier et al., 2021). The resulting vertical
error profiles are as follows: temperature and salinity obser-
vational errors peak at the surface with values of 0.45 °C and
0.14 psu, from 75 to 325 m depth they decrease linearly to
values of 0.2 °C and 0.05 psu, starting from 750 m they have
constant values of 0.1 °C and 0.02 psu respectively.

Geosci. Model Dev., 19, 423-445, 2026
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Figure 2. An example of Sea Level Anomaly data along the red track of Fig. 1. Blue lines indicate model free-run results, while black lines
indicate observational data. In the upper panel the full signals are plotted. The dashed line indicates where SLA are in regions shallower than
1000 m. The middle panel shows the SLA after the removal of the tidal signals, separately in the model and observations, and the along-track
averaged difference. The bottom panel shows the along-track observational and model tidal signals.

In addition to these sensitivity experiments, we also per-
formed a set of idealized tests with synthetic observations to
verify the internal consistency of the assimilation system and
assess the behaviour of misfits and residuals under controlled
conditions. A detailed description of these verification exper-
iments is provided in the Supplement.

In all the experiments, the state vector contains the follow-
ing model state variables:

x=I[T,S,u,v,nl"

where T is the three-dimensional temperature field, S the
three-dimensional salinity field, # and v are the total hori-
zontal velocity components and n the two-dimensional sea
surface height.

Two sets of experiments are performed to compare
the operational stability of mass-field-only (7, S,n) cor-
rection against the maximal impact of full-state variable
(T, S,u,v,n) correction. Each of the two sets consists of six
individual experiments (Exp-1 through Exp-6) with different
OceanVar2 sea level operators and choices of free parame-
ters. In Exp-1, which is used as a reference experiment, the
barotropic model is used as the sea level operator with con-
stant (in space and time) « and 8 in Eq. (7) and SLA data
are rejected when falling in areas shallower than 100 m. In
the second experiment (Exp-2), consistently with Adani et
al. (2011), we rejected SLA data falling in areas shallower
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than 150 m. Experiment 3 is similar to Exp-2, but we test the
sensitivity to variable expansion and contraction coefficients
in Eq. (7). The coefficients are computed by linearizing the
equation of state around a monthly mean climatology. In all
these three experiments we integrated the barotropic model
for 3 d with a time-step of 3600 s and then used the average
of the last day as an approximation of the steady state solu-
tion. The integration of the barotropic model is fully implicit
and the turbulent viscosity is equal to 650m? s~

Experiments 4, 5 and 6 use the dynamic height as the sea
level operator. The difference between them is the choice
of the level-of-no-motion. In Exp-4 we used a level-of-no-
motion equal to 150 m, thus Exp-2 and Exp-4 differ only for
the sea level operator. This shallow depth was specifically
chosen to test the upper limit of observation inclusion, en-
suring that the assimilation scheme uses the maximum pos-
sible Sea Level Anomaly (SLA) data coverage, even in areas
shallower than the generally accepted level-of-no-motion. In
Exp-5 the level-of-no-motion is 350 m in agreement with the
Mean Dynamic Topography (Rio et al., 2014) used. Finally,
in Exp-6 the level-of-no-motion is set at 1000 m which is the
traditional choice for the operational setting of the Mediter-
ranean Sea forecasting system (Coppini et al. 2023). In all
these experiments, the depth of the level-of-no-motion natu-
rally coincides with the minimum depth of SLA observations
inclusion in the data assimilation scheme.
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The configuration of the six individual experiments (Exp-1
to Exp-6) is identical across both sets. The two sets of exper-
iments are designed to test the critical operational trade-off
between numerical stability and maximal observational im-
pact. In the first set of experiments, we prioritize stability by
applying the analysis increments only to the assimilated vari-
ables (T, S and 7), even though the state vector contains the
velocity field. This forces the model dynamics to adjust the
velocities indirectly. In the second set of experiments, which
tests the maximal assimilation scope, also velocity correc-
tions are applied directly in the analysis step. Throughout the
remainder of the manuscript, experiments marked with an as-
terisk refer to those with velocity corrections. The first sets
of experiments are summarized in Table 1. The second set of
experiments has the same naming convention as the first set,
with the sole difference being the application of the velocity
correction in the analysis definition.

4.3 Performance Metrics

To fully assess the performances of the experiments listed
in Table 1, the mean squared error (e.g., Murphy, 1988) is
decomposed and the single components are analysed:

MB =7 — o, (10)

SDE = 0, — 00, 11

cc=— ! li( ; —m) (0; —0) 12)
_GOGmNiZI m; —m) (0;j —0),

where MB is the mean bias error, SDE is the standard de-
viation error and CC is the cross correlation between the
modelled and observed fields. The ith modelled and observed
variable is denoted by m; and o;, respectively; m and o are
the respective averages (horizontal and temporal); while o,
and o, are the respective standard deviations. In addition, the
unbiased root mean squared error (URMSE) is computed:

N
uRMSE = %;[(mi —) — (0; — )] (13)

It is important to note that the model results and observa-
tions used here are the same as those used to calculate mis-
fits within the assimilation cycle. However, while not all mis-
fits are utilized in the assimilation process, all available ob-
servations are included in the error statistics. This ensures
that all experiments are evaluated based on the same refer-
ence dataset of observations. Furthermore, to evaluate model
performance even in very shallow regions, the observational
dataset used in the misfits, and thus in the calculation of the
error statistics, includes sea level anomaly (SLA) data cover-
ing regions up to 10 m depth. This allows for the assessment
of model skill in very shallow regions where data are not as-
similated in any of the presented experiments.

Given that the CC is always positive for all the experi-
ments, the misfit statistics for the experiments listed in Table
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1 are also analysed in terms of relative improvement with
respect to the free-run or Exp-1 according to the following
metrics definition:

uRMSER f — uRMSEE #
SURMSEgyp = ( u;MSERef lu ) x 100, (14)
CCgxp#t — CCRef
SCCps = (%) x 100, (15)

where # indicates the different experiments listed in Table
1 and “Ref” denotes the free-run or Exp-1. Scc is only cal-
culated using Exp-1 as the reference. The exclusion of the
free-run as a reference is necessary because the very small
CC values would lead to excessively large percentage values
that hinder meaningful comparison between the different ex-
periments. In the manuscript the relative performance statis-
tics are presented only for the SLA data given that a similar
comparison for the temperature and salinity did not provide
additional insights.

5 Results

Figure 3 shows the temperature and salinity increments re-
sulting from different assimilation scheme setups (Table 1),
all starting with the same set of SLA misfits. These incre-
ments are presented before analysing the skills of the var-
ious experiments. The differences between the experiments
are generally small, and of the order of 10 %. The largest
differences are due to the different number of SLA data as-
similated, a result of the constraint imposed by the level-of-
no-motion used or the different minimum depth rejection cri-
terion adopted. We note that when the same data are assim-
ilated, thus in areas deeper than 1000 m, very similar incre-
ments in SLA are generated by the OceanVar2 regardless of
the schemes adopted. However, the schemes differ on how
these increments are projected into temperature and salinity
increments. Note that the ordinate axes are strongly stretched
in the figure to highlight the first 150 m depth where most of
the corrections are confined. Comparing Exp-2 and 3, which
differ only in the use of spatially and temporally variable
expansion and contraction coefficients, we observed small
but noticeable differences in the temperature and salinity in-
crements, particularly in the amplitude of near-surface max-
ima. The choice of sea level operator substantially influenced
the results. When using Dynamic Height with a level-of-no-
motion set at 1000 m (Exp-6), temperature and salinity incre-
ments were comparable to those obtained with the barotropic
model. The primary cause of the observed differences ap-
pears to be the constraint imposed on assimilated data by the
level-of-no-motion. Reducing the level-of-no-motion (Exp-4
and 5) allowed for the assimilation of more sea level anomaly
data but resulted in considerably different temperature and
salinity increments within the first 100 m compared to the
barotropic model.
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Figure 3. SLA, Temperature (red/blue) and Salinity (magenta/green) increments obtained from the different OceanVar2 configurations listed
in Tablel, starting from the same misfits. The SLA track used is drawn in green in Fig. 1. For each experiment in the top panel there are the
SLA increments where black dots indicate assimilated data, green dots indicate data rejected based on the coastal distance criteria, red dots
indicate data rejected due to the level-of-no-motion or minimum depth (in case of the barotropic model).
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Table 1. Sensitivity experiments configurations. First row indicates the sea level operator used: BM = Barotropic Model; DH = Dynamic
height. Second row indicates the choice for expansion and contraction coefficients: constant in space and time (Const) and spatially and
temporarily variable as computed from monthly climatology (MC). Third row indicates the reference level for the lower integral limit of
the dynamic height operator and thus the level-of-no-motion for the V,, , part of the model background error covariance matrix. Fourth row

indicates the minimum depth used as criterion to reject SLA data.

Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6
Sea level operator BM BM DH DH DH
o/B Const. Const. MC Const.  Const.  Const.

Reference Level for DH (m) n/a
SLA Min depth rejection (m) 100

n/a 150 350 1000
150 150 350 1000

n/a — not applicable.

5.1 Barotropic sea level operator and free-run
comparison

The performance of Exp-1 is compared with free-run. In
Fig. 4 the statistics for the SLA are shown. Every point in
the time-series represents 5 d window statistics. That is, the
overbars and the standard deviations in Eqgs. (10), (11), (12)
and (13) are computed over a 5 d time window.

The free-run has an error of about 5 cm, slightly growing
during the second half of the year. The model with assim-
ilation underwent a 10-20d adaptation period, after which
the uURMSE of the misfit stabilizes around 3 cm. A consis-
tent improvement is noted in the CC. No seasonal cycle is
observed in the CC of Exp-1, whereas the free-run exhibits
a distinct summer minimum in the correlations. The SDE in
the free-run is on average negative and it is characterized by
5d oscillations. In Exp-1, the SDE stabilized around values
of 0.25 cm, indicating an overestimation of the observed vari-
ability.

The SLA yearly averaged statistics were clustered accord-
ing to ocean bathymetry and are plotted in Fig. 5. In areas
with bathymetry between 150 and 2500 m, the free-run ex-
hibited an almost constant uRMSE. However, the error in-
creases in shallower and deeper regions, reaching the maxi-
mum in areas deeper than 3500 m. The uRMSE of the Exp-1
was more stable and approximately half of the correspond-
ing free-run statistics. Regardless of the region considered,
Exp-1 has better statistics than the free-run, indicating the
effectiveness of the assimilation procedure. For the CC dif-
ferences between free-run and Exp-1 results are also evident.
In the free-run CC decreases with depth, while for the Exp-1
we observe an opposite tendency. In terms of SDE, the largest
improvements with respect to the free-run are in shallow ar-
eas. The free-run underestimates the variance in areas with
bathymetry shallower than 1000 m, this is particularly evi-
dent in areas shallower than 150 m. The model with data as-
similation tends to overestimate the observed variability par-
ticularly in shallow areas.

In Fig. 6 the vertical profiles of uRMSE, MB, CC and SDE
for salinity (upper panels) and temperature (bottom panels)
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for the free-run and the Exp-1 are shown. Statistics are com-
puted against all available ARGO and XBT profiles. The ver-
tical structure of the salinity uRMSE is similar between the
free-run and the Exp-1. The salinity errors are characterized
by a near surface maximum which is reduced in the assim-
ilative run. The MB in the free-run has a subsurface mini-
mum at 100 m depth, while Exp-1 misfits have almost ho-
mogenous values through all the water column. The CC re-
sembles the vertical distribution of the uRMSE, with values
approaching the unity in both the experiments below 500 m
depth. Finally the salinity SDE confirms the large improve-
ment arising from the assimilation procedure. In the near sur-
face layer, the free and the assimilative run have opposite be-
haviours, with the free-run overestimating the observed vari-
ability while the assimilative run underestimating it. Below
100 m depth the SDE salinity values of Exp-1 are noticeably
reduced with respect to the free-run.

The temperature uRMSE and CC are characterized by a
strong, summer intensified (not shown), subsurface maxi-
mum/minimum due to the model difficulties in reproducing
the correct stratification. A second uRMSE local maximum
(CC minimum) is present around 300 m probably related to
the misrepresentation of the Levantine Intermediate Water
(LIW) advection in the different Mediterranean regions. A
third temperature error relative maximum is present between
1000 and 1500 m depth. The assimilation corrects all the er-
rors by approximately 30 %—50 % down to 500 m, less below
this depth.

Temperature MB is largely improved by assimilation. The
free-run tends to overestimate the observed temperature vari-
ability, and the SDE has a marked vertical structure. In gen-
eral, the assimilation seems capable of correcting most of
the model errors except in the upper thermocline/mixed layer
depth. Analysis of the corresponding time-series (not shown)
indicates a clear summer maximum in all the error statis-
tics in proximity of the mixed layer depth. This behaviour is
shared between all the different experiments, but it is clearly
reduced in the assimilative runs. However, the persistence of
this error maximum suggests a limitation in the current for-
mulation of the Background Error Covariance. Specifically,
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Figure 4. Time series of SLA error statistics for the entire year 2021. Blue (“free-run”) and green (“EXP-1") lines indicate the statistics for
the free-run results and the misfit of Exp-1 respectively. Top panel: unbiased root-mean-square error. Middle panel: correlation coefficient,
in the bottom panel the standard deviation error is plotted.
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Figure 5. SLA statistics as a function of the ocean depth. Blue and green bars indicate the free-run and Exp-1 results respectively. In the top
panel the number of observations used is also provided with dark bars.
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Figure 6. Vertical profiles of yearly averaged misfit statistics for salinity (top panels) and temperature (bottom panels). From left to right:
uRMSE, ME, CC and SDE. Blue and green lines indicate free-run and Exp-1 results respectively.

the static, climatological nature of the EOFs used to model
the vertical error component struggles to fully capture the
rapidly evolving stratification and strong vertical gradients
characteristic of the summer mixed layer. Future develop-
ment will prioritize replacing these EOFs with more dynamic
and stratification-aware operators to address this deficiency.

5.2 Sensitivity experiments to the sea level operator

Figure 7 illustrates the performance of the six different data
assimilation experiments (without velocity corrections) in
terms of correlation coefficient (CC) and improvements in
root-mean-square error (Syrmsg) relative to the model free-
run. The top panels display the time evolution of these im-
provements, highlighting both short-term fluctuations and
overall trends. The bottom panels present the time-averaged
SurMsE and CC clustered by bathymetric depth ranges, re-
vealing how the effectiveness of each experiment varies with
depth. All assimilative experiments outperformed the model
free-run. Experiments using the dynamic height as the sea
level operator, with levels of no motion set at 150 m (Exp-
4) or 1000 m (Exp-6), generally performed worse than the
other experiments. For Exp-6, the differences in both uRMSE
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and CC were particularly noticeable in regions shallower
than 1000 m, where SLA data were not assimilated. How-
ever, even in these regions, Exp-6 substantially outperformed
the model free-run, suggesting that corrections applied in
deeper areas effectively propagated into shallower regions.
In Exp-4, the deterioration in results compared to other ex-
periments was primarily confined to deeper regions. In ar-
eas shallower than 150 m Exp-1 outperforms the other ex-
periments, however the performances of the experiments are
similar indicating that the coastal areas are strongly con-
strained by the open ocean dynamics. A clear dependence
of the CC on model bathymetry was evident in all experi-
ments with the most significant improvements (with respect
to the free-run) observed in areas deeper than 3500 m, where
the model free-run exhibited the smallest CC. In shallow re-
gions, Exp-6 generally provided the smallest improvement in
CC compared to the other experiments. The results demon-
strate that certain experiments achieve substantial improve-
ments in deep-ocean regions, while others show more con-
sistent performance across all depths. These results highlight
the challenges associated with choosing an appropriate level-
of-no-motion in data assimilation of SLA. The requirement
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to define a spatially constant level-of-no-motion, which is
inherent to the dynamic height operator, demonstrates the
critical limitations imposed by its theoretical assumptions,
and our experimental results explicitly highlight these defi-
ciencies. This constraint imposes a critical methodological
compromise. For instance, maintaining a conservative, deep
level-of-no-motion (e.g., 1000m in Exp-6) ensures physi-
cal consistency but mandates the exclusion of a large frac-
tion of the available SLA observations. Conversely, adopt-
ing a shallower level-of-no-motion (e.g., 150 m in Exp-4)
maximizes observation coverage, yet the resulting analysis
is compromised due to the violation of the theoretical as-
sumptions in deeper water, ultimately leading to degraded
accuracy. The choice of the level-of-no-motion can signifi-
cantly impact the accuracy of model analysis, especially in
complex regions with varying bathymetry and ocean dynam-
ics, thereby confirming the methodological advantage of the
barotropic model operator which successfully assimilates all
available SLA data without imposing a constant level-of-no-
motion constraint.

Figure 8 presents the relative performance of five data as-
similation experiments (Exp-2 through Exp-6) compared to
a baseline assimilative experiment (Exp-1), now used as the
reference. The top panels illustrate the time series of the rel-
ative change in root-mean-square error (SyrMmsg) and corre-
lation coefficient (Scc). The bottom panels depict the time-
averaged Syrmsg and Scc changes, categorized by bathymet-
ric depth ranges. In contrast to the previous figure, where
improvements were relative to a model free-run, this figure
demonstrates the relative performance of each experiment
against the initial data assimilation run. Negative values indi-
cate a decrease in performance (higher uRMSE or lower CC)
compared to Exp-1, while positive values indicate improve-
ment. This comparison highlights the incremental benefits or
drawbacks of different experimental configurations in rela-
tion to a specific data assimilation configuration.

All the experimental configurations employing the
barotropic model perform similarly to each other. In terms
of time-series comparison, Exp-4 (with dynamic height as
sea level operator and level-of-no-motion equal to 150 m) has
performance worse than all the other experiments. Among
the experiments using the dynamic height operator, Exp-5
generally has better results both in terms of uRMSE and
CC. The analysis per bathymetric class highlights the dif-
ferences among the experiments. None of the experiments
outperform Exp-1 in regions shallower than 150 m both in
terms of uURMSE and CC. In deeper areas we see that Exp-4
and Exp-5 produce, in general, worse results, and the wors-
ening is amplified as the depth increases and the level-of-no-
motion decreases; 1000 m depth is a clear boundary for the
effectiveness of Exp-6. Employing the barotropic model as
a sea level operator yields consistent results, with small sen-
sitivity to the minimum depth used in the rejection criterion
or to the choice of constant or variable expansion/contrac-
tion coefficients. This confirms the difficulty of establishing
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a constant level-of-no-motion and highlights the benefit of
using the barotropic model as a balancing mechanism.

5.3 Sensitivity experiments to velocity corrections

The second set of experiments (Exp-1* to Exp-6*) was car-
ried out including velocity corrections in the analysis es-
timates. This second set represents the maximal scope of
multivariate assimilation, providing a benchmark against the
mass-field-only correction of the first set. The OceanVar2
configuration used in Exp-4* generated velocity increments
that led to numerical instabilities in the ocean model, pre-
venting this simulation from completing. This critical insta-
bility confirms the operational risk associated with introduc-
ing direct momentum corrections and highlights the sensi-
tivity of Exp-4. In contrast, the other experiments in this set
ran without such issues, underscoring the challenges associ-
ated with dynamic height methods. Consequently, our focus
is on the stable experiments. Across all the stable configura-
tions, the successful experiments in the second set, which in-
cluded velocity corrections, demonstrated improved perfor-
mance compared to their counterparts in the first set, without
velocity corrections. The extent of improvement varies de-
pending on the specific experiment and the region analysed.

Figure 9 shows the time series and Fig. 10 presents tempo-
rally averaged statistics by bathymetric class for the second
set of experiments. In terms of time series (Fig. 9), the er-
ror components exhibit the same characteristics as those dis-
cussed for Exp-1 (Figs. 4 and 5). The uRMSE exhibits a sum-
mer minimum in all experiments. Exp-6* performs signifi-
cantly worse than the others throughout the year. All exper-
iments using the barotropic model have similar uRMSE val-
ues, with Exp-1* generally appearing slightly better than the
others. The correlation coefficient (CC) increases throughout
the experiment’s length. For this statistic as well, Exp-6* is
the worst, showing consistently lower values than the other
experiments. Even for the SDE, which is generally reduced
compared to the previously studied experiments without ve-
locity corrections, the relative performance of the different
experiments is confirmed.

Figure 10 presents the temporally averaged statistics clus-
tered according to the bathymetry. All the stable experiments
benefited greatly from the inclusion of the velocity correc-
tions. The overall reduction in error confirms the importance
of the velocity increments when the system remains stable.
Exp-6* confirms its poor performance in areas shallower than
1500 m. However, by also correcting the velocities, its statis-
tics in deep areas are now similar or slightly better than those
obtained from experiments using the barotropic model as op-
erator in the background error covariance matrix. Exp-1* is
now the best among those analysed for all the bathymetric
classes shallower than 500 m.
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Figure 9. Second set of experiments SLA time series error statistics. Top panel: unbiased root-mean-square error. Middle panel: correlation
coefficient. Bottom panel: standard deviation error. Colour code is provided in the middle panel legend.
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Figure 10. SLA statistics as a function of the ocean depth. Top panel: unbiased root-mean-square error. Middle panel: correlation coefficient.
Bottom panel: standard deviation error. Colour code is provided in the top panel legend.
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In terms of correlation coefficient, the results previously
obtained by analysing uRMSE seem to be confirmed. For
shallow areas (< 1000 m), Exp-6* is significantly worse than
the others. In all other bathymetric classes, while confirm-
ing the previous findings, the differences between the experi-
ments are less pronounced. A different behaviour is observed
when analysing the standard deviation of the error. Exp-1*
remains the configuration that shows significantly lower er-
ror values than the others in almost all bathymetric classes.
Notably, Exp-6* is the one that benefits the most from ve-
locity corrections, demonstrating that for this specific con-
figuration, the direct momentum increments overcome other
methodological weaknesses.

6 Computational performance and parallelization

To improve computational performance, OceanVar2 adopts
a domain-decomposition scheme. This scheme leverages the
computing power of a parallel computer by partitioning the
computational domain into subdomains. Each process exe-
cutes the necessary operations to update its portion of the
global domain, sharing communications with neighbouring
processes for lateral boundary treatments using Message
Passing Interface (MPI) calls (The MPI Forum, 1993).

Rigorous testing has been conducted to guarantee bit-for-
bit (BFB) reproducibility for the entire data assimilation
system, excluding the cost function minimizer, across runs
with different MPI processes as well as runs with the same
amount of MPI processes but different partitioning of the
structured geographic grid. The quasi-Newton L-BFGS min-
imizer (Byrd et al., 1995), employed for numerical minimiza-
tion of the cost function, necessitates global matrix-vector
multiplication, which precludes BFB reproducibility when
domain decomposition is utilized. Divergences between ex-
ecutions stem from the non-associativity of floating-point
operations, particularly floating-point summation within the
minimizer. To specifically test and ensure that the paralleliza-
tion of the rest of the assimilation system is fully repro-
ducible, OceanVar2 offers the flexibility to execute the min-
imizer serially (by aggregating variables from all domains
and forcing a fixed order of operations) while the remain-
ing code is parallelized using MPI domain decomposition.
Extensive testing has demonstrated that using this specific
serial option for the minimizer ensures BFB reproducibility.
Moreover, even when the minimizer is executed in parallel,
differences arising from various domain decompositions are
statistically insignificant. Possible future work includes the
introduction of a different minimizer suited for MPI paral-
lelization.

Neglecting the differences arising from the parallel execu-
tion of the minimizer, the computational performance of the
different experiments was evaluated in terms of minimizer
iterations and code scalability. Figure 11 compares the num-
ber of iterations required for the minimizer to converge in the
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various OceanVar2 experiments. The results are presented as
a probability distribution, with statistics calculated based on
the year of assimilation testing. Consistently, all experiments
using the dynamic height operator converged with fewer it-
erations than those employing the barotropic model. The
choice of the level-of-no-motion had a small effect, where
the median increased from 24 to 25 iterations when using
350 or 150 m instead of 1000 m. However, the primary in-
sight is that the choice of the free surface operator formula-
tion and the level-of-no-motion have negligible impact on the
overall convergence speed. The median number of required
iterations remains stable across all the experiments, varying
only from 24 to 26 iterations. These differences between the
median values appear insignificant when considered in the
context of the wide day-to-day variability in the required con-
vergence steps observed across the assimilation year, which
spans approximately 12 to 45 iterations due to fluctuation in
data availability and associated misfit values. The observed
increase in the median number of iterations for the barotropic
model schemes is likely due to the barotropic model’s inher-
ent physical complexity, which results in a more intricate op-
timization landscape for the minimizer to navigate.

To assess scalability, we limited the comparison to Exp-2
and Exp-4, as they had the same number of assimilated ob-
servations. We tested OceanVar2’s performance with increas-
ing numbers of cores. For a fixed number of cores, we per-
formed experiments using eight different sets of observations
and various decomposition strategies. (e.g., with 16 cores,
we tested 4 x 4 and 8 x 2). The results are shown in Fig. 12.
The model grid consisted of 1307 x 380 x 141 points along
the x, y, and z directions, respectively. Analysis not shown
here confirms that, in these experiments, the computational
load across subdomains does not show significant differences
based on geometric peculiarities, such as coastal proximity.
Instead, the computational load of a subdomain, and thus the
total execution time, was primarily determined by the overall
number of assimilated observations. This finding is consis-
tent with the global nature of the variational solver and the
number of iterations required for convergence. Notably, sub-
domains completely covered by land still required execution
time comparable to the other domains. This occurred as a di-
rect result of the land-sea mask not being used to optimize the
domain decomposition, since the decomposition was based
solely on the model grid geometry. The top panel of Fig. 12
shows the CPU time per core as a function of the number
of cores for Exp-2 and Exp-4. Consistently with Fig. 11, the
solid lines, representing the average CPU time, indicate that
the difference between the dynamic height scheme (Exp-4)
and the barotropic model (Exp-2) operators is minimal across
all core counts, especially considering the large variability
in run times, evidenced by the shaded areas indicating the
maximum and minimum CPU time. More importantly, the
speedup achieved is limited; increasing the cores from 1 to
36 yields a speedup of approximately 8, corresponding to a
parallel efficiency of about 22 %. Furthermore, both exper-
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Figure 11. Probability density function (y axis) of the number of iteration (x axis) needed for the OceanVar2 minimization algorithm to
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iments reach a performance plateau around 36 cores, with
run time generally deteriorating at higher core counts due to
increased communication overhead.

To understand this limited parallel efficiency, the bottom
panel of Fig. 12 presents the scalability (expressed as a per-
centage of efficiency relative to the serial code) for the dif-
ferent B matrix operators. The diffusive filter operator acts as
the main bottleneck. Its efficiency decreases rapidly at higher
core counts and then exhibits a negligible further perfor-
mances gain, stabilizing beyond 36 cores. This filter, which
utilizes an implicit scheme, was implemented using a dimen-
sional splitting approach. It is solved by means of LU de-
composition of a tridiagonal matrix. We acknowledge that
the implementation and parallelization strategy employed is
suboptimal. This design choice simultaneously precludes op-
timal parallelization and results in the diffusive filter’s ex-
treme sensitivity to the geometry of the domain decomposi-
tion, which is the primary cause of the wide run-time vari-
ability shown in the top panel. This sequential process re-
quires all processors associated with subsequent columns of
subdomains to wait and then repeats along the second dimen-
sion (rows of subdomains). Although this crude, initial im-
plementation constrains the overall parallel efficiency, the re-
sulting total execution time remains within acceptable limits,
rendering the software suitable for our current purposes. Fu-
ture development will prioritize a more scalable paralleliza-
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tion strategy for this critical routine. Examining the remain-
ing key operators reveals a strong general trend: while effi-
ciency is high up to 36 cores, all remaining components ex-
perience a reduction in scaling performance thereafter. The
barotropic model operator is the least affected by this change
in scaling efficiency observed past 36 cores, maintaining the
highest efficiency among the B operators.

7 Conclusions

This study describes recent developments of the OceanVar
software which implements an incremental variational ocean
data assimilation scheme. Key innovations compared to the
previous schemes (DPO08, Storto et al., 2011, 2016) include
the implementation and evaluation of two alternative solu-
tions for the sea level operator, encompassing both barotropic
model and dynamic height operator. Furthermore, a diffusive
operator has been adopted to model Gaussian horizontal co-
variances, replacing the recursive filter used in previous code
versions. Finally, the geostrophic velocity operator is utilized
for total velocity corrections, deviating from the DPOS ap-
proach and applied to both dynamic height and barotropic
sea level operators.

Furthermore, a method for filtering the tidal components
of the background model fields is applied and tested allow-
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ing the assimilation of SLA without tides, together with in-
situ temperature and salinity data to produce analyses. These
new and old features in OceanVar2 have been tested and
compared for a regional implementation of the assimilation
scheme in the Mediterranean Sea.

It has emerged that the barotropic operator is the only op-
erator capable of consistently assimilating sea level anomaly
data in shallow and deep ocean regions. Variable o and B
parameters in the linear equation of state (7) yielded minor
differences in our experiments, however this assumption is
likely not to be valid in global models.

The dynamic height operator, though easy to implement,
has clear limitations. Requiring the definition of a spatially
independent level-of-no-motion, it does not provide an opti-
mal solution in domains with highly variable bottom topogra-
phy and dynamics. For the Mediterranean Sea, a level-of-no-
motion equal to 1000 m is appropriate, as demonstrated by
the quality of the corrections obtained with OceanVar2. How-
ever, this represents a significant limitation, as it excludes
the assimilation of SLA observations in shallower areas. De-
creasing the level-of-no-motion depth reveals the limitations
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of this approach. For shallower levels, the benefits of assim-
ilating more data are offset by the loss of the quality of the
corrections in deeper areas. The results are corroborated by
the numerical instabilities arising when velocity corrections
are applied in experiments with a level-of-no-motion shal-
lower than 350 m. The emergence of this critical instability
provides a clear empirical demonstration that violating the
inherent physical consistency assumptions used to construct
the B matrix can lead to unstable solutions. Consequently, the
optimal choice of operator depends on balancing the need for
maximal observational impact with the requirement for nu-
merical stability within the specific operational framework.
Although the barotropic model is inherently more complex
and thus computationally more expensive than the dynamic
height operator, its impact on the total run time is minor.
This is because the semi-implicit scheme used to discretize
the barotropic equations allows for large time-steps, signifi-
cantly limiting the computational demand. This small com-
putational overhead ensures that the barotropic model opera-
tor does not become the dominant factor in execution time.
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The adopted solutions simplify the application of Ocean-
Var2 in complex areas of the world’s oceans. To our knowl-
edge OceanVar?2 is the only data assimilation software em-
ploying a barotropic model in its model background error
covariance matrix. It is important to note that the current
implementation of the barotropic model uses closed lateral
boundary conditions. Its applicability is therefore limited to
basins with a geometry that allows this approximation. In the
future the barotropic model will be implemented also with
open boundary conditions.

Regarding parallel performance, the diffusive filter over-
head is currently the dominant computing factor, constrain-
ing the overall scalability. We acknowledge that the first im-
plementation of the diffusive filter used in OceanVar2 limits
the system’s parallel efficiency. However, we chose this di-
rection, replacing the previously used recursive filter, due to
the superior flexibility and adaptability the diffusive filter of-
fers for modeling horizontal error correlations.

The mathematical and algorithmic core of the system, first
presented in DPO8 and subsequently used in various opera-
tional forecasting frameworks, has been largely documented
in several scientific works. Based on extensive testing, the re-
vised code is stable and robust, with its performance results
presented throughout this work. The present version, Ocean-
Var2, is also open to the community.

Code availability. The OceanVar2.0 code is publicly avail-
able under a GPLv3 licence (https://www.gnu.org/licenses/gpl-3.
0.txt, last access: 15 January 2025) at https:/github.com/
CMCC-Foundation/OceanVar2 (last access: 15 January 2025)
together with a user guide on compiling and running the
code (Adani et al., 2025, https://github.com/CMCC-Foundation/
OceanVar2/blob/main/doc/OceanVar_User_Manual.pdf, last ac-
cess: 7 January 2026; https://doi.org/10.5281/zenodo.15593468,
Oddo et al, 2025). The code used in this manuscript is
permanently archived at https://doi.org/10.5281/zenodo.15593468
(Oddo et al., 2025). A test case can be downloaded at
https://github.com/CMCC-Foundation/MedFS831 (last access: 15
January 2025). The ocean model used is based on the
NEMO source code (version 4.2.0) is accessible on Zenodo
https://doi.org/10.5281/zenodo.6334656 (Madec and the NEMO
System Team, 2022).

Data availability. All datasets used in this study are publicly acces-
sible except for the atmospheric forcing fields.

— Initial and open-boundary conditions were obtained from
Copernicus Marine Service products, which are openly avail-
able through the service as cited in the manuscript.

— Observational datasets (including SLA, ARGO, and XBT mea-
surements) are likewise publicly available from the Copernicus
Marine Service.

— The atmospheric forcing fields used to drive the model are op-
erational ECMWEF products, which are not publicly distributed
and must be requested directly from ECMWE.
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Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-19-423-2026-supplement.
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