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Abstract. Climate change impacts both lakes and their sur-
rounding catchments, leading to altered discharge and nu-
trient loading patterns from catchments to lakes, as well as
modified thermal stratification and mixing dynamics within
lakes. These alterations affect biogeochemical processes and
water quality in lakes. Coupled catchment-lake modeling
provides both a holistic evaluation of the effects of climate
change on lakes and a framework for explicitly assessing
the importance of how catchments effect lakes. The Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP)
provides a framework for projecting the impacts of cli-
mate change across multiple sectors (e.g. water, lakes, en-
ergy, health) of the Earth System consistently, enabling inte-
grated cross-sectoral assessments. However, climate impacts
on lake dynamics are modeled in ISIMIP without consider-
ation of the links between lakes and the surrounding catch-
ments. This is a significant limitation, as it restricts assess-
ments to only the direct impacts of climate change on lakes,
overlooking the critical interactions between lakes and their
catchment areas. In this study, we establish the first dynamic
connection between the Global Water and Lake Sectors in
ISIMIP, achieved by scaling the gridded modeled outputs of
water fluxes from the Global Water Sector to the catchments
of the representative lakes of the Lake Sector. The stream-
flow to the representative lake of each grid cell, as defined
by the ISIMIP Global Lake Sector, was calculated based on
runoff proportional to the catchment area of each representa-
tive lake. If the lake surface area was larger than the grid cell
area, water from upstream grid cells was included as the cor-

responding proportion of river discharge. The methodology
was applied to 70 lakes across Sweden covering a wide range
of sizes, hydrological settings and catchment characteris-
tics. The estimated streamflow was validated against both the
streamflow outputs from the hydrological model HYPE and
observed data. The comparison demonstrated good agree-
ment in terms of long-term streamflow mean and seasonal
pattern, indicating that the proposed approach is capable
of producing reliable streamflow estimates without requir-
ing high-resolution local models. This estimated streamflow,
representing water flow into lakes, will provide a valuable
dataset for the scientific community within the ISIMIP Lake
Sector supporting hydrological and water quality modeling
efforts aimed at understanding the impacts of climate change
on lakes.

1 Introduction

Climate change impacts both catchments and lakes in distinct
yet interconnected ways, influencing their physical, chemi-
cal, and biological processes. On one hand, alteration of pre-
cipitation patterns and increases in air temperature lead to
hydrological changes in catchments. At high latitudes, win-
ter precipitation increases and increased air temperature shift
precipitation from snow to rain, reducing snowpack and lead-
ing to earlier spring snowmelt, resulting in greater stream-
flow and nutrients loading during this period (Jiménez-
Navarro et al., 2021). Higher air temperatures also lead to
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greater evapotranspiration rates (Donnelly et al., 2017; Liu
et al., 2021), which reduce streamflow and increase nutri-
ent concentration during the summer. Extreme precipitation
leads to increased nutrient loading in both wet and dry ar-
eas, through increased runoff in wet areas, and soil erosion
and the mobilization of nutrients trapped in soils in dry ar-
eas (Costa et al., 2023). On the other hand, increases in air
temperature result in increased lake surface water tempera-
ture (O’Reilly et al., 2015) with stronger thermal stratifica-
tion and reduced mixing (Kraemer et al., 2015), earlier on-
set of summer stratification (Magee and Wu, 2017; Moras
et al.,, 2019) and shorter ice-cover periods (Sharma et al.,
2019, 2021). Warmer water temperatures promote the growth
of cyanobacteria, leading to the formation of harmful algal
blooms (Paerl and Huisman, 2008; Huisman et al., 2018).

Stronger lake stability and longer duration of thermal strat-
ification lead to hypolimnetic oxygen depletion (Jane et al.,
2021; Jansen et al., 2024), resulting in increased internal
loading (North et al., 2014) and greenhouse gas emission
(Marotta et al., 2014; Vachon et al., 2019; Jansen et al.,
2022). Earlier ice loss leads to greater heat loss due to in-
creased evaporation rates (Wang et al., 2018; Li et al., 2022).
Nonetheless, climate change affects lake ecosystems through
a complex and dynamic interplay of catchment loading and
lake-internal processes. For instance, changes in the timing
of streamflow and lake ice-off lead to earlier onset of spring
phytoplankton blooms (Gronchi et al., 2021; Mesman et al.,
2024). Lake water level fluctuations caused by dry conditions
during periods of strong stratification limit vertical mixing,
which contributes to pronounced hypolimnetic hypoxia. This
hypoxia is exacerbated by intense precipitation events that
subsequently reduce oxygen concentrations in the water col-
umn and lower the pH level (Saber et al., 2020).

The integration of catchments and lakes using coupled dy-
namic models provides valuable insights into the function-
ing of lake ecosystems and the impacts of climate change,
for example to understand how changes in the surrounding
catchment area, within the lake itself, and their interactions
affect the lake’s dynamics. Additionally, this modeling ap-
proach can inform the development of adaptation and miti-
gation strategies.

The Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP, https://www.isimip.org, last access: 3 December
2025) is a collaborative framework for assessing the impacts
of climate change across temporal and spatial scales, by in-
tegrating climate models, impact models, and direct human
forcing data to provide insights into climate change risk and
inform potential adaptation and mitigation strategies. ISIMIP
is organized into multiple sectors that represent natural and
human components of the Earth system, that are both reg-
ulators of climate and vulnerable to its changes, including
agriculture, forests, fisheries and marine ecosystems, water,
lakes, energy, health, among others. To ensure consistency
in impact modeling within and across sectors, ISIMIP pro-
vides a common set of climate-related and direct human forc-
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ing data, and along with a modeling protocol sets up stan-
dardized experiments, spanning pre-industrial and historical
periods and future projections (Frieler et al., 2024). This
framework enables multi-model impact simulations within
sectors, enhancing the robustness and reliability of model
projections (Rosenzweig et al., 2017) and quantifying the
sources of uncertainty in the projections (Krysanova et al.,
2017; La Fuente et al., 2024a; Jones et al., 2025). In addition,
it enables cross-sectoral assessment of climate change im-
pacts (Lange et al., 2020; Vanderkelen et al., 2020). However,
cross-sectoral integration remains a challenge within ISIMIP,
which limits the potential for capturing complex interdepen-
dencies, cascading effects, and feedback loops between sec-
tors. For example, simulations from the Water Sector and the
Lake Sector are at present not connected to each other.

The ISIMIP Lake Sector modeling has focused on lake
physics and thermal dynamics, including changes in water
temperature (Ayala et al., 2020, 2023b), loss of ice cover
(Grant et al., 2021; Sharma et al., 2021), stratification phe-
nology (Woolway et al., 2021b, 2022b), alterations in mixing
regimes (Woolway and Merchant, 2019), occurrence of lake
heatwaves (Woolway et al., 2021a, 2022a), shifts in lake ther-
mal regions (Maberly et al., 2020), heat uptake (Vanderkelen
et al., 2020), surface heat fluxes (Ayala et al., 2023a) and
lake evaporation (La Fuente et al., 2022, 2024b, a). Hydro-
dynamic lake model simulations were performed under the
premise that lake water temperature variation results solely
from the exchange of energy between the lake surface and
the atmosphere (Golub et al., 2022). However, the advective
fluxes are particularly relevant for water bodies with signifi-
cant water level fluctuations and rapid water exchange, such
as reservoirs or lakes with short residence times. Fenocchi et
al. (2017) showed that in a deep subalpine lake a hydrody-
namic lake model, when excluding through-flows, required
unrealistically low light extinction coefficient to reproduce
temperatures in the epilimnion and upper metalimnion. In
contrast, incorporating through-flows together with a realis-
tic light extinction coefficient improved the accuracy of tem-
perature predictions in the lower metalimnion and upper hy-
polimnion. Raman Vinna et al. (2018) investigated the trib-
utary influences on lakes in a study of Lake Biel and Lake
Geneva and revealed that seasonal variations in river dis-
charge and temperature significantly affect lake warming and
stratification, underscoring the importance of hydrologic in-
puts in thermal lake modeling. Integrating the ISIMIP Wa-
ter Sector and Lake Sector, incorporating hydrologic model
outputs into lake model simulations, can improve the accu-
racy of thermal stratification and mixing dynamics in lakes
and the assessment of climate change impacts. It will also
provide the basis for more complex simulations of lake bio-
geochemistry and water quality parameters, for which inputs
from the upstream catchment are paramount.

The Global Water Sector in ISIMIP (Telteu et al., 2021;
Miiller Schmied et al., 2025) focuses on assessing the im-
pacts of climate change on water fluxes, including discharge,

https://doi.org/10.5194/gmd-19-41-2026


https://www.isimip.org

A. 1. Ayala et al.: Scaling streamflow inputs to lakes in ISIMIP 43

total (surface 4 subsurface) runoff and evapotranspiration,
among other hydrological variables, with a global grid res-
olution of 0.5° by 0.5°. The Global Lake Sector in ISIMIP
has assigned one representative lake to each 0.5° grid cell,
which simplifies the complexity of modeling all lakes glob-
ally. This ensures computational feasibility while capturing
variations in lake responses to climate change, and provides
a practical way to include lake-specific dynamics in a global-
scale assessment.

Here, gridded water fluxes simulated by WaterGAP 2
following the ISIMIP phase 3a protocol were scaled to
match the individual lake catchment areas for estimating
the streamflow of 70 lake catchments across Sweden. The
catchment-scale streamflow simulations were then validated
against both the streamflow outputs of the hydrological
model HYPE, which simulates hydrological processes at the
catchment scale, and observed data. The use of HYPE pro-
vides an additional benchmark, with its outputs serving as
an established reference dataset where observational data are
limited.

2 Material and methods

2.1 Gridded simulations of streamflow from the
ISIMIP3a Global Water Sector

Water Global Assessment and Prognosis (WaterGAP) is a
process-based hydrological model used for quantifying wa-
ter resources and water use on a global scale (Alcamo et
al., 2003; Doll et al., 2003). WaterGAP 2 consists of three
major components, the global water use model, the linking
model GroundWater-SurfaceWater USE (GWSWUSE) and
the WaterGAP Global Hydrology Model (WGHM) (Miiller
Schmied et al., 2021). The global water use model distin-
guishes five water use sectors, i.e., irrigation, livestock, do-
mestic, manufacturing and cooling of thermal power plants,
quantifying both consumptive waters use and water with-
drawals. The linking model GWSWUSE computes the frac-
tions of water withdrawals and consumptive use for all five
sectors, distinguishing whether the water is sourced from
groundwater or surface water bodies, such as lakes, reser-
voirs and rivers. The WGHM computes water flows (fast
surface and sub-surface runoff, groundwater recharge, evap-
otranspiration and river discharge) and storage across ten
compartments. The vertical water balance covers the canopy,
snow and soil, while the lateral water balance includes
groundwater, lakes, reservoirs, wetlands and rivers.

The computational grid of WaterGAP 2 is based on the
CRU land-sea mask (Mitchell and Jones, 2005), which cov-
ers the global continental area with the exception of Antarc-
tica, comprising 67420 grid cells of 0.5° longitude x 0.5°
latitude, and the upstream—downstream relations among the
grid cells are defined by the drainage direction map DDM30
(Doll and Lehner, 2002). Model input includes climate data,
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land use and land cover data, soil characteristics, location
and extent of surface water bodies (lakes, wetlands, dams
and reservoirs), the river routine network (basins, flow direc-
tion and slopes) and human water use data. Although Water-
GAP 2 includes the representation of lakes in its simulations
(Miiller Schmied et al., 2021), accounting for their role in
storing water, evaporation and downstream release, it does
not explicitly resolve the amount of water flowing into in-
dividual lakes from upstream locations. Instead, the model
estimates water flows at the grid cell level, without disaggre-
gating them to accurately capture inflow to specific lakes. As
a result, it lacks the spatial resolution needed to track lake
specific inflow in details.

WaterGAP 2.2e contributed to ISIMIP3a, specifically in
the Global Water Sector (Miiller Schmied et al., 2024),
following the ISIMIP3a simulation protocol. The protocol
(https://protocol.isimip.org, last access: 3 December 2025)
outlines the required experiments, input data sets and out-
put variables necessary for participation. Input data (climate
forcing, socioeconomic forcing and static geographic infor-
mation) and impact model outputs are available at https:
//data.isimip.org (last access: 3 December 2025).

Here, we focused on the standard model evaluation exper-
iment obsclim_histsoc_default (Frieler et al., 2024), which is
based on the observed climate-related forcing obsclim from
the GSWP3-WS5ES climate forcing dataset (Kim, 2017; Cuc-
chi et al., 2020; Lange et al., 2021) combined with the di-
rect human forcing (e.g. land use and land cover changes
and water management) histsoc. This experiment repro-
duces observed long-term changes in hydrological change
and water use from 1901 to 2019. The impact model
WaterGAP 2.2¢ (https://www.isimip.org/impactmodels, last
access: 3 December 2025) provided monthly total (sur-
face + subsurface) runoff, gu [kg m~2s7 1, groundwater
runoff, go [kgm=2s~'], and discharge, dis [m=> s~!].
Note that, gi¢ and gg represent the runoff produced within
a grid cell, which includes both surface and subsurface,
and groundwater components. Meanwhile, dis represent the
routed (i.e. via river channels) discharge at a given grid cell,
which includes the runoff generated within that grid cell plus
the contribution from upstream grid cells. This means dis ac-
counts for both locally generated runoff and the cumulative
flow from upstream grid cells, which results in the total dis-
charge flowing downstream.

2.2 Representative lakes in the ISIMIP3a Global Lake
Sector

In the ISIMIP3a Global Lake Sector, each 0.5° grid cell
was assigned a representative lake sourced from the Hydro-
LAKES database (Messager et al., 2016). The selection of
the representative lake for each grid cell was based on the lo-
cation of the lake centroid. When multiple lakes were present
within a grid cell, the representative lake was selected based
on the lake depth corresponding to the weighted median of
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Figure 1. Study sites, marked either as crosses (small lakes) or blue
lake shapes (large lakes).

all lakes within the respective grid cell (weighted by the area
of the lake) (Golub et al., 2022), resulting in a total of 41 449
representative lakes. The catchment areas for these represen-
tative lakes were derived from the HydroLAKES database
(Messager et al., 2016).

2.3 Study sites

Our study sites comprised 70 lakes across Sweden, which
correspond to representative lakes from the ISIMIP3a Global
Lake Sector (Fig. 1). The site selection included lakes with a
wide range of surface areas and catchments of varying sizes
(Table S1 in the Supplement). Additionally, the lakes were
located in different physiographic regions, ranging from agri-
culturally dominated lowland areas in the south to boreal and
subarctic regions in the north. Accordingly, the surface area,
Alake, ranged from 0.34 to 5486 km?2, with mean and median
values of 176.26 and 23.25 km?, respectively. The catchment
area, Acaichment, varied from 101 to 48 421 km?, with mean
and median values of 4542 and 1698.35km?, respectively.
The ratio between Acarchment and Ajake ranged from 3.37 to
14 962. The mean and median ratio Acatchment tO Alake Were
386.99 and 48.30.
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2.4 Scaling streamflow from 0.5° grid cells to
catchment scale

To estimate the streamflow into representative lakes, we ap-
plied a scaling approach that adjusts grid-based hydrological
outputs to the actual catchment area of the lakes. The method
is structured into three approaches, depending on the size of
the catchment relative to the grid cell area where the lake
centroid is located:

— Approach I.a. Applied when the catchment area is
smaller than or equal to the area of the grid cell con-
taining the lake centroid.

— Approach Lb. Applied when the catchment area spans
multiple grid cells.

— Approach II. Applied for large lakes where the lake area
spans multiple grid cells.

The water flow into the representative lake was calculated
based on total (surface + subsurface) runoff, gy [m s~1,
and groundwater runoff, g, [m s~11, in proportion to the
catchment area of the representative lake, Acatchment [m?]
(Fig. 2). The catchment was delineated using upstream grid
cells based on the flow direction. The grid cells contribut-
ing water flow towards the lake were classified into levels:
grid cells partially occupied by the lake correspond to level
0; each level O grid cell received water flow from one or more
of its eight neighbouring grid cells, which were classified as
level 1; this process continued, with the neighbouring grid
cells of level 1 classified as level 2, etc (Fig. 4). The ratio
(N) of catchment area, Acaichment, t0 grid cell area (grid cell
area where the lake centroid is located), Agid, indicated how
many grids cell occupied the catchment and determines the
number of grid cells to be counted in the water flow calcula-
tion (Fig. 2).

For N <1 (Approach I.a), the catchment area was smaller
or equal to the grid cell area where the lake centroid was
located. Note that, N was rounded down to the nearest in-
teger number, meaning the catchment area can be slightly
greater than the lake grid cell area. Only grid cells partially
occupied by the lake (grid cells of level 0) were counted (i)
(Figs. 2 and 3). For example, lake 12 247 (Fig. 3) had an Ajae
of 22.46 km? and partially occupied 2 grid cells. Acachment
was 1662km?, which was slighter greater than the Agrig of
the grid cell where the lake centroid was located, which was
1415.32 km?, resulting in a N equal to 1. Therefore, the grid
cells occupied by the lake (grid cells of level 0) were included
in the count (i =2).

However, for N > 1 (Approach Lb), the catchment occu-
pied multiple grid cells. As a result, both grid cells partially
occupied by the lake and upstream grid cells were counted.
In addition to the grid cells of level O (i), the number of up-
stream grid cells, j = N — i, were counted by levels, select-
ing as many grid cells as indicated by j. This ensures that
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Figure 2. Workflow for estimating streamflow to lakes by scaling grid cells to catchment scale.
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Figure 3. Catchment-lake scheme for lake 12247

(Alake =22.46km?,  Acaichment = 1662km?,  Agrig = 1415km?
and N =1). The dot denotes the lake centroid, respectively. The
arrows indicate the flow direction, and the numbers indicate the
grid cell levels. The blue-shaded grid cells represent those selected
for the streamflow estimation, according to the workflow (Fig. 2).

the total contributing area, represented by i + j grid cells,
approximates the scaled catchment size N. Once all level 1
grid cells have been counted, we proceed to the next level,
continuing the process until j grid cells have been counted
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(Fig. 4). If not all grid cells at the same level can be counted
(when the available grid cells at a given level exceed j or the
remaining j), those with the steepest slope were prioritized
(Fig. 2). For example, lake 11693 (Fig. 4) has an Acatchment
of 11316 km?, while the grid cell where the lake centroid is
located has an Agg of 1220.18 km?2, resulting in N =9. Of
the 9 grid cells counted, 2 corresponded to level 0 (i =2),
representing grid cells partially occupied by the lake. For the
upstream grid cells (j =7), 2 of the 7 grid cells corresponded
to level 1, 2 to level 2, and 3 to level 3.

For large lakes where the surface area, Ajgke, exceeded the
Agrid (Approach II) the water flow from upstream grid cells
was included as river discharge, dis [m3 s~1], at the catch-
ment grid cells bordering the lake grid cells (k, grid cells clas-
sified as level 1), in addition to g [m s711 and qg [m s
proportional to the land area of the grid cells partially occu-

pied by the lake (7, grid cells classified as level 0), Ai?tghmem
[m?] (Figs. 2 and 5). The inclusion of dis was necessary be-

cause, in large lakes, a significant portion of inflow enters

Geosci. Model Dev., 19, 41-56, 2026
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denotes the lake centroid and the pour point, respectively. The arrows indicate the flow direction, and the numbers indicate the grid cell
levels. The blue-shaded grid cells represent those selected for the streamflow estimation, according to the workflow (Fig. 2).

not as diffuse runoff from adjacent land areas, but as a con-
centrated river discharge delivered through from upstream
flow paths or tributaries. Lake grid cells (i) that did not flow
into the lake, such as the grid cell where the outlet of the
catchment is located or grid cells acting as sinks (usually to
the ocean), were excluded. For example, lake Vinern — 105
(Fig. 5) spans 12 grid cells (i) with an additional 18 upstream
grid cells. Of the i lake grid cells, the pour point grid cell was
excluded because it was flowing out of the lake. Streamflow

was calculated as the product of gt + ¢¢ and Af:tihmem for
each of the remaining 11 grid cells at level 0 (i =11). Ad-
ditionally, the dis contribution from 7 bordering grid cells
within the 18 upstream cells (k =7, level 1 grid cells) was

included.
2.5 Validation of streamflow at catchment scale

Historical simulations of daily river discharge of the hy-
drological model HYPE (Hydrological Predictions for the
Environment; Lindstrom et al., 2010), which is used op-
erationally and was developed by Swedish Meteorological
and Hydrological Institute (SMHI), are openly available for
35447 sub-catchments across Europe over a 30-year period
(1981-2010) (Donnelly et al., 2016; https://hypeweb.smhi.
se/explore-water/historical-data/europe-time-series, last ac-
cess: 3 December 2025). The HYPE discharge simulations
(hereafter referred to as the reference dataset) were used to
evaluate the performance of the developed methodology for
scaling streamflow from grid cells to catchment scale.

The HYPE model was forced with ERAS5 reanalysis cli-
mate data (Donnelly et al., 2016), ensuring that the simu-
lations provided an independent dataset for validation. Daily
HYPE outputs were averaged to produce monthly and annual
discharge values, which were then compared to our monthly
estimations and derived annual averages calculated from the
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monthly values over the common period (1981-2010) across
70 study sites.

Monthly and annual averages derived from daily observed
river discharge at stations downstream of 10 lakes, which are
also representative lakes within the ISIMIP Global Lake Sec-
tor (lakes: Vinern — 105, Vittern — 104, Malaren — 102, Sil-
jan — 1150, lake 12423, lake 12 791, Erken — 12 809, Roxen —
12965, lake 142240, and Hasselasjon — 152 977), available
from the Swedish Meteorological and Hydrology Agency
(SMHI; https://www.smhi.se/data, 3 December 2025), were
also compared with the corresponding monthly and an-
nual average simulated and reference streamflow. Although
the observed data represent discharge downstream of the
lakes (lake outflows), while the simulations estimate lake in-
flows, we assume that the atmospheric water exchange (pre-
cipitation and evaporation) over the lake surfaces in Swe-
den are relatively minor compared to total inflow and out-
flow volumes, particularly at monthly and annual timescales
(Sect. S1).

Performance was assessed using the Kling-Gupta effi-
ciency, KGE, metric. KGE decomposes model performance
into three aspects: the linear correlation coefficient, KGE;,
the bias ratio, KGEy, and the variability ratio, KGE,, which
assess the model’s ability to reproduce timing, mean and
variability, respectively (Gupta et al., 2009; Kling et al.,
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https://hypeweb.smhi.se/explore-water/historical-data/europe-time-series
https://hypeweb.smhi.se/explore-water/historical-data/europe-time-series
https://www.smhi.se/data

A. 1. Ayala et al.: Scaling streamflow inputs to lakes in ISIMIP 47

62.5°N 7
620N P
61.6°N - -
61.0°N - 3
60.5°M - 3 2 2 2
60.0°N- 2 1 1 1 1
£9.5°N - : : = T
al,

-k
590N - 5 s

P
58.5°M - : : :
58.0°M - T | ) !

11.6°E 12.0°E 12 5°E 13.0°E 13.6°E 14.0°E 14.5°E 15.0°E

Figure 5. Catchment-lake scheme for lake Vinern — 105 (Ajake = 5486 km?, Acarchment =48 421 km? and Agyig = 1604 km?). The dot and
cross denote the lake centroid and the pour point, respectively. The arrows indicate the flow direction, and the numbers indicate the grid cell
levels. The blue-shaded grid cells represent those selected for the streamflow estimation, according to the workflow (Fig. 2).

2012).

KGE=1-

\/(KGEr — 1)+ (KGE, — )2+ (KGE, — 1)* (1)

KGE, = im 2)
Mobs
CVim w2

KGE, = "% = £sm. 3)
CVobs ﬁ

where [tsim and pops are simulated and observed mean, and
osim and ogps are simulated and observed standard devia-
tion. All three metrics have an optimum value of 1. The
three individual metrics are combined into an overall model
performance, KGE, by calculating the Euclidean distance
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from the ideal point. The error term is subtracted from
unity to constrain the metric between 1 (perfect agreement)
and —oo. Based on Knoben et al. (2019), KGE is inter-
preted as: KGE=1 perfect agreement, 0.75 < KGE < 1 very
good performance, 0.50 <KGE < 0.75 good performance,
0.25 < KGE < 0.50 acceptable performance and KGE < 0.25
poor performance.

Additional goodness-of-fit metrics for comparing refer-
ence and simulated values, such as the Mean Bias Error
(MBE), Root Mean Square Error (RMSE), Normalized Root
Mean Square Error (NRMSE) and Nash-Sutcliffe Efficiency
(NSE; Nash and Sutcliffe, 1970), can be found in the Supple-
ment.

Geosci. Model Dev., 19, 41-56, 2026
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3 Results

The performance of the scaled streamflow simulations from
grid cells to the catchment scale (hereafter referred to as sim-
ulations) was evaluated for monthly time series over the pe-
riod 1981-2010 across 70 study sites (Fig. 6A; Table S2).
The average Kling-Gupta efficiency, KGE, was 0.59 +0.18
(mean = standard deviation), with individual values ranging
from —0.07 to 0.86. For all study sites, the KGE exceeded
—0.41, indicating that the simulated streamflow provided
added value compared to simple prediction based on the
long-term mean streamflow.

To better diagnose performance, KGE was decomposed
into its three components: correlation (KGE;), bias (KGEy)
and variability (KGE). The average KGE; was 0.79 4 0.08,
suggesting generally strong agreement between reference
and simulated streamflow timing. A total of 52 out of 70 sites
(74 %) exhibited a KGE, greater than 0.75, reflecting very
good representation of seasonal and interannual flow dynam-
ics. The bias component, KGEy, averaged 1.06 £ 0.30, was
close to the optimal value of 1, indicating that the overall vol-
ume of streamflow was, on average, well captured. However
the relatively high standard deviation highlights substantial
variability in bias among the study sites. Only 39 study sites
(56 %) had a KGE,, within the range of 0.75 to 1.25, indicat-
ing that for a significant number of study sites, deviations in
simulated streamflow volumes were a key source of reduced
performance. The variability component, KGEg, averaged
0.88 0.22, indicating generally very good representation of
streamflow variability, though with some underestimation of
streamflow. Similar to KGE;, 52 sites (72 %) had KGEg val-
ues within the range of 0.75 to 1.25. In summary, the simu-
lations demonstrated generally very good performance in re-
producing time and variability of monthly streamflow across
study sites. However, discrepancies in the magnitude of the
simulated streamflow, reflected in the higher variability of
KGEy, where the bias component more frequently deviated
from its optimal range compared to the correlation and vari-
ability components (Fig. 6A).

The inter-annual variability of streamflow was assessed
by comparing the simulated and reference annual aver-
age streamflow (Table S2; Fig. S2). The average values of
the KGE components were KGE; of 0.77 £0.14, KGEy, of
1.06 & 0.30, KGE;, of 1.06 £ 0.31, indicating an overall very
good performance in responding differently to wet and dry
years. The relatively high KGE; suggest that the simulated
streamflow timing was very well captured. However, the
standard deviations of both KGEy, and KGE, were relatively
large, reflecting considerable variability in the ability to sim-
ulate annual streamflow volumes and variability. While the
mean values of KGE, and KGE; were close to the opti-
mal value of 1, these high standard deviations indicate that
performance differed substantially among study sites, with
some ties showing over- or underestimation of interannual
streamflow characteristics. The combined KGE for interan-
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nual streamflow was 0.54 &+ 0.23, which is slightly lower but
comparable to the KGE (0.59 £ 0.18) for monthly stream-
flow, suggesting that the model maintained reasonable skill
across both temporal scales.

Performance was further analysed based on the streamflow
scaling approach. Of the 70 study sites, 68 were analysed us-
ing Approach I (Ajuke < Agria), with 39 study sites follow-
ing Approach L.a (N <1) and 29 study sites following Ap-
proach Lb (N > 1). The average KGE was 0.56 £0.15 for
Approach L.a and 0.60 +0.21 for Approach Lb, indicating
similar performance across these two subcategories. In 5 of
the Approach Lb study sites, an additional comparison was
made between counting all grid cells at the last level ver-
sus only those with the steepest slope. In both cases, the
performance was acceptable, and the differences between
KGE and its components were marginal. When all grid cells
were counting at the last level, the KGE was 0.49 £0.31,
with KGE; of 0.76 +0.05, KGEy of 0.87 £0.17, KGEg of
1.23 +0.49; when only the steepest grid cells were counted
the KGE was 0.48 +0.31, with KGE; of 0.74 +0.07, KGEy
of 0.85+£0.15, KGE, of 1.224+0.49). These small differ-
ences suggest that the method is robust to the choice of how
grid cells are selected at the last level.

The Approach II (Ajake > Agria) Was applied to the two
largest lakes in this study: Vénern (105) and Vittern (104),
the performance was very good in both Vinern and Vittern
(Fig. 6), with a KGE of 0.77 (KGE; of 0.85, KGE,, of 0.97,
KGE; of 1.17) and 0.79 (KGE; of 0.79, KGE;, of 0.97, KGE,
of 1.00), respectively. Lake Milaren (102), the third largest
lake in Sweden, extends over 9 grid cells (Fig. S1); how-
ever, its Ajae (of 1083km?) does not exceed the Agrig of
1580 km? due to its irregular and branched shape. Scaling
streamflow Approach Lb (Ajake < Agriq for N > 1) and Ap-
proach IT (Ajake > Agrig) were tested (Fig. 2). For Approach
Lb, simulated streamflow showed good performance at the
seasonal scale, with KGE of 0.71 (KGE; of 0.72, KGEy, of
1.04, KGE, of 1.06); however, errors in reproducing the tim-
ing of flow reduced the overall performance. In Approach
11, the simulated seasonal streamflow was less accurate, with
a KGE of 0.47 (KGE; of 0.52, KGE,, of 0.98 and KGE,
of 0.80). The errors were caused by either a reduced abil-
ity to accurately reproduce the timing of flow increases and
decreases; and an underestimation of the magnitude of the
variability, although it was still acceptable.

In addition, the performance of simulated streamflow was
assessed by comparing simulations with observations for 10
study sites, which are both representative lakes in the IS-
MIP3 Global Lake Sector and for where observations are
available (Fig. 6B; Table S3). At the seasonal scale, the aver-
age KGE was 0.46 4+ 0.21, with KGE; of 0.65 +0.12, KGE,
of 1.10 £0.20, KGE; of 1.07 £ 0.40. Overall performance
was acceptable but was primarily limited by mismatches in
flow timing. At the annual scale, the performance of the scal-
ing streamflow from grid cells to catchment scale was good
(KGE of 0.70 £0.15, with KGE; of 0.85+£ 0.05.83 +0.05,
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Figure 6. Kling-Gupta efficiency (KGE)and its components, timing (KGEy), bias (KGEy,) and variability (KGEg), when comparing monthly
simulations of scaled streamflow with reference data from the HYPE model (A) and observed data (B) of streamflow. Filled dots correspond
to study sites where Ajake < Agrig (approach I) and unfilled dots corresponds to study sites where Ajake > Agrig (approach II). The horizontal
dashed line marks where KGE and its components equal 1, representing a perfect match.

KGEp of 1.10£0.20, KGEg of 0.98+0.20), indicating
strong agreement in timing, bias and variability across study
sites (Fig. S2).

Finally, a further evaluation was conducted by comparing
reference and observed streamflow for 9 study sites (note
that the reference and observations datasets cover different
time periods, which limited direct comparability in the 10
study sites for which observations were available) (Table S4).
At the monthly scale, the average KGE was 0.44 +0.44
(with KGE; of 0.65+0.23, KGE, of 1.12+0.34, KGE,
of 1.13 £ 0.46), indicating on average acceptable agreement
with substantial inter-site differences. At the yearly scale,
performance improved to KGE of 0.55£0.26 (with KGE,
of 0.78 £0.12, KGE,, of 1.12 4 0.34, KGE, of 0.77 +0.19).
Overall, these results demonstrate that the scaling method
provides added value, improving the simulations of stream-
flow compared with standard catchment-scale hydrological
models.

We conclude that the overall performance of the scaled
streamflow simulations matched satisfactorily to both refer-
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ence (derived from the hydrological model HYPE) and ob-
served streamflow (Figs. 7 and S3-S11).

4 Discussion

This study demonstrates a scaling approach that reliably es-
timates streamflow to individual lakes from gridded stream-
flow data, showing strong agreement between simulations,
reference data, and observations. The fit of our simulated
scaled streamflow was acceptable regardless of temporal
scale (monthly, Fig. 6; annually, Fig. S2), and geospatial con-
figuration i.e. the location and size of the lake and its catch-
ment, corresponding to the scaling Approaches L.a, I.b and II
(Figs. 6 and S2). The simulated scaled streamflow also fitted
reference data as well as observations equally well (Figs. 6-
7 and S3-S11). These conclusions are based on the evalu-
ation of the performance of scaled streamflow simulations
across 70 study sites in Sweden, and the country’s diverse
landscape, which includes a wide range of lake sizes, catch-
ment sizes and land covers, climate conditions and topogra-
phy, thus providing a robust basis for assessing model per-
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Figure 7. Monthly (upper row) and annual (lower row) comparison of simulated (black), reference (blue) and observed (red) streamflow for

lake Vinern (105) over a 30-year period (1981-2010).

formance. This diversity enhances the generalizability of the
validation results across different hydrological settings. Fur-
ther, Donnelly et al. (2016) demonstrated that Sweden has
a well-established hydrological modeling framework, partic-
ularly through the HYPE (Hydrological Predictions for the
Environment) model, which has been extensively applied and
validated in the region, and which was used as a reference
data source in this analysis. In addition, Sweden has long-
term, high-resolution datasets for precipitation, temperature
and streamflow, which are essential for ensuring robust hy-
drological simulations, making the HYPE model optimal for
testing the accuracy of scaled streamflow simulations. We
feel that the regionally focused nature of HYPE should pro-
vide an excellent comparative data set to the globally ap-
plied WaterGAP 2 model. Comparisons to HYPE were used
to judge our scaling approach, since HYPE simulations are
readily available for the catchment associated with lake in-
flows, while measured lake inflow data are far less common.

While this study focuses exclusively on Swedish lakes, the
wide range of topographic and geomorphological conditions
represented in the datasets supports the potential global ap-
plicability of the scaling approach (Table S1). The dataset
spans more than three orders of magnitude in lake surface
area (from 0.34 to 5486km?) and are embedded in catch-
ments ranging from 101 to 48421 km?, with catchment-to-
lake area ratios varying from 3.37 to 14 962. These systems
span a broad latitudinal gradient, from approximately 55 to
69° N, encompassing temperate subarctic climates, and also
cover a wide elevational range, from lowland lakes near sea
level to high altitudes systems. This introduces variability in
temperature regimes, snow accumulation and runoff dynam-
ics. Catchment topography is similarly diverse, with mean
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catchment slopes ranging from 0.000001 to 0.012mm™!,
and a wide spread in both minimum and maximum catch-
ment slopes that influence flow concentration and hydro-
logic connectivity. This richness in latitude, elevation, slope,
area and catchment configuration reflects a broad spectrum
of geomorphic and hydrological settings. Since these land-
based drivers are primary controls on surface hydrology
and lake water balances, their strong representation in the
Swedish dataset supports the scaling approach’s transferabil-
ity to other regions.

Although our scaling approach is effective for estimating
how much water flows into lakes, it does not account for the
full routing of water through rivers. A key limitation comes
from differences in the spatial detail of the datasets we used.
Water fluxes (giot, gg and dis) are provided by WaterGAP
2.2e on a coarse grid (0.5° grid cell), while geometry of lake
boundaries in the HydroLAKES dataset is represented at a
much finer scale. This mismatch in resolution can lead to
inconsistencies, for example: an inflowing stream might ap-
pear to flow into a lake in the gridded data, even though in
reality it joins the river downstream. These issues are espe-
cially common in small lake systems. To reduce their impact,
we used known catchment areas to adjust our streamflow es-
timates and avoid large overestimations. However, this ap-
proach does not fully resolve the mismatches, and it breaks
the water mass balance, meaning we may misrepresent how
much water flows through the system. If the objective is to
model the transport of water through river and lake networks,
additional considerations would be required to ensure an ac-
curate mass balance.

The task of linking ISIMIP Global Water Sector and Lake
Sector models requires the use of gridded models and grid-
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ded data. One critical factor influencing the accuracy of the
simulated streamflow is the structure and potential limita-
tions of the gridded hydrological model. In this study, the
gridded water flux (g, g¢ and dis) simulations were ob-
tained from WaterGAP 2.2e (Miiller Schmied et al., 2024),
a global hydrological model that simulates water availabil-
ity and use at a global scale. The performance of the scal-
ing approach, when the simulated streamflow is compared
to reference values or observations, is thus inherently linked
to the accuracy of WaterGAP 2.2e outputs. The WaterGAP
2.2e model achieved a global monthly streamflow perfor-
mance with a median KGE of 0.58 (Miiller Schmied et al.,
2024). The scaled streamflow simulations performed simi-
larly, with a median KGE of 0.59 compared to the reference
and a median KGE of 0.46 against observations. Regarding
KGE components, the bias ratio (KGEy) showed a median
value close to the optimal value of 1 in all cases (for Wa-
terGAP 2.2e: median KGE,, of 1.01 and for scaled stream-
flow: median KGEy of 1.04 compared to the reference and
median KGE;, of 1.00 compared to observations). KGE, de-
viates from 1, indicating that streamflow variability is not
well simulated, the median KGE, was 0.86 for WaterGAP
2.2e, while the scaled streamflow showed median KGE, val-
ues of 0.84 compared to the reference and 0.96 compared
to observations. This underestimation of streamflow variabil-
ity suggests that hydrological extremes, including peak and
low flows, may not be fully captured when using a gridded
model with gridded meteorological forcing, potentially lead-
ing to a smoothing effect in the simulations. In the Koppen-
Geiger climate region D, which includes Sweden, 47 % of the
gauging stations used for the calibration of WaterGAP 2.2e
showed KGEg values between 0.5 and 0.9. For the scaled
streamflow, 61 % of the study sites fell within 0.5-0.9 range
when compared to the reference, while 40 % did so when
compared to observations. The ability to capture the timing
of streamflow increases and decreases was generally good in
WaterGAP 2.2e, with a median KGE; of 0.78. In the Koppen-
Geiger climate region D, 27 % of gauging stations showed
a KGE; below 0.5, indicating moderate timing errors. The
scaled streamflow showed improved timing accuracy when
compared to the reference, with a median KGE; of 0.81 and
only 11 % below 0.5. However, when compared to observa-
tions, the median KGE, decreases to 0.67, with 60 % of study
below 0.5, suggesting that while the scaling approach im-
proves consistency with the reference, discrepancies remain
when validated against observed streamflow.

Another factor influencing the performance of stream-
flow simulations was the data source used for validation.
E-HYPE, the European-scale implementation of the HYPE
model, utilized gauged streamflow data for catchments larger
than 5000 km?2, while for smaller catchments, it relies on
modelled ungauged streamflow (Donnelly et al., 2016). This
distinction is important because it might explain why the ac-
curacy of streamflow simulations tended to be higher in well-
gauged large catchments, whereas streamflow simulations in
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smaller catchments were inherently more uncertain due to
the reliance on hydrological modeling rather than observa-
tions. Among the 70 study sites, 23 had a catchment area
larger than 5000 km?, yielding a mean KGE of 0.60 +0.22,
while the remaining 47 study sites (< 5000 km?) exhibited a
comparable performance, with a mean KGE of 0.58 £ 0.15.
However, for the 10 study sites where scaled streamflow was
compared directly with observations, performance varied: 6
study sites with catchments larger than 5000 km? showed
a mean KGE of 0.41 £0.20, whereas another 4 study sites
(<5000km?) achieved a mean KGE of 0.52 4 0.22. This
suggests that while scaled streamflow simulations performed
similarly across different catchment sizes when compared
to a streamflow reference, their accuracy was more variable
when directly validated against observations.

It is important to point out the difference between the ref-
erence (E-HYPE discharge simulations) and scaled stream-
flow are due not only to potential inaccuracies in the scaling
approach itself, but also to differences in the performance
of E-HYPE and WaterGAP 2.2e models, and meteorological
data used to force both models. The good agreement between
the reference and simulated scaled streamflow, despite mul-
tiple potential sources of errors, therefore, suggests that the
scaling approach presented here is likely to perform similarly
well in another region of the world.

When scaling streamflow from gridded data to the catch-
ment scale, three different approaches (Approach lL.a, Ap-
proach I.b and Approach II) were employed to account for
differences in the size and location of lakes and their catch-
ments in relation to grid cells. These approaches are essen-
tial due to the significant differences in lake size, shape and
catchment area relative to the model grid resolution. The per-
formance of the scaling approach was further assessed across
different catchment and lake sizes. For lakes where Ajke <
Agrid, both sub-approaches (I.a and 1.b) yielded similar re-
sults, demonstrating the robustness of the method across dif-
ferent grid configurations. In large lakes where Ajake > Agrid
(Approach II), such as Vinern and Vittern, the performance
was strong with KGE values of 0.77 and 0.79, respectively.
In contrast, for Lake Milaren, which has a highly irregular
shape (Fig. S1), the choice of scaling approach significantly
affected performance. The better performance of Approach
Lb (KGE=0.71) compared to Approach II (KGE =0.47)
highlights the importance of accounting for complex lake
morphologies in streamflow scaling. Nevertheless, both scal-
ing approaches achieved satisfactory performance compara-
ble to other lakes with less complex morphologies, indicates
that, although lake morphology can influence performance, it
is not the sole determining factor, further supporting the ro-
bustness and practical applicability of the scaling approaches
even for lakes with complex morphologies.

Although validation against observed streamflow is con-
strained due to data availability, the 10 lakes used for valida-
tion are broadly representative of the 70 lakes included in the
study. Geographically, these lakes are distributed across lat-
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itudes from 58.33 to 66.66°, covering southern, central and
northern regions of Sweden (Table S3). The lake area spans
three orders of magnitude from 7.68 km? (lake 142 240) to
5486 km? (lake Vinern), with catchment areas that vary in-
dependently of lake size (Acatchment raged from 138.7 to
48421 km?2). This includes both small lakes with small catch-
ments (AcatchmentAljﬂle of 5.99 —lake Erken) and large catch-
ments (AcatchmemAl_alie of 139.91 — lake Roxen), as well as
large lakes with small catchments (AcamhmemAl;le of 3.37 —
Lake Vittern) and large catchments (AcatchmemAl_alie of 20.94
— Lake Mailaren), reflecting the diverse hydrological char-
acteristics of the study region. Validation against observed
streamflow data for these representative lakes (Fig. 6B;
Table S3) confirmed the ability of the scaled simulations
to match not only reference data, but also observed data.
Seasonal-scale performance was slightly lower (KGE of
0.46+£0.21) due to timing errors, compared to stronger
annual-scale performance (KGE of 0.70 £ 0.15), indicating
that the method effectively captures long-term hydrological
trends.

5 Conclusion

The results of this study demonstrate that the developed scal-
ing approach is reliable and robust for global applications,
showing good performance across a wide range of hydro-
logical settings. By implementing three distinct approaches
(I.a, Ib and II), the methodology effectively accounts for
varying lake sizes and catchment configurations, from small
single-grid lakes and catchments to large, complex multi-grid
systems such as Vinern, Vittern and Milaren. This flexibil-
ity enables consistent application across diverse hydrological
regimes and supports the use of the method in a large-scale
modelling framework. While the overall performance was
satisfactory, evidence by strong average KGE values, some
limitations remain, particularly in capturing flow variability
and timing in more complex systems.

This study also addresses a key limitation in the ISIMIP
framework by introducing a method to dynamically link grid-
ded catchment hydrology with lake inflows. The approach
allows lake simulations to reflect not only direct climate im-
pacts but also changes in upstream hydrological processes,
enabling more realistic assessments of climate change im-
pacts on lakes globally. By bridging the gap between catch-
ment and lake dynamics, this methodology provides a valu-
able tool for improving integrated hydrological and biogeo-
chemical lake modelling within ISIMIP and beyond.

Code availability. All R scripts produced during this study
are available at https://doi.org/10.5281/zenodo.17589293 (Ayala,
2025a).
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Data availability. The impact model WaterGAP 2.2e simula-
tions of monthly discharge (dis), total runoff (giot) and ground-
water runoff (gg) (Miller Schmied et al., 2024) for the
standard evaluation experiment obsclim_histsoc_default (Frieler
et al., 2024), along with the drainage direction map and
slopes for river routine, are available in the ISIMIP reposi-
tory (https://data.isimip.org, last access: 3 December 2025) and
at https://doi.org/10.5281/zenodo.17588875 (Ayala, 2025b). Rep-
resentative lakes at the ISIMIP3 Global Lake Sector can be
accessed at https://github.com/icra/ISIMIP_Lake_Sector. Scaled
streamflow simulations for the 70 studied sites are available at
https://doi.org/10.5281/zenodo.17588905 (Ayala, 2025¢).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-19-41-2026-supplement.
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